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This paper considers a novel exotic option pricing method for incomplete markets. Non-

parametric Predictive Inference (NPI) is applied to the option pricing procedure based

on the binomial tree model allowing the method to evaluate exotic options with limited

information and few assumptions. As the implementation of the NPI method is greatly

simplified by the monotonicity of the option payoff in the tree, we categorize exotic options

by their payoff monotonicity and study a typical type of exotic option in each category,

the barrier option and the look-back option. By comparison with the classic binomial tree

model, we investigate the performance of our method either with different moneyness or

varying maturity. All outcomes show that our model offers a feasible approach to price the

exotic options with limited information, which makes it can be utilized for both complete

and incomplete markets.

Keywords: Imprecise probability; Exotic option; Incomplete market; Nonparametric

Predictive Inference; Uncertainty

∗Corresponding author
Email addresses: ting.he@cueb.edu.cn (Ting He ), frank.coolen@durham.ac.uk (Frank P.A.

Coolen), tahani.maturi@durham.ac.uk (Tahani Coolen-Maturi)

Preprint submitted to APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRYJanuary 11, 2022



1. Introduction

The term ’Exotic option’ was used by Rubinstein in 1990 [20], which is a long time

after the actual product was presented. Distinguishing from European option and Ameri-

can option collectively known as vanilla option, the exotic option has flexible and complex

trading features to meet the particular demands of clients. Financial engineers add addi-

tional exercise conditions to the vanilla options to make it exotic. As a derivative financial

product, more and more exotic options are produced by financial engineers, like the digital

option, the barrier option and the look-back option. However, since the problem of liquid-

ity and asymmetric information exists in the exotic option market, pricing exotic options

in the incomplete market becomes a new academic focus, where ’incomplete market’ means

that there is insufficient information available for investors to determine precise parameter

values for the pricing model. In this paper, Nonparametric Predictive Inference (NPI)

is implemented in the binomial tree model aiming to price exotic options in incomplete

markets.

Nonparametric Predictive Inference (NPI) is an imprecise frequentist statistical frame-

work based on few assumptions, which does not assume prior information, and all inferences

are based on the historical data with updating. NPI is an inferential frame work based on

the A(n) assumption presented by Hill [14], which has strong consistency properties in the

theory of frequentist statistics [3]. Coolen presented the NPI method for Bernoulli random

quantities to calculate the upper and lower probabilities [7], and this has been applied to

the vanilla option pricing procedure combined with the binomial tree model [12][13]. The

development of the NPI methods for vanilla options offers the maximum buying price and

the minimum selling price as the bounds of the predictive price results, based only on his-

torical data. To set up the binomial tree, we follow the same assumptions about underlying

asset price movements in the model preposed by Cox, Ross and Rubinsein (CRR) [9], by

supposing the prices of the underlying asset are a sequence of random quantities, with the

movement factors u for upward movement and d for downward movement. Other than us-

ing a precise probability for upward price movement, in our model, we inference imprecise
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probability bounds by assuming that there are n historical underlying asset prices available

and s of them increased. By assuming that the underlying asset price follows the binomial

tree, the NPI method provides upper and lower probabilities for each time step movement.

Suppose that S1 is the underlying asset price at the next future step, and S1 = 1 means

that the underlying asset increases at the first future step. Then its corresponding upper

and lower probabilities for this event are,

P (S1 = 1|(n, s)) =
s+ 1

n+ 1
(1)

P (S1 = 1|(n, s)) =
s

n+ 1
(2)

One of the advantageous properties of the NPI method is that it predicts the first future

step relying on the historical data and adds this predicted value to the data base for

next steps prediction. Therefore, the imprecise probabilities are updated along with the

prediction procedure. The general formulae for any one step in the binomial tree are,

P (St+1 = 1|(n+ t, s+ t− i+ 1)) =
s+ t− i+ 2

n+ t+ 1
(3)

P (St+1 = 1|(n+ t, s+ t− i+ 1)) =
s+ t− i+ 1

n+ t+ 1
(4)

where t = 0, . . . , T is the time step during the option validation period, and i = 1, . . . , t+1

is the number of the nodes from the top to the bottom of the binomial tree at time t. The

payoff function of the vanilla option is denoted as the g(St), where St is the underlying

asset price. The NPI method provides the following lower and upper expectations for the

option payoffs,

E(g(St)) = inf
p∈P

Ep(g(St))) (5)
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E(g(St) = sup
p∈P

Ep(g(St))) (6)

where P is a set of classical, precise probability distributions corresponding to the NPI

approach for Bernoulli data [7], and Ep is the expected value corresponding to a specific

precise probability distribution p ∈ P . By applying this method to to price exotic options,

the investor is offered a price interval, of which the maximum buying price is its lower

bound and the minimum selling price is its upper bound:

call option:

Ec = Payoff× P (St −K), maximum buying price

Ec = Payoff× P (St −K), minimum selling price

put option:

Ep = Payoff× P (K − St), maximum buying price

Ec = Payoff× P (K − St), minimum selling price

where St is the underlying asset price at the exercise time, and K is the strike price, and

P and P are lower and upper probabilities for the event of interest inferred by the NPI

method.

