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ABSTRACT
High-resolution cosmological hydrodynamic simulations are currently limited to relatively small
volumes due to their computational expense. However, much larger volumes are required to probe
rare, overdense environments, and measure clustering statistics of the large scale structure. Typically,
zoom simulations of individual regions are used to study rare environments, and semi-analytic models
and halo occupation models applied to dark matter only (DMO) simulations are used to study
the Universe in the large-volume regime. We propose a new approach, using a machine learning
framework to explore the halo-galaxy relationship in the periodic EAGLE simulations, and zoom
C-EAGLE simulations of galaxy clusters. We train a tree based machine learning method to predict
the baryonic properties of galaxies based on their host dark matter halo properties. The trained
model successfully reproduces a number of key distribution functions for an infinitesimal fraction of
the computational cost of a full hydrodynamic simulation. By training on both periodic simulations
as well as zooms of overdense environments, we learn the bias of galaxy evolution in differing
environments. This allows us to apply the trained model to a larger DMO volume than would
be possible if we only trained on a periodic simulation. We demonstrate this application using the
(800 Mpc)3 P-Millennium simulation, and present predictions for key baryonic distribution functions
and clustering statistics from the EAGLE model in this large volume.

Key words: galaxies: abundances – galaxies: luminosity function, mass function –
software: simulations

1 INTRODUCTION

Cosmological hydrodynamic simulations self-consistently
model the evolution of baryonic and cold dark matter, and
the subsequent hierarchical assembly of galaxies in a ΛCDM
universe (Benson 2010; Somerville & Davé 2015). A number
of projects, such as EAGLE (Schaye et al. 2015), Illustris
(Vogelsberger et al. 2014), Illustris-TNG (Pillepich et al.
2018), Mufasa (Davé et al. 2016) and Simba (Davé et al.
2019) have had reasonable success at reproducing key galaxy
distribution functions in the low-redshift Universe, such as
the galaxy stellar mass function. They are typically run

? E-mail: c.lovell@herts.ac.uk (CCL)

within large periodic volumes, ∼100 Mpc on a side, and
have mass resolutions of order ∼ 106 M�. This is sufficient
to resolve the internal structure of galaxies, but still coarse
enough to necessitate the use of subgrid models for small-
scale stellar and black hole processes.

It is currently computationally infeasible to run simu-
lations at this resolution in substantially larger volumes1.
This is an issue for certain science questions, since the vol-
umes typically simulated (∼ (100 Mpc)3) do not contain large
numbers of rare, overdense environments, as well as galax-

1 The BlueTides simulation (Feng et al. 2016) is one of the
largest high-resolution hydrodynamic simulations, with a volume

400 h−1 Mpc on a side, but was only run to z = 7.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3221/6425762 by U

niversity of D
urham

 user on 08 D
ecem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

2 Christopher C. Lovell et al.

ies with unusual growth histories (e.g. star bursts). For ex-
ample, EAGLE contains only seven clusters at z = 0, and
these are all relatively low mass (M200,crit /M� < 1014.5).
In order to simulate rare environments, that are not rep-
resented in smaller scale periodic volumes, another ap-
proach is to use ‘zoom’ simulations (Katz & White 1993;
Tormen et al. 1997). These use initial conditions selected
from a much larger dark matter only (DMO) simulation,
of order ∼ (1 Gpc)3 in volume, and then resimulate a smaller
region from this volume with full hydrodynamics. Large
scale tidal forces are preserved by simulating the rest of
the volume with low resolution dark matter only particles.
This approach has been used successfully to simulate cluster
environments with the EAGLE code (Barnes et al. 2017b;
Bahé et al. 2017).

However, since zooms only simulate a small region of
interest they have a number of drawbacks compared to pe-
riodic simulations. They cannot be used to predict mean
distribution functions directly, since they are, by construc-
tion, biased regions. One means of circumventing this lim-
itation is to use multiple zoom simulations of differing en-
vironments, and weight the relative abundance of each sim-
ulation based on its relative total matter overdensity. This
technique was first demonstrated with the GIMIC simula-
tions (Crain et al. 2009), and recently used in the Flares
simulations to make predictions for the abundance of galax-
ies during the epoch of reionisation (Lovell et al. 2021;
Vijayan et al. 2021). Another drawback is that zooms can-
not be used to self-consistently predict aspects of the large
scale structure, such as the clustering of galaxies, since they
are by construction non-representative, small volume regions
of the Universe. Large periodic volumes are the only means
of studying these kinds of spatial statistics (e.g. the BA-
HAMAS project; McCarthy et al. 2017), but these large vol-
umes cannot currently be simulated at the high resolution
necessary to model internal galaxy structures. This limits
what can be achieved with high-resolution hydrodynamic
simulations.

N-body DMO simulations predict the distribution of
matter as a result of gravitational interactions only, and are
therefore significantly cheaper computationally than simu-
lations including the gas hydrodynamics. They are therefore
less demanding to run accurately in large volumes, allow-
ing them to be used to explore the large scale structure
(LSS). There are also a number of approaches to modelling
galaxy evolution that are relatively simpler than running a
full hydro simulation, using semi-analytic or phenomenologi-
cal models to populate haloes in DMO simulations. The host
halo has a significant impact on the properties of a galaxy;
haloes are the cradles within which galaxies form, and con-
tinue to influence the evolution of a galaxy throughout its
lifetime (Wechsler & Tinker 2018). Understanding the re-
lationship between galaxy properties and the properties of
their host haloes is an important factor in understanding
galaxy formation and evolution, and in the subsequent build-
ing of these kinds of galaxy evolution models.

Semi Analytic Models (SAMs) explicitly assume a close
relationship between a galaxy and its host-halo. They treat
the complicated physics of galaxy formation with approx-
imate, physically-motivated analytical models, applied ex
post facto to N-body dark matter only simulations (for a re-
view, see Baugh 2006). The halo properties, and their merg-

ing history, provide the input parameters for such models,
which have successfully reproduced a number of distribution
functions simultaneously (e.g. Gonzalez-Perez et al. 2014;
Henriques et al. 2015, 2020). Subhalo Abundance Matching
(SHAM) models also rely explicitly on the galaxy-halo re-
lationship, populating dark matter haloes from simulations
with rank ordered galaxies from observations. Such models
have been used to constrain the stellar mass - halo mass re-
lation (e.g. Behroozi et al. 2010; Moster et al. 2010, 2013;
Legrand et al. 2019), though it has been noted that the
efficacy of such methods is highly dependent on the ob-
servational selection function (Stiskalek et al. 2021). Both
these approaches are capable of modelling galaxy evolution
over very large volumes, allowing predictions for the clus-
tering of galaxies as well as their evolution in rare, over-
dense environments. They have also been used in combina-
tion with hydrodynamic simulations in order to highlight
potential issues (e.g. for satellites where mergers lead to
mass loss; Simha et al. 2012), and SAMs have even been ex-
plicitly calibrated to reproduce hydrodynamic simulations
(Neistein et al. 2012; Mitchell & Schaye 2021), allowing an
investigation into the effects of changes to specific coeffi-
cients in the model.

