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Abstract. Earthquakes in mountainous areas can trigger thousands of co-seismic landslides, causing significant damage, 

hampering relief efforts, and rapidly redistributing sediment across the landscape. Efforts to understand the controls on these 10 

landslides rely heavily on manually mapped landslide inventories, but these are costly and time-consuming to collect, and their 

reproducibility is not typically well constrained. Here we develop a new automated landslide detection algorithm (ALDI) based 

on pixel-wise NDVI differencing of Landsat time series within Google Earth Engine accounting for seasonality. We compare 

classified inventories to manually mapped inventories from five recent earthquakes: 2005 Kashmir, 2007 Aisen, 2008 

Wenchuan, 2010 Haiti, and 2015 Gorkha. We test the ability of ALDI to recover landslide locations (using ROC curves) and 15 

landslide sizes (in terms of landslide area-frequency statistics). We find that ALDI more skilfully identifies landslide locations 

than published inventories in 10 of 14 cases when ALDI is locally optimised, and in 8 of 14 cases both when ALDI is globally 

optimised and in holdback testing. These results reflect both good performance of the automated approach but also surprisingly 

poor performance of manual mapping, which has implications not only for how future classifiers are tested but also for the 

interpretations that are based on these inventories. We find that manual mapping, which typically uses finer resolution imagery, 20 

more skilfully captures the landslide area-frequency statistics, likely due to reductions in both censoring of individual small 

landslides and amalgamation of landslide clusters relative to ALDI. We conclude that ALDI is a viable alternative to manual 

mapping in terms of its ability to identify landslide-affected locations, but is less suitable for detecting small isolated landslides 

or precise landslide geometry. Its fast run-time, cost-free image requirements and near-global coverage suggest the potential 

to significantly improve the coverage and quantity of landslide inventories. Furthermore, its simplicity (pixel-wise analysis 25 

only) and parsimony of inputs (optical imagery only) mean that considerable further improvement should be possible. 

1 Introduction 

Landslides are important as both agents of erosion and as a dangerous hazard (Marc et al., 2016; Froude and Petley, 2018). 

Large earthquakes or rainstorms can trigger thousands of landslides, redistributing tonnes of rock over distances of hundreds 

or thousands of metres within a few seconds (Li et al., 2014; Roback et al., 2018). These landslides can cause significant 30 

damage, hamper relief efforts, and rapidly redistribute sediment across the landscape. Efforts to understand the drivers, 

behaviour, and consequences of these landslides rely heavily on landslide inventories, in which landslide locations are mapped 

either as points, pixels, or polygons, usually associated with one or more assumed trigger events. Landslide inventories are 

important because they document the extent and impact of landslides in a region, informing disaster response and recovery 

(Williams et al., 2018); they capture the distribution, properties, and (through predictive models) drivers of landslides (Guzzetti 35 

et al., 2012, Tanyas et al., 2019); they can be used to train and evaluate models of landslide susceptibility, hazard, and risk 

(Van Westen et al., 2006; Reichenbach et al., 2018); and they enable geophysical flux calculations central to the study of 

landscape evolution and the global carbon cycle (e.g., Hilton et al., 2008; Marc et al., 2016, Dietrich et al., 2003).  

Polygon-based and pixel-based inventories both capture information on the area affected by landslide movement. Polygon-

based inventories have the additional advantage that they can be analysed to yield distributions of landslide geometry (such as 40 
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area and shape), which is useful for understanding fluxes of material (Larsen et al., 2010) or impact forces, and distinguishing 

scars from runout areas (Marc et al., 2018). 

Landslide inventories were traditionally generated from expensive and time-consuming site visits (e.g., Warburton et al., 

2008), severely limiting the number of landslides that could be mapped and thus the scale of enquiry. However, they are now 

increasingly collected remotely based on interpretation of satellite or aerial imagery, allowing the compilation of much larger 45 

datasets (e.g., Li et al., 2014; Roback et al., 2018).  

Imagery provides an opportunity for rapid mapping over wide areas but is subject to some important limitations. For optical 

imagery, which depends on reflected solar energy reaching the sensor, cloud and shadow can obscure the ground surface. 

Active sensors, such as radar, that operate at wavelengths that are not reflected by cloud suffer from other issues (e.g., radar 

layover and shadowing) and their images are only recently being incorporated into operational landslide mapping approaches 50 

(e.g., Konishi and Suga, 2018; Burrows et al., 2019; Aimaiti et al., 2019; Mondini et al., 2019). Images may not be available 

for the study area over the time window of interest, and - when they are available - they can be costly to acquire. In steep or 

high-relief topography, images can suffer severe geo-rectification errors (Williams et al., 2018), which is particularly 

problematic for landslide mapping because these are the areas of most interest. Imagery is becoming increasingly available 

across a very wide range of spatial and spectral resolutions but there remains a trade-off between resolution and cost, with 10-55 

30 m imagery freely available globally with a 14-day revisit time (e.g., Sentinel 2, Landsat 8) while sub-metric resolution data 

(e.g., Worldview, Pleiades) can be acquired on demand but at a cost of 101-104 USD/km2. 

Landslides are typically identified in imagery either by automated classification, manual mapping, or some hybrid of the two. 

Manual mapping, although much faster than site visits, remains very time consuming over moderate to large areas (Galli et 

al., 2008), particularly for co-seismic inventories, which can involve digitising 104 to 105 landslides (e.g., Xu et al., 2014; Harp 60 

et al., 2016). It also requires comparison of pre- and post-event images to identify change and to avoid conflation of landslides 

related to the trigger event with those occurring before or after the event (e.g., Hovius et al., 2011; Marc et al., 2015). 

Automated classification can considerably speed up this process but is complicated by other factors, including: the range of 

possible landslide sizes and geometries; the non-unique signatures of landslides relative to roads, buildings, or other features; 

and the difficulty of excluding pre-existing landslides (Parker et al., 2011; Behling et al., 2014). Automated landslide 65 

classification has been demonstrated predominantly using high-resolution imagery and requires a high level of tuning, thus it 

is not necessarily transferrable from one region or event to another. Imagery can be combined with other sources of information 

(e.g., slope inclination from DEMs) to remove some false positives, where a location is incorrectly classified as a landslide 

(Parker et al., 2011). This can improve classifier performance but can also generate spurious correlation when interpreting the 

results (e.g., landslide susceptibility with slope inclination). Some authors have adopted hybrid approaches; for example, Li et 70 

al. (2014) applied manual checking to the earlier automated mapping of Parker et al. (2011). 

As a result of these issues, our database of landslide inventories is limited in number and biased towards the most spectacular 

trigger events. This point is most easily illustrated by examining earthquake-triggered landslide inventories since in this case 

the trigger event is generally very clearly identifiable in time and its footprint is well defined in space.  Of the 326 earthquakes 

known to have triggered landslides between 1976 and 2016, only 46 have published landslide maps (Tanyas et al., 2017). For 75 

225 earthquakes the existence of co-seismic landslides was known from news reports and witness testimony (Marano et al., 

2010), but no reliable quantitative or spatial landslide data are available (Tanyas et al., 2017). Many other earthquakes have 

likely triggered landslides, but these have gone unreported because they occurred out of human view. Between 1976 and 2016 

there were ~6500 earthquakes sufficiently large (>Mw 5), shallow (<25 km) and near to land (<25 km) to trigger landslides 

(based on Marc et al., 2016). This suggests that the existing set of co-seismic landslide inventories is a small subset (<15%) of 80 

those earthquakes known to have triggered landslides and a tiny subset (<1%) of those likely to have triggered landslides. 

To extend the number of landslide inventories requires a reduction in the cost of inventory collection, both in terms of imagery 

expense and mapping time. We hypothesise that recent improvements in satellite data management (e.g., data cubes) and 
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computing capabilities (e.g., cloud computing) have made it possible to collect automated landslide inventories of comparable 

quality to manual mapping, and at a fraction of the cost, due to reductions in both imagery cost and mapping time. Imagery 85 

cost could be reduced by using cheaper, lower resolution imagery, while mapping time could be reduced by using automated 

detection rather than manual mapping. However, these savings will only represent value for money if they can deliver 

inventories of comparable or superior quality to manual mapping.  

Large amounts of freely-available optical imagery with near-global coverage have been generated by the Landsat and Sentinel 

programmes. Landsat has been running for more than 30 years (since the Landsat 4 launch in 1982), imaging the majority of 90 

the Earth’s surface at a return time of c. 14 days and at 30 m spatial resolution through the visible and infra-red bands. Landsat 

received early attention as a source of imagery for manual landslide mapping (e.g., Sauchyn and Trench, 1978; Greenbaum et 

al., 1995) but has since been largely superseded by imagery with higher spatial resolution, which is often assumed to result in 

more precise inventories (e.g., Parker et al., 2011; Li et al., 2014; Roback et al., 2018). The recent HazMapper application of 

Scheip and Wegmann (2021) is a notable exception, and seeks to leverage the large volume of freely-available coarser 95 

resolution imagery to provide information on vegetation change that can be used to map a range of hazards including landslides. 