In a previous paper, we have derived the closed formulae for European options pricing

procedure and found that the new method leads to profit when the real market does not

comfort with CRR assumptions that the precise probability can not be inferred from the

real market [12]. The minimum selling price for European call options Vc is

Vc = B(0,m)

(
n+m

m

)−1 m∑
k=dk∗c e

[ukdm−kS0 −Kc]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(7)

and the maximum buying price for European call option Vc is

Vc = B(0,m)

(
n+m

m

)−1 m∑
k=dk∗c e

[ukdm−kS0 −Kc]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(8)
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The minimum selling price for European put options Vp is

Vp = B(0,m)

(
n+m

m

)−1 bk∗pc∑
k=0

[Kp − ukdm−kS0]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(9)

and the maximum buying price for European put option Vp is

Vp = B(0,m)

(
n+m

m

)−1 bk∗pc∑
k=0

[Kp − ukdm−kS0]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(10)

where B(0,m) is discount factor for m future steps, K is the strike price of the European

option, u and d are the upward and downward movement factors, dae denotes the maximum

integer greater than or equal to a, and bac denotes the minimum integer that is less than or

equal to a. The fundamental idea of the NPI method for European options is to price the

minimum selling price by assigning the greatest probability to the movement path with the

highest payoff and the second greatest probability to the remaining highest payoff and so

on. While the NPI method determines the maximum buying price by assigning the greatest

probability to the path with the lowest payoffs and the second greatest probability to the

second lowest payoff in the tree .

For American options, there is no closed formula to price the option like the classic

CRR model, but we have presented the mathematical description of the American option

backward optimization method on the basis of the NPI method [13]. At each time step,

the option price V i
t , where t denotes the time step and i denotes the ordered node at time

t, is derived by comparing the instant value and the discount exception from the next time

step.The NPI method for pricing American call options leads to maximum buying price

V i
t {i=1...t+1, t=0...T−1}

= max
{
Sit −Kc, (1 + r)−1

[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1 )

]}
= max

{
Sit −Kc, (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1}

= max{0, SiT −Kc}

(11)
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and minimum selling price

V i
t {i=1...t+1, t=0...T−1} = max

{
Sit −Kc, (1 + r)−1

[
P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1

]}
= max

{
Sit −Kc, (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1} = max{0, SiT −Kc}

(12)

For pricing American put options, the NPI method leads to maximum buying price

derived by the following recursive relation

V i
t {i=1...t+1}

= max
{
Kp − Sit , (1 + r)−1

[
P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1

]}
= max

{
Kp − Sit , (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1}

= max{0, Kp − SiT}

(13)

and minimum selling price

V i
t {i=1...t+1} = max

{
Kp − Sit , (1 + r)−1

[
P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1

]}
= max

{
Kp − Sit , (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1} = max{0, Kp − SiT}

(14)

where t = 0, . . . , T is the time step during the option validation period, and i = 1, . . . , t+1,

is the number of the nodes from the top to the bottom of the binomial tree at time t. Then

V i
t and V i

t are the lower and upper predicted value of American option for node i at time

t r is the discount rate.

The NPI method has been utilized to price these vanilla options in incomplete markets,

and showed good performance [12]; [13]. There is a common characteristic of all vanilla

options, which is a monotonic payoff in the binomial tree. It means that the payoffs of

the European and the American options are monotone functions of the number of upward
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movements. However, the particular payoff definition of some types of exotic options

jeopardize the consistency of payoff monotonicity. In terms of the payoff monotonicity of

the exotic options, we can categorize the exotic options in two types, ones with monotonic

payoffs like the barrier option and ones with non-monotonic payoffs like the look-back

option. Therefore, in this paper we will present the idea of pricing a variety of exotic

options according to their payoff monotonicities. The payoff monotonicity is discussed in

the Section 2, as the payoff for some kinds of exotic options can be non-monotone while

for the vanilla options this kind of problem does not exist. In Section 3, a type of exotic

option with monotonic payoff, the barrier option, is priced by the NPI method, and the

performance of the new method is studied by simulation. In Section 4, we investigate the

NPI method for the look back option with the floating strike price, which is a typical type

of exotic option with non-monotonic payoff. The conclusions and remarks are discussed in

Section 5.

2. Payoff monotonicity

So far, we have applied the NPI method to the European and American options. Since

the payoffs of the European and the American options are monotone functions of the

number of upward movements, it is less complicated to determine the upper and lower

probabilities. The payoff of the European call option is [ST −Kc]
+, and the payoff of the

European put option is [Kp − ST ]+. As in the binomial tree, the top node at time T has

the largest value of ST , [ST − Kc]
+ has the largest value at the top node and decreases

as the node moves to the bottom of the tree. While [Kp − ST ]+ has the lowest value at

the top node at time T and increases as the node moves to the bottom of the tree. For

the American options, although for each path in the binomial tree, the exercise time τ can

be different, the payoffs at τ are still monotonic. Based on the definition of the American

options, [Sτ −Kc]
+ is the payoff for the American call option, and [Kp−Sτ ]+ is the payoff

for the American put option. As τ is the best time to exercise the American option to get
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the optimal payoff for each path in the binomial tree, [Sτ −Kc]
+ has the largest value at

the top node at time τ and decreases as the node move to the bottom of the binomial tree.

[Kp−Sτ ]+ has the lowest value at the top node at time τ and increases as the node moves

to the bottom of the tree. So the payoff of the American option is also monotonic.

Applying the NPI method to an option with monotonic payoffs is less complicated than

to an option with non-monotonic payoffs. For instance, when we want to calculate the

upper expected payoff of a call option with monotonic payoffs, we can assign the upper

probability from Equation (3) to each one-time-step path of the upward movement in the

binomial tree to get the result. As in a one time step tree, the probability for upward

movement and the probability for downward movement are summed to one, when we

assign the upper probability to upward movement path, the lower conjugacy probability

is assigned to downward movement path. Correspondingly, if the lower expected payoff is

needed, we can compute it by assigning the lower probability from Equation (4) to each

one-time-step path of the upward movement in the binomial tree. However, if the payoffs

of an option are not monotonic, the upper and lower expected payoffs cannot be calculated

by assigning the upper and lower probabilities, which need to be determined by a more

detailed search over the set of probabilities P . This does not mean that we cannot use the

NPI method to derive the lower and upper expected value of non-monotonic payoffs. In the

following sections, we will illustrate the NPI method for exotic options in two categories,

with and without monotonic payoffs, and in each category one typical exotic option is

studied, the barrier option and the look-back option.

