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1 Introduction

Non-abelian magnetic monopoles are topological soliton solutions of Yang-Mills-Higgs gauge
theories in three-dimensional space. In this paper the gauge group is taken to be SU(2),
with the Higgs field in the adjoint representation, and a vanishing Higgs potential. The
number of monopoles is a positive integer N , referred to as the charge, since the magnetic
charge of an N -monopole is equal to N in suitable units. In the above system, magnetic
monopoles are BPS solitons, with a moduli space of static N -monopole solutions that
describes monopoles with arbitrary positions and internal relative phases.

Some time ago, Manton proposed that the dynamics of N slowly moving monopoles
could be described by geodesic motion in the N -monopole moduli space, equipped with a
metric induced from the field theory kinetic energy [1]. This approach was later validated
by rigorous mathematical analysis [2]. To study the scattering of a pair of monopoles within
this scheme requires knowledge of the metric on the 2-monopole moduli space. By fixing
the centre of mass, the problem reduces to finding the metric on the 4-dimensional manifold
of parity inversion symmetric 2-monopoles. This manifold is known as the Atiyah-Hitchin
manifold, following their ingenious calculation of the metric by exploiting the fact that this is
a hyperkähler manifold [3]. Their study of the geodesics of this manifold revealed remarkable
properties of monopole dynamics, including the right angle scattering of monopoles in a
head-on collision: a phenomenon that is now ubiquitous in topological soliton systems.

Atiyah observed that many of the properties of monopoles in Euclidean space survive
the transmutation to hyperbolic space [4]. Furthermore, if the curvature of hyperbolic
space is tuned to a specific value, determined by the magnitude of the Higgs field at spatial
infinity, then hyperbolic monopoles correspond to circle-invariant Yang-Mills instantons
in 4-dimensional Euclidean space, with the number of monopoles equal to the number
of instantons. This simplifies a number of features in comparison to the case of generic
constant negative curvature and will therefore be assumed from now on.

An important distinction between Euclidean and hyperbolic monopoles concerns their
dynamics. The moduli space of static hyperbolic N -monopoles cannot be naturally equipped
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with the metric induced from the field theory kinetic energy, because the induced metric
diverges. Braam and Austin defined an alternative metric on the hyperbolic N -monopole
moduli space [5], obtained as a boundary metric using the abelian connection of the
hyperbolic monopole on the sphere at infinity, but its relation to monopole scattering was
unclear. Recently, this metric has been placed in a more general context of boundary
metrics on soliton moduli spaces and evidence presented to support the interpretation of
the geodesics of such metrics in terms of soliton dynamics [6]. This motivates the present
work, to obtain a hyperbolic analogue of the Atiyah-Hitchin manifold by calculating the
boundary metric on the moduli space of parity inversion symmetric charge two hyperbolic
monopoles. The method exploits a description of the moduli space in terms of spectral
curves in mini-twistor space, and yields an explicit expression for the metric in terms of
standard elliptic integrals.

2 Spectral curves of hyperbolic monopoles

The mini-twistor space of three-dimensional hyperbolic space is the space of its oriented
geodesics. Each oriented geodesic may be labelled by a pair of Riemann sphere coordinates,
(η, ζ), where the geodesic starts at −1/η̄ and ends at ζ, both regarded as points on the
sphere at infinity in the unit ball model of hyperbolic space. The mini-twistor space is
therefore CP1 × CP1 − ∆̄, where ∆̄ is the anti-diagonal, η̄ζ = −1, that must be removed
because the start and end point of a geodesic are different.