It is not clear, however, whether the long time series of coarser-resolution imagery that is now available contains as much 

usable information as individual images of finer resolution. 

There have been some attempts at automated landslide detection from Landsat (e.g., Barlow et al., 2003; Martin and Franklin, 

2005). However, manual mapping remains the most common approach to map landslides despite the time costs associated 100 

with it. Automated or hybrid approaches still need visual interpretation for calibration, sometimes over large areas (e.g., Ðuric 

et al., 2017) and are typically compared to a manual map of landslides that is considered to represent the ‘ground truth’ (van 

Westen et al., 2006; Guzzetti et al., 2012; Pawłuszek et al., 2017; Bernard et al., 2021). There remains a perception in the 

landslide community that automated methods are neither necessarily more accurate (Guzzetti et al., 2012; Pawłuszek et al., 

2017) nor less time consuming (Santangelo et al., 2015; Fan et al., 2019) than manual interpretation. Given the considerable 105 

investment of time and money involved in compiling an inventory, many researchers continue to generate inventories through 

manual mapping. It is therefore timely and useful to evaluate both automated classification and manual mapping against a 

common measure of performance. 

Establishing the performance of an automated classifier against manual mapping requires both establishing the landslide 

characteristics that should be reproduced and establishing the quality of manual mapping with respect to these characteristics. 110 

This is typically done by comparing similarity between at least two independently-collected landslide inventories in terms of 

their overlap, or the similarity in their area-frequency distributions. Uncertainty in area-frequency distributions from manually-

mapped landslide inventories has received considerable attention (e.g. Galli et al., 2008; Fan et al., 2019; Tanyas et al., 2019) 

but uncertainty in landslide spatial properties has received relatively little attention. However, the limited number of studies 

that do quantify landslide inventory error all suggest very weak spatial agreement between different manually-mapped 115 

landslide inventories. Ardizzone et al. (2002) found 34-42% overlap between three inventories for the same study area (i.e., 

34-42% of the area classified as a landslide in one inventory was classified as a landslide in another). Galli et al. (2008) found 

19-34% overlap for three different inventories and Fan et al. (2019) found 33-44% overlap for three inventories associated 

with the Wenchuan earthquake. Fan et al. (2019) also compared their own inventory to the three published inventories and 

found overlaps of similar magnitude (32-47%) with two inventories but a much closer agreement (82% overlap) with the third; 120 

however, they did not suggest a reason for this closer agreement. These low similarity figures suggest that caution is needed 

in assuming that any one inventory represents a ‘ground truth’. 

This research seeks to test our hypothesis that an automated detection algorithm applied to a time series of lower-resolution 

imagery can deliver inventories of comparable quality to those generated from manual mapping of higher-resolution imagery. 

We introduce a new approach to automated landslide detection using Landsat time series in Google Earth Engine (GEE). Our 125 

approach uses similar data and architecture to HazMapper but is focused on landslides in particular and uses an expectation of 
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long- and short-term change rather than a straight comparison of pre- and post-event composite images (Scheip and Wegmann, 

2021). To account for uncertainty in the quality of manually-mapped inventories, we apply this approach to case studies where 

there are at least two pre-existing inventories. This allows direct comparison of the inventories that we create (in terms of both 

landslide location and size) with multiple uncertain manually-mapped inventories. The key question: can landslide location 130 

and size be reproduced more skilfully by our automated approach than by a second manual inventory? 

2 Case study sites 

We choose earthquake-triggered landslide detection to test our hypothesis because: 1) this type of trigger is well constrained 

in time and its footprint is well defined in space; and 2) there are several earthquake case studies for which at least two landslide 

inventories are available in order to assess the quality of manual mapping. We choose five earthquake case studies in which at 135 

least two landslide inventories have been published and where the authors attributed the landslides to the same trigger event 

(i.e., earthquake timing and epicentral location). The mapping times given below are each team’s estimates of the total number 

of person-days taken to map the landslides in their inventory; this is reported in the metadata associated with that team’s 

submissions to the USGS Science Base catalogue of landslide inventories (Science Base Community, 2021). 

The 2005 Kashmir, Pakistan, earthquake triggered >2,900 landslides with a combined area of ~110 km2 across an area of 4,000 140 

km2 (Basharat et al., 2016). The study area is primarily underlain by sedimentary rock, with a summer monsoon climate and 

seasonal snow on the highest peaks (note that the climate is drier than the 2015 Gorkha study site). Landslides associated with 

the earthquake were mapped by Sato et al. (2007; 2017), who estimated that they spent 60 days mapping the landslides using 

2.5 m resolution SPOT 5 optical satellite imagery, and by Basharat et al. (2016; 2017) over 90 days using 2.5 m resolution 

SPOT 5 imagery and field reconnaissance. The inventories of Sato et al. (2007; 2017) and Basharat et al. (2016; 2017), 145 

hereafter referred to as Sato and Basharat respectively, contain 2,424 and 2,930 landslides respectively. 

The 2007 Aisen Fjord, Chile, earthquake triggered >500 landslides with a combined area of ~17 km2 across an area of 1,500 

km2 (Sepulveda et al., 2010). The study area is glacially carved valleys in volcanic rock and has a temperate climate with 

seasonal snow throughout and perennial snow at altitude. The associated co-seismic landslides were mapped by Sepulveda et 

al. (2010a; 2010b) over 120 days using Landsat images and field mapping, and by Gorum et al. (2014; 2017b) over 5 days 150 

using 5 m resolution SPOT 5 imagery. The inventories of Sepulveda et al. (2010) and Gorum et al. (2014; 2017b), hereafter 

referred to as Sepulveda and Gorum respectively, contain 538 and 517 landslides respectively. 

The 2008 Wenchuan, China, earthquake triggered >190,000 landslides with a combined area of ~1000 km2 across an area of 

75,000 km2 (Xu et al., 2014). The study area is primarily underlain by meta-igneous and sedimentary rock with a humid 

temperate climate and snow cover limited to the highest peaks. The associated co-seismic landslides were mapped by Li et al. 155 

(2014; 2017) over 300 days using high (3-10 m) resolution optical satellite images, and by Xu et al. (2014; 2017) over 1200 

days using high (1-20 m) resolution satellite images. The inventories of Li et al. (2014; 2017) and Xu et al. (2014; 2017), 

hereafter referred to as Li and Xu respectively, contain 69,606 and 197,481 landslides respectively. 

The 2010 Haiti earthquake triggered >20,000 landslides with a combined area of ~25 km2 (Harp et al., 2016) across an area of 

~4,000 km2. The study area is characterised by steep but low relief valleys cut through sedimentary rock with a humid 160 

temperate climate in which snow is extremely rare and a land-use regime in which the vegetation is rapidly changing. The 

associated co-seismic landslides were mapped by Gorum et al. (2013; 2017a) over 40 days using GeoEye-2 and Worldview-2 

(0.6-1 m resolution) satellite images, and by Harp et al. (2016; 2017) using 0.6 m resolution aerial photographs and field 

mapping. The inventories of Gorum et al. (2013; 2017a) and Harp et al. (2016; 2017), hereafter referred to as Gorum and Harp 

respectively, contain 4,490 and 23,567 landslides respectively. 165 

The 2015 Gorkha, Nepal, earthquake triggered >24,000 landslides with a combined area of ~87 km2 across an area of 20,000 

km2 (Roback et al., 2018). The study area is primarily sedimentary and metamorphic rock with seasonal snow at higher 
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elevation and perennial snow and ice at highest elevations. The climate ranges from humid temperate to alpine with a strong 

summer monsoon. The associated co-seismic landslides were mapped by Zhang et al. (2016, 2017) over 20 days using Gaofen 

1 and 2 (1-5.8 m resolution) and Landsat satellite images; by Roback et al. (2017, 2018) using Worldview satellite images 170 

(0.5-2 m resolution); and by Watt (2016) using Landsat satellite images. The inventories of Roback et al. (2017, 2018), Zhang 

(2016, 2017) and Watt (2016), hereafter referred to as Roback, Zhang and Watt respectively, contain 24,915, 2,643 and 4,924 

landslides respectively. The Watt (2016) mapping reported here was undertaken for a period of 60 days and involved 

comparing pan-sharpened false colour composites (red, green and near infra-red) derived from Landsat 8 images before and 

after the earthquake. Mapping was undertaken from multiple images to minimise occlusion by cloud, but all images were 175 

acquired within one year before and after the earthquake. The majority of the study area was mapped by a single person based 

on comparison of one pre- and two post-event images (from 13/3/2015, 1/6/2015, and 7/10/2015). This mapping was checked 

and supplemented by a second mapper using the same procedure to capture previously occluded areas using seven more 

Landsat 8 images. The registration errors in the Watt (2016) inventory were estimated from those associated with the 

underlying imagery from which the landslides were mapped. These Landsat 7 and 8 images were all geo-referenced to Level 180 

1TP resulting in radial root mean square error of <12 m (USGS, 2019), which is less than the pan-sharpened pixel resolution 

(15 m). We were unable to find registration error estimates for the other landslide inventories examined here. 