3. Exotic option with monotonic payoffs: the barrier option

The barrier option is a well-known exotic option with monotonic payoffs. This kind of

option has a unique feature distinguishing it from the vanilla option, namely that a barrier

for the underlying asset price is predetermined. This barrier for the asset price justifies

the option’s validation that if the future asset price reaches the barrier, either this option

8



expires or be valid immediately. Merton [17] first presented the down and out option in

1973. Now there are two classes of the barrier option, ”knock-in” and ”knock-out” barrier

options. The ”knock-in” option has a barrier making the option exercisable, while the

barrier of the ”knock-out” option leads to the expiration of the option. According to the

initial underlying asset price, both ”in” and ”out” options are separated into ”up” and

”down” options. In total, there are eight types of barrier options. Many scholars present a

variety of methods to price the barrier option. Cox and Rubinstein [8] illustrated this type

of barrier option pricing model based on the CRR model in 1985. Rubinstein and Reiner

[21] listed formulae for the eight different barrier options in a continuous time model. Boyle

and Lau [5] used the binomial lattices to price the barrier option and found its convergence

of prices of barrier options. In 1996, Reimer and Sandmann [19] explained the formulae

for all types of barrier options including European style and the American style, which are

all set up in the risk-neutral world. In 2006, a modified standard binomial method which

can price the American type barrier option was introduced by Gaudenzi and Lepellere [10],

which is more efficient than the CRR model and can be used in the trinomial tree method

as well. Appolloni et al. [2] explored the binomial lattice method to evaluate the step

double barrier options.

We denote the barrier of asset price as Sb, for the knock-in options, the options are

valid when the stock price is less than Sb for the down-and-in option or greater than Sb for

the up-and-in option. Here we use the indicator 1 to describe the barrier, so for the down-

and-out option, the barrier is denoted as 1{St>Sb,t∈(0,...,T )} and for the up-and-in option, the

barrier is denoted as 1 − 1{St<Sb,t∈(0,...,T )}. According to the payoffs for the call and put

options, we can define the knock-in options as follows.

Knock-in options

down-and-in

[ST −Kc]
+
(
1− 1{St>Sb,t∈(0,...,T )}

)
, Call

[Kp − ST ]+
(
1− 1{St>Sb,t∈(0,...,T )}

)
, Put

For a down-and-in option, as long as the stock price during the option valid period
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St goes down and reaches the barrier value Sb, the option holder can get the payoff as

[ST −Kc]
+ for the call option or [Kp−ST ]+ for the put option at maturity. The definition

of the up and in option is

up-and-in

[ST −Kc]
+
(
1− 1{St<Sb,t∈(0,...,T )}

)
, Call

[Kp − ST ]+
(
1− 1{St<Sb,t∈(0,...,T )}

)
, Put

For an up-and-in option, as long as the stock price during the option valid time St goes

up and reaches the barrier value Sb, the corresponding option is immediately valid and

offers the payoff [ST −Kc]
+ for the call option or [Kp−ST ]+ for the put option at maturity.

For the knock-out options, the option is expired once the stock price St touches the

barrier Sb. Thus, the down-and-out option is valid when 1{St>Sb,t∈(0,...,T )}, and the up-and-

out option is valid when 1{St<Sb,t∈(0,...,T )}. Due to the barrier, the formulae of the knock-out

options are given below.

Knock-out options

down-and-out

[ST −Kc]
+1{St>Sb,t∈(0,...,T )}, Call

[Kp − ST ]+1{St>Sb,t∈(0,...,T )}, Put

For a down-and-out option, if the stock price during the option validation St is always

greater than the barrier value Sb, then the option holder can get the payoff as [ST −Kc]
+

for the call option or [Kp − ST ]+ for the put option in the end.

up-and-out

[ST −Kc]
+1{St<Sb,t∈(0,...,T )}, Call

[Kp − ST ]+1{St<Sb,t∈(0,...,T )}, Put

When it comes to an up-and-out option, during the option validation, as long as the

stock price St always holds a lower value than the barrier value Sb, the option holder can

the payoff as [ST −Kc]
+ for the call option or [Kp − ST ]+ for the put option at maturity.

From the definition of the barrier option, we can tell that to evaluate a barrier option
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Figure 1: The binomial tree based on the NPI method for an up-and-out call option

we need to monitor the underlying asset regularly during the option life period, and as long

as the option reaches the bound the option is either valid or expired. The NPI method can

also be applied to this option to price the barrier option even if there is limited information

available in the market. For the knock-out type of option, even though there is no closed-

form formula, we can use the backward valuation method to get the expected option price.

Figure 1 displays a up-and-out call option. The payoffs are monotonic with the path,

and the probabilities of the NPI boundary prices of the barrier option for each path are

the same for the corresponding vanilla options. However, due to the bound Sb, the path

included in the pricing procedure is reduced, which means that the paths having the asset

price greater or equal to the Sb are excluded, even though they hold a positive payoff.

