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ABSTRACT: We describe in more detail the general relation uncovered in our previous work
between boundary correlators in de Sitter (dS) and in Euclidean anti-de Sitter (EAdS)
space, at any order in perturbation theory. Assuming the Bunch-Davies vacuum at early
times, any given diagram contributing to a boundary correlator in dS can be expressed as a
linear combination of Witten diagrams for the corresponding process in EAdS, where the
relative coefficients are fixed by consistent on-shell factorisation in dS. These coefficients
are given by certain sinusoidal factors which account for the change in coefficient of the
contact sub-diagrams from EAdS to dS, which we argue encode (perturbative) unitary
time evolution in dS. dS boundary correlators with Bunch-Davies initial conditions thus
perturbatively have the same singularity structure as their Euclidean AdS counterparts and
the identities between them allow to directly import the wealth of techniques, results and
understanding from AdS to dS. This includes the Conformal Partial Wave expansion and, by
going from single-valued Witten diagrams in EAdS to Lorentzian AdS, the Froissart-Gribov
inversion formula. We give a few (among the many possible) applications both at tree and
loop level. Such identities between boundary correlators in dS and EAdS are made manifest
by the Mellin-Barnes representation of boundary correlators, which we point out is a useful
tool in its own right as the analogue of the Fourier transform for the dilatation group.
The Mellin-Barnes representation in particular makes manifest factorisation and dispersion
formulas for bulk-to-bulk propagators in (EA)dS, which imply Cutkosky cutting rules and
dispersion formulas for boundary correlators in (EA)dS. Our results are completely general
and in particular apply to any interaction of (integer) spinning fields.
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1 Introduction

De Sitter (dS) space is the maximally symmetric space-time with positive cosmological
constant and plays an important role in understanding our Universe. The inflationary
paradigm [1-4] postulates that the very early universe underwent a period of quasi-de Sitter
expansion and astronomical observations [5-7] indicate that we are currently undergoing
a second period of inflationary expansion. Despite this central role, our understanding of
Quantum Field Theory in dS space is very primitive compared to its negative curvature



cousin, anti-de Sitter (AdS) space. AdS space has a boundary at spatial infinity, where
one can identify boundary operators that enjoy an associative and convergent operator
product expansion. The AdS isometry group acts as the conformal group in one lower
dimension and the AdS/CFT correspondence [8-10] identifies boundary observables in AdS
with correlation functions of operators in a Lorentzian Conformal Field Theory, which are
defined completely non-perturbatively by unitarity, conformal symmetry and a consistent
operator product expansion.

In contrast, in dS space there is no notion of spatial infinity and its boundaries are
space-like slices that lie in the infinite past and in the infinite future. While the dS isometry
group also acts on these boundaries as the conformal group in one lower dimension, in
contrast to AdS space the corresponding Conformal Field Theory is Euclidean and is
therefore not bound by the standard Wightman and Osterwalder-Schrader axioms [11-14]
and, for this reason, the operator product expansion is not necessarily convergent. We thus
lack a complete picture of the criteria that should be satisfied by boundary correlation
functions of fields in dS space.

In recent years there has been significant effort to bridge the gap in our understanding
of boundary correlators in AdS and dS, in many cases drawing on the similarities between
them. Boundary correlators in dS, like their AdS counterparts, are strongly constrained
by conformal symmetry and the absence of unphysical singularities [15-29].! Furthermore,
assuming the Bunch-Davies vacuum at early times, it has been shown [36] that diagrams in
the perturbative computation of correlators on the (future) boundary of dS can be expressed
as a linear combination of Witten diagrams for the same process in Euclidean AdS, where
the relative coefficients account for the change in the coefficients of the contact sub-diagrams
when going from EAdS to dS. As shown in [36-38], such coefficients are given by certain
sinusoidal factors which, as we shall argue in this work, encode (perturbative) unitary time
evolution in de Sitter space.? It should be emphasised here that, since unitary irreducible
representations of the AdS and dS isometry groups do not coincide, such EAdS Witten
diagrams generally are not generated by a theory with a spectrum satisfying the unitarity
bound in AdS. For example principal series representations which correspond to massive
unitary representations in dS are non-unitary from the AdS perspective. Nonetheless, also
in AdS Principal Series representations are at the center of the bootstrap discussion owing
to their completeness properties. For this reason much of the results which are available
in AdS and are derived at the level of principal series representation like e.g. the partial
wave decomposition and its properties, 6j symbols and various other tools which do not
rely explicitly on AdS unitarity can be directly imported in dS space.

dS boundary correlators with Bunch-Davies initial conditions thus have the same
singularity structure as their Euclidean AdS counterparts in perturbation theory and the
identities between them allow to directly import the wealth of techniques, results and
understanding from AdS to dS (at least when they do not rely on AdS unitarity). Some

!This has also been extended to theories that break the symmetry under special conformal transforma-
tions [29-35].

2The implications of perturbative unitarity on dS boundary correlators have also been explored in [30, 39]
and see [40, 41] for very recent progress at the non-perturbative level.



of these possibilities were already explored in [36]. In particular, single-valuedness of
AdS boundary correlators in the Euclidean regime implies that they admit an expansion
into Conformal Partial Waves/Harmonic Functions [42-46]. From this one can obtain
their expansion into Conformal Blocks which, combined with the requirement of crossing
symmetry, lies at the heart of the bootstrap of standard Lorentzian CFTs [47, 48]. The fact
that diagrams in dS can be expressed as a linear combination of EAdS Witten diagrams
implies that dS boundary correlators are also single-valued and hence also admit a Conformal
Partial Wave decomposition (at least in perturbation theory). This was applied in [36]
to obtain the Conformal Partial Wave and Conformal Block decomposition of tree-level
exchange diagrams in dS as well as their decomposition under crossing, which are inherited
from their EAdS counterparts. Other applications given include the definition of Mellin
amplitudes for exchanges in dS, which in AdS have proven to be an instrumental tool owing
to the striking similarities with scattering amplitudes in flat space [44, 49-55].

In parallel to the above perspective, there has also been considerable progress in devel-
oping dS techniques that are inspired by the successes and the strengths of the scattering
amplitudes programme in flat space, mostly at the level of the wavefunction coeflicients.
These include: Cosmological polytopes (positive geometries) [56-60], Cosmological opti-
cal theorem [30] (see also [39, 61]), cutting rules and dispersion relations for boundary
correlators [36, 38] and wavefunction coefficients [32-35, 61-63], BCFW-like recursion rela-
tions [32, 35, 56], cosmological scattering equations [64], as well as relations between flat
space scattering amplitudes/correlators and wavefunction coefficients [17, 35, 56-58, 65-67].

In this work we give an extended discussion of [36], providing further technical details
behind the results presented, extending them to arbitrary collections of (integer) spinning
fields and give some further applications. That any diagram in dS can be expressed as
a linear combination of EAdS Witten diagrams follows from the fact that dS Schwinger-
Keldysh propagators with Bunch-Davies initial condition can each be expressed as a linear
combination of analytically continued bulk-to-bulk propagators in EAdS for the Dirichlet
and Neumann boundary conditions. On a practical level, in [36] we found it convenient
to formulate such relations using a Mellin-Barnes representation for propagators in EAdS
and dS, which is defined in the flat slicing of (EA)dS by taking the Mellin transform with
respect to the bulk direction. At the level of the Mellin-Barnes representation, such relations
between propagators in EAdS and the Schwinger-Keldysh formalism of dS amount to the
multiplication by a simple phase which allows to immediately re-express any given diagram
in dS as a linear combination of EAdS Witten diagrams. In other words, as we shall see, the
Mellin-Barnes representation makes manifest seemingly complicated functional relationships
between diagrams contributing to boundary correlators in EAdS and dS. This allows us
to establish a set of rules to immediately obtain the explicit decomposition of any given
diagram in dS with Bunch-Davies initial conditions as a linear combination of Witten
diagrams for the same process in EAdS, where the relative coefficients of each Witten
diagram are fixed by the Bunch-Davies initial condition and consistent on-shell factorisation
of the diagram in dS.

We also propose that the Mellin-Barnes representation of boundary correlators is
interesting and useful in its own right. We argue that the Mellin transform in the presence of



a scale symmetry plays an analogous role to the Fourier transform when we have translation
invariance, potentially making the Mellin-Barnes representation a natural habitat for
boundary correlators in (EA)dS — which themselves are constrained by Dilatation Ward
identities. It is also a useful tool to solve constraints from the full conformal symmetry
group where, as we shall see, the special conformal Ward identity is reduced to a difference
relation. In perturbation theory, complicated bulk integrations are trivialised in the Mellin-
Barnes representation, much like how position space integrals are replaced by momentum
conserving delta functions in flat space scattering amplitudes, and thus place the bulk and
the boundary on a similar footing. In this way we can straightforwardly infer properties
of boundary correlators which are inherited from the propagators that compute them,
including on-shell factorisation and dispersion formulas and, in the case of de Sitter space,
unitary time evolution. Using these properties, one can establish cutting rules for diagrams
contributing to boundary correlators in (EA)dS, through which the full diagram can be
reconstructed using the Mellin-Barnes dispersion formula [36, 38].