3 Methods 

3.1 ALDI classifier: theory 

The ALDI algorithm leverages the change in vegetation cover (and associated spectral signature of reflected light) caused by 185 

the removal of vegetation by landslides. The change in spectral signature is typically characterised by a change in the 

normalised difference vegetation index (NDVI; Tucker, 1979), defined as:  

𝑁𝐷𝑉𝐼 =
 𝑅𝑛 − 𝑅𝑟

𝑅𝑛 + 𝑅𝑟
            (1) 

where Rn is spectral reflectance in the near infra-red band and Rr is spectral reflectance in the red band (wavelengths in Table 

1). The light reflected from landslide-affected pixels, whether they are within the scar or runout area, has a spectral signature 190 

associated with rock or sediment. This differs considerably from vegetation in terms of Rn and Rr, resulting in extremely low 

NDVI values. We call the difference in NDVI before and after the trigger event dV, which is bounded by [-1, 1] and should be 

negative for landslide pixels associated with the event. This is not in itself a novel approach and is similar to other NDVI 

differencing approaches (e.g. Behling et al., 2014; 2016; Marc et al., 2019; Scheip and Wegmann, 2021). 

In addition, vegetation that is disturbed by landslides regrows slowly - over timescales of months to years (Restrepo et al., 195 

2009). Thus, for landslide-affected pixels NDVI should not only reduce after the trigger event but also stay low for an extended 

period (at least one year, depending on climate and seasonality as well as the timing of the earthquake). Therefore, we examine 

a time series of post-event images to calculate a time-averaged post-event NDVI, which we call Vpost, which is bounded by [0, 

1] and which should be low for landslide pixels associated with the trigger event.  

Averaging over a time series of images has the additional advantage that it enables robust estimates of both dV and Vpost even 200 

for NDVI time series that are both patchy and noisy. The time series are patchy because cloud cover occludes the ground for 

some pixels on some days; this cloud can be removed using filtering algorithms (e.g., Irish, 2000; Goodwin et al., 2013) but 

this leaves a gap in the series. The timing and number of these gaps vary from pixel to pixel, making comparison of NDVI for 

particular dates or images problematic. The time series are noisy because atmospheric conditions alter both incoming radiation 

(e.g., cloud shadow) and that received by the sensor, and because ground surface (and especially vegetation) properties will 205 

vary over time both periodically (e.g., due to seasonal vegetation growth and harvesting) and randomly (e.g., due to leaf 

orientation). 
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Since we expect NDVI to be noisy, we seek a third metric to identify whether there is a shift in NDVI in the presence of 

broadly consistent seasonal variations and random noise in NDVI. For this we take the difference in NDVI across monthly 

bins to account for the seasonal component, then quantify the shift in NDVI since the trigger event. For the shift to be indicative 210 

of real change it should be considerably larger than the noise present in the NDVI signal. Thus, we express the NDVI shift 

relative to the noise for each pixel as.  

𝑡 = √𝑛
𝑑𝑉

𝑆𝑣
             (2) 

where n is the sample size (12 for monthly bins), dV is the mean of the monthly NDVI differences, and Sv is the standard 

deviation of the monthly NDVI differences. We then  normalise by mapping t onto the cumulative Student’s t distribution to 215 

generate Pt, the likelihood that the pre- and post-event NDVIs are drawn from different distributions: 

𝑃𝑡 = 𝐼 (𝑛−1)

𝑛−1+𝑡2
(

𝑛−1

2
,

1

2
)           (3) 

where  Ix(a,b) is the regularized incomplete beta function. While this is equivalent to a paired t-test, the results cannot be 

interpreted as formal probabilities, as the distribution of dV may not be Gaussian. Rather they represent an index of change 

relative to expected variability which is bounded by [0, 1]. Pt should be high for landslide pixels associated with the trigger 220 

event. High Pt could also result from other events that reduce the coverage or vigour of vegetation, particularly if this involves 

complete removal (e.g., fire or logging). However, seasonal vegetation changes should be accounted for by examining monthly 

differences, while episodic events should only be noticeable when: 1) their timing is coincident with the earthquake and 2) 

their effect persists over more than one year. 

Although low NDVI is effective for identifying the absence of vegetation, it does not uniquely identify landslides since a range 225 

of other surfaces generate similar signatures, particularly snow and cloud. Cloud cover varies from one image to another, and 

we thus seek to remove cloud-affected pixels from both the pre- and post-event time series. Cloud can be identified based on 

its spectral signature, with different types resulting in different signatures. The ‘Landsat simple cloudscore’ function within 

Google Earth Engine returns the minimum of a set of five cloudiness indices using Equations 4a-f and parameters in Table 2 

(Earth Engine, 2021). Each index reflects an expectation about cloud reflectance and temperature: they should be reasonably 230 

bright in the blue band (CIb), in all visible bands (CIv), and in all infra-red bands (CIir); and they should be reasonably cool in 

the thermal infra-red band (CITemp); but they should not be snow (CINDSI): 

𝐶𝐼𝑏 =
 𝑅𝑏 − 𝑅𝑏𝑚𝑖𝑛

𝑅𝑏𝑚𝑎𝑥− 𝑅𝑏𝑚𝑖𝑛
          (4a) 

𝐶𝐼𝑣 =
 (𝑅𝑟+𝑅𝑔+𝑅𝑏) − 𝑅𝑣𝑚𝑖𝑛

𝑅𝑣𝑚𝑎𝑥− 𝑅𝑣𝑚𝑖𝑛
          (4b) 

𝐶𝐼𝑖𝑟 =
 (𝑅𝑛+𝑅𝑠1+𝑅𝑠2) − 𝑅𝑖𝑟𝑚𝑖𝑛

𝑅𝑖𝑟𝑚𝑎𝑥− 𝑅𝑖𝑟𝑚𝑖𝑛
         (4c) 235 

𝐶𝐼𝑇𝑒𝑚𝑝 = 1 −
 𝑅𝑡 − 𝑅𝑡𝑚𝑖𝑛

𝑅𝑡𝑚𝑎𝑥− 𝑅𝑡𝑚𝑖𝑛
          (4d) 

𝐶𝐼𝑁𝐷𝑆𝐼 = 1 −
 𝑁𝐷𝑆𝐼 − 𝑁𝐷𝑆𝐼𝑚𝑖𝑛

𝑁𝐷𝑆𝐼𝑚𝑎𝑥− 𝑁𝐷𝑆𝐼𝑚𝑖𝑛
         (4e) 

𝐶𝐼 = min (𝐶𝐼𝑏, 𝐶𝐼𝑣, 𝐶𝐼𝑖𝑟 , 𝐶𝐼𝑇𝑒𝑚𝑝, 𝐶𝐼𝑁𝐷𝑆𝐼)        (4f) 

where Rg, and Rb, are the spectral reflectances from the red and blue bands; Rs1 and Rs2 are those from the first and second 

shortwave infra-red bands; and Rt is that from the thermal infra-red band (the only band used here with a coarser 60 m 240 

resolution). The parameters with min and max subscripts (e.g., Rbmin and Rbmax for the red band) in Equation 4 are minimum 

and maximum values used to normalise pixel reflectances, their values are given in Table 2. NDSI is the normalised difference 

snow index: 

𝑁𝐷𝑆𝐼 =
 𝑅𝑔 − 𝑅𝑠

𝑅𝑔 + 𝑅𝑠
            (5) 

This index is also used within ALDI outside the Landsat simple cloudscore function to identify pixels where persistent snow 245 

cover could result in misleading statistics. Where pixels remain snow-covered for periods of several weeks or months, we 
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cannot retain sufficient observations to calculate stable statistics from these pixels. Instead, we identify pixels with persistent 

snow cover based on time-averaged NDSI and censor them from the analysis. 