Referring to Figure 1, only the paths drawn in solid line for all time steps are involved in

the pricing evaluations.
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The details of evaluating this type of exotic option are based on the backward op-

timization method. We start from the maturity payoff [ST − Kc]
+ for the call option

and [Kp − ST ]+ for the put option, rolling back to the initial time. At each time step,

we check the condition of the ”knock-in” or ”knock-out” option. For example, if there

is an up-and-out m period call option with the barrier Sb, then we can get the matu-

rity payoff at each node i as [SiT − Kc]
+ with i ∈ {1, . . . , T + 1} and T = m, and we

check if the underlying asset price at maturity SiT follows the condition SiT < Sb. If

not, then the option value at that node is immediate equal to zero. Thus, the payoff of

the whole tree is V i
T = [SiT − Kc]

+1{ST<Sb}. Then we move backward to the time step

before the maturity T − 1. At T − 1 the option value is the expectation at maturity af-

ter the discount procedure if the spot price is less than Sb. Otherwise, the option value

equals to zero, thus, V i
T−1 = B(T − 1, T )[SiT −Kc]

+1{ST<Sb}1{ST−1<Sb}. According to the

NPI method, we can get the upper and lower expectations based on n historical stock

price data with s increased prices which is the same procedure as we applied for Ameri-

can option pricing [13]. By assigning the lower probability formulated, given in Equation

(4), to the binomial tree at maturity, we obtain the lower expected value at maturity

E[SiT − Kc]
+ = P i

T−1[S
i
T − Kc]

+ + (1 − P i
t )[S

i+1
T − Kc]

+), and the upper expected value

can be obtained by assigning the upper probability formulated as Equation (3). Then the

lower and upper expected values lead to two boundaries of the option value at time T − 1

by discounting. After applying the same procedure at every time step, we can get two

initial boundary option values, which we consider to be the maximum buying price and

the minimum selling price. The investor would like to sell the option if the quote price is

greater than the minimum selling and buy the option if the quote price is less than the

maximum buying price. If the quote price is in the interval, then it is reasonable mean-

ing that no trade in appealing. For an up-and-out call option, the NPI method leads to
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maximum buying price derived by the following recursive relation

V i
t {t∈{0...m−1} i∈{1...t+1}}

= B(t, t+ 1)
[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1
[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}}

= [SiT −Kc]
+1{Si

T<Sb}

(15)

and minimum selling price

V i
t {t∈{0...m−1} i∈{1...t+1}} = B(t, t+ 1)

[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1
[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}} = [SiT −Kc]

+1{Si
T<Sb} (16)

For an up-and-out put option, we assignment the imprecise probability bounds but

the other way around to that for the up-and-out call option to calculate the lower and

upper expected prices, which the maximum buying price is obtained by assigning the

upper probability, and the corresponding minimum selling price is obtained by assigning

the lower probability in the binomial tree. Same ass for the call option presented above,

there are no closed-form formulae for the put option. The NPI method leads to maximum

buying price for the put option

V i
t {t∈{0...m−1} i∈{1...t+1}}

= B(t, t+ 1)
[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1
[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}}

= [Kp − SiT ]+1{Si
T<Sb} (17)
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Figure 2: The binomial tree of an up-and-out call option

and minimum selling price

V i
t {t∈{0...m−1} i∈{1...t+1}} = B(t, t+ 1)

[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1
[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}} = [Kp − SiT ]+1{Si

T<Sb}

(18)

When it comes to the down-and-out options, only the barrier changes to Sit > Sb, other

than that, the probability assignment and payoff are the same as the up-and-out barrier

options.

Example 3.1

By using the statistical software R, we determine the NPI maximum buying and min-

imum selling prices for an up-and-out call option with the strike price K = 21 based on

n = 50 and s = 30 historical data. In this example, the underlying asset with an initial

price S0 = 20 has a barrier Sb = 26. Then any path that reaches the barrier of the asset

price is not included in the option evaluation. As the stock price movement is a Bernoulli

random quantity, the stock price moves either up with the factor u = 1.1 or down with

the factor d = 0.9, and the asset price at each node in the binomial tree is determined. In
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Figure 2, the two nodes higher than the barrier are in the boxes, which are S1
3 = 26.62 and

S1
4 = 29.282. So the paths with the nodes in the boxes are not involved in the evaluation

holding the value of zero. Then we can get the option value at every node of the binomial

tree. Here the discount rate is a constant value equal to rf = 0.02. After doing the back-

ward evaluation until the initial time, we get the expected price of this up-and-out barrier

option shown as the value 0.675 in the parenthesis in Figure 2.

Example 3.2

To assess the predictive performance of the NPI method, we bring the classical binomial

tree model (CRR) presented by Cox, Ross and Rubinstein in 1979 [9] into the comparison.

We evaluate the barrier options for the same underlying asset by both the NPI method

given n = 50 historical data with s = 25 increases of the price, and the CRR model

assuming q = 0.5. This four time-step barrier options are contingent on the underlying

asset with the initial price S0 = 20, the upward movement factor u = 1.1 and the downward

movement factor d = 0.9. For a more detailed investigation, the barrier options with

different moneyness are priced in this example meaning this assessment covers in-the-

money, at-the-money and out-of-the-money options. The assessment result is plotted in

Figure 3.

Figure 3 shows that the CRR price is in the interval between the maximum buying

and the minimum selling prices from the NPI method for in-the-money, at-the-money as

well as out-of-the-money options. However, if the option is deep in-the-money, then the

CRR model intends to forecast a higher price than the minimum selling price from the NPI

method. This is because when the NPI method calculates the minimum selling price, it

assigns the greatest probability to the top node that has no positive payoff because of the

barrier. Then the NPI method assigns the second greatest probability to the second node

from the top that may have no positive payoff as well. Overall, the NPI method in this

calculation assigns more probabilities to all upward movements not only ones have positive

value but also ones with zero payoffs due to the barrier. Therefore, the NPI method adds

slightly more penalty to the barrier for the up and out call option than the CRR model

15



10 15 20 25 30

0
2

4
6

Strike

O
p
ti
o
n
 P

ri
c
e

NPI minimum selling price 
NPI maximum buying price
CRR prie

Figure 3: The comparison of the NPI method and the CRR model (n = 50)
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Figure 4: The comparison of the NPI method and the CRR model (n = 252)

does, and this leads to the result that the minimum selling price of deep in-the-money

option is less than the CRR model. In other words, this shows the NPI method pays

more attention to the barrier effect, especially for the deep in-the-money option. This

fits the intuitive sense of the investment that the barrier effects more toward the option

with positive payoffs than the option with no positive payoff, especially in the incomplete

market, since the incompleteness of market enhances the effect of the barrier on the options.

