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OPERATIONALIZING FAIRNESS IN MEDICAL AI ADOPTION: 

DETECTION OF EARLY ALZHEIMER’S DISEASE WITH 2D CNN

 

ABSTRACT 

Objectives: To operationalize fairness in the adoption of medical artificial intelligence (AI) algorithms in 

terms of access to computational resources, the proposed approach is based on a two-dimensional (2D) 

Convolutional Neural Networks (CNN), which provides a faster, cheaper, and accurate-enough detection 

of early Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI), without the need for use of large 

training datasets or costly high-performance computing (HPC) infrastructures. 

Methods: The standardized ADNI datasets are used for the proposed model, with additional skull stripping, 

using the BET2 approach. The 2D CNN architecture is based on LeNet-5, the LReLU activation function 

and a Sigmoid function were used, and batch normalization was added after every convolutional layer to 

stabilize the learning process. The model was optimized by manually tuning all its hyperparameters. 

Results: The model was evaluated in terms of accuracy, recall, precision, and f1-score. The results 

demonstrate that the model predicted MCI with an accuracy of .735, passing the random guessing baseline 

of .521, and predicted AD with an accuracy of .837, passing the random guessing baseline of .536. 

Discussion: The proposed approach can assist clinicians in the early diagnosis of AD and MCI, with high-

enough accuracy, based on relatively smaller datasets, and without the need of HPC infrastructures. Such 

an approach can alleviate disparities and operationalize fairness in the adoption of medical algorithms. 

Conclusion: Medical AI algorithms should not be focused solely on accuracy but should also be evaluated 

with respect to how they might impact disparities and operationalize fairness in their adoption. 
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SUMMARY 

 

What is already known? 

• Most prior studies on early Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) 

detection have used a three-dimensional (3D) Convolutional Neural Networks (CNN) approach. 

• The 3D CNN approach is computationally expensive requiring high performance computing (HPC) 

infrastructures, and, due to the high number of parameters, it requires larger datasets for training. 

• A two-dimensional (2D) CNN needs less parameters, less computational power, and execution time, 

while requires smaller datasets for training, but has not been applied to date for MCI detection. 

 

What does this paper add? 

• The proposed approach based on a 2D CNN operationalizes fairness in the adoption of medical 

artificial intelligence (AI) algorithms by providing fast, cheap, and accurate-enough detection of 

early AD and MCI without the need for use of large datasets or costly HPC infrastructures. 

• The proposed approach can be extended to other diseases, as well as to other cases where time is 

scarce, powerful computational resources are not available, and large datasets are out of reach. 
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OPERATIONALIZING FAIRNESS IN MEDICAL AI ADOPTION: 

DETECTION OF EARLY ALZHEIMER’S DISEASE WITH 2D CNN 

 

INTRODUCTION 

Recent studies show that Artificial intelligence (AI) applications can perform on par with medical experts 

on Magnetic Resonance Images (MRI) analysis [1]. Such applications to date, tend to oppose the accuracy 

of AI to the performance of clinicians. For instance, there have been more than 20,000 studies on deep 

learning (DL) methods for MRI analyses the last decade, which compare the performance of AI to the one 

of clinicians [2]. Recent work suggests that future studies should focus on the comparison of performance 

between clinicians using AI, and their performance without an AI aid [3]. The recent global pandemic, 

however, revealed another urgent need of early disease diagnosis: the ability to make predictions based on 

a limited number of cases. The AI Computer-Aided-Detection (CAD) frameworks to date, are based on 

large amounts of data, and require high-performance computing (HPC) infrastructures. To address that 

lacuna, we propose a synergistic approach, in which clinicians and scientists collaborate for faster, cheaper, 

and more accurate detection, relying on small datasets to make accurate-enough predictions. A promising 

frontier where AI can assist clinicians is Alzheimer’s Disease (AD) since the release of promising clinical 

studies for a new drug have unearthed the need for its early detection. As it can take up to 20 years before 

AD patients show any signs of cognitive decline, it can be challenging to diagnose AD in early stages. We, 

thus, motivate and implement an AI-CAD framework for the early detection of Mild Cognitive Impairment 

(MCI) and AD to assist clinicians, while the approach can be extended for the diagnosis of other diseases. 

AD is caused by an accumulation of β-amyloid (Aβ) plaques, and abnormal amounts of tau proteins 

in the brain. This results in synapse loss, where the impulse does not reach the neurons, and in loss of 

structure or function of neurons, including their death, causing memory impairment and other cognitive 

problems [4]. AD has strong impact on the cognitive and physical functioning of patients, resulting in death. 