We define the Automated Landslide Detection Index (ALDI) as the product of the three parameters defined above. While this 

formulation is entirely arbitrary, it has the advantage of allowing the index to take a minimum value of zero (indicating 250 

negligible probability that the images reflect a landslide at that location) if any of the individual terms is zero. Because we 

have no a priori knowledge of the relative importance of each parameter in determining the landslide signature, we assume a 

power-functional form with empirical exponents ,  and : 

𝐴𝐿𝐴𝐷𝐼𝑁 = {(−𝑑𝑉)𝛼  (1 − 𝑉𝑝𝑜𝑠𝑡)
𝛽

 𝑃𝑡
𝜆 ,

                     0                        ,
                 

𝑖𝑓 𝑆𝑝𝑜𝑠𝑡 > 𝑇𝑠𝑛𝑜𝑤 | 𝑑𝑉 < 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (6) 

where Spost is the mean post-earthquake NDSI and Tsnow is a threshold value for NDSI, chosen to identify persistent snow cover. 255 

The likelihood that a pixel is landslide-affected increases monotonically with the ALDI output value, which has upper and 

lower bounds of 0 and 1 respectively. Landslide pixels should be characterised by negative dV, indicating vegetation removal; 

low Vpost, indicating a lack of vegetation after the earthquake; and high Pt, due to a distinguishable shift in post-event NDVI 

distributions relative to the pre-event distributions. The likelihood that a pixel contains a landslide should increase with Pt and 

decrease with dV and Vpost. We exclude snow-dominated pixels where Spost exceeds a threshold Tsnow, as well as pixels where 260 

median post-earthquake NDVI exceeds that pre-earthquake (i.e., positive dV). 

The empirical exponents ,  and  can be expressed in terms of one parameter () and two ratios (: and :) because:  

𝛽 =  𝛼 
1

𝛼:𝛽
 𝑎𝑛𝑑 𝜆 = 𝛼 

1

𝛼:𝜆
                (7) 

Substituting these terms into Equation 6: 

𝐴𝐿𝐴𝐷𝐼𝑁 = {(−𝑑𝑉)𝛼  (1 − 𝑉𝑝𝑜𝑠𝑡)
𝛼 

1

𝛼:𝛽 𝑃𝑡
𝛼 

1

𝛼:𝜆 ,

                     0                        ,
                 

𝑖𝑓 𝑆𝑝𝑜𝑠𝑡 > 𝑇𝑠𝑛𝑜𝑤 | 𝑑𝑉 < 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (8) 265 

then taking logarithms of both sides clarifies the role of the ratio parameters: 

𝑙𝑜𝑔(𝐴𝐿𝐴𝐷𝐼𝑁) = 𝛼 (𝑙𝑜𝑔(−𝑑𝑉) + 
1

𝛼:𝛽
 𝑙𝑜𝑔(1 − 𝑉𝑝𝑜𝑠𝑡) +

1

𝛼:𝜆
 log (𝑃𝑡))           (9) 

Since dV, Vpost and Pt are all  1 (thus their logarithms are negative), and larger values of the ratio parameters (α:β and :) 

result in smaller powers for their respective layers (Vpost and Pt), therefore large α:β ratios result in a stronger influence of Vpost 

on ALDI, large : ratios result in the same for Pt, and when both α:β and : are small dV dominates. These ratios are more 270 

informative than the raw parameters because it is the relationship between exponents rather than the exponents themselves 

which define the relative role of the different ALDI components (i.e., equal but high values of ,  and  result in the same 

ALDI classification pattern as equal but low values). 

3.2 ALDI classifier implementation and data pre-processing 

We implement ALDI and perform all pre-processing steps within Google Earth Engine (GEE; Gorelick et al., 2017) because: 275 

1) it hosts an extensive Landsat archive and provides efficient access to large volumes of freely-available satellite data; 2) it 

provides both a toolkit of pre-compiled algorithms for image processing and cloud computing resources to run these 

algorithms; and 3) it is an open access platform so that both the data and the algorithms used here are widely accessible and 

reproducible (source code available in Supplementary Information). 

The objective of pre-processing is to generate four layers: dV, the change in NDVI before and after the trigger event; Vpost, the 280 

time-averaged post-event NDVI; Spost, the post-event NDSI; and Pt, the likelihood that pre- and post-event NDVIs are drawn 

from different distributions. These layers should synthesise the time series of available imagery from multiple sensors 

minimising bias due to the sensor, the influence of clouds, and seasonal vegetation changes. 

We use time series of NDVI calculated from Landsat 5, 7 and 8 imagery following ‘top of atmosphere’ correction (Chandler 

et al., 2009) to adjust for radiometric variations due to solar illumination geometry (angle and distance to Sun) and sensor 285 
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specific gains and offsets. Sentinel 2 data would offer additional gains in terms of both spatial and temporal resolution of data 

but are not available for any of our case study events and thus cannot yet be evaluated within the same framework. Landsat 8 

sensors aggregate red and near infra-red reflectance over slightly different frequency bands to Landsat 5 and 7, but their central 

frequencies vary by <4% between sensors and by >20% between bands (Table 1). To ensure satisfactory image-to-image 

registration for time series analysis, we use only images which have been both georeferenced to ground control points and 290 

terrain corrected (i.e. Level 1TP) and thus have ≤12 m radial root mean square error (RMSE) in >90% of cases (USGS, 2019). 

The time series is split into two ‘stacks’ of images, those before the trigger event and those after it (Figure 1b). The duration 

of these time series (and thus length of stacks) reflects a trade-off between shorter durations, which limit the sample size, and 

longer durations, which include landscape changes unrelated to the earthquake. We remove ‘cloudy’ pixels from each stack 

using the GEE simple cloud score exceeding a tuneable threshold (Tcloud) where stricter thresholds remove more cloudy pixels 295 

but also incorrectly remove more cloud-free false positives (Earth Engine, 2018). The number of images in each stack is 

controlled by the stack lengths and cloud threshold, introducing three tuneable parameters to be calibrated. These parameters 

are found using the calibration process described in Section 3.4 rather than by considering the physical processes that 

characterise the possible evolution of the time series.  

To account for seasonal vegetation change, NDVI values for each pixel in the pre- and post-earthquake stacks are extracted as 300 

a time series (Figure 1a) and binned based on the month in which the image was acquired. Monthly bins are used since they 

are generally long enough to contain data in every bin (even after removal of cloudy pixels) but short enough to capture annual 

seasonality (e.g., Figure 1a). Monthly bins result in four images per bin per year on average, and thus empty bins are very 

unlikely except for month-location pairs that are characterised by extreme cloudiness (such as Nepal in July; see Wilson et al., 

2016). Monthly bins that are empty in either pre- or post-earthquake period are not used in the subsequent analysis, with 305 

calculations for that pixel performed using the remaining monthly bins. We calculate median NDVI for each monthly bin, 

choosing median rather than mean since it is less sensitive to skew and to extreme values (Figure 1c). We difference the 

monthly median values prior to and after the trigger event, generating a distribution of differences (Figure 1c). From that 

distribution, we calculate the mean monthly NDVI difference, dV and evaluate the likelihood that the mean monthly NDVI 

difference differs significantly from zero using a pairwise t-test to calculate Pt. We take the mean of the post-event monthly 310 

NDVI values to generate Vpost, then apply a similar procedure to the pixel-wise NDSI values to calculate the mean of the post-

event monthly NDSI, Spost. This allows us to construct maps of the pixel-wise values of dV, Vpost, Spost and Pt  (Figure 1d) and 

thus to evaluate Equation 6. The full routine runs in GEE in less than 30 minutes for an area of ~104 km2 (c. 107 pixels). 

 

3.3 Performance testing 315 

We evaluate ALDI performance in terms of its ability to reproduce the location and size of manually-mapped landslides. For 

each earthquake inventory we define a study area based either on the area defined by the manual mappers (e.g., excluding 

areas where cloud or snow cover hampered manual mapping); or, where this is not available, on a convex hull that bounds the 

landslide inventory.  