There is a bijective correspondence between hyperbolic monopoles and spectral curves,
which are algebraic curves in mini-twistor space satisfying certain reality and non-singularity
conditions [4]. Briefly, the spectral curve of an N -monopole is a biholomorphic curve in
mini-twistor space of bidegree (N,N), so it may be written in the form

S(η, ζ) =
N∑

i=0,j=0
cijη

iζj = 0. (2.1)

The reality condition on the complex constants cij , that follows from reversing the orientation
of the geodesic, is

cij = (−1)N+i+jcN−j,N−i. (2.2)

The spectral curve describes all geodesics along which a certain linear operator, constructed
from the monopole fields, has a normalizable solution. This is equivalent to imposing
non-singularity conditions on the algebraic curve that can be written in terms of relations
between integrals of holomorphic differentials around particular cycles. Roughly speaking,
these conditions identify the geodesics that pass through the locations of the monopoles.
As an example, the spectral curve of a 1-monopole is given by

2ηζ(X1 − iX2) + ζ(1 + |X|2 − 2X3)− η(1 + |X|2 + 2X3)− 2(X1 + iX2) = 0, (2.3)

where X = (X1, X2, X3) is the point inside the unit ball at which the monopole is located
(given by the vanishing of the Higgs field). This spectral curve gives all the geodesics that
pass through the point X.
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A monopole is parity inversion symmetric if it invariant under changing the sign of all
the Cartesian coordinates together with the sign of the Higgs field. The spectral curve of a
parity inversion symmetric N -monopole satisfies

S(η, ζ) = ηNζNS(−η̄−1,−ζ̄−1). (2.4)

For example, the spectral curve (2.3) of the 1-monopole is parity inversion symmetric only
if the monopole is located at the origin, X = 0.

The reason for using the spectral curve description of monopoles in this paper is that
there is an integral formula for the boundary metric in terms of the spectral curve [7]. Let
the most general N -monopole spectral curve S(η, ζ) be given in terms of real parameters
α1, α2, . . . , α4N−1, that are coordinates on the (4N − 1)-dimensional moduli space. A real
function h(z, z̄) is constructed by evaluating the spectral curve on the anti-diagonal ∆̄, via
the definition

h(z, z̄) = z̄NS(−z̄−1, z). (2.5)

The formula for the boundary metric ds2 = gijdαidαj is [7]

gij = 3
4π

∫
<
{(

∂

∂αi

∂

∂z
log h

)(
∂

∂αj

∂

∂z̄
log h

)}
idzdz̄, (2.6)

where the integration is over the whole plane and < denotes the real part. The normalization
factor has been fixed by the requirement that the metric of a single monopole restricted to
a radial half-line from the origin is dρ2, where ρ is the geodesic distance from the origin [8].
To date, the only calculation of a boundary metric for hyperbolic monopoles is the simplest
case of the three-dimensional 1-monopole moduli space, where the result is 3-dimensional
hyperbolic space [5]. Interpreting the geodesics of this manifold in terms of monopole
dynamics provides a description of the free motion of a single monopole. In the next section
the first example relevant for hyperbolic monopole scattering is constructed, by calculating
the boundary metric on the hyperbolic analogue of the 4-dimensional Atiyah-Hitchin
manifold for charge two monopoles with parity inversion symmetry.

3 The metric

The identification of a hyperbolic N -monopole with a circle-invariant Yang-Mills N -instanton
allows the ADHM construction of instantons [9] to be adapted to a construction for
hyperbolic monopoles [10]. Within this framework, the data for a hyperbolic N -monopole
consists of an N -component row vector L of quaternions, together with a triplet M1,M2,M3
of real N ×N symmetric matrices. These are assembled to form the (N + 1)×N matrix of
quaternions

M̂ =
(

L

iM1 + jM2 + kM3

)
, (3.1)

that is required to satisfy the condition that M̂ †M̂ is the identity matrix, together with the
constraint that L(iM1 + jM2 + kM3) = µL, for some pure quaternion µ. Here † denotes
the quaternionic conjugate transpose.
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The 1-parameter family of 2-monopole data of interest for the current application is
given by

M1 =
(

0 0
0 0

)
, M2 = 1

2(1−a)
(

0 1
1 0

)
, M3 = 1

2(1+a)
(

1 0
0 −1

)
, L=

√
1−a2

2 (1,−i), (3.2)

with parameter a ∈ [0, 1). It is easy to verify that this data satisfies the two conditions
stated above, with µ = ak. Applying the adapted ADHM construction to this data produces
an explicit formula [10] for the Higgs field of a pair of monopoles, one on the positive x3-axis
and one on the negative x3-axis, each with geodesic distance ρ to the origin given by