Recent developments in slowing AD decline have increased the relevance of its early detection [5], and 
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MCI plays an important role in this. MCI is a syndrome where the patients have greater cognitive decline 

than normally expected, but it does not necessarily affect their daily lives. Although some MCI patients 

remain stable or return to cognitively normal (CN), there is a 10-15% risk per year of progression to AD 

[4]. Before the etiology of AD became known, its diagnosis relied on neurocognitive tests. The development 

of biomarkers improved AD detection. A common method to diagnose AD is hippocampus segmentation, 

which relates to memory function, and its small volume is an AD biomarker. For a long time, AD diagnosis 

was done manually by looking at the brain structure and size of the hippocampus on MRI, which requires 

practice and precision. Prior studies on automated methods for hippocampus segmentation have used DL 

approaches with promising results [6]. Automated hippocampus segmentation for the diagnosis of AD and 

MCI, however, requires clinicians’ expertise and is sensitive to interrater and intra-rater variability [6]. 

Convolutional Neural Networks (CNN) can become the foundation of an AI-CAD framework for 

supporting clinicians in the detection of early AD and MCI, since it is a successful approach for image 

classification. CNN can improve the performance of image classification [7], and they are becoming 

increasingly popular in MRI analysis. For instance, recent studies show that CNN can work on par with 

specialists for classifying MRI of skin cancer patients [1]. Similar approaches with three-dimensional (3D) 

as well as two-dimensional (2D) CNN have also been used for AD detection with promising results. When 

it comes to the inner mechanics of these approaches, the classification filter of a 3D CNN slides along all 

the three dimensions of the input image, resulting in 3D feature maps, whereas in a 2D CNN the 

classification filter slides along only the height and width of the input image. Thus, the latter results in 2D 

feature maps, which need less parameters, computational power, and execution time. Most prior studies 

have used 3D CNN achieving high accuracy [8], while others obtained similar results with 2D CNN [9]. 

Although previous work on the topic has established that 3D CNN perform better for patch classifications, 

the results between 2D and 3D approaches for whole image labeling did not differ much [10]. A 3D CNN, 

however, is more computationally expensive, and, due to the high number of parameters, it requires larger 
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datasets for training [11]. Concurrently, prior studies have not incorporated a 2D CNN approach for detecting 

MCI. A summary of prior 2D and 3D CNN applications in the literature is presented in Table 1. 

 

Table 1. Performance comparison of 2D and 3D approaches in the literature 

Study 
2D CNN 3D CNN 

AD MCI AD MCI 

Basaia et al. [8] - - .99 .87 

Feng et al. [12] - - .95 .86 

Korolev et al. [13] - - .80 - 

Liu et al. [14] - - .85 - 

Liu et al. [15] - - .91 - 

Senanayake et al. [16] - - .76 .75 

Hon and Khan [17] .96 - - - 

Sarraf and Tofighi [18] .99 - - - 

Sarraf and Tofighi [19] .97 - - - 

Wang et al. [9] .98 - - - 

 

We suggest that medical algorithms should not be solely focused on accuracy but should also be 

evaluated with respect to how they might impact disparities and operationalize fairness in their adoption. 

Thus, we investigate the extent to which a 2D CNN can detect MCI and early AD. 

 

METHODS 

CNN is the most common neural network (NN) architecture for image classification. Fully connected NN 

take multiple inputs, and hidden layers perform calculations on them, while the neurons in the network 

connect to each other. Neurons in CNN, however, connect only to those close to them. CNN, therefore, 

need fewer parameters, which results in benefits such as small risk of overfitting, higher accuracy, and 

faster processing time. Moreover, in CNN there is no need to transform the input images to one-

dimensional, a process which can result in loss of structural information, as the CNN can learn the 

relationships among the pixels of input by extracting representative features with kernel convolutions [4]: 

𝑆(𝑖, 𝑗) = (𝐼 × 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚
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where 𝐼 is the input and 𝐾 is the kernel; the input indices are represented by 𝑖 and 𝑗, and the kernel indices 

are represented by 𝑚 and 𝑛. 

The datasets used in this study were obtained under permission from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership. The primary goal of ADNI has been to test whether MRI, biological markers, and 

clinical as well as neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. The ADNI is separated into 3 studies of 5 years, while the first was prolonged by 2 years under 

the name ADNI-GO. In total, 2517 people of ages 55-90 participated in the study. The ADNI encourages 

the use of their standardized datasets to ensure consistency in analysis and direct comparison of various 

methods among studies. We, therefore, used their two standardized datasets ‘ADNI1:Complete 2Yr 1.5T’, 

and ‘ADNI1:Complete 3Yr 1.5T’, which contain MRI that have passed quality control assessment [20]. 