ALDI returns a continuous relative measure of the certainty with which a pixel is classified as a landslide. To evaluate this 320 

measure against a manually mapped landslide inventory it must be converted into a binary classification by thresholding the 

classification surface. The manual map is then rasterized to the same resolution as the classification surface - in this case, 30 

m - using a ‘majority area’ rule, whereby landslide pixels are those with the majority of their area overlapped by landslide 

polygons. The benefit of a given classification can then be quantified in terms of success in identifying positive (landslide) 

and negative (non-landslide) outcomes on a pixel-by-pixel basis. Thresholding the classification surface is a difficult exercise 325 

involving a trade-off between sensitivity, the fraction of the landslides that should be captured (also known as the true positive 

rate, TPR - the number of true positives normalised by all positive observations); and specificity, the number of false positives 
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that should be allowed in doing so (also known as the false positive rate, FPR - the number of false positives normalised by 

all negative observations). In practice, this threshold is often set by external requirements in terms of a desired sensitivity or 

specificity, but these requirements can vary considerably between users and applications.  330 

Receiver operating characteristic (ROC) curves provide a more complete quantification of the performance of the classifier 

(e.g., Frattini et al., 2010). The ROC curve is constructed by incrementally thresholding the classifier and evaluating true and 

false positive rates at different threshold values to generate a curve where the 1:1 line reflects the naïve (i.e. random) case. The 

true and false positive rates are insensitive to imbalanced data and thus are well suited to evaluation of landslide classification, 

which typically has many more non-landslide than landslide pixels (García et al., 2010). The area under the curve (AUC) tends 335 

to 1 as the skill of the classifier improves towards perfect classification and to 0.5 as the classifier worsens towards the naïve 

(random) case. The strength of AUC is that it avoids the need to threshold the classifier and is widely used, enabling comparison 

with other landslide detection methods; its main weakness is that it is difficult to interpret in absolute terms. What AUC 

constitutes ‘good’ performance? 

In our case, we seek to establish whether automated detection performance is such that it can be used as an alternative to 340 

manual mapping. However, it is difficult to compare the ALDI output against manual mapping because manual mapping is 

itself being used as the ‘ground truth’ in the absence of a better alternative. To address this, we first test the agreement between 

manual inventories in terms of true and false positive rates. TPRI1-2 indicates the fraction of landslides in inventory I1 that are 

also predicted by I2 and FPRI1-2 indicates the fraction of non-landslide pixels in I1 that are ‘incorrectly’ identified as landslide 

pixels by I2.  345 

ALDI performance in identifying landslide location on a pixel-by-pixel basis can then be compared against one of the manual 

maps as a competitor with the other manual map used as the check dataset. To enable the comparison, we first threshold the 

ALDI output to generate a binary classifier with the same FPR as the competitor inventory with respect to the check inventory. 

The ability of ALDI to successfully identify more landslide pixels than the competitor inventory can then be calculated from 

the difference in their true positive rates, TPRdiff: 350 

𝑇𝑃𝑅𝑑𝑖𝑓𝑓 = 𝑇𝑃𝑅𝐴𝐿𝐷𝐼 − 𝑇𝑃𝑅𝐶𝑜𝑚𝑝 ,   𝐹𝑃𝑅𝐴𝐿𝐷𝐼 = 𝐹𝑃𝑅𝐶𝑜𝑚𝑝       (10) 

where TPRALDI and FPRALDI are the ALDI true and false positive rates, respectively, both calculated from the check inventory; 

and TPRComp and FPRComp are the true and false positive rates for the competitor inventory, also calculated from the check 

inventory. The magnitude of TPRdiff indicates the similarity in performance while the sign indicates the best performer (positive 

values indicate that ALDI out-performs manual mapping and vice versa). This approach allows direct comparison between 355 

ALDI and manual mapping for the same classification threshold. Other metrics could be derived from the confusion matrix 

(e.g. Tharwat, 2020; Prakash et al., 2020) but these typically require assumptions about the relative weight assigned to true 

and false positives and negatives. Our approach avoids these assumptions because the ALDI output is thresholded to ensure 

that FPRs are equal to those of the competitor inventory.  

In addition, we express spatial mapping error between manual inventories as the ratio of the intersection of the two maps to 360 

their union. This is equivalent to the ‘degree of matching’ (Carrara et al., 1992; Galli et al., 2008) and can be interpreted as the 

percentage of total mapped landslide area that the inventories have in common.  

To examine the ability of ALDI to recover landslide size information we compare the area-frequency distributions of landslides 

from each manual map with those for landslides detected by ALDI. For manually-mapped inventories this information is 

generally captured automatically since landslides are mapped as discrete objects rather than on a pixel-by-pixel basis. However, 365 

automated classifiers like ALDI require additional steps to convert a continuous pixel-based classification surface to a set of 

landslide objects. First, we generate a binary prediction of landslide presence or absence by thresholding the ALDI 

classification surface to match the manually-mapped FPR, as described above. The manual inventories examined here typically 

have very low FPRs (<2% of TPR on average and <7% at most, Table 3). Second, we convert the binary landslide map to a 

set of landslide objects by identifying connected components at the 30 m resolution of the Landsat imagery (Haralick and 370 
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Shapiro, 1992). This connected components clustering is one of the simplest of many possible clustering algorithms. Finally, 

we calculate the area of individual landslide objects from the number of pixels in each object (cluster) and generate an area-

frequency distribution.  

3.4 Parameter calibration and uncertainty estimation 

The ALDI landslide classifier has seven tuneable parameters: cloud threshold (Tcloud), pre-event stack length (Lpre), post-event 375 

stack length (Lpost), snow threshold (Tsnow), and the three exponents (,  and ) that control the weighting assigned to the Vpost, 

dV and Pt layers, respectively. Calibrating the parameters and estimating the associated uncertainty is important because the 

parameters are difficult or impossible to set a priori and because we seek to develop a general model that can be applied to 

new landslide events not examined here. Our calibration seeks to optimize classifier performance evaluated by comparing the 

classifier to 11 manually mapped landslide inventories using the performance metrics described in Section 3.3. 380 

We calibrate ALDI parameters using one-at-a-time calibration for parameters that are internal to the GEE routine (Tcloud, Lpre, 

Lpost), since these parameters are well constrained (in the case of Tcloud and Lpost) or have a limited number of possible values 

(in the case of Lpre and Lpost). We use an informal Bayesian calibration procedure (e.g., Beven and Binley 1992) for parameters 

in Equation 6 (Tsnow ,  and ) since these parameters are less well constrained but evaluation of Equation 6 is computationally 

cheap. We calibrate Lpost, Lpre, and Tcloud, one-at-a-time (in that order) for each earthquake event then test alternative near-385 

optimum parameter combinations to minimise the effect of the calibration order. These combinations are obtained by varying 

Lpost by +/- one year for optimum values of Lpre and Tcloud, and doing the same for Lpre at optimum values of Lpost and Tcloud. For 

each GEE run in the one-at-a-time process we run 500 simulations of Equation 6 with Tsnow and  randomly sampled from 

uniform probability distributions and the ratio parameters sampled from uniform distributions of log10(α:β) and log10(α:λ). 

We sample the ratio parameters in logarithmic space to maintain symmetric sampling density with distance from a ratio of 390 

unity (e.g. α:β=0.1 where β=10α should be sampled as densely as α:β=10 where α=10β).  

We examine Lpost of up to five years because vegetation typically begins to re-grow over this timescale (Restrepo et al., 2009), 

and Lpre of up to ten years because we expect that other landscape changes (e.g. fire, drought and landslides caused by other 

triggers) will begin to disrupt the pre-event signal at longer timescales. In both cases we examine only integer year values to 

ensure consistent sampling within the monthly bins. We use the full range of NDSI values for Tsnow ([0,1]) and cloudscore 395 

values for Tcloud ([0,1]). For the three exponents, we use zero for the lower bound and iteratively refine the upper bound to 

ensure that optimum performance at any site is found to be within the range. 

We perform the calibration for individual earthquakes to estimate the optimum classification skill that could be obtained when 

calibrating on all the check data. We then retain the best 20 parameter sets (measured in terms of AUC) from each earthquake 

to generate a global set of 100 parameter sets. To account for parameter interaction (particularly between the three exponents 400 

,  and ) within a set we retain parameter sets as 7-element vectors. To ensure that each manually-mapped landslide 

inventory is given equal weight as a check dataset we calibrate to each in turn taking 7 parameter sets from calibration to each 

of the three Gorkha inventories, and 10 from each of the two inventories at the other sites. Finally, we run ALDI with each of 

these 100 parameter sets to generate 100 ALDI classification surfaces then take the mean for each cell. 