Machine learning methods continue to grow in popu-
larity in all areas of astronomy (see Ball & Brunner 2010;
Fluke & Jacobs 2020), and a number of recent papers have
explored how they can be used in combination with simula-
tions to emulate galaxy properties, analogous to a SHAM
or SAM model. In a pioneering paper, Xu et al. (2013)
used the Millennium simulation, coupled with a SAM, to
predict the number of galaxies in a given halo using sup-
port vector machines and k -nearest neighbour algorithms.
Later, Kamdar et al. (2016a) showed how tree based meth-
ods can be trained to learn additional properties of the
the baryon-halo relationship directly from an existing SAM.
They used dark matter properties from each halo as fea-
tures, and baryonic properties as predictors, and trained
the machine to learn the mapping between the two. They
then followed this up by applying the same technique
to the Illustris hydrodynamic simulation (Kamdar et al.
2016b). Agarwal et al. (2018) presented a similar model ap-
plied to the MUFASA simulation. Using the more recent
Illustris-TNG simulation, Jo & Kim (2019) presented a
similar model, and then applied this trained model to the
much larger DMO MultiDark-Planck simulation. A novel
addition to their model was historical halo features (ex-
tracted from the halo merger tree), which allowed the model
to broadly reproduce key distribution functions, though we
note that they do not present tests in the high halo mass
regime (> 1014 M�). Sullivan et al. (2018) used artificial
neural networks to better predict the baryon fraction of
haloes at high-redshift using both dark matter and baryonic
properties from their Ramses-RT radiative transfer simu-
lations. Most recently, a number of hybrid approaches have
been presented: Moews et al. (2020) combined the results of
an equilibrium model with machine learning on the Simba
simulations, and Hearin et al. (2020) combined empirical
modelling with simulation outputs from a SAM to popu-
late large DMO volumes with galaxies. Icaza-Lizaola et al.
(2021) demonstrated, using a sparse regression approach,
that halo angular momentum has little impact on the stellar-
halo mass relation. Finally, a number of approaches have
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Mapping baryons onto dark matter haloes 3

demonstrated predictions for baryonic properties of the cos-
mic web not necessarily linked to discrete subhaloes (e.g.
Sinigaglia et al. 2020).

In this paper we build on these previous works, by com-
bining the results of both periodic and zoom cosmological
simulations from the EAGLE project to train a machine
learning model to learn the relationship between galaxy
baryonic properties and their host dark matter haloes. Our
approach is unique in two ways. Firstly, we match subhaloes
from each hydrodynamic simulation with those in a DMO
counterpart (simulated from the same initial conditions), in
order to avoid the effect of baryons on the host dark matter
halo (Schaller et al. 2015). This allows the model to be di-
rectly applied to an independent DMO simulation, without
leading to biases in the predictions due to differences in the
dark matter features.

Secondly, we address the issue of generalization error.
Machine learning methods are a powerful set of techniques
for making predictions on data that look similar to the data
on which they are trained, but fail when presented with new
data that lies outside of the bounds of the original train-
ing data. This presents a problem for models trained on
smaller periodic volumes, since such volumes will not con-
tain the massive clusters present in larger DMO simulations,
and hence any model trained on these volumes won’t provide
good predictions for galaxies in overdense environments. We
avoid this by including clusters from the C-EAGLE project
(C-EAGLE; Barnes et al. 2017b; Bahé et al. 2017) in our
training set. This allows us to apply the trained model to
the much larger volume (800 Mpc)3 P-Millennium simula-
tion (Baugh et al. 2019), and predict distribution functions
of key baryonic properties within this enormous volume, ex-
tending the dynamic range, as well as allowing predictions of
clustering statistics on larger scales / for higher mass haloes.
The method is shown diagrammatically in Figure 1.

Whilst often negatively perceived as a ‘black box’, many
machine learning methods in fact provide a wealth of insights
into the form of their predictive model, and the weight given
to their input parameters. This presents an opportunity to
learn, in an unbiased manner, what parameters best explain
the galaxy-halo connection. We train the model with a range
of dark matter properties, and explore the relative predictive
power of each one on the baryonic properties. Hydrodynamic
simulations represent the cutting edge of cosmological mod-
elling; machine learning methods could provide a practical
way of extracting quantitative information on the modelled
relationships. All of these insights can be used to inform
future analytic, semi-analytic and hydrodynamic model de-
velopment.

This paper is laid out as follows. In Section 2 we present
the simulations used to train the model, as well as our algo-
rithm for matching subhaloes between the hydro and DMO
runs. Section 3 details the machine learning methods used, as
well as our choice of features and predictors. Section 4 details
our results on test sets, including the effect of including den-
sity information. Section 5 presents our results on indepen-
dent DMO simulations, including the P-Millennium simula-
tion, and Section 6 shows our feature exploration analysis.
Finally, in Section 7 we discuss our results and summarise
our conclusions. Throughout, we assume a (flat) Planck
year 1 cosmology (Ωm = 0.307, ΩΛ = 0.693, h = 0.6777,

Planck Collaboration et al. 2014) and a Chabrier stellar ini-
tial mass function (IMF; Chabrier 2003).

2 SIMULATIONS

2.1 The EAGLE & C-EAGLE simulations

The EAGLE project is a suite of cosmological hydrody-
namic simulations (Schaye et al. 2015; Crain et al. 2015)
employing subgrid models for feedback from stars and
AGN. EAGLE has been shown to accurately reproduce
many observed relations, including the galaxy stellar mass
function, galaxy sizes, quenched fractions, gas content and
black hole masses (Trayford et al. 2015, 2017; Lagos et al.
2015; Bahé et al. 2016; Crain et al. 2017; Furlong et al.
2017; McAlpine et al. 2017) at a range of redshifts (e.g.
Furlong et al. 2015). A number of different resolutions and
volumes make up the EAGLE simulation suite. In this work
we use the ‘fiducial’ resolution simulations, with gas particle
mass mg = 1.8 × 106 M�, dark matter particle mass 9.7 ×
106 M�, and a physical softening length of 0.7 kpc. haloes
in the simulation are identified first through a Friends-Of-
Friends (FOF) halo finder, and then split into child self-
bound objects with SUBFIND (Dolag et al. 2009). Cluster-
Eagle (or C-EAGLE, Barnes et al. 2017b; Bahé et al. 2017),
uses the EAGLE model to simulate cluster environments us-
ing the ‘zoom’ re-simulation technique (Katz & White 1993;
Tormen et al. 1997). 30 clusters at z = 0 (shown in Figure 1),
with a range of halo masses (14 < log10(M200 /M�) < 15.51),
are selected from a (3.2 Gpc)3 ‘parent’ DMO simulation
(Barnes et al. 2017a). The clusters are resimulated at an
identical resolution to the fiducial periodic EAGLE simu-
lation. Full details on the selected clusters is provided in
Barnes et al. (2017b).

C-EAGLE uses the AGNdT9 calibration of the
EAGLE model (Schaye et al. 2015), which, compared to the
fiducial Reference model, uses a higher value for Cvisc, which
controls the sensitivity of the BH accretion rate to the an-
gular momentum of the gas, and a higher gas temperature
increase from AGN feedback, ∆T . A larger ∆T leads to fewer,
more energetic feedback events, whereas a lower ∆T leads to
more continual heating. Schaye et al. (2015) show that AG-
NdT9 predicts X-ray luminosities and hot gas fractions in
galaxy groups in better agreement with observational con-
straints, though with some discrepancies on cluster scales
(Barnes et al. 2017b).

Table 2.1 details the simulations used in this work, and
any combinations. L100Ref is a (100 Mpc)3 periodic volume
(shown in Figure 1) run with the Reference model parame-
ters; the hydro simulation contains 15043 dark matter and
15043 gas particles. L050AGN is a smaller, (50 Mpc)3 peri-
odic volume (shown in Figure 1) run at the same reso-
lution as L100Ref but with the AGNdT9 model parame-
ters; it contains 7523 dark matter and 7523 gas particles.
L050AGN+ZoomAGN is a combination of L050AGN with the
zoom cluster regions from C-EAGLE. We also match with
DMO counterparts to each of these simulations, run using
the same initial conditions; the match is described in Sec-
tion 2.2. We use the snapshot corresponding to z = 0.101 in
all simulations.