We also find that the sufficient size of historical data makes the NPI result more precise.

Figure 4 shows the result based on historical data size n = 252 and s = 126. From the plot,

it is clear that the NPI interval asymptotically approach to a precise value when there is

sufficient historical information, and this precise value is identical to the CRR prediction

for all kinds of moneyness of options. This result illustrates that the NPI method offers

the same prediction for the barrier option as the CRR model does in the complete market.
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Figure 5: The binomial tree based on the NPI method for an up-and-in call option
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Unlike the knock-out option, it is time-consuming to predict the knock-in option only

with the backward optimization method. It is easier to illustrate why simply using the

backward optimization is not efficient in an example. Figure 5 shows an up-and-in call

option with the barrier of the asset price Sb. Based on the definition of the up-and-in

call option, as S1
2 and S1

3 are higher than the barrier price Sb, the only two paths in the

evaluation are V0 → V 1
1 → V 1

2 → V 1
3 and V0 → V 1

1 → V 1
2 → V 2

3 . Unlike the knock-out

barrier option, we need to know the valid path before making the prediction. However, the

backward optimization method cannot pick the valid pathes that is across the barrier. In

this example, the paths ended up with V 2
3 are V0 → V 1

1 → V 1
2 → V 2

3 which is valid, and

V0 → V 1
1 → V 2

2 → V 2
3 which is invalid because of barrier. By using only the backward

optimization method, the path V0 → V 1
1 → V 2

2 → V 2
3 is still included in the evaluation

even though it is invalid, because V 2
3 has a positive payoff. This roll-back procedure would

not stop until the inital time when it is realized that this path has never come cross the

barrier to be validated. Thus, using only the backward optimization method is next to

impossible.

To avoid the problem discussed above and simplify the calculation procedure, we put the

thought of European option pricing into the evaluation. Assuming at time t the stock price

Sit is the first node of each path from the initial time qualified with the barrier condition,

then we can see option value at this node as a vanilla European option with the same

strike price but different maturity T − t. After getting all the option values at every first

valid node in the tree, we use the backward optimization method to roll back to the initial

time and get the expected option price. For instance, for the call option listed in Figure

5, as V 1
2 is the first node that greater than Sb, we first see it as an one-step European call

option with the initial stock price S1
2 , then do the backward optimization method to get the

predicted option price. Using Equations (8) and (10) for buying position and Equations

(7) and (9) for selling position, we can get the option value at node V 1
2 . One thing we need

to pay attention to that for this auxiliary European option, the historical data is n+ t, and

the successful historical data is s+ t− i+ 1. Then by applying the backward optimization
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method we obtain the expected value V0. In summary, it is crucial to find the node of

the first time across the barrier Sit , and the paths subordinate to this node are included

in the auxiliary European evaluation, otherwise are valued by the backward optimization

method. Generally, this pricing procedure based on the NPI method leads to maximum

buying price for the call option.

V i
t {t∈{0...m−1} i∈{1...t+1}}

=



B(t, t+ 1)
[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
If Sit < Sb and Sit−1 < Sb

B(t, T )
(
m+n+t
m

)−1∑m−t
k=dk∗c e

[ukdm−t−kSit −Kc]

×
(
s+t−i+k

k

)(
n−s−t+i+m−k−1

m−k

)
If Sit ≥ Sb and Sit−1 < Sb

(19)

V i
T {T=m i∈{1...T+1}}

= [SiT −Kc]
+
(
1− 1{St<Sb,t∈(0,...,T )}

)
(20)

and minimum selling price

V i
t {t∈{0...m−1} i∈{1...t+1}} =



B(t, t+ 1)
[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
If Sit < Sband Sit−1 < Sb

B(t, T )
(
m+n+t
m

)−1∑m−t
k=dk∗c e

[ukdm−t−kSit −Kc]

×
(
s+t−i+k+1

k

)(
n−s−t+i+m−k−2

m−k

)
If Sit ≥ Sb and Sit−1 < Sb

(21)

V i
T {T=m i∈{1...T+1}} = [SiT −Kc]

+
(
1− 1{St<Sb,t∈(0,...,T )}

)
(22)

To price an up-and-in put option, the price procedure for the up-and-in call option

can be used by adjusting the payoffs according to the put option payoff definition. The

option maturity value equals to [Kp − SiT ]+ ×
(
1− 1{St<Sb,t∈(0,...,T )}

)
. Before the maturity,

the option value for each node is either the discount value rolling back from the next time

steps option value or equal to the European put option with the maturity T − t calculated

based on n+ t historical data among them s+ t− i+ 1 successful, which depends on the

node is whether before the first qualified barrier node or not. The NPI method for the up-

20



and-in option to the maximum buying price and the minimum selling price are formulated

as below.