An outline / summary of results is as follows:

e In section 2 we begin by reviewing the perturbative computation of Witten diagrams
in EAdS and harmonic analysis in Euclidean anti-de Sitter space.

In section 2.1 we review the results of [36-38], which extend harmonic analysis
and propagators in EAdS to the Schwinger-Keldysh formalism of dS via the Wick
rotations (2.13). We introduce the Mellin-Barnes representation, where propagators
in (EA)dS take a universal form and the Wick rotations (2.13) amount to multiplying
by a simple phase. The Mellin-Barnes representation makes manifest the on-shell
factorisation of bulk-to-bulk propagators and provides a simple dispersion formula [36,
38] relating the full propagator to its discontinuity.

In section 2.2 the Mellin-Barnes representation is motivated as a natural habitat for
boundary correlators constrained by Dilatation Ward identities and various parallels
are drawn with the properties of the Fourier transform in the presence of a translation
symmetry. We give Feynman rules for the perturbative computation of boundary
correlators in the Mellin-Barnes representation, which trivialises complicated integrals
over the bulk coordinate — replacing them with Dirac delta functions analogous to
momentum conserving delta functions in flat space.

In section 2.3 we derive Cutkosky cutting rules for the perturbative computation of
(EA)dS boundary correlators in the Mellin-Barnes representation and a dispersion
formula from which a diagram can be reconstructed from its discontinuities. These
are motivated by the factorisation properties and dispersion formula for propagators
in (EA)dS reviewed in section 2.1. As an example, we use the cutting rules and
dispersion formula to compute tree-level exchanges in (EA)dS, with more complicated
examples given in later sections.

e In section 3 we consider contact diagram contributions to boundary correlators in
(EA)dS.



In section 3.1 we study how constraints from conformal Ward identities in Fourier
space are implemented in the Mellin-Barnes representation, focusing on three-point
boundary correlators of scalar fields.

In sections 3.2 and 3.3 we review the relations [37, 38] between contact diagrams of
scalar fields in (EA)dS, which differ by a constant sinusoidal factor accounting for
the change in contact diagram coefficient from EAdS to dS. These are derived using
relations between bulk-to-boundary propagators in (EA)dS reviewed in section 2.1.

In section 3.4 we extend these results to contact diagrams generated by any cubic
coupling of (integer) spinning fields. To this end we employ the weight-shifting
operators of [68] developed in the ambient/embedding space formalism, which provide
a kinematic map between on-shell cubic couplings in (EA)dS and three-point confomal
structures on the boundary and, in particular, reduce any spinning three-point contact
diagram to a boundary differential operator acting on a scalar seed.

In section 3.5 we discuss how unitary time evolution in dS is encoded perturbatively
by the sinusoidal factors relating contact diagram coefficients in EAdS and dS. Such
factors also imply the vanishing of contact diagrams in dS for certain collections of
fields and certain boundary dimensions d, as already observed in [30, 37].

In section 4 we consider four-point tree-level exchanges.

Inspired by the on-shell factorisation of diagrams in (EA)dS implied by the cutting
rules given in section 4.1, we show that on-shell exchanges in (EA)dS can be fixed by
a combination of conformal symmetry, factorisation and boundary conditions. The
full exchange is then reconstructed using the dispersion formula given in section 2.1,
which we argue is a general relation between a function and its discontinuity in the
Mellin-Barnes representation.

In section 4.2 we use the relations between three-point contact diagrams in EAdS
and dS reviewed in section 3 to write the corresponding dS exchange as a linear
combination of EAdS exchange Witten diagrams. This extends the result given
in [36] to (EA)dS exchanges generated by any cubic coupling of fields with arbitrary
integer spin.

In section 4.3 we use the identity between exchange diagrams in (EA)dS derived in the
previous section to write down the conformal block expansion of dS exchanges, which
is inherited from the (known) conformal block expansions of their EAdS counterparts.
This allows us to study on-shell factorisation of the full dS exchange, as opposed to
the contributions coming from each individual Schwinger-Keldysh propagator, which
at the level of the conformal block decomposition is the factorisation of the conformal
block coefficients into the three-point coefficients of the contact diagrams mediating
the exchange. We also discuss how such coefficients are constrained by unitary time
evolution in dS.

In section 5 we present a set of rules which, given any diagram in dS with Bunch-Davies
initial conditions, allow to write down the precise linear combination of EAdS Witten



diagrams that compute it. In particular, while the existence of such a decomposition
follows as an immediate consequence of the fact that Schwinger-Keldysh propagators
with Bunch-Davies initial condition can be expressed as a linear combination of
analytically continued propagators in EAdS [36-38], one still has to turn the wheel
of the Schwinger-Keldysh formalism to obtain the precise coefficient of each EAdS
Witten diagram — which can get cumbersome very quickly beyond the simplest of
diagrams. In this section we take a bootstrap/boundary perspective, showing that
the coefficients of each EAdS Witten diagram are fixed by the Bunch-Davies initial
condition and on-shell factorisation of the diagram in dS.

In sections 5.1, 5.2 and 5.3 we give some applications to loop diagrams generated by
non-derivative interactions of scalar fields in dS, including the one-loop candy and box
diagrams at four-points and the one-loop bubble diagram at two-points. In section 5.4
we derive some useful identities to compute higher-loop diagrams in dS formed by
taking powers of bulk-to-bulk propagators, which we do by using the dS to EAdS
rules to import analogous tools and identities directly from EAdS.

e In section 6 we discuss the analyticity of dS boundary correlators with Bunch-Davies
initial conditions in perturbation theory, which is inherited from the corresponding
Witten diagrams in EAdS. In particular, as already pointed out in [36], perturbative
dS boundary correlators are single-valued functions and hence admit an expansion into
conformal partial waves like their AdS counterparts. As an example we determine the
conformal partial wave expansion of tree-level exchanges in dS, extending the example
given in [36] to dS exchanges generated by any cubic coupling of fields with arbitrary
integer spin. We also briefly discuss some loop examples. Given that diagrams in
dS can be expressed as a linear combination of Witten diagrams in EAdS, to finish
we discuss the possibility of applying Lorentzian AdS techniques to diagrams in dS,
including the celebrated Froissart-Gribov inversion formula [46]. We compute the
double-discontinuity of the dS exchange, finding that it gives back the corresponding
conformal partial wave.

In appendix A we give various technical details on results for propagators in (EA)dS.

2 Propagators and the Mellin-Barnes representation

Review AdS. Let us begin with a review of the perturbative computation of Witten
diagrams in EAdS;41. We work in the flat slicing of EAdS,4

.2
dshags = % (d22 + dx2) ) (2.1)

where, towards the boundary z — 0 a spin-J field ¢ of mass m the solution to the wave
equation behaves as

lim ¢y (z,x) = 0" (x) 2277 + 0™ (x) 22 7, (2.2)

z—0
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Figure 1. Throughout we represent EAdS pictorially as a Poincaré disk with grey circular boundary.
Left: bulk-to-boundary propagator in EAdS with boundary condition A, where A = A*. Right:
bulk-to-bulk propagator in EAdS with A* boundary condition.

with
m®Liaas = — (AJrA* + J) ,  AT+AT=d,  AT>AT, (2.3)

and we employed the index free notation as in (3.31). The field quantized with O~ (x) =
0 corresponds to the Dirichlet (normalizable) boundary condition, while OT (x) = 0
corresponds to the Neumann (non-normalizable) boundary condition — see e.g. [69].

Boundary correlators in EAdS;41 can be computed in perturbation theory via a Witten
diagram expansion [70], which can be regarded as Feynman diagrams in EAdS,;,; with the
external legs anchored to the boundary. External legs, connecting a bulk point (z,x) to
a point x’ on the boundary, are assigned bulk-to-boundary propagators K3 Ads For scalar
fields (J = 0) in the flat slicing (2.1) the bulk-to-boundary propagator reads.