Throughout the rest of this text, whenever we refer to
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Features (Dark Matter)
Total subhalo mass
Half mass radius
Peculiar velocity
Maximum circular velocity
Potential energy
FOF group mass
Satellite flag
+ Density (R)ρ

Predictors (Baryonic)
Stellar mass

Total gas mass
Black hole mass

Stellar velocity dispersion
Star formation rate

Stellar metallicity

ML
model

L100DMO

P-Millennium (DMO, L=800 Mpc)

L100Ref

Matched subhalos 
between DMO (left) 

and hydro (right)

L050AGNL050DMO

Figure 1. Diagram showing the simulations (approximately to scale) used throughout this work, and the features and predictors used for
training the machine learning model. At the top are the C-EAGLE zoom simulations; each image shows the distribution of dark matter

(left) in the DMO simulations, and the gas (right) in the full hydro simulation, centred on the centre of potential of the most massive

FOF group in each simulation, within a radius r = 15 × Rcrit,200. Below these are the cubic periodic L100Ref and L050AGN simulations,
again showing the dark matter (left) and gas (right). In the centre are tables detailing the features from the DMO simulations (left) and

the predictors from the hydro simulations (right). At the bottom is a cropped image of the dark matter distribution in the P-Millennium

simulation, to which the trained machine learning model is applied to predict the baryonic properties of its haloes.
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Simulation Prefix Volume (Mpc3) Nhalo(> 1010 M�) Nmatched Ntrain Ntest Cvisc ∆T

Reference L0100N1504 L100Ref 1003 88 173 86 861 69 615 17 246 2π 108.5

AGNdT9 L0050N0752 L050AGN 503 11 423 11 265 9 031 2 231 2π × 102 109

C-EAGLE ZoomAGN 202.73 373 275 364 408 - - 2π × 102 109

C-EAGLE + L050AGN L050AGN+ZoomAGN 203.73 384 698 375 673 300 770 74 903 2π × 102 109

Table 1. Details on each simulation set. The columns provide (1) the name or description of the simulation set, (2) the prefix used

throughout this paper, (3) the total volume, (4) the number of subhaloes with mass > 1010 M�, (5) the number of those haloes matched

between the hydro and DMO simulations (see Section 2.2), (6) the number of subhaloes in the training set, (7) the number of subhaloes
in the test set, (8) the value of the viscosity parameter, and (9) the value of the ∆T parameter.

Figure 2. Fraction of subhaloes from each DMO simulation matched with a counterpart in the hydro simulation, binned by total subhalo
mass. L050AGN and L100Ref are shown in blue and orange, respectively, and each zoom from ZoomAGN is shown as a black dashed line.

a model we are referring to a machine learning model (un-
less otherwise stated) trained on the matched hydro-DMO
simulations indicated in the name. The simulations are all
referred to explicitly as simulations to distinguish them from
the machine learning models.

2.2 Matching between hydrodynamic and dark
matter only simulations

Including baryons can lead to significant alterations to the
underlying dark matter haloes (Weinberg et al. 2008). For
example, Schaller et al. (2015) demonstrate that, in the
EAGLE simulation, the halo centres are more ‘cuspy’ in
the presence of stars. In order to apply our trained model
to DMO simulations it is necessary to avoid these effects,
as they will bias any predictions based on the dark mat-
ter features. We achieve this by matching subhaloes in each
hydrodynamic simulation to their counterparts in DMO sim-
ulations, and use the properties of the matched haloes in the
DMO simulation as our features. The galaxy properties that
a given halo would have if hydrodynamics had been included
are then predicted. Each DMO simulation is run from the
same initial conditions, but is not split into baryonic and
dark-matter species. Aside from this, all cosmological and
numerical parameters are identical.

We perform the match using the approach of
Schaller et al. (2015). We first find the 50 most bound dark
matter particles in a subhalo in the hydro simulation, and
search for haloes in the DMO simulation that have 50%
or more of these same particles (matched on particle ID).
We then perform the same match in reverse (subhaloes in
the DMO matched with subhaloes in the hydro simulation).
Those haloes that match bijectively are linked.

Figure 2 shows the fraction of haloes matched from the
DMO simulation at a given DMO halo mass for the two pe-
riodic simulations (L100Ref and L050AGN) as well as each
of the C-EAGLE clusters. We also detail the total number
of haloes and the number of matched haloes for each sim-
ulation set in Table 2.1. More than 95% of subhaloes with
Msubhalo > 1010 M� are matched bijectively across all simula-
tions. We hence choose to train our model only on subhaloes
with masses above this threshold (see Section 3.3 for details).
By using a threshold dependent only on the DMO properties
we can use a similar threshold in any target DMO simula-
tion (subject to the existing resolution constraints of that
simulation).

It is noticeable that there are a larger fraction of sub-
haloes at the high-mass end (Msubhalo /M� > 5 × 1012) that
are not matched, in both the periodic and zoom simulations.
We looked at these cases individually, and found, where a
single halo was identified in the DMO simulation, the halo
finder splits this halo into multiple individual haloes in the
baryonic simulation. Missing these haloes reduces the size of
our training set, which is particularly disappointing at the
high-mass end where the number of haloes is already low,
however we do not expect this to lead to biases in our predic-
tions due to the already heterogenous nature of our training
set.

2.3 The P-Millennium simulation

P-Millennium is a large DMO simulation (800 cMpc
on a side; particle mass 1.06 × 108 M�) using the same
Planck Collaboration et al. (2014) cosmology as EAGLE.
Baugh et al. (2019) first presented the simulation, and
demonstrated its use as a parent volume for the Galform
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model, in order to predict the atomic hydrogen content of
galaxies. Safonova et al. (2020) also used P-Millennium as
a parent simulation for a SHAM model, generating mock
catalogues. P-Millennium uses the same FOF and Sub-
find structure finders as the EAGLE simulation project,
which means the features can be used directly for any
model trained on EAGLE. We present our predictions using
P-Millennium in Section 5.

3 MACHINE LEARNING METHODS

3.1 Extremely Randomised Trees

We used the Scikit-Learn (Pedregosa et al. 2011) im-
plementation of Extremely Randomised Trees (ERT;
Geurts et al. 2006), a tree based ensemble method. ERT is
demonstrably effective in this domain compared to other
popular machine learning methods (Kamdar et al. 2016a;
Jo & Kim 2019).

To understand what makes ERT such an effective
learner, first consider a single decision tree. Decision trees
are typically constructed top down, numerically evaluating
all splits for each feature using a cost function. The best split
(lowest cost) is chosen at each level. Some of the issues seen
with Decision Trees, particularly overfitting, can be allevi-
ated by ensembling many different trees trained on subsets
of the data. Random Forests extend this idea by, at each
split, randomly limiting the feature space from which splits
can be made (within individual trees not all of the data is
used, but over the whole ensemble it is). This increases the
variance by stopping strong features from dominating each
tree. ERT also introduces another layer of randomness; each
split is chosen at random from the range of values avail-
able for each feature. Bad splits are still rejected, but the
extra layer of randomness encourages exploration of the full
feature space, creating more ‘weak’ learners for use in the en-
semble. At each iteration, only the best split from the subset
of features is chosen, and the iterative procedure continues
until a leaf node condition is reached.