ρ = 2 tanh−1

√3− a2 −
√

(1− a2)(9− a2)
2a

 . (3.3)

The above is true if a > 0, so that the two distinct monopole positions can be identified
with the two distinct zeros of the Higgs field. If a = 0 then ρ = 0 and the Higgs field of
the monopole vanishes only at the origin. In this case the 2-monopole is axially symmetric
about the x1-axis. Copying the notation from Euclidean 2-monopoles [3], each parity
inversion symmetric 2-monopole is characterized by three orthogonal, unoriented lines
passing through the origin, that may be viewed as the body-fixed axes e1, e2, e3. The e3-axis
is the line passing through both zeros of the Higgs field, so the x3-axis for the above data.
The e1-axis is the symmetry axis when the two zeros of the Higgs field coalesce, being the
x1-axis for this data.

The formula for the spectral curve in terms of adapted ADHM data is [11]

S(η, ζ) = det
(
ηζ(M1 − iM2) + ζ(1−M3)− η(1 +M3)− (M1 + iM2)

)
. (3.4)

Inserting the data (3.2) gives
1
4 (1− a)2

(
η2ζ2 + 1

)
+ 1

4(3 + a)(1− a)
(
η2 + ζ2

)
− 2 (1 + a) ηζ = 0. (3.5)

It is easily checked that this spectral curve satisfies the condition (2.4) to be parity inversion
symmetric. If a = 0 then the axial symmetry of the curve around the x1-axis is apparent
from the invariance under rotations

(η, ζ) 7→
(cos(γ/2)η + i sin(γ/2)
i sin(γ/2)η + cos(γ/2) ,

cos(γ/2)ζ + i sin(γ/2)
i sin(γ/2)ζ + cos(γ/2) ,

)
, (3.6)

for an arbitrary angle γ. In the limit a → 1 the curve degenerates to a product ηζ = 0,
corresponding to a pair of single monopoles on the positive and negative x3-axis, at
infinite geodesic distance from the origin, as obtained by inserting X = (0, 0,±1) into the
formula (2.3) for the 1-monopole spectral curve.

The full 4-dimensional family of parity inversion symmetric 2-monopoles is obtained
by applying an arbitrary SO(3) rotation to the data (3.2). In terms of Euler angles θ, φ, ψ
define the SO(3) matrix

Q =


cosψ cos θ cosφ− sinψ sinφ sinψ cos θ cosφ+ cosψ sinφ sin θ cosφ

− cosψ cos θ sinφ− sinψ cosφ − sinψ cos θ sinφ+ cosψ cosφ − sin θ sinφ

− cosψ sin θ − sinψ sin θ cos θ

 (3.7)
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and obtain the required data by applying the rotationM1
M2
M3

 7→ Q

M1
M2
M3

 , L 7→

√
1− a2

2
(
1, k cosψ sin θ + (j sinψ − i cosψ cos θ)ekφ)

)
.

(3.8)
Using the formula (3.4) gives the spectral curve of the 4-dimensional moduli space of parity
inversion symmetric 2-monopoles, with coefficients

c00 = c22 =−1
4e−2iφ

(
(1−a)2

(
icosθ sin2ψ−cos2ψ cos2 θ+sin2ψ

)
+4asin2 θ

)
c01 = c10 =−c12 =−c21 = 1

4e−iφ sinθ
(
(1−a)2

(
isin2ψ−2cosθ cos2ψ

)
−8acosθ

)
c02 = c20 = 1

4 (1−a)2 sin2 θ cos2ψ+ 1
4
(
3−2acos2θ−a2

)
c11 = (1−a)2 sin2 θ cos2ψ−2acos2θ−2. (3.9)

Note that for N = 2 the symmetry of the coefficients, cij = cji, follows directly from the
combined application of parity inversion symmetry (2.4) and the reality condition (2.2).