AdS A
KAdS (z,x;x") = Ca : (2.4a)
o (LAdS)(d DR+ x-x)") "~ '

W%F(A—%—Fl),

which solves the homogeneous wave equation where A = A* /A~ for the Dirichlet/ Neumann
boundary condition respectively. The bulk-to-boundary propagator K 2“1,8 for a spin-J field
can be obtained from that (2.4) for a scalar field with the same scaling dimension by acting
with a differential operator [71], which we shall make use of later on in section 3.4.
Internal legs of Witten diagrams, which connect two bulk points, are associated bulk-
to-bulk propagators which satisfy the wave equation with a Dirac delta function source:

(V2 ) HAdS (z;2) = L

§UH) (z — 7). (2.5)
9]

See figure 1 for how we represent bulk-to-boundary and bulk-to-bulk propagators in AdS
diagrammatically. Analogous to the exponential plane wave expansion in flat space, it is
useful to decompose bulk-to-bulk propagators in a basis of bi-local Harmonic functions
QAdS These are trace- and divergence-free, and provide a complete basis of orthogonal

solutions to the homogeneous wave equation (see appendix D of [72]),

(V24 (¢ +iv) (4 —iv) + ) Lidas) 0% (2:2) = 0. (2.6)



See e.g. appendix D of [72] for the completeness and orthogonality relations satisfied of AdS
harmonic functions and their appendix A for some useful parallels with harmonic functions
in flat space. AdS harmonic functions are given explicitly by what is known as the “split
representation” [50, 72, 73],

2
QAdS( 2,X;2,X) = 1; /dd 'K/:is J (z,x;x)KffVJ (z,%;%x), (2.7)
which is a product of a bulk-to-boundary propagators with scaling dimensions %l + v
integrated over their common boundary point x’.
For the Dirichlet boundary condition, which is normalisable, the decomposition of the
bulk-to-bulk propagator for a spin-J field in terms of harmonic functions Q{}f}s is given by
the spectral integral [72]:

+oo d
H215J< ;) :/ Y ; QAdS (x; Z) + contact, (2.8)
oo 2 4 (AJr — §)

where “+ contact” denotes contact term contributions from harmonic functions of spin
< J. For the Neumann boundary condition, which is non-normalizable, we have (writing
AT =4 +ip):

AdS _\ _ 2mi QS oo AdS (. -
IIz\®; (25 7) = )+ Q5 (v;7) + contact, (2.9)
d
p _ i)
from which we can infer that a harmonic function QAdS is given by the difference of

bulk-to-bulk propagators with AT and A~ boundary conditions [72]:
AdS [ =y _ W [ ads , AdS -
2, (x;7) = o (Hgﬂ'u,J (x;7) — H o (x,w)) . (2.10)

Harmonic analysis in AdS is at the centre of various techniques to study boundary
correlators in EAdS. In recent years it has been shown [36-38] that the above harmonic
analysis on AdS space can be extended to de Sitter space via analytic continuation, which
we review in the following section.

2.1 From EAdS to dS and the Mellin-Barnes representation

This section provides further technical details on the intermediate steps taken to obtain the
results presented in section 2 of [36] and collects together various relevant results of [37, 38].

In de Sitter space we are interested in correlators on the future boundary, which
corresponds to 7 — 0 in the flat slicing of dSg41:

L2
dsiq = 77%8 (—dn? + dx?) . (2.11)
This is related to the EAdS4y; flat slicing (2.1) by the analytic continuation:

z = —1in, Lags = —1Lgs. (2.12)
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Figure 2. Left: diagrammatic representation of the bulk-to-boundary propagator (2.14)
in dS where the point in the bulk sits in the £+ branch of the in-in contour. Right:
bulk-to-bulk propagator in dS for a field of mass (2.17), where one bulk point sits on the
+ branch of the in-in contour and the other on the 4 branch.

Under the above analytic continuation, boundary correlators in EAdS;,1 map to wave-
function coefficients in dSg4 [20, 74-78]. Using that the wavefunction gives a probability
amplitude for observing a given set of fluctuations, one can obtain the corresponding bound-
ary correlators in dSz41 from the wavefunction coefficients by computing the expectation
values for the fluctuations — i.e. by performing an additional path integral [74] — see e.g.
appendix A of [30] for a detailed review. Alternatively one can bypass the wavefunction to
compute boundary correlators on the future boundary of de Sitter space directly within
the in-in (or Schwinger-Keldysh formalism), which is the approach we take in this work.
See [79, 80] for reviews. In our previous works [36-38] it was shown that, assuming that all
fields started their life in Bunch Davies vacuum at early times,? the contribution to dSz;1
boundary correlators from the 4 branch of the in-in contour can be reached from the flat
slicing (2.1) of EAdS411 via the following Wick rotation (see figure 3):

+ branch: z = —nei%. (2.13)

In other words, to reach the “+ branch” of the in-in contour one Wick rotates the bulk radial

coordinate z anti-clockwise, while to reach the “— branch” one Wick rotates clockwise.
According to the above prescription, bulk-to-boundary propagators on the *-branches

of the in-in contour in dS441 can be obtained from their counterpart K ﬁf{? in Euclidean

AdS via the following analytic continuation in the bulk radial coordinate z [37, 38]:*
i im
K% 5 (n,3:x) = XA P22 KA (—pet T xix) | (2.14)

where the factor

Al og; (-4 P27EA ~4+1) Lasc((4-a)7). (2.15)

3In particular, that the vacuum at early times n — —oo is that of flat Minkowski space, which is sometimes
referred to as the Hadamard condition.

“In particular, equation (2.14) is equation (2.38) of [38], where cA35*5 combines the coefficients given in
(2.91) and (2.31) of that paper. Strictly speaking, and as in (2.38) of [38], when considering correlators of
bulk fields at late times 7o one should also multiply each external leg by a factor (—no)Af‘]. For convenience
we leave such factors of 79 implicit in this work.



accounts for the change in normalisation as we move from AdS to dS. The dS two-point
coefficient Cis, ; was given in section 2.4 of [38]. Note that the ratio (2.15) has the useful
property that:

dAS AdS _ - CdSIAdS (2.16)

The mass of a spin-J field in dSz;; is related to AT via
m?L3g = ATA™ +J, (2.17)

which is obtained from the AdS expression (2.3) via the analytic continuation (2.12). From
this point on wards, unless stated explicitly otherwise we set the curvature radius to 1.

The relation (2.14), via the split representation (2.7), allows us to define harmonic
functions in dS441 on the £+ branches of the in-in contour [36]:

+4 =7 (dHV) = (d iy)
) s dS AdS ds- AdS 2 2 \2°
QV,J (77’ X0, x ) —HV Cg—w €

X QAdS (—nei%,x; —ﬁei%r,}_c) , (2.18)

where the notation +4 denotes the fact that n lies on the + branch of the in-in contour
and 7 on the & branch. This, in turn, provides a split representation [36]:°

Q) (0,%;7, %) /ddX’ T (n,X;X)Kf_wJ (7, %) , (2.19)

which extends the split representation (2.7) of harmonic functions in EAdS;44 to the in-in
formalism of dS space.

From a cosmological perspective, fixed time correlators in de Sitter space are usually
studied in Fourier space due to translation invariance. In the presence of scale symmetry we
propose® that it is convenient to furthermore adopt a Mellin-Barnes representation [36-38],
which is defined as the Mellin transform with respect to the bulk radial coordinate. For the
bulk-to-boundary propagators, this is defined as

4100 d
KXY (2.k) =/ 05 KA (5, k) 27249, (2.20a)
—ico 27TZ
4400 ds s d
K3 ;(1.k) Z/_Z.OO o K&y (s (=) ey (2.20b)

where the bulk radial coordinate, both in EAdS and dS, is replaced by a variable s, which
we refer to as an external Mellin variable. For scalar fields (J = 0) we have:”

F<S+l(d—A))F<8—l(d—A>) k‘ 725+A7g
KAdS (s,k) = 2 22F (A - %l . 1)2 2 (2) | (2.21)

®Notice that the dS Harmonic functions defined in this way satisfy orthogonality and completeness
relations inherited from their AdS counterparts. This allows to apply Harmonic analysis directly on the
in-in contour!

5This proposal will be further substantiated in section 2.2.

"One obtains (2.21) by noting that the bulk-to-boundary propagator for a scalar field of generic mass is
given by a modified Bessel function of the second kind (or equivalently the “Bessel K function”) [9] and (2.21)
follows from its Mellin-Barnes integral representation.

~10 -
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Figure 3. This figure displays the Wick rotations (2.13) from the perspective of the complex z
plane (left) and the complex (—n) plane (right). Left: starting from the flat slicing (2.1) of EAdS,
where z € [0, 00), by Wick rotating anti-clockwise one lands on the + branch of the in-in contour
in the flat slicing (2.11) of dS and by Wick rotating clockwise one lands on the — branch of the
in-in contour. Right: from the —(+) branch of the in-in contour one arrives to EAdS by rotating
(anti-)clockwise. Similar figures were given in [37, 38], where further details can also be found.

where k = |k|. At the level of the Mellin-Barnes representation the relation (2.14) between
bulk-to-boundary propagators in EAdS;11 and the in-in formalism of dS4y translates into
a simple phase:

1 d )
+5A=-F ) )7
K% (s,k) = A e:F<S 2( 2» TKAS (5, k). (2.22)
It follows that each external leg in the Mellin-Barnes representation of boundary correlators
in (EA)dSg41 is characterised by two infinite families of poles in the corresponding external
Mellin variable:

s:i%(A—g)—n, n=0,1,2, ..., (2.23)

whose residues generate the expansion of the bulk-to-boundary propagator for small kz.