Within ERT the mean squared error (MSE) is used
to evaluate each split. To quantify the effective fit of each
model, and to discriminate between models, we used both
MSE and the Pearson correlation coefficient (ρ), defined be-
low:

ρ =
cov(XpredictedXtest)
σXpredictedσXtest

. (1)

3.2 Features & Predictors

We chose our features from the properties of the DMO haloes
and their host FOF haloes. Some features are expected to be
of greater importance for predicting certain baryonic prop-
erties; we explore this in Section 6. The selected subhalo
features are as follows: total subhalo mass (Msub), half mass
radius (R1/2), peculiar velocity (v), maximum circular ve-
locity (vmax), radius of maximum circular velocity (Rvmax),
potential energy (Ep), FOF group mass (Mcrit,200), and fi-
nally a boolean feature that specifies whether the subhalo is
a satellite or a central.

Since we wish to evaluate the impact of environment

we also include additional features to quantify this. As a
simple measure of environment we calculated the density
of dark matter within spheres centred on a given subhalo
in the DMO simulation. We ran a periodic KD-tree search
for neighbouring particles, then calculated the density on
different scales, R = [1, 2, 4, 8]Mpc, to quantify both the small
and large scale environment. We indicate in the text where
these additional features are included in a given training set.

More dark matter features are available in the sub-
find catalogues, and additional features could be calculated
from the particle information (such as the large scale tidal
torque), but we limited our chosen features to those above
as they are present in both the EAGLE and P-Millennium
catalogues. Combinations of features may also lead to bet-
ter predictive accuracy; we will explore this systematically
in future work.

We predict six baryonic properties: the stellar mass, gas
mass, black hole mass, stellar velocity dispersion, star for-
mation rate and stellar metallicity. The stellar mass and gas
mass are taken from the central 30 kpc of each subhalo to
allow better comparison with observations. We transform all
of these predictors into log space, which has been shown to
improve the prediction accuracy due to the typically large
dynamic range of cosmological properties (Jo & Kim 2019).
If the value is zero, we set it to some small value, determined
by the resolution limit where appropriate,

M? /M� > 1 × 105

Mgas /M� > 5 × 105

M• /M� > 2 × 104

SFR /M� yr−1 > 1 × 10−4

Z∗ > 5 × 10−7

v?,disp / km s−1 > 3 .

3.3 Training

We train our model on all haloes with a dark matter mass (as
measured in the DMO simulation) Msub /M� > 1×1010. The
completeness of our selection with respect to stellar mass is
shown in detail in Appendix A. By applying our selection
to the dark matter properties we can use the same thresh-
olds when applying the model to independent dark matter
only simulations. We split our data into training and test
sets, 80-20% respectively. All hyperparameter optimisation,
parameter scaling, and training is done on the training set,
and only final model assessment is performed on the test
set. For each feature set, the hyperparameters of the ERT
instance are chosen through an exhaustive grid search. For
each set of hyperparameters, k -fold cross validation is per-
formed (Stone 1974) with k = 10 folds, and the coefficient of
determination, R2, is used to discriminate,

R2 = 1 −
∑
i(X i

test − X i
predicted)

2∑
i(X i

test − Xmean,train)2
. (2)

We standardise all of our features and predictors by sub-
tracting the mean and scaling to unit variance.
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Figure 3. Predicted (from the machine learning model) against the true baryonic properties on the test set from the L050AGN+Zoom

simulation set. Clockwise from top left: stellar mass, gas mass, black hole mass, star formation rate, stellar metallicity, and stellar velocity

dispersion. The vertical bar separated from the rest of the distribution to the left in each panel corresponds to galaxies with a true value

of zero for that corresponding predictor (see Section 3.2). The fraction of galaxies whose predicted property is within 0.2 dex of the true
value is quoted at the top left of each panel.

4 PREDICTING BARYONIC PROPERTIES
FROM DARK MATTER PROPERTIES

We first present results for the L050AGN+ZoomAGN model,
with the fiducial feature set (excluding environmental fea-
tures). Figure 3 shows the predicted against the true value
for the six baryonic properties in the test set. Figures 4, 5 &
6 compare the predicted and true distribution of these prop-
erties in the test set as violin plots2. Together, these figures
show how accurately the model predictions are, and how
well the cosmic distribution is reproduced. We also quote
the fraction of galaxies where the predicted value is within
0.2 dex of the true value; for the stellar velocity dispersion
this is as high as 97%, but even for the gas mass, which
has the lowest prediction accuracy, this is still close to two
thirds of the sample (65%). This is comparable to the accu-
racy achieved in Neistein et al. (2012) in their SAM trained
on a hydro simulation, though we push our predictions to
lower stellar masses.

To qualitatively demonstrate the accuracy of the ERT
model, we compare to predictions utilising a single feature
(subhalo mass or Vmax), analogous to a SHAM approach. For
this single feature we fit an isotonic regression model3 be-
tween the feature and each predictor (for the whole dataset,
not just training). This model ensures monotonicity, and

2 Bin width of the kernel density estimate is calculated using
Scott’s rule (Scott 1979).
3 see here for details on the Isotonic regression model employed.

broadly fits each predictor well considering the simplicity of
the model. We again quote the fraction of galaxies where the
predicted value from this simple relation is within 0.2 dex of
the true value. The ERT model shows greater accuracy for
all predictors compared to the Isotonic model, whether sub-
halo mass or Vmax are used. This is particularly the case for
the gas mass (49% where Vmax is used, compared to 65% for
the ERT model). Full details on the Isotonic fits, and com-
parison to the predicted GSMF and projected correlation
function, are provided in Appendix B.

The model is able to accurately predict both the stellar
mass and stellar velocity dispersion remarkably well, how-
ever there is more structure in the joint plots for other prop-
erties. Predictions for the stellar metallicity show a greater
spread than the other values, perhaps unsurprisingly due to
its known complex dependence on the star formation history,
however the violin plot shows that the overall distribution
is recovered. Black hole masses in EAGLE are dominated
by newly formed black holes at the seed mass (105 M�), as
more haloes reach the mass-threshold for black hole seeding.
The model is able to capture these, and does a reasonable
job of predicting the masses of more massive black holes.

The relations for the total gas mass and SFR are more
complicated. There are a large number of galaxies with zero
star formation, and the right panel of Figure 5 shows that the
model predicts a range of SFRs for these galaxies, though the
majority are limited to < 3 × 10−3 M� yr−1. To see how well
the model predicts the distribution of star forming galaxies,
we show in the middle panel of Figure 5 the distribution of

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3221/6425762 by U

niversity of D
urham

 user on 08 D
ecem

ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

8 Christopher C. Lovell et al.

Figure 4. Violin plots showing the distribution of predicted bary-
onic properties (green) from the machine learning model against

the true values (orange) in the L050AGN+Zoom simulation set.

Dashed and dotted lines show the median and upper/lower quar-
tiles of each distribution, respectively. Each distribution is a ker-

nel density estimate of the true underlying distribution, which

may smooth some features, particularly where the distribution is
discontinuous (e.g. galaxies with zero gas mass). Clockwise from
top left: stellar mass, black hole mass, stellar velocity dispersion,
and stellar metallicity.

SFR ignoring quiescent galaxies. It is clear that the model
underpredicts the SFR for most galaxies. This may be due
to the quiescent galaxies biasing the predictions for other
haloes, as well as ERT predicting a smooth distribution of
SFRs when a discontinuous distribution would be more ap-
propriate. The SFR is also known to be more strongly de-
pendent on the assembly history; including features that en-
code this may lead to better predictions, which we discuss
in Section 7.

Figure 6 shows that, as for the SFR, there is a rea-
sonably tight relation for the total gas mass, except where
galaxies have zero gas mass. These galaxies make up a large
proportion of all subhaloes, and the model fails to predict
low gas masses for these galaxies, instead predicting a wider
range of gas masses, as can be seen in the right panel of Fig-
ure 6. This suggests that the physics that causes the evac-
uation of gas from low mass haloes is not encoded in the
provided dark matter parameters. However, the overall dis-
tribution, when renormalised, better reproduces that seen in
the test set compared to the SFR.