As with the Atiyah-Hitchin manifold, the SO(3) and reflection symmetries imply that
the metric has the form

ds2 = Λ2
0 da

2 + Λ2
1 σ

2
1 + Λ2

2 σ
2
2 + Λ2

3 σ
2
3, (3.10)

where Λ2
i (a) are functions of a only, and σi are the standard 1-forms on SO(3),

σ1 = − sinψ dθ + cosψ sin θ dφ (3.11)
σ2 = cosψ dθ + sinψ sin θ dφ (3.12)
σ3 = dψ + cos θ dφ . (3.13)

For i = 1, 2, 3 the function Λ2
i (a) is the moment of inertia about the body-fixed axis ei. The

spectral curve coefficients (3.9), together with the integral formula (2.6), provide all the
ingredients required for a computation of the metric on the 4-dimensional moduli space of
parity inversion symmetric charge two hyperbolic monopoles.

Any convenient orientation may be chosen for the calculation of the metric functions.
In particular, once any differentiation with respect to Euler angles required in (2.6) has been
performed, then the Euler angles may be set to values that will facilitate the calculation of
the integral. A particularly convenient choice is θ = π/2, φ = ψ = 0, so given any function
of the Euler angles, say f(θ, φ, ψ), it is helpful to introduce the notation f• = f(π/2, 0, 0).

The calculation of the metric function Λ2
0(a) requires no differentiation with respect to

Euler angles, so they may be fixed immediately to simplify the spectral curve to

S(η, ζ)• = −a(η2ζ2 + 1) + η2 + ζ2 − (1− a2)ηζ. (3.14)

This gives the real function

h(z, z̄)• = 1 + |z|4 + (1− a2)|z|2 − a(z2 + z̄2), (3.15)
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and hence the integral formula

Λ2
0(a) = 3

4π

∫ ∣∣∣∣ ∂∂z ∂

∂a
log h

∣∣∣∣2
•
idzdz̄. (3.16)

= 3
4π

∫ ∣∣a2z̄(z̄2 − z2) + 2az̄(|z|4 − 1) + z̄3(2|z|2 + 1)− z(|z|2 + 2)
∣∣2(

1 + |z|4 + (1− a2)|z|2 − a(z2 + z̄2)
)4 idzdz̄.

(3.17)

By making the substitution z = √peiχ, the integration over χ may be performed by using
the results that the integrals

In(b) =
∫ 2π

0

cosn χ
(1− b cosχ)4 dχ, (3.18)

with parameter b ∈ [0, 1), are given by

I0(b) = π(2 + 3b2)
(1− b2)7/2 , I1(b) = πb(4 + b2)

(1− b2)7/2 , I2(b) = π(1 + 4b2)
(1− b2)7/2 . I3(b) = πb(3 + 2b2)

(1− b2)7/2 .

(3.19)
Applying these identities to (3.17) yields

Λ2
0(a) =

∫ ∞
0

((
2a2+2

)(
p10+1

)
+
(
−6a4+18a2+8

)(
p9+p

)
+
(
6a6−31a4+42a2+19

)(
p8+p2

)
+
(
−2a8+11a6−33a4+9a2+31

)(
p7+p3

)
+
(
a8+2a6+9a4−92a2+40

)(
p6+p4

)
+
(
−a10+9a8−8a6+32a4−147a2+43

)
p5
)

((
1+p2+

(
−a2+2a+1

)
p
)(

1+p2+
(
−a2−2a+1

)
p
))−7/2

3pdp, (3.20)

which is an elliptic integral, as the integrand is a product of a rational function of p and
the square root of a quartic in p. This elliptic integral representation for Λ2

0(a) is perfectly
acceptable for both numerical evaluation and the calculation of a series expansion about
a = 0, to any desired order. For example, the series to octic order is

Λ2
0(a) = 3− 10

√
3π

27 +
(

7− 56
√

3π
81

)
a2 +

(
11− 758

√
3π

729

)
a4

+
(

15− 9176
√

3π
6561

)
a6 +

(
19− 34670

√
3π

19683

)
a8 + . . .

(3.21)

Figure 1 displays a plot of Λ2
0(a). In the figure on the left the octic approximation (3.21)

is shown as the dashed line, and is found to be an excellent approximation, even up to
reasonably large monopole separations. The asymptotic behaviour for large monopole
separation (a ∼ 1) is shown in the figure on the right. The limit is

lim
a→1

(1− a)2Λ2
0(a) = 1

2 , (3.22)
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Figure 1. The metric function Λ2
0(a) with octic approximation (left), and asymptotics (right).

so that for a ∼ 1 the limiting behaviour, together with (3.3), gives Λ2
0da

2 ∼ 2dρ2, associated
with a pair of monopoles, each with geodesic distance ρ to the origin.