Fach internal leg is instead described by a pair of internal Mellin variables u, u. This
can be understood from the split representation (2.7) of harmonic functions, which in
Fourier space becomes a product of bulk-to-boundary propagators:

2
A - VoA A -
QV,(}S(Z’ p;Z,—p) = ?K%fjlﬂ (z,p) K%iiw(z, -p), (2.24a)
2
+.+ - v 1 _
Q.7 (n,p; 0, —p) = ;K;i,,J (n,p) K;W(n, -p). (2.24b)
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= IS AASASAS o [ (4 4 L (AT — 2)) ] exp [F (@ + L (A~ — £)) ni]

Figure 4. At the level of the Mellin-Barnes representation the relation between bulk-to-boundary
propagators and harmonic functions in EAdS and the in-in formalism of dS amounts to a multipli-
cation by a phase, which implements the Wick rotations (2.13), and by a constant cdS AdS which
accounts for the change in two-point function coefficient from EAdS to dS.

Its Mellin-Barnes representation is thus inherited from that of its two constituent bulk-to-
boundary propagators:

_ +ioo du du _ oyt d o4 d
Q5P (27, —P)Z/, %%Qﬁ(}s (u, p; @, —p) 2~ 22272 2, (2.25a)
—100

d e
Q (7771);777 ) / Ql/,:] (u,p,ﬁ,—p) (—77) 2u+2 (—77) 2 +2 ) (225b)

ico 21 2mi

where
2
— 1% 57
QAdS ( u, p; u, _p) = ?Kéjjy J ( ) KAd§VJ (u7 _p) ’ (2263')
2
+4 _ d T

At the level of the Mellin-Barnes representation the relation (2.18) between harmonic
functions in EAdS411 and the in-in formalism in dS4.q reads:

w\ . oaf- w\ .
+,4+ T dS-AdS dS-AdS $("Jf?>’” jF(“*?)’” AdS 7
QV7J (u7 P u, _p) = C%—‘riu Cd—il/ e € Qll,J (U, P u, _p) : (227)

2
The Mellin-Barnes representation of the Harmonic function thus has poles both in v and u
given by those (2.23) of its constituent bulk-to-boundary propagators:

u—i%—n n=0,1,2, ..., (2.28a)
a:i%—m 7=0,1,2,.... (2.28b)

Note that the integral over the spectral parameter v in the harmonic function decompo-
sition of the bulk-to-bulk propagators (2.8) and (2.9) in EAdS;41 can be evaluated in closed

- 12 —



Jm u/ Tm u/a

A A
» | ] i X X X ° ° ° o iu
+ > Re > Re
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) ° ° o—iu DRI b Wi X X X
X = zeros of WA+ X = zeros of WA -
® =polesof €1, 5 ® =poles of 5

Figure 5. In both plots the blue dots represent the poles (2.28) in the internal Mellin variables u
and u. Left: the crosses mark the zeros of the projector wa+ (u,u) which overlap with the poles of
Qﬁf]s in the upper-half plane that violate the AT boundary condition. Right: the crosses mark the
zeros of the projector wa - (u, %) which overlap with the poles of 2497 in the lower-half plane that
violate the A~ boundary condition.

form at the level of the Mellin-Barnes representation (for details see appendix A.1). This
gives an expression that places the propagators for the A* (Dirichlet) and A~ (Neumann)
boundary conditions on the same footing:

+ico du du d__o-.d
HAdS 2,p; 27 . _ / Bataiihated HAdS u, ,'L_L, - 272u+2 Z*Q’LH*Q, 2.99
At 7(2,P;Z,—P) o Driomi Aty (u, p; U, —p) (2.29)
where, parameterizing A* = g + iu, we have
AdS

HIX‘EJ (u, p;u, —p) = csc (7 (u+ ) wa+ (w, w) ' (Gp) ' (=ip) Q.7 (u, p; 4, —p), (2.30)
up to contact terms. The functions wa+ (u, u) project onto the A* boundary conditions
and are given explicitly by

was (u, @) = 2sin (7 (uF %)) sin (z (aF %)) (2.31)

In particular, the harmonic functions Qﬁfjs solve the homogeneous wave equation (2.6) with
a specific linear combination of AT boundary conditions, as exhibited by the identity (2.10).
The zeros of each sine function in (2.31) then overlap with the poles (2.28) in the Mellin-
Barnes representation of the Harmonic function that would violate the Dirichlet or Neumann
boundary condition. See figure 5.

At the level of the Mellin-Barnes representation the identity (2.10) reduces to the
following trigonometric identity:

wa+ —wa- = —2sin (mpi) sin (7 (v + 1)), (2.32)

where, in particular, the factor sin (7 (u + u)) cancels the factor csc (7 (v + @)) in the bulk-
to-bulk propagators (2.30) to give the harmonic function on the Lh.s. of the identity (2.10).

~13 -



= wa+ (u, )

Figure 6. Diagrammatically we represent the discontinuity (2.33) of internal lines by a perpendicular
red dashed line. The discontinuity of the A* bulk-to-bulk propagator in EAdS is factorised in u and
@, which follows from the split representation of the harmonic function (2.26) and the factorised
form of the projectors wa+ (u,w).

Since the harmonic functions Qﬁf,s satisfy the source-free wave equation (2.6), this indicates
that the role of the factor csc(m(u+ u)) in (2.30) is to ensure that the bulk-to-bulk
propagators satisfy the wave equation with a source (2.5) — they encode the contact terms
in the exchange process. This can also be understood from taking the discontinuity with
respect to s = p?, defined as:

— 2iDiscs [f (s)] = f (ei“s) —f (e*”s) . (2.33)
In particular, using that
Discs [p*Q(uﬂi)} = sin (7 (u + @) p~ 2+, (2.34)
the discontinuity of the bulk-to-bulk propagators (2.29) is given by [36]:

Discs {HAA(EJ(U, p; U, —p)} =wa=+ (u,u) T (ip) T (—ip) Qﬁf]s (u, p;u, —p), (2.35)

where we see that the factor csc (7 (u + @)) has been cancelled and the propagator is com-
pletely factorised.® The discontinuities (2.35) satisfy the homogeneous wave equation (2.6)
with A* boundary conditions and encode the physical exchanged single particle state sub-
ject to those boundary conditions. They are the “on-shell propagators”. This observation,
originally presented in [36, 38|, gives a dispersion formula for the bulk-to-bulk propagator
through which it is reconstructed from its discontinuity (or “on-shell part”):

) +i%o du du _ _out+d __og4d
IS (epiz—p) = [ SESL AL (wpra—p) N EE (236m)
—10

A%, (u, p; @, —p) = esc (7 (u + w)) Discs [TTAY (u, p; 4, —p) | (2.36b)

This is the Mellin-Barnes counterpart of the bulk-to-bulk propagator dispersion formulas
given in the more recent [62, 63]. In section 2.3 we will relate the prescription [36, 38] above
to that of [63].

®This is because both the projectors wa+ (u, @) and the harmonic function Q4% (u, p; %, —p) are factorised
in w and @. That the discontinuity (2.35) of the A* bulk-to-bulk propagators factorises has also been
observed more recently in [34, 35, 61, 63].
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At A~
K = csc(m (u+a)) (ai wa+ (u, @) + B wa- (u, 11))
—o
+ i + +
contact terms boundary conditions
(Bunch-Davies) Harmonic function
u, p u, —p
At AT
aAt + AT B
— = csc(m(u+1)) (cwas (u, @) + Bwa- (u,@))

contact terms boundary conditions

Harmonic function

Figure 7. Bulk-to-bulk propagators in (EA)dS take a universal form in the Mellin-Barnes repre-
sentation, which on-shell is given by the harmonic function multiplied by the appropriate linear
combination of projectors wa+ (u, @) implementing the boundary condition. The full propagator is
reconstructed from its on-shell part by multiplying with the factor csc (7 (u + @)).

In summary, the Mellin-Barnes representation for a bulk-to-bulk propagator in EAdS 4, 1
subject to a generic linear combination of AT and A~ boundary conditions reads [36]:

HsgSJr_A,_ﬁA*”] (’LL, P; ﬂv _p) =CsC (7T (U—Fﬂ)) DiSCS [Hgg%_FBA*,J(u? P; a? _p)} ’
—————

contact terms

on-shell propagator

(2.37a)

Discs {HﬁgS;JrﬁA_,J(u,p;ﬁ, —p)} = (awp+ (u,u) +Pwa- (u,u)) (2.37b)

boundary conditions
x T (ip) T (=ip) 2, (u, pi, —p).

harmonic function

Moving to de Sitter space, as noted in [36], in the Bunch-Davies vacuum bulk-to-
bulk propagators can be expressed as a specific linear combination of Wick rotated (2.13)
Dirichlet/Neumann bulk-to-bulk propagators (2.29). In particular, if we would like to obtain
an expression for the dS bulk-to-bulk propagators similar to (2.37) but in terms of the dS
harmonic function (2.27), for the bulk-to-bulk propagator on the + % branches of the in-in
contour we an ansatz of the form:

it (d | . ~im (d .
SR = _ dS-AdS_dS-AdS $7(5*’#) T2 (TW)
HMJ (777Pﬂ77 _p) - CQ_H;M cé—iu € € (238)
2 2
+ 4 7AdS +in o _ fir + 4 17AdS +ir o _ fir
X |« H%-H,LLJ <—776 2 , Py —ne 2 7_p) +B H%—i,u,] (_776 2 , Py —ne 2 7_k>:| )
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which is a linear combination of AT EAdS bulk-to-bulk propagators Wick rotated according
to (2.13). To determine the coefficients a™* and S ¥, we take the Mellin transform:

R ANy S TTA
+, & . _ dS-AdS_dS-Ads ¥<u+7)’” *(“*7)’”
IL; (u, p;u, —p) = Cdly, Cdlg, € e

x [ F 4 (u,pia, —p) + FEEINS  (u,pia,—p)| , (2:39)

g+’by,,] ’ 2 77;,“’»‘]

and compare with the Mellin-Barnes representation of the bulk-to-bulk propagators (2.37)
in AdS. One finds (for a detailed derivation see appendix A.2):

1 1
ot * = (dS-AdS e, g = (dS-AdS et (2.40a)
T T tF_ 1z 2.40b
a = C%S—Adse ) = C%S_Adse : (2.40b)

which were originally given in [36] (equation (2.17)) but with a different normalisation for
the dS harmonic functions (2.27). Note that these can be written more compactly as:

oF = at®, gt .= ptE (2.41)

We therefore have that the bulk-to-bulk in-in propagators in dS;41 are given by the
following linear combination of bulk-to-bulk propagators in EAdS .1 analytically continued
according to (2.13):

im (d | . ~am(d |
+4 e _ ds-Ads 3F?<§+W) T2 (TLW) AdS tin
H”,J (777 | SR/ _p) - C%+i# e € H%Jri,u,J —ne

+ (= —p), (2.42)

where, as for the bulk-to-boundary propagators (2.14), the coefficients c‘ési‘ﬁlds account for

the change in two-point function coefficient as we move from EAdS to dS. Note that the
Bunch-Davies vacuum selects in-in propagators that are symmetric under y — —p (or
equivalently AT <+ A7). Note also that the precise linear combination of analytically
continued A* AdS propagators depends on the branches of the in-in contour. This means
that the bulk-to-bulk propagators in the Schwinger-Keldysh formalism are not the analytic
continuation of one and the same bulk-to-bulk propagator in anti-de Sitter space.? L.e. they
are each analytic continuations of different linear combinations of AT AdS propagators.
From the form (2.39) of our ansatz it follows that bulk-to-bulk in the Bunch-Davies vacuum
can also be written in the form (2.37) too [36]:

I " (u.pein,—p) = ese (x (u + ) Dise, [IL (wprin—p)].  (2:43)

contact terms

on-shell propagator

For related discussions see [81-83].
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Discs {Hi’fc (u, p; 4, —p)} = (ai wat (u, ) + BEwa- (u, 'L_L)) (2.43b)

boundary conditions

x T (ip) T (—ip) Q)" (u, pi @, —p),

harmonic function

where the coefficients (2.41) ensure that the propagators satisfy the Hadamard condition
required by the Bunch Davies vacuum and hence also in the de Sitter case serve to implement
boundary conditions.

The above results, first presented in [36] (and which build on those of [37, 38]), show
that in perturbation theory any boundary correlator in dS;y1 can be expressed as a linear
combination of Witten diagrams for the same process in EAdS4,1.' For any given diagram
in dS, one simply replaces each dS propagator with their expression in terms of EAdS
propagators reviewed above. In [36] this was applied to write tree-level exchanges in dS as
a linear combination of exchange Witten diagrams in EAdS. In practice, this approach can
get quite cumbersome since one must sum together various contributions coming from each
branch of the in-in contour, which can obscure the properties of the final result. However,
given the knowledge that such a decomposition of dS diagrams exists, the precise linear
combination of EAdS Witten diagrams can be fixed more directly by the Bunch-Davies
initial condition and consistent on-shell factorisation of the dS diagram. This will be
explained in section 5, where we provide a set of rules to immediately write down the
decomposition of any given dS diagram as a linear combination of EAdS Witten diagrams.

2.2 The Mellin-Barnes representation: from the bulk to the boundary

In the previous sections we introduced a Mellin-Barnes representation for propagators
in (EA)dSgy1, which is defined as the Mellin transform with respect to the bulk radial
coordinate. In this section we will discuss how in the presence of a scale symmetry such a
representation could be regarded as analogous Fourier space when we have a translation
symmetry. We shall also provide a set of Feynman rules for the Mellin-Barnes representation,
analogous to momentum space Feynman rules in flat space.

If we have a function f (z), in our conventions its Mellin transform f (s) is defined as,'!+12
+ico (]
f(2) =/ 2o f(s)a(272), (2.44a)
—ico 271
o d
f(s)= / ZZ f(2) 22575 (2.44D)
0

In particular, by transforming to the Mellin-Barnes representation f (s) we are replacing
the bulk radial coordinate z with a Mellin variable s, similar to how we replace the position

10T hese results, first obtained in [36-38], were very recently presented (in the case of scalar fields) as one
of the main results of the work [41] by V. Gorbenko, S. Komatsu and L. di Pietro. See e.g. their section 3.3,
where their main equations (3.16), (3.19), (3.20) and figure 4 are equivalent to (2.15), (2.16) of [36], (2.38)
and figure 2 of [38], which we reviewed in equations (2.14), (2.18), (2.43) and figure 3.

' And likewise for the dS radial coordinate 7, taking care that it takes negative values 7 € (—oo0, 0].

12Note that the factor of 2 in the definition of the Mellin transform ensures that applying (2.44a) and (2.44b)
successively gives the identity in our conventions.
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vector x with the momentum vector k in going to Fourier space,

F(x) = / ( Qd:)d (k) etk (2.45)
Flk) = / dx f (x) e, (2.45b)

d
The power law z¢(25_5) in (2.44) plays a role analogous to the exponential plane waves
et In fact, for theories with scale symmetry, i.e. with isometry transformation

z — Az, X — AX, (2.46)

the Mellin transform plays an analogous role to Fourier space for theories with translation

£(25-5). In particular

invariance, which is owing to the scale invariance of the power-law z
given a function f(z) : (0,00) — R, one can consider the following representation of the
dilatation group:

d
2

TS ()] = A"2f(Az), (2.47)

which preserves the inner product:
© dz
(o) = [~ S 10" ). (2.48)

The above inner product allows to define a norm for functions defined on R™. The space
of functions equipped with this norm naturally defines a Hilbert space L?(R™, fofl ). At

this point, much like how the exponential plane waves e diagonalise the translation

25—

generator, the monomials zT F(25-5) diagonalise the generator of dilatations. In particular,

for the representation (2.47) the dilatation generator is given by the following Hermitean
operator:

D, =i (z@z - g) . Th=eDe (2.49)

The Eigenfunctions of the dilatation generator are then easily found to be

fal2) = (el fa) = 20+ (2.50)

where we have introduced the position Eigenvectors |z). They are moreover orthonormal:

(falfs) :/0 Z B~ / dz ¢!B=2% — 276(8 — a) (2.51)

and satisfy completeness:'3

d
2

[ e tsten) = (1) fo(n(er) — mza)) = 50— 22).

—00

13In the second equality we used:

“+oo — +oo
g (z2\"%# dB  ig(n(e1)-In(z2)) _
[w - (21) _[ e — §(In(21) — In (22)) .

e’}
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. —— 2mid(dHd+ (25— D)+ (20— ) @2m)T 0D (kg + ... + ky)
S4, Kyq

Figure 8. In the Mellin-Barnes representation of diagrams contributing boundary correlators in
(EA)dS, in addition to Dirac delta functions enforcing conservation of boundary momenta k; at each
vertex, the Dilatation symmetry of (EA)dS requires that there is a Dirac delta function enforcing
that the Mellin variables s; associated to each line add up to a constant. This constant depends on
the boundary dimension d and a parameter d which is sensitive to spin of the fields meeting at the
vertex and the number of derivatives.

The Mellin transform can then be identified with the decomposition of an element of

L?(RT, zfiiil) into the Eigenfunctions f, of the dilatation operator:

® dz

Miglia) = (olfa) = [~ iy o) 2, (252)

The inverse Mellin transform instead follows from completeness, by multiplying both sides
with an Eigenfunction f,(2) and integrating in a:

| e Mgl = 9 2). (2.53)
oo 2T
One recovers (2.44a) by moving the integration contour in the imaginary direction and re-
defining iov = 2s. See e.g. [84] for further details on this construction of the Mellin transform.
By adopting the above Mellin-Barnes representation, the integrals over the bulk radial
coordinate trivialise and are given by Dirac delta functions in the Mellin variables, analogous
to the momentum conserving delta functions that arise from integrating over position in
theories with translation symmetry. To see this it is sufficient to compare the integrals over
z and x at a bulk vertex with n legs (see figure 8):

o gy - (2si-9) ( o d
/ >, & —omid(d+d+ Y (231- - ) , (2.54a)
0 Zd+d+1 i=1 2

/ dx f (x)e = ':(zﬂ)d 5@ <ank> (2.54b)
=1

where the ¢-th leg is assigned boundary momentum k; and the Mellin variable s;. The
symbol d parameterises any monomials in z generated by vertices involving tensor fields
and/or derivatives, so that for non-derivative interactions for scalar fields we have d = 0.4

Y“For some examples with d # 0 see [38, 85]. In this work we will not need to worry about d since we
shall take the perspective that diagrams generated by spinning fields and derivative vertices can be obtained
by acting with differential “weight-shifting” operators on a scalar seed diagram generated by non-derivative
vertices, where the shifted scaling dimensions of the scalar seed automatically account for d. See section 3.4.
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Momentum space Mellin space
k S
. d
e:tzk-x Z:F (2375)
Ox — ik 20, — —(23—%)
orthonormality orthonormality
. o d 5o d
[ dx e*Pe=ixP = (27) 5D (p — p) 0 ngl 27252750 — i (s — 3)
completeness completeness
. . . 2s+2 _9g4 4
J gy peT =5 (x—%) | 2/HTfa s = (e - )
translation symmetry scale symmetry
d n N 4
(2m)¢ 5@ (z ki) 2mi & (d +d+ (231- - 2))
i=1 i=1

Table 1. Summary of parallels between momentum space and the Mellin-Barnes representation.