The maximum buying price for the put option is

V i
t {t∈{0...m−1} i∈{1...t+1}}

=



B(t, t+ 1)
[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
If Sit < Sb and Sit−1 < Sb

B(t, T )
(
m+n+t
m

)−1∑m−t
k=dk∗c e

[Kp − ukdm−t−kSit ]

×
(
s+t−i+k+1

k

)(
n−s−t+i+m−k−2

m−k

)
If Sit ≥ Sb and Sit−1 < Sb

(23)

V i
T {T=m i∈{1...T+1}}

= [Kp − SiT ]+
(
1− 1{St<Sb,t∈(0,...,T )}

)
(24)

The minimum selling price for the put option is

V i
t {t∈{0...m−1} i∈{1...t+1}} =



B(t, t+ 1)
[
P i
t V

i
t+1 + (1− P i

t )V
i+1
t+1

]
If Sit < Sb and Sit−1 < Sb

B(t, T )
(
m+n+t
m

)−1∑m−t
k=dk∗c e

[Kp − ukdm−t−kSit ]

×
(
s+t−i+k

k

)(
n−s−t+i+m−k−1

m−k

)
If Sit ≥ Sb and Sit−1 < Sb

(25)

V i
T {T=m i∈{1...T+1}} = [Kp − SiT ]+

(
1− 1{St<Sb,t∈(0,...,T )}

)
(26)

To price the down-an-in barrier option, we change the first valid node of the underlying

asset price to the first node that the underlying asset price is lower or equal to the barrier

at time t and the indicator function at maturity to
(
1− 1{St>Sb,t∈(0,...,T )}

)
.

Example 3.3

Example 3.3 is an up-and-in call option in buying position based on the same underlying

asset as that in the pervious examples. The barrier of the underlying asset is Sb = 23, so

any path contains asset price greater or equal to 23 are included in the pricing procedure.

In Figure 6, there is the binomial tree of this option. The nodes in the box are the two cases

that the underlying asset price first over the barrier. Let us look at first node S1
2 = 24.2.
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Figure 6: The binomial tree of an up-and-in call option

When the underlying asset price moves to this price, the paths having this node are included

in the option price evaluation. So as we described the up-and-in option evaluation, we first

compute the option value at this node by seeing it as a vanilla European option with the

initial stock price S0 = 24.2 and maturity m = 2. Then we straightforwardly roll this

option value back to the initial time. The second node in the box is S2
4 = 23.958. This is

a maturity node, so we use the backward optimization method to get the initial expected

value. However, we would like to highlight one point that as the S2
4 = 23.958 is also

included in the paths containing S1
2 = 18, so the two backward procedures of the paths

that have S2
4 as the first node over the barrier are 20 → 22 → 19.8 → 21.78 → 23.958

and 20→ 18→ 19.8→ 21.78→ 23.958. After pricing, the maximum buying price of this

up-and-in barrier call option is 1.89 shown in the parenthesis in Figure 6.

Example 3.4

To access the performance of the NPI method for the knock in options, we evaluate the

up-and-in call option based on the same underlying asset as that in Example 3.3, while

the strike price now is a sequence of values to test the method performance according

to different moneyness. The first study is on the basis of n = 50 historical data and

the historical number of upward movements s = 25. The outcomes from both the CRR
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Figure 7: The comparison of the NPI method and the CRR model (n = 50)

model and the NPI method are plotted in Figure 7. By comparing the evaluated prices

from the CRR model and the NPI method, it is clear when the background information is

limited, the interval of the NPI prices is less precise and contains the CRR result. Since

this example is based on the up-and-in option, for the deep in the money call option, the

barrier effect is stronger than that on the options with other moneyness, because this kind

of option holds more paths with positive payoffs than the options with other moneyness.

Thus, the barrier will have higher plausibility to jeopardize the validation of the positive

payoff paths causing more uncertainty in the evaluation. The NPI method considers this

barrier effect problem and reflects it by the precision of the interval while the CRR model

does not concern it. The same effect can also happens to the down-and-in put option,

and we believe the NPI method will provide a wider price interval for deep in the money

options than options with other moneyness.
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Figure 8: The comparison of the NPI method and the CRR model (n = 252)
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Another simulation with more sufficient historical information n = 252, s = 126 is

also investigated. Figure 8 indicates that when the information is fully available the NPI

method delivers the same explicit result as the CRR does.

Overall, even though the barrier option is a path-dependent exotic option, the NPI

method is applied directly to the option evaluation based on the binomial tree model

because of the payoff monotonicity. Compared with the CRR model, the NPI method

does the prediction based on the available historical data with few assumptions, which is

superior to the CRR model when the information is limit. Especially for the incomplete

market, when the information is insufficient, the NPI method not only offers the interval

results considering the risks from the incompleteness, but also demonstrates the barrier

effect diversity for different moneyness options. The NPI method is more closed to the

reality, which investors can refer the results to avoid making arbitrary decisions under the

complete market assumption.

4. Exotic option with non-monotonic payoffs: look-back option

We have implemented the NPI method to the barrier option, a relatively complicated

type of exotic options with the monotonic payoff. In this section, the application of the

NPI method to the exotic option with the non-monotonic payoff is illustrated by studying

the look-back option.

’Look-back option’ as one of the exotic option is introduced by Goldman, Sosin and

Gatto [11]. The look-back option is classed into two types: the look-back option with the

fixed strike price and the look-back option with the floating strike price. The option with

fixed strike price entitles the option holder to get the payoff that is the difference between

the maximum underlying asset price over the observation option period max
0≤i≤m

S(ti) and

the strike price Kc, max
0≤i≤m

S(ti) − Kc, for the call option or the difference between the

strike price Kp and the minimum underlying asset price during this period min
0≤i≤m

S(ti),

Kp − min
0≤i≤m

S(ti), for the put option, where i represents the time indicator between the
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initial time and maturity m. The one with a floating strike price gives the option holder

the right of buying the underlying asset at the minimum underlying asset price during the

option life period min
0≤i≤m

S(ti) or selling the underlying asset at its maximum price during

this period max
0≤i≤m

S(ti). Goldman, Sosin, and Gatto [11] provided the pricing method based

on the Brownian motion when they first presented this type of option. The CRR model

can be used in the look-back option as well. Hull and White [15] elaborated the path-

dependent option evaluation based on the binomial tree in 1993. In the same year, Amin[1]

considered the generalization of the CRR model to make it suitable for path-dependent

options’ evaluation by adding a jump-diffusion process. Kima, Park and Qian [16] derived

a binomial tree model with jump diffusion specific for the look-back option. Babbs [4]

monitored the look-back option with a discrete time scheme instead of the continuous

monitor based on the binomial tree. Park [18] also explored a binomial tree model with

double-exponential jumps and studied its convergence. According to the definition of the

look-back option with the fixed or floating strike price, the payoff of the look-back option is

pretty clear. However, the payoff of the look-back option are not monotone with the path

structure anymore. The tree in Figure 9 gives an example to explains the monotonicity of

the option payoff.