To simulate ‘blind’ application of ALDI to future events, we perform a holdback test in which we run ALDI using the global 405 

parameter set but holding back the 20 parameter sets that were derived from the site at which testing is being performed. In 

this test the parameters used to run ALDI are un-influenced by the specific behaviour of the test site. 
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4 Results 

4.1 Spatial agreement: Gorkha case study 

We first illustrate our approach using the 2015 Gorkha earthquake, where three manual inventories are available, and then 410 

consider the other four earthquakes introduced in Section 2. All three manual inventories for the Gorkha earthquake show an 

elongated cluster of landslides extending from northwest to southeast (Figure 2a) that coincides with the area of steep slopes 

that experienced the most intense shaking. However, when the maps are compared at a finer scale they differ considerably 

(Figure 2c,e). In some cases, one mapper has identified a landslide but one or both of the others have not (e.g., location A in 

Figure 2e). Some, but not all, of these missed landslides can be attributed to areas where imagery was unavailable or where 415 

the ground was obscured by cloud (shown as grey areas in Figure 2c). In other cases, mapped landslides overlap but their size 

and/or shape differ, due either to differences in interpretation of landslide boundaries (e.g., location B in Figure 2e) or to the 

georeferencing of the underlying imagery from which the landslides were mapped. Georeferencing differences seem 

particularly likely to explain mapped landslides of very similar size and shape that are offset by small distances (e.g., location 

C in Figure 2e), or appear distorted relative to one another so that their outlines only partially overlap (e.g., location D in Figure 420 

2e). 

The ALDI classifier applied to the Gorkha earthquake captures the broad spatial pattern of mapped co-seismic landslides with 

large patches of high ALDI values, and thus high classification likelihood, corresponding to clusters of mapped landslides 

(Figure 2b). Examining a subsection of the study area (Figure 2d) shows that ALDI identifies the same broad zones of more 

intense landsliding as identified in the manual mapping. The ALDI output also contains a series of stripes ~1 km apart and 425 

~150 m wide trending west-northwest to east-southeast, however, and most clearly visible across the centre of the map. These 

are the result of data gaps in Landsat 7 images since 2003 due to Scan Line Corrector (SLC) failure on the Landsat 7 sensor. 

Although both pre- and post-event image stacks include Landsat 5 and 8 images in addition to Landsat 7, these data gaps 

clearly influence the ALDI output, with high values more likely for pixels where Landsat 7 data are not available.  

Zooming in to a smaller subsection of the study area suggests that most of the landslides that are included in both inventories 430 

overlap areas of high ALDI values (Figure 2e). In addition, areas of high ALDI values overlap many of those landslides 

identified by one inventory but not the other, although there are mapped landslides that do not overlap areas with high ALDI 

values (Figure 2e). In many cases, the patches of high ALDI values have shapes that closely follow those of the mapped 

landslides (Figure 2e). In other cases, patches of high ALDI values have typical landslide morphology but are not in either 

inventory (e.g., location E in Figure 2e), raising the question of whether these should be considered genuine classifier false 435 

positives or are in fact landslides missed in all three manual maps. Given that each inventory misses landslides identified by 

another, this possibility cannot be excluded. In other cases, the patches of high ALDI values have a size and/or shape that 

suggests that they are misclassifications. These may be due to cloud, shadow, snow or other landscape changes not associated 

with landslides (e.g., crop harvesting, river channel change, building construction). 

4.2 ALDI calibration: Gorkha case study 440 

In this section, we seek to establish the best possible ALDI performance when parameters can be optimised to a single study 

site and identify the influence of parameters on that performance, both in terms of sensitivity to the parameter and preferred 

range for the parameter. We illustrate this using the Gorkha earthquake, calibrating ALDI’s seven tuneable parameters 

(columns A-G in Figure 3) to optimise agreement with two of the manually mapped landslide inventories measured using our 

two performance metrics (rows in Figure 3). The results are visualised in Figure 3 using dotty plots (after Beven and Binley, 445 

1992): a matrix of scatter plots where each subplot shows model performance (y-axis) against a parameter value (x-axis). The 

histogram above each scatter plot shows the frequency distribution of parameter values for the best 50 model runs for that 

metric and check dataset. 
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All the scatter plots in Figure 3 show wide scatter in performance for a single value of any given parameter, indicating that the 

model is sensitive to multiple parameters. However, the key feature of each plot is the upper bound on ALDI performance for 450 

a given parameter value, and its sensitivity to change in that parameter. This upper bound can be interpreted as the best possible 

ALDI performance at value x of parameter A when all other parameters are given flexibility to optimise. Plots where this upper 

bound is near horizontal suggest limited influence of a particular parameter and are accompanied by broad histograms. Narrow 

peaks in a plot’s upper bound indicate that good model performance requires that parameter to be set within a narrow range, 

with performance degrading rapidly as values depart from this range independent of other parameter values. In the following 455 

paragraphs we examine the influence of each parameter in turn (Figure 3). 

Setting the pre- and post-earthquake stack lengths (Lpre and Lpost respectively) involves a trade-off between: errors caused by 

landslides (or other landscape changes) not associated with the earthquake, if the stack is too long; and errors caused by cloud 

cover, if the stack is too short. For the Gorkha earthquake, ALDI performance is most sensitive to Lpost, indicated by the steep 

gradient in upper bound performance across both metrics and for all check datasets (Figure 3, column G). For all metrics and 460 

datasets, a post-earthquake stack length of only one year produces the best performance. This may be because longer stacks 

are more likely to include other landscape changes after the earthquake that disrupt the signal, such as post-seismic landslides 

or re-vegetation of co-seismic landslides.  

ALDI allows landslides to be identified only in pixels where NDSI is lower than the snow threshold (Tsnow). ALDI performs 

well (i.e. <20% from optimum) for Tsnow values ranging from 0.1 to 0.9 (Figure 4, column D). For TPRdiff the best values of 465 

Tsnow are 0.2-0.4 with a rapid decline in performance as Tsnow is reduced and a slow decline as it is increased (Figure 4, panels 

D1-2 and D3-4). This suggests that snow rarely causes false positives even when little effort is made to remove it, but that an 

overly conservative snow threshold results in landslides being misclassified as snow. The AUC metric behaves similarly to 

TPRdiff with a larger performance reduction at low Tsnow values and reduced performance reduction at high Tsnow values (Figure 

4, D5-6).  470 

The : ratio controls the influence of change in NDVI (dV) relative to mean post-earthquake NDVI (Vpost). Noting that dV, 

and Vpost are bounded to be <1, and that by definition =(:)-1, larger values of α:β result in smaller exponents on Vpost and 

larger values of the term. ALDI is thus dominated by Vpost at higher : ratios, and by dV at lower ratios. There is a clear 

optimum within the parameter space and a large reduction in performance away from this optimum indicating that both layers 

(dV and Vpost) are important components of the classifier (Figure 3, column B). Best performances are found in the range : 475 

= 3-4 for TPRdiff and in the range : = 10-20 for AUC, suggesting that more weight needs to be given to Vpost to successfully 

identify landslides, particularly when bulk performance over the full ROC curve is of primary concern.  

The : ratio controls the influence of change in NDVI (dV) relative to the likelihood that the dV values in the post-event stack 

are significantly different from the pre-event stack (Pt). As explained above, ALDI is dominated by Pt at higher : ratios, and 

by dV at lower ratios. ALDI performance is somewhat sensitive to this parameter for both TPRdiff, and AUC, with gentle but 480 

consistent slopes to the upper bound performances (Figure 3, column C). Best performances are found for α: in the range 

0.01-1 for TPRdiff and 0.1-5 for AUC, suggesting that, although both layers contribute important information, dV is a stronger 

predictor than Pt for the Gorkha case study.  

Optimum parameters for the Gorkha study site differ slightly between performance metrics (compare histograms down 

columns in Figure 3). This reflects the different focus of the metrics, where TPRdiff gives the strongest weight to very 485 

conservative (i.e., low FPR) classification thresholds (Figure 3, rows 1-2), and AUC weights all classification thresholds 

equally (Figure 3, rows 5-6). In general, the parameters to which ALDI performance is most sensitive are also those for which 

optimum values are most robust to changes in check dataset or performance metric. For example, there is negligible change in 

optimum values for Lpost and Tsnow across the range of metrics and datasets. : and : are both broadly comparable between 

metrics although in both cases there is a shift towards higher optimum values for AUC, indicating that for this metric NDVI 490 
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difference is less important than it was for TPRdiff (noting that the improvement is always <3%). : has a progressively less 

clear optimum as metrics become more generalised (from TPRdiff to AUC) indicating reduced parameter sensitivity for AUC. 

Tcloud and Lpre have larger changes in optimised parameters between the metrics, although the sensitivity to these changes is 

small in performance terms (Figure 3, columns 5-6). Optimum Tcloud is 0.7 for TPRdiff but 0.5 for AUC, optimum Lpre is in the 

range 2-5 for TPRdiff and 5-10 for AUC. ALDI performance is insensitive to , varying by <10% across the parameter range 495 

for all metrics, generating a broad histogram of best-performing parameter values and showing large shifts in optimum value 

depending on both the metric and the dataset used to assess performance (Figure 3, column A). 