In section 3.1 we will show explicitly that the Dirac delta functions of the type (2.54a) in
the Mellin variables are required by the Dilatation Ward identities that must be satisfied
by boundary correlators, analogous to how translation symmetry implies momentum
conservation. Note that, since translation symmetry is broken in the bulk radial direction of
EAdS and dS, taking the Fourier transform with respect to the bulk radial coordinate z (or
7 in the case of dS) would not benefit from the convenient properties of Fourier space in the
presence of a translation symmetry. For theories with a scale symmetry we are proposing
that one can still profit from analogous benefits by instead taking the Mellin transform,
which could then be a natural habitat for correlators with a scale symmetry. These and
further parallels between the Mellin-Barnes representation in theories with a scale symmetry
and Fourier space in theories with a translation symmetry are summarised in table 1.1°

The above discussion naturally suggests a set of Feynman rules for boundary correlators
in (EA)dSg+1, which we summarise in the following:

Feynman rules for the Mellin-Barnes representation:

1. For a given diagram, for each external leg assign a momentum k; and an external
Mellin variable s;. For each internal leg assign a momentum p; and a pair of internal
Mellin variables u;, u; distributed according to the split representation (2.26) of
internal legs shown in figure 4.

2. For each vertex include a factor of the Dirac delta function (2.54a) in the Mellin
variables associated to the legs of the vertex and a factor of the momentum conserving
Dirac delta function (2.54b), as in figure 8.

150ther parallels between momentum space and the Mellin-Barnes representation can be found in [85].
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3. For each vertex, multiply by the coupling constant and add the appropriate (polyno-
mial) factors in the momenta (corresponding to spatial derivatives) and the Mellin
variables (corresponding to derivatives in the bulk radial coordinate) as described in
the table above. Divide by the symmetry factor.

4. For EAdS diagrams: for each external leg multiply by the corresponding bulk-to-

boundary propagator K, j, (s;,k;). For each internal leg multiply by the corresponding
AdS

aAj'—l—ﬂA;,Jj
a factor of (—1) (since the action is Euclidean).

bulk-to-bulk propagator II (uj, pj; uj, —pj). For each vertex, multiply by

5. For dS diagrams: for each external leg attached to a vertex on the + branch of the in-in
contour, multiply by the corresponding bulk-to-boundary propagator Ki, Ji (si, k).
For each internal leg connecting a vertex on the &+ branch and a vertex on the +
branch, multiply by the corresponding bulk-to-bulk propagator Hii (uj, Pj; Uj, —Pj)-
For each vertex on the 4+ branch of the in-in contour, multiply by a factor 4+:. Sum
over all branches of the in-in contour.

The above Feynman rules define a Mellin-Barnes representation for any given diagram
in (EA)dS with n external legs k; and m internal legs p;:1°

+ico dgy ds,, duidiy Ay, Ay,
ety Keni 1 Pm) /—ioo 2mi " 2mi (2mi)? (2mi)?
—_—
[dsi}" [d'LLj dﬁ]’]m

X F(317k17' .. 7$n7k’n;u17a17p17 ce 7umaamapm) . (255)

It is important to appreciate that by adopting the Mellin-Barnes representation the com-
plicated integrals over the bulk radial coordinate are taken care of automatically: they
are replaced by Dirac delta functions of the type (2.54a) in the Mellin variables. This is
analogous to the fate of position space integrals when transforming to Fourier space in
directions where we have a translation symmetry (like we do have on the boundary), where
they get replaced by momentum conserving delta functions. Much like the Fourier space
representation of flat space scattering amplitudes, whose properties we can infer from those
of Feynman propagators in momentum space (e.g. simple poles in the Mandelstam variables
for exchanges at tree level, cutting rules, dispersion relations. .. ), we might then try to use
the Mellin-Barnes representation to infer properties of boundary correlators in (EA)dSg41 in
a similar fashion — importing them from the bulk to the boundary. Along these lines, in the
following section we will start by using the properties of (EA)dS bulk-to-bulk propagators
in the Mellin-Barnes representation to derive cutting rules and dispersion relations to
compute boundary correlators in perturbation theory. In section 3 we will also see how the
Mellin-Barnes representation provides a framework to determine how consistent dS physics
is imprinted in the coefficients of boundary contact diagrams, which are the basic building
blocks from which other types of diagrams can be constructed.

1Note that the Mellin-Barnes representation can be defined as a distribution in the appropriate functional
space much like the Fourier transform [84] usually used in the context of QFT. In fact it is possible to define
the Mellin transform for all distributions in D/, .
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2.3 Cutting rules and dispersion

The Mellin-Barnes representation (2.37) and (2.43) of (EA)dS propagators naturally gives
rise to cutting rules and dispersion formulas to compute boundary correlators in (EA)dS.
This was explained in [36], where it was applied to compute tree-level exchanges in (EA)dS
and below we give a more pedagogical presentation of the general procedure. We also try to
make contact with the more recent flurry of activity [30, 32-35, 63] on dS unitarity methods
(and related AdS results [61, 62]), which instead work at the level of the wavefunction.

At the basis of the cutting procedure is the split representation (2.26) of the harmonic
functions in (EA)dS, which factorise into a product of bulk-to-boundary propagators.
This in turn implies the factorisation (2.35) of the bulk-to-bulk propagator (2.30) for the
A* mode upon taking its discontinuity or “cut” (as defined in equation (2.33)). The
discontinuity of a bulk-to-bulk propagator in EAdS for a generic linear combination of
A* boundary conditions, as well as that of the in-in dS bulk-to-bulk propagators in the
Bunch-Davies vacuum, is therefore a linear combination of factorised contributions — one
for the propagating A* mode and the other for the propagating A~ mode (see figure 9):

Discs {HéiaJrBA_J(u, p; 4, —p)} (2.56a)
= aDiscg {Hﬁ‘isy‘](u,p;ﬂ, —p)} + B Discs [H‘g‘i_%J(u, p; U, —p)} ,
Discs [Hi’f(u,p;ﬂ, —p)} (2.56b)

= a* Discs [Hifj(u, p; U, —p)} + B* Discs [HX’-%J(% p; U, —p)} :

where we defined

Discs [T (u, ;@ ~p)| = was (@)D ()T (~ipn) Q7" (w03 -p),  (257a)

Discs [[Tx'™, (u, p; @, —p)| = wa- (u, @) T (i) T (i) 02" (w,p;, —p) . (2.57b)

These identities, in turn, imply that diagrams for boundary correlators in (EA)dS reduce to
a linear combination of factorised contributions upon putting an internal leg on-shell, where
the precise linear combination is dictated by the boundary condition on the exchanged field.
See figure 9.

To illustrate, let us consider the four-point tree level exchange, restricting for ease of
presentation to scalar fields ¢;, ¢, i = 1,2, 3,4, interacting though non-derivative cubic
vertices gia¢ ¢1¢2¢ and gzip p3¢4¢. In EAdS44 1, applying the Feynman rules of section 2.2
we have

ARA® sa- g (s1, k1, 89, ks 53, ks, 54, ka) (2.58)

= Grap 2mi 6 (— 4 + 251 + 252+ 2u) (27)* 6 (k1 + ks + p)
X g34¢ 2716 (—%l + 2u + 2s3 + 284) (27T)d5(d) (kg + ky — p)

AdS AdS AdS _ AdS AdS
x KxTo (s1.k1) Kago (s2, ko) IR ga— o(u, P, —P) K A5 (83, ks) KA (s4,ka) .
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,p - u, p U —p

s1, kg s3, ks s1, ky s3, k3 s1, ki ss3, k3
\ y / \A+ A7
- L R

= awa+ ( + Bwa- (u, @)

/\ [\

s2, ko 81, Ky 59, ko 54, ky s2, ko sS4, ky

s1, ky 52, ko 53, k3 51, ka s2, ko u, p U, —P 3. K 4 s1, ki so. ko u, p U, —p 3, K3 s1. kg

U s Y] e AT

Figure 9. Upon taking the discontinuity (2.33) of an internal line, diagrams contributing to
boundary correlators in (EA)dS decompose into a linear combination factorised contributions, one
for the exchanged A' mode and the other for the exchanged A~ mode, which are each given by
a product of the two on-shell sub-diagrams to the left and the right of the cut as shown above.
In the dS case this factorisation is at the level of each in-in contribution. In the examples below

this illustrated for four-point tree-level exchange diagrams. In section 5 we give some examples of
loop diagrams.