Our dataset consists of 3312 images, distributed in 828 MRI of CN subjects, 453 MRI of AD 

patients, and 1203 MRI of MCI patients. The dataset was split into one with CN and AD subjects (1281 

MRI), and one with CN and MCI subjects (2031 MRI). Since the participants of the ADNI study returned 

for more than one check-up, any patient can have up to 12 MRI, which are not identical as they are taken 

at different moments, and every MRI in the standardized dataset was treated independently. The dataset, 

thus, refers to 99 AD patients, 212 MCI patients, and a control group of 165 CN subjects. We present the 

demographic information of the included subjects in Table 2, to enable comparison with other studies. 

 

Table 2. Demographic information of subjects in the dataset 

 MCI AD CN 

Images 891 412 662 

Subjects 212 99 165 

Gender 142 M / 70 F 52 M / 47 F 82 M / 83 F 

Age 
μ = 75.84 

σ = 7.02 

μ = 76.49 

σ = 7.43 

μ = 76.93 

σ = 5.23 
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Whilst the datasets are pre-processed, we further performed skull stripping using the Brain 

Extraction Tool v2 (BET2), which is part of the NiPype library. Skull stripping locates the brain in the MRI 

and removes all surroundings to further remove noise from images. For optimal skull stripping results, neck 

slices were removed with the robustfov function. We used a fraction intensity of 0.3 as an evaluation of 

BET2 parameters for the ADNI dataset found that this leads to best results. Due to the differences in 

scanners and techniques used by the ADNI over the years, the MRI used in the datasets were of different 

sizes, and, therefore had to become uniform. All the MRI in our dataset were resized to: (136, 192, 160) 

with the ndimage zoom function of the Scipy library, which zooms the array using spline interpolation. 

Resizing the MRI results in a different range of pixel values, and, therefore, to assure that the pixel values 

of all MRI had the same range, z-score normalization was applied, which is defined as follows: 

𝑧𝑖  =  
𝑥𝑖 − µ(𝑥)

𝜎(𝑥)
 

where 𝑥 is the MRI data and 𝑧𝑖 the 𝑖th normalized MRI. The dataset was then split into train set, validation 

set, and test set with a ratio of 60:20:20 respectively. 

A NN consists of an input layer, hidden layers, and an output layer. A CNN has hidden layers 

divided into convolution, pooling, activation, and classification layers. We based our architecture on LeNet-

5, which includes 2 convolutional layers, 2 pooling layers, and 2 fully connected layers (Table 3). 

 

Table 3. CNN architecture 

Layer C1 P1 C2 P2 FC1 FC2 FC3 

Kernel 3x3 2x2 3x3 2x2 - - - 

Filter 32 32 64 64 128 64 2 

 

We employ the Leaky Rectified Linear Unit (LReLU) as activation function for all convolutional 

layers, which allows for a small non-zero gradient [21]. The LReLU activation function in the model, with 

𝑥 being the input data, is described as: 
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𝑦(𝑥) = {
𝑥, 𝑖𝑓𝑥 < 0

0.01𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

A Sigmoid activation function was applied to the dense layer, which outputs the probability of the 

images’ class, with 0 if healthy and 1 if not (AD or MCI). The Sigmoid activation function in the model, 

with 𝑥 being the input data, is described as: 

𝜎(𝑥) =
1

(1 + 𝑒−𝑥)
 

We optimized the model by manually tunning the hyperparameters (see Table 4). 

 

Table 4. Parameter tuning on the AD dataset 

PARAMETERS 

Round 1 2 3 4 5 6 7 8 9 10*  

Learning 

rate 

0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.0001 0.01 0.001 0.001 

 

Batch size 32 16 16 8 32 16 8 8 8 8 16 

Epochs 50 50 50 30 30 30 30 30 30 30 40 

Dropout - 0.3 0.3 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.2 

Batch 

norm. 