4.3 ALDI calibration: global comparison 

We focus our global comparison on the AUC performance metric. Results for TPRdiff are very similar and can be found in the 

supplementary information (Figures S1-S6). Figure 4 shows that optimum values for a given parameter differ between sites; 500 

that sensitive parameters at one site are usually sensitive at others; and that absolute performance differences between different 

inventories at a site can be large, although the trends are generally similar. 

ALDI is sensitive to Lpost for all sites but with trends that differ between sites: for Haiti and Gorkha one year is best, two years 

is reasonable and three years is poor; for Kashmir and Wenchuan one year is best but two also gives reasonable results; for 

Aisen five years is best and one year is particularly poor (Figure 4 column G). An Lpost of two years generally results in fairly 505 

good performances for all five sites. These site-by-site differences suggest a connection between the optimum time series 

length Lpost, the frequency of Landsat image acquisition during the study period, and the processes that cause NDVI change at 

different sites (e.g., vegetation growth rates, fire, drought or post-seismic landsliding). While this does not preclude good 

performance of ALDI using a global parameter set, it does imply that performance with this global parameter set will almost 

always be sub-optimal relative to a locally-calibrated set. However, such local calibration requires independent landslide 510 

mapping over at least part of the study area. Further work might seek to connect optimum parameters at a site with its image 

and landscape characteristics enabling a refinement of the parameters without the need for additional mapping.  

ALDI is sensitive to Tsnow in three of the five sites and particularly for Aisen, but in all cases Tsnow of 0.5-0.8 results in 

performances that are at least close to optimum (Figure 4, column D). ALDI is only weakly sensitive to Lpre for all sites and 

with subtly differing trends: for Kashmir three years is best, for Wenchuan and Haiti 10 years is best and for Aisen and Gorkha 515 

best performances are in the range of five to 10 years (Figure 4, column F). However, the trends are not linear and an Lpre of 

five years generally results in fairly good performances for all five sites. ALDI is generally insensitive to Tcloud across the range 

0.3-0.7 with best performances consistently found at 0.5, although these are at most 10% better than those for other values in 

the range (Figure 4, column E). ALDI is insensitive to  alone, but is strongly sensitive to : and weakly sensitive to : at 

all sites (Figure 4, columns A-C) with best performances found for : in the range 1-100.  520 

ALDI application would be both faster and simpler if single optimum values could be used for the three pre-processing 

parameters within Google Earth Engine (Tcloud, Lpre, Lpost). In particular, the shorter the post-event window Lpost the sooner an 

inventory can be compiled following an earthquake. Our site-by-site calibration suggests that it is possible to find single values 

for these parameters that result in good performance for all study sites (Figure 4). This is the case when the cloud threshold 

Tcloud is 0.5, the pre-earthquake stack length Lpre is 5 years, and the post-earthquake stack length Lpost is 2 years (thus it is 525 

reasonable to expect that an ALDI-derived inventory can be generated after 2 years). We also examined performance when 

these parameters were allowed to vary but found that the performance improvement for the global parameter set was negligible. 

To examine similarity between locally optimised parameters and compare them to a global set of parameter sets, we first 

identified the best 100 parameter sets for each study site, using AUC as the performance metric (Figure 5). To generate the 

global parameter sets we held Tcloud, Lpre and Lpost constant at 0.5, 5 years and 2 years respectively; then, treating the remaining 530 

parameter sets as 4-element vectors, we sampled the best 20 parameters from each site; finally, we generated a holdback 

parameter set for each site by removing that site’s parameters from the global set. Locally optimised parameter sets (grey 
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histograms in Figure 5) are broadly consistent with the global set (blue histograms) with a small number of exceptions: Tsnow 

should be set lower for Kashmir and higher for Aisen, : should be set higher for Kashmir and : set lower for Gorkha. 

These differences are accentuated in the holdback distributions (the black outlined histograms) because the divergent local 535 

parameter values are stripped from the set, pulling the distributions away from their local optima. We would expect larger 

performance degradation from local to global to holdback parameter sets at sites where these distributions are more different. 

ALDI with locally optimised parameters always out-performs the global parameters and the global parameters always out-

perform the holdback parameters (Table 3). The difference between local and global parameters is generally larger than 

between global and holdback parameters. In fact, performance reduction from global to holdback parameters is always <1% 540 

for AUC. This indicates that the five study sites provide an adequately varied calibration set to enable generation of a general 

parameter set that is not overly influenced by any one site. This is encouraging for future ‘blind’ ALDI application. However, 

the difference in performance between local and global parameters shows that local optimisation can improve ALDI 

performance in terms of AUC by up to 9% (and by 2% on average). In three cases, one for Kashmir and two for Gorkha, local 

optimisation improves ALDI to the point where it is no longer out-performed by the manually mapped competitor inventory 545 

but instead out-performs it in terms of identifying landslide locations in the check inventory. This is somewhat consistent with 

the observed divergence of locally optimised parameter distributions from the global distribution at these sites (Figure 5). 

However, it likely also reflects the broadly similar performance (i.e. skill) of ALDI and manual mapping at the sites (Table 3). 

4.4 Spatial agreement: global comparison to manual mapping 

Spatial agreement between manual landslide inventories is surprisingly low not only for the Gorkha study site shown in Figure 550 

2 but across all sites. TPRs range from 0.08-0.8 indicating that at best 80% and at worst 8% of the landslide area mapped by 

one inventory is also identified as a landslide by a second test inventory (Figure 6a and Table 3). FPRs range from 0.0003-

0.03, indicating that at best 0.03% and at worst 3% of the area that is identified as non-landslide in one inventory is instead 

identified as a landslide by a second test inventory. There are two possible reasons why FPRs are so much lower than TPRs: 

1) landslide density is low, so there are few positives (TP+FN) and many negatives (TN+FP); these are the denominators of 555 

TPR and FPR, respectively, amplifying TPR and damping FPR; and 2) landslide mappers may be inherently conservative, 

mapping only features that they are confident are landslides. TPRs and FPRs are positively correlated but with considerable 

scatter (Figure 6a). In some cases manual maps agree quite closely: for example, the inventories of Gorum et al. (2013) and 

Harp et al. (2016) for Haiti (HGH, HHG) or those of Zhang et al. (2016) and Watt (2016) for Gorkha (GZW, GWZ). These cases 

have a relatively high TPR given their FPR and plot towards the top left of the point cloud in ROC space (Figure 6a). In other 560 

cases the agreement is weaker, such as between the inventories of Li et al. (2014) and Xu et al. (2014) for Wenchuan (WLX, 

WXL) or those of Sato et al. (2007) and Basharat et al. (2016) for Kashmir (KSB, KBS). There is a symmetry to the inventory 

comparison because each inventory takes a turn as the competitor dataset (to which ALDI is being compared) and as the check 

dataset (against which both are evaluated). As a result, a single pairwise comparison results in two points in Figure 6a reflecting 

the switching of roles. The three-way comparison for the Gorkha earthquake results in three pairwise comparisons and six 565 

points. When one inventory is considerably more complete and less conservative then the separation between pairs of points 

will be large (e.g., Watt and Zhang for Gorkha). Zhang et al. (2017) reported, in their metadata, that their inventory is 

incomplete and focusses on the largest landslides, while that of Watt (2016) was more complete and less conservative. As a 

result Zhang et al. (2016) successfully identified only 10% of the landslide pixels identified by Watt (2016) but identified only 

a tiny fraction (<0.1%) of the study area as landslides when Watt (2016) considered that they were not (GZW in Figure 6a). 570 

Conversely, Watt (2016) successfully identified 80% of the landslides identified by Zhang et al. (2016), but also identified a 

further 1% of the study area as landslides that were not identified as such by Zhang et al. (2016) (GWZ in Figure 6a).  

To evaluate ALDI performance relative to manual mapping, we compare the ability of ALDI to successfully identify more 

landslide pixels in one (check) inventory than another (competitor) inventory when ALDI output is thresholded to reproduce 
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the FPR of the competitor inventory. This TPR difference (TPRdiff) is shown as a red line in Figure 6b-f; positive differences 575 

indicate that ALDI out-performs manual mapping and vice versa. ALDI out-performs manual mapping in the majority of cases 

when parameters are locally optimised (10 of 14 cases, Figure 6 and Table 3) and is comparable to manual mapping when a 

single global parameter set is applied to all study sites (8 of 14 cases). Performance is only slightly reduced when the test site 

is held back from the global optimisation and ALDI continues to outperform manual mapping in 8 of 14 cases. 