In Figure 9, there is a tree of the stock price, and at the last step, we also listed the

maximum and the minimum stock prices of each movement path. The stock price starts

from S0, and at each time step, it will go either up by the factor u or down by the factor

d. Generally, the monotonicity of the option value highly depends on the multiplication

value of movement factors, ud > 1, ud = 1, or ud < 1. For example, in this 4-period

option tree the option payoff is not monotonic when ud < 1. The maximum stock price

of the path S0 → S1
1 → S2

2 → S2
3 → S2

4 is S2
4 , while the maximum stock price of the path

S0 → S1
1 → S1

2 → S2
3 → S3

4 is S1
2 . Since ud < 1, then S2

4 < S1
2 . Yet, when it comes to

the other path ends with the same maturity stock price S2
4 , S0 → S1

1 → S1
2 → S1

3 → S2
4 ,

the maximum stock price is S1
3 which is higher than the maximum stock price of the path

S0 → S1
1 → S1

2 → S2
3 → S3

4 ending with S3
4 , which is equal to S1

2 . This causes the results
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Figure 9: The binomial tree of the stock price with maximum and minimum stock price of each
path
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that look-back option payoff is not monotonic. So the option payoffs are not monotonic

in the binomial tree. When the binomial tree is monotonic, then we can use the same

NPI probability assignment as other types of options. If not, we need to think about

the probability structure again, which is not considered in this paper but challenging and

interesting topic for a future topic. Here instead of giving a new probability assignment,

we offer a new binomial tree which is monotonic inspired by the look-back option pricing

model presented by Cheuk and Vorst in 1997 [6].

Cheuk and Vorst [6] presented the new binomial approach for the look-back option

with floating strike price. As acknowledged, the payoff of a look-back call option with

a floating strike price is defined as S(T ) − min
0≤i≤m

S(ti). Here t0 is the initial time of the

option contract, and tm is the maturity time T . Then for any time in the binomial tree tj,

denote the minimum stock price of the option life period as M(tj) = min
0≤i≤j

S(ti) = S(tj)u
−k,

then the look-back call option value is V (S(tj),M(tj), tj). Define the power of stock price

upward movement factor u:

k = ln[S(tj)/M(tj)]/ ln(u) (27)

S(tj) ≥ M(tj), k is positive integer and k = 0, 1, . . . , j, so the option value at each time

step can be transferred to a function depending on the stock price S(tj) and k, i.e.

V (S(tj),M(tj), tj) = S(tj)−M(tj) = S(tj)(1− u−k) = S(tj)Wtj(k) (28)

This claim also holds for the maturity. Hence, by defining Wtj(k) = 1 − u−k we can

construct a new binomial tree of Wtj(k), k = 0, 1, . . . , j.

In Figure 10, if k ≥ 1 at tj and the stock price goes up to S(tj+1) = S(tj)u, then at time

tj+1 the power of u is k + 1. If the stock price goes down, the power of u is k − 1. While

when k = 0, the situation is different, which for the upward movement the power of u is 1,

but the power of u for downward movement is still 0. As we can see here the binomial tree

of Wtj(k) with the path, we can use the NPI probabilities to evaluate the option. Here for
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Figure 10: The lookback call option with the floating strike price

n historical observations, and s represents the number of times that the stock price went

up in the previous time. Then we can get the upper and lower probabilities of upward

movement from Wtj(k) to Wtj+1
(k + 1) as,

P (tj) =
s+ k + 1

n+ tj + 1
(29)

P (tj) =
s+ k

n+ tj + 1
(30)

Then we apply these NPI probabilities to each one step path. Based on the NPI method,

we compute the expected value of W0(0). By the definition of the look-back call option

with the floating strike price, the option price is S(0)W0(0). The backward method for

each node can be formulated as below.

The maximum buying price of the call option is

V0 = S(0)W0(0)

W tj
(k) = B(tj, tj+1)

[
P (tj)W tj+1

(k + 1) + (1− P (tj))W tj+1
(k − 1)

]
(31)
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The minimum selling price of the call option is

V0 = S(0)W0(0)

Wtj(k) = B(tj, tj+1)
[
P (tj)W tj+1

(k + 1) + (1− P (tj))W tj+1
(k − 1)

]
(32)

where B(tj, tj+1) is the discount factor from time tj to time tj+1.

Similarly, we can construct the tree for the look-back put option with the floating payoff

as well. By definition, the payoff of the look-back put option with the floating payoff

is max
0≤i≤m

S(ti) − S(T ), where max
0≤i≤m

S(ti) is the maximum stock price during the whole

option life period. Then using a function to represent this value at time tj is M(tj) =

max
0≤i≤m

S(ti) = S(tj)u
−k. The option value V (S(tj),M(tj), tj) depends on three factors,

stock price, maximum stock price and the time to maturity. Define the power of upward

movement factor u:

k = ln[S(tj)/M(tj)]/ ln(u) (33)

As we know, S(tj) is always less than or equal to M(tj), then k is a negative integer

belongs to the set of values {0, . . . ,−j}. Then we can rewrite the option value as,

V (S(tj),M(tj), tj) = max
0≤i≤m

S(ti)− S(tj) = (u−k − 1)S(tj) = S(tj)Gtj(k) (34)

Define Gtj(k) = u−k − 1, then we construct a new binomial tree of G(k, tj).