- x x x x x - x x x x 

METRICS 

Loss 1.040 0.711 0.637 0.461 0.742 0.600 2.292 0.805 0.639 0.600 0.677 

Acc 0.833 0.794 0.802 0.840 0.833 0.840 0.728 0.767 0.825 0.833 0.837 

Precision 0.881 0.977 0.891 0.768 0.947 0.949 0.628 0.972 0.788 0.859 . 948 

recall 0.628 0.447 0.521 0.809 0.574 0.596 0.628 0.372 0.713 0.649 .585 

 

The batch size was set to 16 and we used the Adam optimizer [22] with a learning rate of 10-3. The 

model showed overfitting, which means that it includes more terms or uses more complicated approaches 

than necessary [23]. Regularization can control overfitting and drop-out regularization is a commonly used 

approach because it is computationally inexpensive, and it prevents co-adaptation among feature map units 

[11]. In drop-out regularization only a fraction of the weights is learned by the NN in each iteration. We 

added a drop-out layer with a value of 0.2 after each pooling layer (i.e., 80% of the weights were learned 
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in each iteration), leading to better results on all the train, validation, and test sets. To stabilize the learning 

process, we added batch normalization after every convolutional layer. For each unit in a layer, the value 

was normalized as follows: 

�̂�𝑖
(𝑙)

=
𝑎𝑖

(𝑙)
− 𝔼[𝑎𝑖

(𝑙)
]

√𝑉𝑎𝑟[𝑎𝑖
(𝑙)

]

 

where 𝑎 represents the activation vector of the ith layer 𝑙. Thereafter, the normalized values were scaled and 

shifted accordingly. After ~40 epochs, the model did not show increment in accuracy or reduction in loss, 

and overfitting increased, thus, we applied an early stopping at 40 epochs instead of the initial set of 50. 

The CNN was built with a Jupyter Notebook using Python 3.6.4, Tensorflow 2.4.0, and Keras 2.4.0. 

To load the data in NIfTI format we used the Nilearn library, and we used the scikit-learn and SciPy libraries 

for data preprocessing. The development, testing, and application of the model took place on the Google 

Cloud Console, where we used a storage bucket to store the datasets, and three compute engine instances 

to perform the skull stripping and pre-processing, and to run our model independently as these steps require 

different computational resources. For skull stripping we used an instance with 8 vCPUs, 52 GB RAM, and 

two NVIDA Tesla K80 GPUs, for pre-processing we used an instance with 40 vCPUs, and 961 GB RAM. 

For the CNN we used an instance with 64 vCPUs, 416 GB RAM and four NVIDA Tesla T4 GPUs. 

 

RESULTS 

The model was evaluated in terms of accuracy, recall, precision, and f1-score. Recall provides sensitivity 

information on how many patients were correctly identified. Precision expresses how many of the positives 

that the model returns were actually positive. F1-score is the harmonic mean between precision and recall. 

A NN adjusts its weights to optimize the loss, which is calculated with the use of binary cross entropy loss: 

𝐶𝐸 =  − ∑ 𝑡𝑖𝑙𝑜𝑔(𝑠𝑖) = 𝑡1𝑙𝑜𝑔(𝑠1) − (1 − 𝑡1)𝑙𝑜𝑔(1 − 𝑠)

𝐶′=2

𝑖=1
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where 𝐶 represents the classes, 𝑠𝑖 is the predicted probability value for class 𝑖, and 𝑡 is the true probability 

for that class. Since the data was unevenly distributed, the accuracy baseline of random guessing was also 

calculated. The baseline was calculated with respect to the class distribution of the dataset. First, we trained 

and tested our model on the AD dataset. After passing the baseline of random guessing on the training data 

(>.548) with an accuracy of .994, we applied the same model on the MCI dataset. The random guessing 

baseline for the test dataset of the AD model was .536 and for the test dataset of the MCI model was .521. 

The over-epochs performance of the model is depicted in Figure 1 for AD (left), and for MCI (right). 

While the above graphs indicate a normal learning curve, as the performance of the model keeps 

increasing on the train dataset, the validation performance flattens, which implies overfitting. This appears 

to be true mainly on the AD dataset. Our model achieved accuracy of .837 on the AD test-set. Irrespective 

of overfitting, the achieved test accuracy on the AD dataset surpasses the random guessing baseline of .536. 

The model predicted MCI with accuracy of .735, passing the random guessing baseline of .521. Table  5 

presents the performance metrics of the models on the test sets. The model performs better than chance on 

both sets, with a better predictive performance for the AD dataset than for the MCI dataset. The MCI model, 

however, seems to perform better on selecting relevant items (i.e., recall, predicted positives relative to all 

positives). The MCI model shows notably less overfitting than the AD model, which might be due to the 

size of the dataset, as the dataset used for the MCI was larger (almost double in size) than the AD one. 