With some effort, the elliptic integral (3.20) can be written in terms of standard elliptic
integrals. The required change of variable is

p = 1 + a+ u
√

(3 + a)(1− a)
1 + a− u

√
(3 + a)(1− a)

, (3.23)

and leads to the formula

Λ2
0(a) = 2a−2 (a+ 3)−2 (1− a)−2 (3− a)−5/2 (1 + a)−7/2(

− 24F (ϕ, k)a (a+ 3) (1− a)2
(
a4 − 2a3 − 4a2 + 18a+ 3

)
+ 3Π(1, ϕ, k) (1− a)3 (a+ 3)

(
a6 − 27a4 + 99a2 − 9

)
+
√

3− a (1 + a)3/2
(
a2 + 3

) (
a6 − 9a4 + 63a2 + 9

))
. (3.24)

Here F (ϕ, k) and Π(1, ϕ, k) are the standard elliptic integrals of the first and third kind,
defined by

F (ϕ,k) =
∫ sinϕ

0

du√
(1−u2)(1−k2u2)

, Π(1,ϕ,k) =
∫ sinϕ

0

du√
(1−u2)3(1−k2u2)

, (3.25)

with amplitude ϕ and elliptic modulus k given by

ϕ = sin−1((1 + a)/2), k =
√

16a
(1 + a)3(3− a) . (3.26)

A similar calculation for Λ2
3(a), using the integral formula

Λ2
3(a) = 3

4π

∫ ∣∣∣∣ ∂∂z ∂

∂ψ
log h

∣∣∣∣2
•
idzdz̄, (3.27)
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produces

Λ2
3(a) = 3

8

∫ ∞
0

(
p10 + 1− 2

(
a2 + a+ 1

) (
p9 + p

)
+
(
2a4 + 12a2 + 8a− 1

) (
p8 + p2

)
+ 2

(
−a6 + a5 + a4 − 10a3 − 15a2 + 5a+ 7

) (
p7 + p3

)
+
(
a8 − 8a6 + 52a4 − 100a2 − 8a+ 41

) (
p6 + p4

)
+ 4

(
−5a6 − a5 + 31a4 + 10a3 − 30a2 − 4a+ 14

)
p5
)

(
1 + p2 +

(
−a2 + 2a+ 1

)
p

)−7/2(
1 + p2 +

(
−a2 − 2a+ 1

)
p

)−5/2
(1− a)4 dp,

(3.28)

with an octic approximation

Λ2
3(a) = 2

9
√

3π − 1 +
(3

2 −
4
9
√

3π
)
a+

(
−7

2 + 26
√

3π
27

)
a2 +

(
6− 40

√
3π

27

)
a3

+
(
−26

3 + 478
√

3π
243

)
a4 +

(
34
3 −

596
√

3π
243

)
a5 +

(
−14 + 6434

√
3π

2187

)
a6

+
(

50
3 −

7504
√

3π
2187

)
a7 +

(
25726

√
3π

6561 − 58
3

)
a8 + . . . (3.29)

Again the transformation (3.23) allows the result to be written in terms of standard elliptic
integrals, yielding

Λ2
3(a) =

(1−a)2
(
8(1−a)F (ϕ,k)−(1−a)(3+a)(3+a2)Π(1,ϕ,k)+(1+a)5/2√3−a

)
2(1+a)7/2√3−a

,

(3.30)
with the same amplitude and elliptic modulus as earlier, given by (3.26).

In the limit of infinite monopole separation there is axial symmetry around the e3-axis
and

lim
a→1

Λ2
3(a) = 0. (3.31)

In the Euclidean case the analogous moment of inertia tends to a non-zero constant in the
limit of infinite monopole separation, as motion in the relative phase turns the monopoles
into dyons with opposite electric charge, which contributes to the kinetic energy. In the
hyperbolic case the boundary metric detects this contribution for any finite monopole
separation, but not in the limit of infinite separation. This is because the boundary metric
is obtained by a renormalization of the divergent kinetic energy induced from the field
theory [6], and in the limit a→ 1 the associated tangent vector has finite length and therefore
does not contribute to the divergence of the kinetic energy. This corresponds to the fact
that a single hyperbolic monopole can be promoted to a finite energy hyperbolic dyon.