To demonstrate the impact of adding the C-EAGLE

Figure 5. Violin plots showing the distribution of predicted SFR
(green) from the machine learning model against the true SFR

(orange) in the L050AGN+Zoom simulation set. The left plot shows

the total distribution, which is heavily skewed toward quiescent
galaxies, since the sample is dominated by low mass galaxies that

are artificially quenched. The central plot shows the distribution
ignoring those galaxies with zero SFR in the test set. The right

plot shows only the predicted SFR for all galaxies with zero SFR

in the test set (note that this violin is symmetric as only a single
property is plotted)).

Figure 6. As for Figure 5, but showing the distribution of total
gas mass.

clusters to our training set, we compare the prediction ac-
curacy against models trained only on the periodic volumes.
Figure 7 shows the Pearson correlation coefficient for the
L100Ref, L050AGN and L050AGN+zoom models. Adding the
zoom regions leads to a large increase in the training set
size, but this has no significant positive effect on the pre-
dictive accuracy for any of the features. In fact, for the
gas mass, black hole mass and stellar metallicity the pre-
dictive accuracy is actually worse. This may be due to the
unique impact of the cluster environment on these three par-
ticular baryonic properties of galaxies, for example through
the effect of ram pressure stripping and fly-by interactions.
So while there is more data for the machine to learn from,
the relationship represented is more complicated than that
present in the periodic volumes, and therefore more difficult
to predict. We stress that in order to make predictions for
larger boxes, it is essential to include these environments in
the training set, and that a lower predictive accuracy com-
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Figure 7. Comparison of fit accuracy described by the Pearson correlation coefficient (ρpearson), measured on the test set, against the
number of haloes in the training set, for each of the baryonic predictors. The L100Ref, L050AGN and L050AGN+Zoom simulation sets are

shown in orange, blue and green, respectively, where bullet markers show results with the fiducial feature set, and star markers show

result including all local density features (see Section 4.1).

pared to the periodic volumes is not necessarily indicative
of a poorer model.

This does not suggest that adding more data does not
improve the predictive accuracy - ρpearson calculated for
L100Ref is higher than than for L050AGN for all baryonic
properties, showing the advantage of a larger training set
size where the underlying distribution of galaxy properties
is broadly similar.

4.1 The effect of including local density in the
feature set

We add four features for the local density calculated within
spheres with radii R = [1, 2, 4, 8]Mpc. Figure 7 also shows the
impact of including these additional features on the predic-
tive accuracy for the L050AGN, L100Ref and L050AGN+Zoom

simulation sets. Including density information has a minor
positive impact on the predictive accuracy of all features for
almost all simulation sets, though the quantitative impact
is small in most cases. The largest impact is seen for the gas
mass, with an increase in ρpearson of approximately +0.05 for
the periodic simulation sets, and +0.07 for the L050AGN+Zoom
simulation set. This fits with the hypothesis suggested above
that environmental effects operating in clusters lead to poor
predictions for the gas mass when environmental features
are not included. Such features are important for accurately
predicting specific baryonic properties.

In summary, our model is capable of predicting a range
of baryonic properties with reasonable accuracy, and suc-
cessfully reproduces their cosmic distributions. We now show
how the model can be applied to independent, larger DMO
volumes, and the impact of including the zoom regions on
the predicted relations.

5 APPLICATION TO DMO SIMULATIONS

A key aim of the model is to produce predictions for dis-
tribution functions and clustering statistics for much larger
volumes than can be achieved using periodic hydrodynamic
simulations. To this end we test how well our model produces
the two-point galaxy correlation function (2PCF), galaxy

stellar mass function (GSMF), star-forming sequence, stel-
lar mass – metallicity relation and the stellar mass – black
hole relation in independent DMO volumes, including the
(800 Mpc)3 P-Millennium simulation.

5.1 The Two-Point Galaxy Correlation Function

Galaxy clustering measurements provide a powerful means
of testing gravity and cosmological parameters, including
the contribution of dark energy, as well as the impact of
galaxy bias on galaxy formation and evolution. One of the
key statistics for measuring clustering is the spherically aver-
aged two-point correlation function (2PCF) (Peebles 1980),
defined as

ξ(r) = 1
〈n〉

dP
dV
− 1, (3)

where 〈n〉 is the mean comoving number density of galax-
ies,and dP/dV is the probability of finding a galaxy in vol-
ume dV at comoving distance r from another galaxy. For red-
shift surveys, where the line-of-sight distance is inaccessible,
this is often split into projected and line-of-sight distance
components, which can be used to estimate the projected
correlation function (Davis & Peebles 1983),

wp(rp) = 2
∫ πmax

0
ξ(rp, π) dπ, (4)

where πmax is the maximum distance along the line-of-sight.
Since wp(rp) is robust against redshift space distortion effects
it is better suited for comparisons with simulations.

Simulation studies of galaxy clustering are typically
carried out on large scales with DMO simulations or rel-
atively lower resolution hydrodynamical simulations (e.g.
BAHAMAS; McCarthy et al. 2017), and on smaller scales
using high-resolution hydrodynamical simulations, which
can resolve the baryonic feedback effects on haloes (see
van Daalen et al. 2014). We here see how well our machine
learning model can provide predictions on both large and
small scales simultaneously by applying the model to the
large-volume P-Millennium simulation. We estimate errors
on our clustering statistics using jacknife resampling of each
simulation volume (for details, see Artale et al. 2017).

Figure 8 shows the projected 2PCF measured on the
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10 Christopher C. Lovell et al.

Figure 8. Projected correlation function in bins of stellar mass; the mass range is indicated in each column. The results from L100Ref

are shown in blue, and the L050AGN+Zoom machine learning model predictions on P-Millennium are shown in orange. Observational results

from GAMA (Farrow et al. 2015) are shown in grey. Errors are estimated using jacknife resampling of each simulation volume.

L100Ref simulation, the L050AGN+Zoom model applied to the
P-Millennium simulation, and compared to observational re-
sults from GAMA (Farrow et al. 2015) in different stellar
mass bins. As shown in Artale et al. (2017), the L100Ref

simulation is in good agreement with the observational con-
straints on small scales up to stellar masses of 1011 M�. How-
ever, on larger scales (rp > 3h−1Mpc) there is a deficit in
the normalisation, attributed to finite-volume effects; the
smaller periodic boxes do not sample the largest modes in
the power spectrum. There are also too few galaxies above
a stellar mass of 1011 M� in L100Ref to obtain robust clus-
tering statistics.

The L050AGN+Zoom model, applied to the much larger
volume P-Millennium simulation, shows no such deficit at
the largest scales. We are in fact able to make predictions out
to scales of 100 h−1 Mpc, a factor of ten larger than achievable
with the periodic simulations. The model is also able to make
predictions for the clustering of the most massive galaxies, >
1011 M�, since there are sufficient numbers of these galaxies
to produce reliable statistics.

There is, however, a small deficit in the normalisa-

tion at the smallest scales in the lower mass bins for the
L050AGN+Zoom model (outside the estimated errors). This
may be due to a number of effects, one being the lower res-
olution of the P-Millennium simulation, which may lead to
sub-structures on small scales being smoothed out. To test
the impact of this we applied the L050AGN+Zoom model to
the DMO 100 Mpc box (using the same initial conditions as
the L100Ref simulation), which has a mass resolution ∼ 10×
higher. This is shown in Figure 8; at the largest scales the
model shows the same deficit as the L100Ref simulation,
due to the smaller box size. However, at small scales there
is the same deficit as in the L050AGN+Zoom model applied to
P-Millennium. This confirms that it is not resolution effects
leading to the lower amplitude.