 

Table 5. Performance metrics on test data 

Data Loss Acc. Prec. Recall F1 MRI 

AD 0.677 .837 . 948 . 585 . 724 1281 

MCI 1.377 .735 .728 .894 .802 2031 

 

By comparing our study to previous ones in the relevant literature (see Table 6), we notice a large 

difference in the size of the used datasets. Moreover, some of the prior studies only report the number of 

subjects in the used dataset [8], [12], [14], [15], but the number of images can differ from these since one 

subject can have up to 12 images in these datasets. As expected, studies with larger datasets, achieved 
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higher accuracy. Furthermore, some of the studies with a 2D approach treated the slices independently [9], 

[18], [19], thereby enlarging the size of their dataset, however, the MRI was not treated as a whole. 

 

Table 6. Comparison of data and accuracy with previous studies 

Study Subjects Images Dimensions 
Accuracy 

AD MCI 

Basaia et al. [8] 645 - 3D .99 .87 

Feng et al. [12] 193 - 3D .95 .86 

Korolev et al. [13] 111 111 3D .80 - 

Liu et al. [14] 193 - 3D .85 - 

Liu et al. [15] 902 - 3D .91 - 

Senanayake et al. [16] - 322 3D .76 .75 

Hon and Khan [17] * 200 6400 2D .96 - 

Sarraf and Tofighi [18] ** 302 62,335 2D .99 - 

Sarraf and Tofighi [19] ** 43 367,200 2D .97 - 

Wang et al. [9] ** 98 17,738 2D .98 - 

Our 476 3,312 2D .84 .74 

*  accuracy before transfer learning = .74 

**  used MRI slices independently 

 

DISCUSSION 

Whilst AI-CAD frameworks have been thoroughly studied, they have not been proposed as a tool for 

assisting clinicians. Furthermore, whilst the literature on AI-CAD frameworks is mostly approached from 

a computer science perspective, clinicians have been shown to lack trust in them [2], [3] [24]. Our work 

addresses that lacuna by providing a synergistic approach between clinicians and scientists. We contribute 

to the line of research on using CNN for AD and MCI detection, by applying a 2D approach. Our model 

predicts AD better than chance by .301, and MCI by .214. As expected, the model performed worse on 

detecting MCI than AD. The learning process on the MCI dataset, however, was much cleaner than the 

process on the AD dataset. This might be due to the size of the dataset, which can have a large impact on 

the process and outcomes of the model. The proposed AI-CAD framework, thus, performs better than 

chance for AD as well as for MCI and could assist clinicians in the early detection of AD, and MCI. 
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 We suggest that medical algorithms should not be focused solely on accuracy but should also be 

evaluated with respect to how they might impact disparities and operationalize fairness in terms of 

computational resources, when it comes to their adoption. Our framework can be further extended to other 

diseases, and to cases where time is scarce, computational resources are not available, and large datasets 

are out of reach. Finally, our work is in line with the broader Information Systems research agenda [25], on 

the adoption of responsible medical AI algorithms [26], and the stewardship of sensitive personal data [27]. 

Therefore, our work can give rise to new avenues for interdisciplinary research and can become the bedrock 

for novel methodological advances, as well as ground-breaking empirical findings on the broader topic. 

 

CONCLUSION 

Prior studies have used CNN to diagnose MCI and early AD, most of which applied 3D approached. 

The 3D CNN, however, have drawbacks that relate to needs for HPC infrastructures. Other studies have 

focused on detecting AD with a 2D CNN, achieving similar results as the 3D approach. Despite the 

relevance of detecting MCI, prior studies did not investigate how these methods perform on detecting MCI. 

Our main goal was to determine whether a 2D CNN can be used to diagnose AD and MCI. Our work 

resulted in an AI-CAD framework that can assist clinicians in the early detection of MCI and AD with high-

enough accuracy, based on a relatively small dataset, and without the need of HPC infrastructures. Our 

work has limitations that need to be acknowledged. First, an important pre-progressing step is image 

resizing. We used Scipy ndimage, which distorts the image and could have a negative effect on the learning 

process. A better solution for resizing images is needed but to the best of our knowledge is not available. 

Second, the ADNI datasets consist of more images than participants. If subjects appear in both datasets, the 

model could learn subject-specific features but the impact on model performance is unknown, as most 

physical features are removed during skull stripping. Third, the AD model appears to be overfitting, which 

is a common problem in DL models. To further optimize our model, the overfitting problem needs to be 

addressed by future research. Future research should also replicate the existing 3D CNN approaches and 

compare their execution time with the 2D CNN one of our models on the same computational infrastructure. 
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Such a comparison will further illustrate the merits of our approach. Finally, future research should also 

evaluate the performance of clinicians using our framework, and their performance without an AI aid. 
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