Performing the calculation

Λ2
2(a) = 3

4π

∫ ∣∣∣∣ ∂∂z ∂

∂θ
log h

∣∣∣∣2
•
idzdz̄, (3.32)
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reveals that Λ2
2(a) = Λ2

3(−a). This is a reflection of the fact that making the replacement
a 7→ −a in the spectral curve swaps the e2 and e3 axes. In particular, the axial symmetry
at a = 0 requires that Λ2

2(0) = Λ2
3(0).

Using the relation Λ2
2(a) = Λ2

3(−a) together with the formula (3.30) gives that

lim
a→1

(1− a)Λ2
2(a) = 2. (3.33)

Therefore in the limit of large monopole separations the asymptotic behaviour is

Λ2
2(a) ∼ 2/(1− a), for a ∼ 1. (3.34)

The remaining component of the metric can be calculated using the formula

Λ2
1(a) = 3

4π

∫ ∣∣∣∣ ∂∂z ∂

∂φ
log h

∣∣∣∣2
•
idzdz̄, (3.35)

to give the elliptic integral representation

Λ2
1(a) =

∫ ∞
0

(
2(p7+p)+

(
−4a2+4

)(
p6+p2

)
+
(
3a4−10a2+5

)(
p5+p3

)
+
(
−a6+7a4−11a2+5

)
p4
)

(3.36)
(

1+p2+
(
−a2+2a+1

)
p

)−5/2(
1+p2+

(
−a2−2a+1

)
p

)−5/2
12a2 dp

with octic expansion

Λ2
1(a) =

(
12− 40

√
3π

27

)
a2 +

(
68
3 −

832
√

3π
243

)
a4

+
(

100
3 − 3928

√
3π

729

)
a6 +

(
44− 48224

√
3π

6561

)
a8 + . . .

(3.37)

Note that Λ2
1(0) = 0, corresponding to the axial symmetry about the e1 axis when a = 0.

In terms of standard elliptic integrals the formula for Λ2
1(a) is

Λ2
1(a) = 2

(
(3 + a) (1− a)2

(
8a (1− 3a)F (ϕ, k) +

(
3 + 30a2 − a4

)
Π(1, ϕ, k)

)
− (1 + a)5/2√3− a

(
3− 20a2 + a4

))
(1 + a)−7/2 (3− a)−3/2 (1− a)−1 (3 + a)−1 .

(3.38)

Using the result
lim
a→1

(1− a)Λ2
1(a) = 2, (3.39)

confirms that in the limit of large monopole separations (a ∼ 1) the asymptotic behaviour
is Λ2

1(a) ∼ 2/(1− a) ∼ Λ2
2(a), reflecting the properties of point-like monopoles.

– 9 –



J
H
E
P
0
1
(
2
0
2
2
)
0
9
0

Figure 2. The metric functions Λ2
1(a),Λ2

2(a),Λ2
3(a) with octic approximations (left), and asymptotics

(right).

All three metric functions Λ2
1(a),Λ2

2(a),Λ2
3(a) are displayed in figure 2. In the figure

on the left the octic expansions are shown as the dashed lines, and again provide an
excellent approximation, with barely discernible errors at this scale. In the figure on the
right the dashed line shows the common asymptotic behaviour of Λ2

1(a) and Λ2
2(a). These

plots demonstrate a qualitative agreement with the corresponding metric functions for the
Atiyah-Hitchin manifold [3], modulo the asymptotic value of Λ2

3, as discussed earlier. This
justifies the interpretation of this 4-manifold as a hyperbolic analogue of the Atiyah-Hitchin
manifold and confirms the similarity of Euclidean and hyperbolic monopole scattering
within the geodesic approximation.