An alternative explanation is the well known effect of
baryons on their host dark matter haloes (e.g. Velliscig et al.
2015; Schaller et al. 2015). This may not only affect the
masses of haloes, but also their mass distribution, chang-
ing the substructure on small scales, and hence the clus-
tering measurement (van Daalen et al. 2014; Hellwing et al.
2016). To test whether this is causing the lower normali-
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Mapping baryons onto dark matter haloes 11

Figure 9. The galaxy stellar mass function (GSMF). Both panels show the GSMF from the L100Ref (orange) and L050AGN (green)

simulation sets for comparison, as well as observational constraints from Baldry et al. (2012). Lines are dotted where there are fewer than
10 galaxies per bin. Left: the predicted GSMF on the (100 Mpc)3 DMO volume from machine learning models trained on the L050AGN

(purple, dashed) and L050AGN+Zoom (purple, solid) simulation sets. Right: the predicted GSMF on the (800 Mpc)3 P-Millennium DMO

simulation, from machine learning models trained on the L050AGN (blue, dashed) and L050AGN+Zoom (blue, solid) simulation sets.

sation at small scales, we extract a catalogue of features
from the full hydro simulation (L100Ref) and use these as
inputs to the L050AGN+Zoom model. We emphasise that these
’halo‘ features contain the contribution from both baryons
and dark matter, but are otherwise identical to the features
from a DMO simulation. The predicted clustering for this
hybrid model application is shown in the second panel of
Figure 8; the normalisation matches that of the L100Ref

simulation, confirming that it is indeed baryonic effects caus-
ing the lower normalisation on small scales. We stress that
this is not strictly a fair use of the machine learning model,
as it was trained on haloes from a DMO simulation, and
as such the predictions should be taken with some caution.
However, we argue this is a relatively ‘clean’ test of the im-
pact of baryons on the halo, and the knock on effect on the
clustering.

Other effects may also contribute to the deficit, such
as differences in the parameters of the halo finder between
DMO and hydro simulations, and for different resolution
simulations. However, it seems clear that baryonic effects
on haloes are a key contributor. A similar effect at small
scales has been seen in semi-analytic models applied to DMO
simulations (Farrow et al. 2015; Contreras et al. 2015). The
machine learning model presented here allows us to cleanly
test this effect on identical haloes.

We also compared the model predictions for the pro-
jected correlation function against those using a single sub-
halo feature (subhalo mass) to predict the stellar mass, ap-
plied to the P-Millennium volume. The normalisation is un-

derestimated in this simple model compared to the GAMA
measurements, and this is particularly pronounced in the
highest stellar mass bin. Full details are provided in Ap-
pendix B.

5.2 The Galaxy Stellar Mass Function

The left panel of Figure 9 shows the L050AGN model run on
the L100Ref DMO simulation. We compare to the GSMF
from the hydrodynamic L100Ref simulation, and it is clear
that the high mass end of the GSMF is not reproduced.
Whilst there are parameter differences between the models,
it is not expected that the AGNdT9 model would fail to pro-
duce any 1012 M� galaxies in a (100 Mpc)3 volume. In fact,
the predictions broadly follow the model used for training,
L050AGN, though underestimate the abundance of galaxies
at the high-mass end (> 1011 M�). This additional underes-
timate is likely the result of a lack of training data at the
high-mass end, due to the low number of high-mass galaxies
in the L050AGN volume.

However, if we use the L050AGN+Zoom model we get
much better agreement with the L100Ref simulation at the
high-mass end. This demonstrates the effect of including the
C-EAGLE zoom regions; the model is able to learn the bary-
onic properties of galaxies in the cluster regions, which are
not present in L050AGN. Predictions at lower stellar masses
are also consistent with both L100Ref and L050AGN down to
∼ 108 M�, the approximate resolution limit of the original
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12 Christopher C. Lovell et al.

Figure 10. The black hole – stellar mass relation (left), stellar mass – metallicity relation (middle) and star forming sequence (right).
Observational constraints for each relation are shown, from McConnell & Ma (2013), Gallazzi et al. (2005) and Bauer et al. (2013),

respectively. The relation in the L100Ref (orange), L050AGN (green) and L050AGN+Zoom (red) simulation sets is shown, as well as the

predicted relation from the L050AGN+Zoom machine learning model applied to the P-Millennium simulation (blue). The median is given
by the solid line in each case, and the 16th − 84th percentile range is shown by the coloured shaded region. The dashed black line in the

right panel shows the cut used for passive galaxies, sSFR < 10−11 yr−1.

simulations (Schaye et al. 2015), and where our predictions
are approximately complete (see Appendix A).

We now turn our attention to the much larger
P-Millennium DMO simulation. The right panel of Fig-
ure 9 shows predictions for the L050AGN and L050AGN+Zoom

models on this volume, and whilst the former still completely
misses the high mass end, the model including zooms is able
to predict stellar masses out to ∼ 1012 M�. This extends the
dynamic range of the GSMF beyond that accessible to the
L100Ref hydrodynamic simulation, and improves the statis-
tics significantly. This is a significant achievement of the
model – it is able to successfully extend the predictive range
beyond that achievable with periodic hydrodynamic simula-
tions. At lower stellar masses the predictions are consistent
with both L100Ref and L050AGN. The predictions at the high
mass end are also in broad agreement with the observational
constraints from Baldry et al. (2012).

The P-Millennium simulation is lower resolution than
those used for training, which may impact the predicted
properties of galaxies, particularly those close to the resolu-
tion limit. To test the impact of resolution, we applied the
L050AGN+Zoom model to a lower resolution (100Mpc)3 DMO
run, with 8 times fewer particles. The predictions for the
GSMF were identical, which confirms that differing resolu-
tion has no impact on the predicted properties; as long as
the haloes are resolved, the halo features used for prediction
are robust.

5.3 The black hole – stellar mass relation

We have demonstrated how the model is able to predict
stellar masses with high accuracy, and produce a GSMF
for the P-Millennium simulation volume. We now ex-
plore other key baryonic distribution functions. Figure 10
shows the black hole – stellar mass relation, the stellar

mass – metallicity relation, and the star-forming sequence.
Each panel shows the relation in the L100Ref, L050AGN &
L050AGN+Zoom simulations, as well as the predicted relation
for our L050AGN+Zoom model, with fiducial feature set, run
on the P-Millennium simulation.

The black hole – stellar mass relation shows a rapid in-
crease in the stellar mass above M? ∼ 1010 M�, though the
exact mass at which the relation turns upwards is depen-
dent on the simulation. In L050AGN+Zoom the increase is at a
higher mass compared to the two periodic simulations. This
is not due to any parameter differences, since L050AGN has
identical parameters, but may be due to the cluster envi-
ronment delaying black hole accretion by starving the cen-
tral regions of a galaxy of gas. Though van Son et al. (2019)
note an excess of ‘black hole monster galaxies’ in cluster
environments due to tidal stripping, this is a sub-dominant
population compared to the main relation, so it does not
increase the normalisation of the black hole – stellar mass
relation in these environments. The model predictions lie be-
tween the periodic and zoom relations, which is perhaps ex-
pected since both environments are providing training data
from which the machine is making its predictions. Overall
the relation is predicted remarkably well, and the predic-
tions extend the dynamic range to higher stellar and black
hole masses than those achievable in L100Ref & L050AGN.
At these higher masses the model is in good agreement with
the observational results of McConnell & Ma (2013), though
the scatter at fixed stellar mass is still underpredicted (as
seen in Schaye et al. 2015).