In Figure 11, we display the binomial tree of G(k, tj). When k is negative and the

stock price goes down at tj, for the next time step the power of u is k − 1. Or if the stock

price goes up at time tj, the power of u is k + 1 at time tj+1. When k = 0, the downward

movement will change the k to k− 1, but upward movement won’t change the power of u.

With this monotonic tree, we can use the NPI method to calculate the maximum buying

price and the minimum selling price of the option. Here n is the number of the historical

stock price, among them s stock prices go down. Then for each downward path, we have
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Figure 11: The lookback put option with the floating strike price

the upper and lower probabilities as:

P (tj) =
s− k + 1

n+ tj + 1
(35)

P (tj) =
s− k

n+ tj + 1
(36)

The backward method for each node based on NPI leads to maximum buying price

V0 = S(0)G(0, 0)

Gtj
(k) = B(tj, tj+1)

[
(1− P (tj))Gtj+1

(k + 1) + P (tj)Gtj+1
(k − 1)

]
(37)

and minimum selling price

V0 = S(0)G(0, 0)

Gtj(k) = B(tj, tj+1)
[
(1− P (tj))Gtj+1

(k + 1) + P (tj)Gtj+1
(k − 1)

]
(38)

where we first get the initial value of G(k, tj), G(0, 0), based on the backward method,

then referring to the definition, we predict the option upper and lower prices V0 V0 by

multiplying the inital stock price S(0) and G(0, 0).
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Figure 12: The binomial tree of a look-back call option with the floating strike price

Example 4.1

In this example, we use R program to predict the value of a look-back call option with

the floating strike price K = min
0≤i≤m

S(ti) derived from the stock with an initial stock price

S0 = 20. Following the mathematical description for the look-back call option, we first set

up a binomial tree of Wtj(k) as shown in Figure 12. In the tree, there are four values at

each node. Two values in the parenthesis are the power of the upward movement factor k

and the time steps t. The value outside the parenthesis is the lower and upper bounds of

Wtj(k) at each node. After this discount backward evaluation method, we get the values

W 0(0) = 0.104 and W 0(0) = 0.109, then we can calculate the maximum buying price

and the minimum selling price of the look-back option, which are V (0) = S0W 0(0) =

20× 0.104 = 2.08 and V (0) = S0W 0(0) = 20× 0.109 = 2.18.

Since the look-back option with a floating strike price has a fixed moneyness, we compare

the results from the NPI method and the CRR model with different life periods to take

an insight into the NPI method for this kind of look-back option. Figure 13 shows the

predictive results from both methods for look-back options with varying time to maturity

based on 50 historical data and 25 upward movement historical data. In this study, the

CRR results always locate in the interval provided by the NPI method. However, the

interval from the NPI method gets wider along with the increasing time steps limited

by the size of the available historical data. As the NPI method is a framework learning
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Figure 13: The Comparison between NPI and CRR with n = 50 and s = 25
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Figure 14: The Comparison between NPI and CRR with n = 252, s = 126 (left) n = 5000, s =
2500 (right)

the information fully from the historical data, the precision and accuracy of the result are

highly upon the sufficiency of the historical data. For further study, we increase the number

of historical data to 252 and 5000 keeping the same proportion of the increased historical

data. The result is demonstrated in Figure 14. It is pretty obvious that by increasing the

size of the historical data, the NPI result narrows down approaching to a precise value

and finally identical to the result from the CRR model. Therefore, as long as the market

is complete meaning that it delivers sufficient and correct information, the NPI method

generates the same result as the CRR does under the assumption of the complete market.

5. Conclusion and Remarks

In this paper, we have presented the NPI method for exotic option pricing. Our method

provides an evaluation price procedure that can be utilized when the market is not com-

plete. As the NPI method is an imprecise probability inference approach learning and

updating the information from the historical data, we illustrate its implementation in ex-

otic option pricing with both monotonic payoffs and non-monotonic payoffs. We categorize

exotic options by the payoff monotonicity and study one type of exotic option in each
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category, the barrier option and the look-back option.

For the barrier option, since this type of option has monotonic payoffs, the imprecise

probabilities are assign to the binomial tree directly by using the NPI method. Formally,

we present the backward optimization method for valuing the barrier option according to

the NPI method. By comparing the results from the NPI method and the CRR model

with different moneyness, the NPI method offers an interval price containing the CRR

forecasting and the precision of the NPI prices is getting better when there are more

historical data available in the market.

As the look-back option has non-monotonic payoffs in the binomial tree, we could not

assign the imprecise probability directly to the binomial tree of the underling asset as

was done for the barrier option. Inspired by the work done by Cheuk and Vorst [6], we

manipulate the binomial tree according to the number of upward movements in future

to guarantee the monotonicity and present the mathematical description of the pricing

procedure based on our method. Besides, we investigate the performance of our method

with examples. The outcomes display that for as long as the market offers sufficient

information, our method can provide the precise result, and for the incomplete market, our

method can also provide a reasonable result.

Overall, the main advantage of our method is that it provides a formal way to compute

and represent the price of the exotic option with few assumptions and reflects more uncer-

tainty even though the market is incomplete with limited information. When the market

is complete, our method also leads to a precise option price for exotic options.

In this paper, we price exotic options with non-monotonic payoffs by manipulating

the binomial tree. Alternatively, a new imprecise probability assignment measure can be

derived by the definition of the option as an interesting and challenging way of solution.

Future study for our approach could be the investigation of the NPI method in the real

market by applying the empirical data and comparing the forecasting result with the real

market price.
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