4 A rounded cone and a tapered trumpet

The Atiyah-Hitchin manifold contains totally geodesic 2-dimensional submanifolds, known
as the rounded cone and the trumpet, that are surfaces of revolution. In this section their
hyperbolic analogues are presented, together with a description in terms of rational maps.

Fixing the principal axis e1 to be the x3-axis corresponds to setting θ = π/2 and ψ = 0
and is a totally geodesic 2-dimensional submanifold Σcone. The associated spectral curve is

a
(
e2iφη2ζ2 + e−2iφ

)
+ η2 + ζ2 − (1− a2)ηζ = 0, (4.1)

which shows that φ has period π for this submanifold, rather than period 2π in the full
manifold. It is therefore convenient to introduce the coordinate φ̃ = 2φ on Σcone, with
period 2π. The metric induced from (3.10) is then

ds2 = Λ2
0 da

2 + 1
4Λ2

1 dφ̃
2, (4.2)
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which is a rounded cone. Using the series expansions (3.21) and (3.37) gives the leading
order behaviour at the vertex a = 0,

ds2 = 1
27
(
81− 10

√
3π
) (
da2 + a2 dφ̃2

)
+ . . . (4.3)

confirming that the cone is smooth at the vertex. This vertex corresponds to the axially
symmetric 2-monopole, with the x3-axis being the axis of symmetry. The generating
geodesics of the rounded cone pass through the vertex and describe the right angle scattering
of monopoles in a head-on collision, with φ̃ constant during the evolution, except for a jump
by π as the geodesic passes over the cone. This gives a jump of π/2 in φ and hence the
monopoles separate at right angles to the direction of their approach.

The rational map of a hyperbolic N -monopole is a degree N based rational map between
Riemann spheres, R(z), with the base point condition R(∞) = 0. The rational map may
be viewed as scattering data in the background of the hyperbolic N -monopole, along the
geodesic associated with the point (η, ζ) = (0, z) in mini-twistor space. The scattering data,
and hence the rational map, is defined only up to the equivalence relation of multiplication
by a phase. There is a bijective correspondence between these equivalence classes of rational
maps and the (4N − 1)-dimensional moduli space of hyperbolic N -monopoles [4, 12].

To obtain the rational map from the ADHM data of the hyperbolic monopole, introduce
the rank one Hermitian matrix

H = (1−M3)−1/2
(

1 +M3 − (M1 − iM2)(1−M3)−1(M1 + iM2)
)

(1−M3)−1/2, (4.4)

and let v be its unit-length eigenvector with non-zero eigenvalue λ. The formula for the
rational map is [11]

R(z) = λv†
(
z − (1−M3)−1/2(M1 + iM2)(1−M3)−1/2

)−1
v̄. (4.5)

Applying this to Σcone provides its rational map description

R(z) = 1− a2

z2 − ae−iφ̃
= 1− |c|2

z2 − c
, (4.6)

where the complex coordinate c = ae−iφ̃, that lies inside the unit disc, has been introduced.
Restricting c to the real interval (−1, 1) is a geodesic that describes right angle scattering,
with an exchange of the e2 and e3 axes as c passes through zero.

To construct a second 2-dimensional geodesic submanifold, begin by setting θ = φ = 0
to fix the principal axis e3 to be the x3-axis. This defines a 2-dimensional submanifold
Σ+

trumpet with spectral curve

1
4 (1− a)2

(
eiψ̃η2ζ2 + e−iψ̃

)
+ 1

4(3 + a)(1− a)
(
η2 + ζ2

)
− 2 (1 + a) ηζ = 0, (4.7)

where ψ̃ = 2ψ has period 2π. The metric on Σ+
trumpet is

ds2 = Λ2
0 da

2 + 1
4Λ2

3 dψ̃
2. (4.8)

– 11 –



J
H
E
P
0
1
(
2
0
2
2
)
0
9
0

This surface of revolution is a tapered cylinder with the boundary at a = 0 given by a circle
of radius 1

6

√
2
√

3π − 9. The radius of the circular cross-section decreases as a increases and
tends to zero as a→ 1. The rational map associated with Σ+

trumpet is

R(z) = 8(1 + a)z
(1− a)(3 + a)z2 + (1− a)2e−iψ̃

. (4.9)