5.4 The stellar mass – metallicity relation

Predictions from the model for the stellar mass – metallicity
relation show similar behaviour. The model predictions lie
between the relations from the periodic and zoom simulation
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Mapping baryons onto dark matter haloes 13

sets at high stellar masses (M? /M� > 1010), but closely
follow the predictions below this, except at the very lowest
stellar masses.

The scatter in both these relations is much tighter for
the model predictions than in the original simulation sets.
This is a reflection of the deterministic nature of the machine
learning prediction, combined with the relatively limited fea-
ture set, which has been discussed in a number of previous
works (e.g. Kamdar et al. 2016b; Moews et al. 2020). His-
torical halo features, such as the formation and assembly
time, may help to increase the diversity of baryonic proper-
ties at fixed stellar mass. However, the predictions still lie
within the uncertainties on observational constraints from
Gallazzi et al. (2005) at all stellar masses.

5.5 The star forming sequence

Finally, the right panel of Figure 10 shows the star-forming
sequence, excluding passive galaxies (sSFR < 10−11 yr−1). As
shown in Figure 5 the model tends to underpredict SFRs of
star forming galaxies, and this is reflected in the star-forming
sequence, where the normalisation at M∗ /M� = 1011 is lower
than that in the original simulation sets, by up to -0.8 dex
compared to L050AGN+Zoom. The scatter at fixed stellar mass
is comparable to the simulation sets (±0.25 dex), though this
may be partly due to truly quiescent galaxies in the simu-
lation sets that have residual star formation when predicted
in the model. In general, however, the star forming sequence
is broadly reproduced, is in good agreement both above and
below the characteristic mass, and lies within the uncertain-
ties on observational constraints from Bauer et al. (2013).

6 FEATURE EXPLORATION

Feature importance in ERT can be evaluated from the rela-
tive position of a given feature in the tree; the closer to the
root node in the ensemble of trees, the higher the impor-
tance. In order to evaluate the feature importance for each
predictor, we re-train the model on each predictor individu-
ally. Figure 11 shows a matrix of each predictor against each
feature, coloured by their relative importance. The order of
relative importance is generally the same for all predictors.
Vmax is by far the most important feature; Kamdar et al.
(2016b) attributed a similarly high importance for Vmax in
their machine learning model trained on Illustris. A number
of other studies have highlighted the importance of Vmax for
predicting baryonic properties. (Matthee et al. 2017) showed
that, in EAGLE, Vmax is a key predictor of the stellar mass,
more so than the halo mass. Chaves-Montero et al. (2016)
use a subhalo abundance matching technique to test the
recovery of the clustering of galaxies in EAGLE and find
a similarly strong dependence on Vmax. The circumgalactic
medium mass fraction, at fixed halo mass, has also been
shown to correlate strongly with Vmax (when parametrised
as a ratio with the virial circular velocity, closely related
to the halo binding energy), in both EAGLE and Illustris
(Davies et al. 2018, 2020; Oppenheimer et al. 2019); the au-
thors of these studies argue that a high Vmax corresponds to
an early collapse time for a halo, which leads to greater black
hole growth, which in turn ejects more of the circumgalactic
medium mass. This has a big impact on the latter baryonic

Figure 11. Matrix showing the relative importance (0 → 1, low
to high importance) of each feature (y-axis) for each predictor

quantity (x-axis), for the L050AGN+Zoom model. The importance

is normalised by the maximum for each predictor.

Figure 12. Relative feature importance as described by

ERT, across all features simultaneously. L050AGN (blue) and
L050AGN+Zoom (orange) machine learning models are shown, in-

cluding additional features describing the local density on differ-
ent scales (ρ(R)).

properties of the galaxy, such as its star formation history
and morphology. This explains the strong importance of Vmax
in our feature set for the majority of our baryonic predictors.

Interestingly, for the gas mass, the half-mass radius is
instead the most important feature. Vmax is still of high im-
portance, but at a similar level to the subhalo mass and total
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halo mass (Mcrit,200). This suggests that the size of the un-
derlying dark matter halo is closely related to its current gas
mass. A similarly strong correlation between (HI) gas mass
and size has been found observationally, though with the
stellar component rather than dark matter (Catinella et al.
2012).

The peculiar velocity is the least important feature for
all predictors, as expected. Interestingly, features that en-
code the local halo environment, such as Mcrit,200 and its
status as a satellite or central, are also two of the least impor-
tant features. This suggests that the properties of the sub-
halo itself mostly determine the baryonic properties, how-
ever this does not necessarily mean that ‘nature’ rather
than ‘nurture’ is the dominant evolutionary process. Instead,
other subhalo features may encode environmental informa-
tion, e.g. satellites are clear outliers in the M200 − Msubhalo
plane.

We also evaluated the effect of including local density
features, ρ(R). Figure 12 shows the feature importance for
all predictors, in the L050AGN and L050AGN+Zoom machine
learning models. None of these local features dominates the
feature importance, but the density on intermediate scales
(R = [2, 4] Mpc) has a higher importance than on the smallest
and largest scales (R = [1, 8] Mpc, respectively). The order
of feature importance is otherwise mostly preserved.

7 DISCUSSION & CONCLUSIONS

We have demonstrated the effectiveness of machine learn-
ing methods in modelling the complex relationships between
galaxies and their host haloes by training a machine learning
model to directly learn this mapping. By combining hydro
and DMO simulations we avoid baryonic effects on haloes
that would bias predictions. And by using a training set con-
sisting of both periodic and zoom simulations of galaxy clus-
ters, we include rare environments that may not be present
in typical periodic simulations, allowing the model to be ap-
plied to much larger volume dark matter-only simulations,
increasing the dynamic range, and allowing the evaluation of
clustering statistics over much larger scales. Our conclusions
are as follows:

• The model successfully predicts the stellar mass, stellar
velocity dispersion and black hole mass, and provides rea-
sonable predictions for the star formation rate, stellar metal-
licity and total gas mass. Even where the stellar metallicity
shows some dispersion in the prediction, the overall distri-
bution is recovered.
• Star formation rates and gas masses are biased low due

to the effect of quiescent, gas poor galaxies, and some sug-
gestions for improving this are put forward, including the
use of historical halo features.
• Adding features representing the local density leads to a

negligible increase in the predictive accuracy for most prop-
erties, except the gas mass, which shows significant improve-
ment, particularly in cluster environments.
• We apply the trained model to the P-Millennium sim-

ulation and analyse the projected two-point correlation func-
tion. We are able to predict the clustering of galaxies out to
much larger scales than in the periodic hydro simulations
(> 10 h−1 Mpc), as well as analyse the clustering of rarer,

high-mass galaxies, and find that EAGLE is in good agree-
ment with observational constraints from GAMA on large
scales. On smaller scales we conclude that baryonic effects
on haloes affect the clustering statistics.

• The predicted galaxy stellar mass function is in excel-
lent agreement with that given by the periodic hydro sim-
ulations at low and intermediate masses, and extends the
relation to higher masses.

• The black hole – stellar mass and stellar mass – metal-
licity relations are well reproduced, though with less scatter,
as seen in other machine learning models.

• The normalisation of the star-forming sequence is
slightly under-predicted at the characteristic mass, which
reflects both the lower normalisation in the training data,
but also the lower predicted stellar masses on the test set.
However, the general form is in good agreement.

• Vmax is the most important feature in all simulation sets.
Measures of the local environment, such as the satellite flag,
host halo mass and local density, do not show high impor-
tance in any of the models.