For the corresponding exchange in the Bunch-Davies vacuum of dS441, the contribution
from the #+ & branch of the in-in contour reads

Ai,l]i (517 kla 52, k27 53, k37 S4, k4)
= Gr2p 2mi 8 (5 + 251 + 285+ 2u) (2m)* 5 (k1 + ko + D)
X g34¢ 2710 (—d + 2u + 253 + 254) (27T)d 5(d) (k3 + k4 — p)

44 N N
X KXLO (817 kl) K:A: 0 (SQ, k2) HMO ( 7pa ; _p)K:Atg’o (831 k3) K§470 (84>k4) . (259)

From the factorisation property (2.56) of bulk-to-bulk propagators in (EA)dS, we see that
the discontinuity of the EAdS exchange (2.58) and the & & branch contribution (2.59) to
the dS exchange is a linear combination of factorised contributions, one for the propagation
of the A™ mode and the other for the propagation of the A~ mode, given by the product of
three-point boundary correlators generated by the cubic vertices that mediate the exchange:

. EAdS
Discs [AQAMDBA—,O (s1,ki, 52, ko; 53, ks, 54, k4)}

_ T +ip) T (1 —ip)

(awa+ (u,u) + fwa- (u, 1))

X Fgfii A+ (Sla k1> 52, k27 u, p) FgAdAS&A‘l (ﬂ, —Db, §3, k37 S4, k4) ) (260)
and

Discs [Ai’oi (s1, k1, 82, ko; 53, ks, s4, k4)}

AT (A+eu) (1 =1 7 _ _
= (+i) (£9) ( W)ﬂ (1=in) (ai wat (u, @) + BF wa- (u,u))
X Fi:l Ao, A+ (517k17827k27u)p) F§7’A3’A4 (ﬂu _p7837k3)847k4)7 (261)
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where

FR, apn (51K, 82, ko, u, P) = —g12g 2mi § (—% + 251 + 259 + 2u) (27r)d 5(d) (ki1 + ko +p)
X K}, o (s1, k1) KR, o (s2,ka) KR (u,p), (2.62)

is the Mellin-Barnes representation of the constituent three-point boundary correlators,
where for the EAdS diagram we have « = AdS and for the & &4 contribution to the dS
diagram we have @ = +£. In the dS case one should not forget to sum over all branches of
the in-in contour to obtain the full on-shell exchange:

Discs [Ai,so (s1, k1, s2,ko; 53, ks, 84,k4)}

= Z (:l:’L) (:T:Z) Discs {Aibﬁz (81, ki, s2,ko; s3, K3, 84, k4)} . (2.63)
+4

Let us note that the discontinuity of the wavefunction coefficient as considered in [33-35, 63],
in contrast to the in-in correlators above, would yield a single factorised contribution given
by a product of three-point wavefunction coefficients — as opposed to the linear combination
of factorised contributions that we observe above for the corresponding in-in correlator.
This is because bulk-to-bulk propagators for wavefunction coefficients, as opposed to in-in
bulk-to-bulk propagators in the Bunch-Davies vacuum, only propagate a single A mode.

This cutting procedure naturally extends to the internal lines of any type of diagram
contributing to boundary correlators in (EA)dS, which factorise according to the split
representation (2.26) of the harmonic function associated to that internal line and the
boundary condition on the exchanged particle — which is implemented by the appropriate
linear combination of projectors wa+ (u,u). What we learn is that the cut of any internal
line in a given diagram is fixed by factorisation (in the sense (2.26) of harmonic functions)
and boundary conditions. While we have derived these properties of perturbative boundary
correlators in (EA)dS from the properties of the corresponding (EA)dS bulk-to-bulk propa-
gators, in section 4 we demonstrate how they can be obtained from a boundary perspective
as a consequence of factorisation, conformal symmetry and boundary conditions.

The full boundary correlator can then be reconstructed using the dispersion for-
mula (2.36) for the bulk-to-bulk propagators. For a given diagram, at the level of the
Mellin-Barnes representation for each internal leg that has been placed on shell this amounts
to simply multiplying by the cosecant factor csc (7 (u; + u;)) where (u;, u;) are the pair of
internal Mellin variables which describe the on-shell leg under consideration. For example,
for exchange diagrams we have

AR, pan g 51,k 52, ko3 53, k3, 50, ka) (2.64a)
= csc (7 (u + u)) Discs [Agﬁfl&ﬁA,’J (51, k1, 52, ko; 53, k3, 84, k4)} ;

Aﬁ,SJ (s1,k1,52,ko; 53, k3, 54, k4) (2.64Db)
= csc (7 (u + u)) Discs [A?L,SJ (s1,k1, 52, ko; 53, k3, 847k4)} .
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= csc(m(u+a))

Figure 10. At the level of the Mellin-Barnes representation the full bulk-to-bulk propagator
n (EA)dS can be reconstructed from its discontinuity (2.33) by multiplying with the factor
cse (m (u + u)).

This extends naturally to any diagram contributing to boundary correlators in (EA)dS,
also beyond tree level. Some examples are discussed in section 5, see e.g. equation (5.16)
for the four-point one-loop candy diagram.

It is instructive to note that the dispersion formula of [36, 38] reviewed above and
in section 2.1 is related to dispersion formulas that were presented recently e.g. in [63].
In particular, in Fourier space the (EA)dS bulk-to-bulk propagator satisfies the following
dispersion formula (see e.g. [63] equation (2.28)):

dk?

2mi lesek2 [11(z, k; 2, ~k)] . (2.65)

H(Z) P; 27 _p)
To relate this to the dispersion formula of [36, 38] given in equation (2.36) one simply
transforms to the Mellin-Barnes representation:

dk?

— ———F——Di IM(u, k;u, -k 2.
omidy it iscpz [II(u, k; u, —k)], (2.66)

where, if the strip of analyticity is Re(u + u) € (0,1), one can perform the k? integral
explicitly in terms of a Hypergeometric function which then reduces to:

Aluta) ~(u+) _
/ AR k:2 i (p2> mese(m(u+ w)) , (2.67)

up to contact terms, which in the Mellin-Barnes representation are encoded in the choice
of integration contour (see e.g. appendix C.3 of [38]). This recovers the Mellin-Barnes
dispersion formula (2.36).17

"Note that our formula is consistent with the definition (2.33) which places the discontinuity on the
negative real axis. If the discontinuity is on the positive real axis one can simply send p? — —p?.
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3 Contact diagrams

In this section we consider contact diagram contributions to boundary correlators in
(EA)dSg4y1, which are the basic building blocks from which other types of diagrams may
be constructed via the cutting rules outlined in section 2.3. In section 3.1 we study how
the constraints from conformal Ward identities are implemented in the Mellin-Barnes
representation focusing on three-point boundary correlators of scalar fields, where it is well
known that conformal symmetry constrains their functional form up to a constant [86, 87].
In sections 3.2 and 3.3 we review the relations [37, 38] between n-point contact diagrams of
scalar fields in EAdS and dS, derived using the Mellin-Barnes representation. In section 3.4
we extend these results to contact diagrams generated by any cubic coupling of (integer)
spinning fields. In section 3.5 we discuss the constraints imposed on the coefficients of
contact diagrams by unitarity time evolution in de Sitter.

3.1 Solving three-point Conformal Ward identities a la Mellin-Barnes

Correlators of quantum fields in (EA)dS must be invariant under the corresponding isometries
of (EA)dS. The corresponding generators act as the conformal group on the boundary of
(EA)dS which, in addition to the usual translation and rotations, include the generators of
dilatations and special conformal transformations which in momentum space read:

— (A = d) + ko, (3.1a)
K'=2(A = d) Oy, — 2k 0y O, + k' Oy O, - (3.1b)

It is well known that conformal symmetry constrains three-point functions of scalar operators
up to coefficient [86, 87]. In particular, in momentum space, three-point functions of scalar
operators with generic scaling dimensions A; are constrained by the Conformal Ward
Identities to be given by Appell’s function Fy [15, 88, 89]. In the following we will re-derive
this result by solving the Conformal Ward Identities directly at the level of the Mellin-Barnes
representation.