Setting θ = ψ = π/2 fixes the principal axis e2 to be the x3-axis and defines another
2-dimensional submanifold Σ−trumpet with spectral curve

1
4 (1 + a)2

(
eiψ̃η2ζ2 + e−iψ̃

)
+ 1

4(3− a)(1 + a)
(
η2 + ζ2

)
− 2 (1− a) ηζ = 0, (4.10)

where now ψ̃ = 2φ+ π, which again has period 2π. The metric on Σ−trumpet is

ds2 = Λ2
0 da

2 + 1
4Λ2

2 dψ̃
2. (4.11)

This surface of revolution also has a boundary at a = 0 given by a circle of radius
1
6

√
2
√

3π − 9. This time the radius of the circular cross-section increases as a increases and
tends to infinity as a→ 1. The rational map description of Σ−trumpet is

R(z) = 8(1− a)z
(1 + a)(3− a)z2 + (1 + a)2e−iψ̃

. (4.12)

Joining the two surfaces Σ+
trumpet and Σ−trumpet at their common boundary produces a totally

geodesic 2-dimensional submanifold Σtrumpet, that is a tapered trumpet. The spectral
curves (4.7) and (4.10) are related by the transformation a → −a, as are the rational
maps (4.9) and (4.12). The spectral curve and rational map for Σtrumpet are therefore
given by (4.7) and (4.9) with the range of a extended to (−1, 1). The same is true for
the metric (4.8) because of the relation Λ2

2(a) = Λ2
3(−a). Defining the complex coordinate

C = e−iψ̃(1− a)/(3 + a), that lies inside the unit disc with the origin removed, allows the
rational map for Σtrumpet to be written as

R(z) = z(1− |C|2)/|C|
z2 + C

. (4.13)

The narrow end of the trumpet corresponds to C close to the origin, with the monopoles
on the x3-axis, and the broad end of the trumpet is C close to the unit circle, with the
monopoles in the plane x3 = 0. On the circle |C| = 1

3 the 2-monopole is axially symmetric,
with the axis of symmetry lying in the plane x3 = 0.

The generating curves of the tapered trumpet are all the geodesics where the monopoles
approach in the plane x3 = 0, form an axially symmetric 2-monopole, and scatter at right
angles to emerge along the x3-axis. Generic geodesics start and end at the broad end of
the trumpet and describe monopoles that scatter in the plane x3 = 0, but this can be via
intermediate dyonic motion along the x3-axis, with motion in the relative phase, for an
arbitrarily long period of time. Note that dyonic motion in the narrow end of the trumpet
must eventually return to the broad end because of the conserved quantity Λ2

3
dψ̃
dt and the

fact that Λ2
3 → 0 as a→ 1.
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5 Conclusion

The qualitative similarity between the Atiyah-Hitchin manifold and its hyperbolic analogue
indicates that hyperbolic monopole dynamics mirrors the Euclidean picture, within a
geodesic description. However, despite the resemblance between these two manifolds, there
is an important geometric distinction. The Atiyah-Hitchin manifold is hyperkähler, unlike
its hyperbolic relative, and this difference is most clearly reflected in the methods used to
calculate the two metrics. The condition that a metric of the form (3.10) is hyperkähler
implies a set of first-order differential equations for the metric functions [13]. This system
of differential equations can be solved in terms of complete elliptic integrals to determine
the metric [3]. These differential equations do not hold for the metric functions of the
hyperbolic analogue, removing this option for their construction and leaving brute-force
integration as the only alternative. Fortunately, by tuning the curvature of hyperbolic
space to a specific value (minus one in the units used here), the twistor data is sufficiently
amenable that the integration required to calculate the boundary metric is tractable. The
result is more complicated than the elegant Atiyah-Hitchin metric, being written in terms
of incomplete rather than complete elliptic integrals, this being another reflection of its
geometric inferiority. An attempt could be made to try and calculate the boundary metric
for monopoles in hyperbolic space with an arbitrary constant negative curvature, but even
if tractable, the result will be an even more unpleasant generalisation of the formulae
presented here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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