We stress that our model is not intended as a re-
placement of traditional galaxy formation models: it is in
fact wholly reliant on such models to train from. It does,
however, provide a means of expanding the predictions
from such models to much larger periodic volumes. These
larger volumes are useful for a number of science questions.
Galaxy clustering is a particularly important application we
have demonstrated here, allowing us to test the cluster-
ing statistics of high-resolution hydrodynamic simulations
in the high-mass, large-separation regime. As demonstrated
by Jo & Kim (2019), additional features, such as the halo
merger history and its assembly and formation time, are
expected to have a significant positive impact on the predic-
tion accuracy. Whilst we have found that features describ-
ing the local environment are not highly important, addi-
tional parameters describing, for example, the tidal shear
(e.g. Lucie-Smith et al. 2019), may also encode more useful
information for the machine to learn from. It may also be
possible to make predictions at multiple redshifts simulta-
neously by providing the machine with the scale factor, as
demonstrated in Moster et al. (2020).

The C-EAGLE sample provides a wealth of training
data on rich cluster environments, however those environ-
ments on the opposite end of the overdensity distribution,
extreme underdensities or cosmic voids, are less well sampled
in our training set. Void regions do not have as obvious an
effect on their constituent galaxies properties as rich cluster
environments, where galaxy mergers are far more common
and extreme processes such as ram-pressure stripping oc-
cur, however noticeable effects are still seen in voids in the
fiducial periodic EAGLE volumes (?Xu et al. 2020). Larger,
more significantly underdense regions are, as for overdense
regions, not well sampled in the periodic volumes, however
such voids are an important constituent of the universe,
making up ∼ 60% of the cosmic volume (Pan et al. 2012). In
future work we will use resimulations of a range of overden-
sities down to low redshift to better populate this region of
overdensity space, reducing generalization errors for galaxies
in these environments.

We have focused on six key baryonic properties, but
other baryonic properties are simple to add, as well as
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the emission properties of galaxies if combined with post-
processing pipelines. This will allow for the construction of
extremely large lightcones (as demonstrated in Hearin et al.
2020, using their empirical modelling plus simulation-
calibrated approach), necessary for making predictions for
wide field surveys from the upcoming Roman and Euclid
space-based observatories (Potter et al. 2017). To this end,
in future work we will explore predictions during the epoch
of reionisation, where we will leverage the Flares simula-
tions (Lovell et al. 2021). A unique aspect of Flares is that
it consists of resimulations of a range of overdensities, pro-
viding training data in extreme over- and under -dense en-
vironments, which may aid predictions of galaxy properties
across all environments.
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Davé R., Thompson R. J., Hopkins P. F., 2016, MNRAS, 462,

3265
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Simha V., Weinberg D. H., Davé R., Fardal M., Katz N., Oppen-
heimer B. D., 2012, MNRAS, 423, 3458

Sinigaglia F., Kitaura F.-S., Balaguera-Antoĺınez A., Nagamine
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Somerville R. S., Davé R., 2015, ARAA, 53, 51

Stiskalek R., Desmond H., Holvey T., Jones M. G., 2021, arXiv
e-prints, 2101, arXiv:2101.02765

Stone M., 1974, JRSS, 36, 111

Sullivan D., Iliev I. T., Dixon K. L., 2018, MNRAS, 473, 38

Tormen G., Bouchet F. R., White S. D. M., 1997, MNRAS, 286,
865

Trayford J. W., et al., 2015, MNRAS, 452, 2879

Trayford J. W., et al., 2017, MNRAS, 470, 771

Velliscig M., et al., 2015, MNRAS, 454, 3328

Vijayan A. P., Lovell C. C., Wilkins S. M., Thomas P. A., Barnes
D. J., Irodotou D., Kuusisto J., Roper W. J., 2021, MNRAS,

501, 3289

Virtanen P., et al., 2020, Nature Methods, 17, 261

Vogelsberger M., et al., 2014, MNRAS, 444, 1518

Waskom M. L., 2021, JOSS, 6, 3021

Wechsler R. H., Tinker J. L., 2018, ARAA, 56, 435

Weinberg D. H., Colombi S., Davé R., Katz N., 2008, ApJ, 678,
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APPENDIX A: STELLAR MASS
COMPLETENESS

Before model training we pre-select haloes based on their
dark matter properties only, to ensure the same selection
can be applied to any DMO simulation the model is applied
to. This is intended to avoid a situation where a model is ap-
plied to haloes with properties that were not present in the
training set. Since the selection is done on DMO properties
only, we here check whether galaxies below the resolution
limit in the hydro simulation are included, and the incom-
pleteness of galaxies above the resolution limit. Figure A1
shows a histogram of stellar mass in the L100Ref simulation
for different DMO subhalo mass cuts. For even the strictest
subhalo mass limit there are large numbers of subhaloes with
stellar masses below the resolution limit; this suggests their
baryonic properties are highly unresolved. However, the im-
portant quantity is the completeness at fixed stellar mass.
For a subhalo mass limit of Msubhalo /M� > 1010 the com-
pleteness is greater than 95% above the stellar mass resolu-
tion limit (M? /M� > 1.8 × 108, approximately equal to 100
star particles at the initial baryon mass, i.e. ignoring stellar
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evolution mass loss), and 100% complete above 5 × 109 M�.
We use a subhalo mass limit of Msubhalo /M� > 1010 through-
out the rest of the text.

APPENDIX B: ISOTONIC FITS TO A SINGLE
FEATURE

In order to provide a qualitative assessment of the ERT
model we choose to fit a simple model to the relationship
between each predictor and a single feature. We use subhalo
mass and Vmax as our chosen features as these are commonly
used in SHAM approaches. We fit each relation with an Iso-
tonic regression model, which ensures monotonicity. We do
this for the training set, and evaluate the performance on
the test set. Each relation, and the corresponding fits, are
shown in Figure B1. The percentage of galaxies where the
predicted value is within 0.2 dex of the true value is quoted
in each panel. In each case this percentage is lower than that
achieved with the ERT model.

We also show the pearson correlation coefficient for the
ERT model as well as the Isotonic regression model for each
feature in Figure B2. The ERT model outperforms the Iso-
tonic regression model for all predictors, though the perfor-
mance is comparable using Vmax for the stellar mass, stellar
velocity dispersion, and stellar metallicity. This is expected
from the strong correlation between the predictor and Vmax
in each of these cases, shown in Figure B1. Figure 11 also
shows that these three predictors are particularly dependent
on Vmax, whereas other predictors have greater contributions
from other features. It is also interesting to see that subhalo
mass is the more accurate predictor for gas mass, black hole
mass and star formation rate compared to Vmax, which high-
lights that using one or the other feature in a SHAM ap-
proach may not lead to optimised predictions for all galaxy
features – the ML approach, on the other hand, simply incor-
porates all features, and chooses the best for each predictor.

In Figure B3 we show the impact of using the Isotonic
regression model (using subhalo mass as the feature) on the
projected correlation function and the GSMF. The GSMF is
mostly reproduced, as expected due to the strong correlation
between feature and predictor. However, the projected cor-
relation function (for 11 < M? /M� < 11.5) shows a deficit in
the normalisation compared to the ERT model, particularly
on small scales. One explanation is that high mass satellite
galaxies, which are not common in the training set, may be
more common in the larger P-Millennium volume. The ERT
model then handles these objects better than the Isotonic
model, utilising other features that are more important in
these environments (e.g. the satellite flag).
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Figure B2. Pearson correlation coefficient for the ERT model
(L050AGN+ZoomAGN) as well Isotonic regression models trained us-

ing subhalo mass and Vmax. Each predictor is shown on the x-axis.

Figure B3. Predictions for the projected correlation function

(top panel) and galaxy stellar mass function (bottom panel) using
the Isotonic regression model (using subhalo mass; brown lines),

compared to the ERT model (blue) with all features.
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