In the usual way translation invariance implies that the three-point function is propor-
tional to a momentum-conserving delta function

Fa, A 0 (K1, ko, k3) = (21)7 6D (k1 + ko + k3) FA, a, a, (k1,ko, ks) . (3.2)

For scalar correlators, rotational invariance requires that F” is a function of the magnitudes
kj = ‘kj’7

FA, Ay n, (K1, ko, k3) = FA Ay, (K1, K2, k3) (3.3)

It is instructive to study the constraints from the Dilatation and Special Conformal Ward
identities employing a Mellin-Barnes representation, defined as

+1i00
F/A1A2A3 (k‘l,k’g,kg) :/ ] [de]S FAl Ao Ag (81,]{?1,52,]{32,53,]{23), (34)
—100
where we can write
3 —2s;+A;—
Fa, ap aq (51, k1,82, k2, 53, k3) = Fa, Ay, (51,52, 83) [] (2‘7) ; (3.5)

J=1
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with Mellin variables si, s2, s3. The function Fa, A, A, (51,52, 53) is the Mellin transform
of F’Al N (k1, k2, k3) with respect to the kj. The Dilatation Ward identity imposes

3
0= (—d +> Dj) Fa, g a, (K1, k2, ks) (3.6)
j=1

which at the level of the Mellin-Barnes representation translates into

0= / ‘ [dsj]g (5 -2 (81 + 89 + 83)) FA1 Ag Ag (81, S92, 83) H (;) . (3.7)
—100 j=1

This implies the following linear constraint on the Mellin variables s;:
d
81+ 82 + 83 = Z (38)

This is analogous to momentum conservation imposed by translation invariance. Scale
invariance therefore requires

FA1 Ag Asg (81,82,83) = 27Ti(5 (% — 81 — S — 83) F/Al As As (81,82, 83) s (3.9)

for some function Fy A, a, (51,52, 53) and is the analogue of equation (3.2) in the case of
translation symmetry.

The poles of the function Fj A, (81, 82, 83) are fixed by the Ward identity associated
to Special Conformal Transformations, which in momentum space reads

3
0= (Z K;) Fa, a,n, (k1 k2, ks) . (3.10)

a=1

Following [89], by taking k; and ks to be independent momenta this reduces to two
independent scalar equations

(92 d+1-2A; O 9 d+1-2A3 9] .,
0= _<8k%+klak1 - aTngTaT% | Fayny ag (k1 k2, k3),
(3.11a)
(8> d+1-2A; 8 02 d+1-2A;5 0 ]
= — R S Trre=s Y ' '
/ _<8k§+ ko 8k2> <8k§+ ks Dks ) | 701828 (K1, k2, k3)
(3.11b)

At the level of the Mellin-Barnes representation these become the following difference
relations for FA A, a, (51,52, 53),

(81—1+%<%—A1>) (31—1—%(%—A1>)F31A2A3(81—1,52,83)
= (ss—1+3(3-03)) (s5-1-3 (4 - 23)) FA, np 5 (51,52,55 — 1), (3.12a)

(32—1+%(g_A2)) (82—1—%(%[—A2))F/A1A2A3 (81,82—1,83)
= (53 —1+3 (%l - Ag)) (53 -1-3 (%l —Ag)) FA, Ay n, (51,52,83 —1). (3.12b)
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The difference relation (3.12a) is solved by

F/A1A2A3(81782783):C(SQ)F(31+%<g—A1)>F(81— ( —A1))
XF(S:}‘F%(%—A:}))F(S;}— ( —Ag))p(sl,83), (313)

for some function ¢ (s2) of sy and periodic function p (s1, s3) of unit period in s; and s3.
The final difference relation (3.12b) gives

NI—= N
[NSIISHE I

FA, g 2, (81,82, 83) = p (51, 52, 83) f[ ( ( - Aj>) r <Sj -1 (% - Aj)) , (3.14)

for periodic function p (si, s2,s3) of unit period in s1, sy and s3. This should be chosen
such that the Mellin integrals converge, with different choices yielding different solutions.
See [90] chapter 4.4. There are four in total since we seek solutions to two second order
equations. One of these is:

p (81, S92, 83) = )\Al Ao Ass /\A1 Ag Az = const. (3.15)

This is the unique solution with no singularities for collinear momentum configurations e.g.
k1 + ko = k3. The other three are obtained by the analytic continuations

k‘l — —kl, ]CQ — k?g, (316&)
kl — kl, k‘g — —kz, (3.16b)
k‘l — —kl, k?g — —]432. (316C)
In total we therefore have,
D (81,52,53) = AA, Ay As 6_20‘”316_25”2, a,f=0,1, AA, Ay Ay = const.  (3.17)

Boundary correlators in AdS and in the Bunch Davies vacuum of dS do not have
singularities in collapsed triangle configurations [91-95]. In this work we shall therefore
always take a = 8 = 0. In this case, from the Mellin-Barnes representation of the Bessel K
function (2.21) it is straightforward to show that the three-point function (3.14) recovers
the familiar triple-K integral representation [89] for conformal three-point functions of
generic scalar operators in momentum space.

3.2 Three-point contact diagrams of scalar fields in (EA)dS

It is straightforward to see that the three-point function (3.2) with @« = 8 = 0 can be
interpreted as a three-point Witten diagram generated by the non-derivative cubic vertex
of scalar fields ¢; in EAdSg,1:

V =g ¢10203. (3.18)

Using the Feynman rules given in section 2.2 we have:

FQ?SAQ As (81,k1,82,k2,83,k3> = —g imd (d — 81 — S2 — 83) (27T)d(5(3) (kl + kg + kg)

x H KAS (51,k), (3.19)
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Figure 11. The contribution from the + branch of the in-in contour to a three-point contact
diagram of scalar fields in dS441 is given by the corresponding diagram in EAdS;,; multiplied by a
constant phase which implements the Wick rotation (2.13) and the factors chSi'AdS which account

for the change in two-point coefficient.

+

where the coupling constant g is related to the 3pt coefficient )\gcllSAQ A, defined in (3.15) via:

)\AdS _
A1824s ngl or (AJ d +1)

which we identified by using the Mellin-Barnes representation (2.21) of the bulk-to-boundary

(3.20)

propagators. Note that the vertex (3.18) is the unique on-shell cubic vertex of scalar fields ¢;.

The three-point boundary correlator generated by the same vertex (3.18) in the Bunch
Davies vacuum dSg41 can be obtained from its EAdS;,1 counterpart (3.19) using the Wick
rotations (2.13) [36, 38]. In the Mellin-Barnes representation, to obtain the contribution
from the +-branch of the in-in contour we multiply each leg of the Mellin transform (3.19)
of the EAdS;,; Witten diagram by the by phase and normalization factor c‘isj‘AdS which
converts each of them to a bulk-to-boundary propagator on the +-branch of the in-in contour:

d ,
Flsj+5(A— i
FX. a,a, (51,K1, 82, Ko, 53, ks) = Hcds ~AdS g (] 2< 2))
7j=1
X FﬁfSAzAJ (51’k1)827k2783,k3)- (321)

The constraint (3.8) coming from the Dilatation Ward identity enforces that the propor-

tionality factor between Fi Ag As (84, ki) and Fﬁ?SAQ As (84, ki) is a constant [36, 38],

13 .
Fi (s1,k1, 52, ko, 53, k3) ds-AdS ( 2F< )) B
A1 Ap Az \PD 1,52, K2, 83, 3 Hc (&
X FA1 Ay As (51, K1, 82, ko, 53, k3) (3.22)

so that the three-point function (3.2) with @ = 8 = 0 can also be interpreted as a three-point
boundary correlator generated by the non-derivative cubic vertex of fields ¢; in dSg41. The
full dS correlator is the sum of the £+ branch contributions [36, 38]

ds
FR, ay as (51, k1, 52, ko, 53, ks)

. + . —
=i Fx A, n, (51K, 82, ko, 83, k3) — i Fx A, a, (51, K1, 82, ko, 83, ks) (3.23)
3 3
as-Ads | o [d 1 d AdS
:2 HCAJ' Sin Z+§Z(AJ—§) FAlAgAS (81,k1782,k2,537k3).
=1 =1
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Figure 12. Upon summing the contributions from the 4 branches of the in-in contour to obtain the
full dS contact diagram, the constant phases from the individual + branch contributions — which

have opposite sign — combine to give a constant sinusoidal factor multiplying the corresponding
contact diagram in EAdS.

From this it follows that the 3pt boundary correlator generated by a cubic vertex of
scalar fields ¢; in dSgz41 can be obtained from its EAdS,,; counterpart by the following
replacement of the 3pt coefficient:

3 3
AdS AdS dS-AdS : d d
Maa, 7 AR asas = M asa, ¥ 2| [T X sin z+%Z<AJ—§)
: i
(3.24)
In the following sections this result is extended to contact diagrams with any number
of legs and spinning fields.

3.3 Adding legs

The relation (3.23) between three-point contact diagrams in EAdS and dS naturally extends
to contact diagrams involving any number n of legs — see e.g. [37] section 3.2, which we
review here for completeness.

Following the prescription outlined in section 2.2, each leg of a contact diagram is
assigned an external Mellin variable s; and a boundary momentum k; where ¢ = 1,...,n for
a contact diagram with n legs. As for the n = 3 case in section 3.2, given the Mellin-Barnes
representation F ﬁf% A, (s1,k1,...,8n, k) for an