ALDI performs better at some sites than others, with performances for Aisen and Gorkha particularly good (Table 3). 580 

Performance is poor for Haiti, both in absolute terms and relative to the manual mapping. For AUC, an indicator of absolute 

performance, ALDI performance for the Haiti case is ranked 10th-11th of 14 (where the range results from combining local 

global or holdback tests). Relative to manual mapping, ALDI correctly identifies 51-74% fewer landslide pixels for the same 

FPR. Explanations for these performance differences are discussed in Section 5.4. ALDI in Wenchuan performs only 

moderately in absolute terms, with ranked performances in the range 9th to 12th out of 14 for AUC, but out-performs manual 585 

mapping (1st and 4th for TPRdiff) as a result of the relatively poor agreement between manual maps for the site. Kashmir has 

very marked differences in ALDI performance depending on the test dataset (all <4th of 14 for Sato et al. (2007); all >9th of 14 

for Basharat et al. (2016)), illustrating the difficulty of interpreting performance relative to check data when the check data 

themselves contain errors of similar magnitude to the data being tested. 

4.5 Area-frequency distributions 590 

Probability density functions for manually-mapped landslide areas (Figure 7a-e) follow a consistent distribution with a roll-

over and a heavy right tail that is approximately linear in logarithmic space but that usually has positive (convex up) curvature 

or a roll-off at very large areas. These characteristics have already been widely reported both for the study inventories in 

particular (e.g., Gorum et al., 2013; Li et al., 2014; Roback et al., 2018) and for many other landslide inventories worldwide 

(e.g., Tanyas et al., 2019). Different inventories for the same study site show broadly consistent scaling in their right tail but 595 

tend to differ markedly in the location of the roll-over, modal size, degree of curvature in their right tail and the location (and 

presence) of a roll-off for very large areas (e.g., Figure 7a, d and e). These differences, and their possible explanations, have 

also been widely reported for these and other sites (see review by Tanyas et al., 2019). 

The area-frequency distributions derived from ALDI reflect the sizes of clustered landslide-affected areas (rather than the areas 

of landslide objects themselves). The ALDI-based distributions generally exhibit a broadly similar right tail to those of the 600 

manually-mapped distributions; both have heavy right tails that closely approximate a power law, and have similar scaling 

(i.e. slope in logarithmic space) in that right tail. However, the ALDI-based distributions, are clearly different from those 

derived from manual mapping, they lack: 1) the roll-over at small areas (in all cases, Figure 7a-e); 2) the positive curvature to 

the right tail (particularly clear for Haiti, Figure 7d); and 3) the roll-off at very large areas (resulting in oversampling of 

landslides >105 m2 for Wenchuan, Figure 7c).  605 

These differences can be explained in terms of amalgamation and censoring. Amalgamation of multiple neighbouring 

landslides increases the frequency of large landslides, fattening the right tail (Marc and Hovius, 2015); and in some cases 

considerably increasing the size of the largest landslide (e.g. Aisen and Wenchuan, Figure 7b-c). Re-sampling to a 30 m grid 

makes it impossible to record landslides smaller than a single pixel (i.e. 900 m2), censoring them from the area-frequency 

distribution.  610 

To illustrate the role of amalgamation and censoring we convert the manual landslide maps to binary grids at 30 m resolution, 

using a ‘majority area’ rule to identify landslide-affected pixels, and perform the same connected component clustering used 

for ALDI. Resampling to 30 m should result in strong censoring and some amalgamation as explained above. Re-clustering 

with a connected components algorithm likely results in further amalgamation. Figure 7 shows that resampling and re-

clustering manually-mapped landslides transforms their area-frequency distributions removing the rollover and resulting in 615 

distributions that are very similar to those for landslide pixels classified with ALDI. This supports our interpretation that misfit 
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between ALDI and manual mapping is due to censoring and amalgamation, although we are unable to determine their relative 

roles. Misfits due to the resolution of the Landsat and thus the classification surface are difficult to overcome whereas 

improvements in clustering could be more easily implemented.  

5 Discussion 620 

5.1 The problem of testing landslide location against uncertain check data 

The TPRdiff results for the five study sites show that ALDI out-performs manual mapping in 8 of 14 inventories in terms of its 

ability to identify landslide-affected areas identified in a second check inventory. This may indicate that ALDI is more skilful 

than each of these inventories at identifying the locations of landslides. However, because the check inventories are themselves 

known to contain error, this is not a secure result; erroneous out-performance by ALDI would result if it identified the same 625 

artefacts that had been (erroneously) mapped in the check dataset but not in the competitor.  

A more secure result can be obtained from the four (of seven) inventory pairs where ALDI out-performs both inventories in 

the pair when the other is used as check data. This indicates that the ALDI output is more similar to each inventory than the 

inventories are to one another (Table 3) and demonstrates that ALDI must be more skilful than at least one of the inventories 

(either the check or competitor inventory) in identifying the locations of landslides. However, we are still unable to conclude 630 

whether ALDI is better than one or both inventories, or identify which inventory is better. This is because errors in a single 

inventory influence the result both when it is used as the predictor (i.e., as a competitor against ALDI) and the check dataset 

(against which both are evaluated).   

5.2 Spatial disagreement in manually mapped inventories reflects processing errors, not solely mapping errors 

Our findings on the large locational mismatch between co-seismic landslide inventories are initially surprising, given the 635 

widespread assumption that such inventories represent a ‘ground truth’ and the limited attempts to propagate these errors into 

hazard maps, classification tests, process inferences, or landslide rate estimates. However, the limited number of other studies 

that do quantify landslide inventory error all suggest very weak spatial agreement between landslide inventories (Ardizzone et 

al., 2002; Galli et al., 2008; Fan et al., 2019).  

The process of generating a landslide inventory from satellite imagery involves choosing which images to map from and how 640 

to post-process and georeference them before landslides can be identified and delineated by a human mapper. Thus, the 

comparison of two inventories is not a direct test of the consistency with which human mappers detect and delineate landslides 

but instead the consistency with which different research groups generate landslide inventory maps. As an illustration of this 

distinction, Fan et al. (2019) found that landslide inventories had an overlap of 67%-86% (and 76% on average) when 

comparing between mappers in the same team mapping from the same imagery. This differs considerably from both our own 645 

results (8-30% overlap, Table 3) and other published cross-inventory comparisons (19-44% overlap, Ardizzone et al., 2002; 

Galli et al., 2008; Fan et al., 2019). In these cases, the inventories being compared were published by independent research 

groups and were not only collected by different mappers without collaboration but were generated from different sets of 

satellite images. For example, Roback et al. (2018) used Worldview imagery with high spatial resolution but which suffer from 

severe distortions in the Gorkha study area due to the steep landscape and oblique look angles (Williams et al., 2018). Even if 650 

landslides were correctly identified in both sets of imagery, differences between inventories could be introduced during 

georeferencing. Figure 8 shows evidence of the same problem for the Wenchuan inventories, where two sets of mapped 

landslides with strikingly similar patterns are offset by ~1 km. These georeferencing errors are difficult to attribute to a single 

inventory and appear to vary in magnitude and direction even over quite short length scales within an inventory (Figures 2 and 

8). Thus, improved performance of ALDI relative to a particular inventory reflects an improved overall workflow rather than 655 

specifically the ability to identify landslides in images.  
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5.3 Limitations to ALDI performance 

ALDI performance varies from site to site, with particularly good performances for Aisen and Gorkha, but particularly poor 

for Haiti. The overall poor performance for Haiti may reflect the drier conditions in the study area, which lead to vegetation 

that is more difficult to differentiate from landslide scars, or the higher degree of human influence on land cover relative to 660 

other sites, which may result in more vegetation changes not related to landslides. ALDI can identify landslides only in areas 

where they result in a change in NDVI and will perform better in areas where this change is more pronounced (all else being 

equal). This will occur where pre-event NDVI is higher due to denser and/or more vigorous vegetation coverage, both of which 

result in a larger share of reflectance from leaves, with their more pronounced ‘red edge’ (the red to near infra-red reflectance 

change). Conversely, ALDI will perform poorly in areas with sparse vegetation such as the epicentral area of the 2010 Sierra 665 

Cucapah earthquake (Barlow et al., 2015). 

Poor performance for Haiti in comparison with the manual mapping may also be due to ALDI’s coarse 30 m resolution relative 

to the dimensions of the landslides in the study area. ALDI will identify a pixel as landslide affected only if the landslide 

occupies enough of the pixel to alter its spectral response, and will perform better when landslides are large enough to occupy 

large fractions of one or many pixels.  Given their typically elongate shape (Taylor et al., 2018), landslides with widths <30 m 670 

and thus areas <2,700 m2 (assuming L/W=3, 75th percentile from Taylor et al., 2018) will be partially censored, with the degree 

of censoring increasing as width declines.  Median landslide area in the inventories examined here ranges from 250 m2 for 

Haiti (Harp et al., 2016) to 19,000 m2 for Kashmir (Basharat et al., 2016), with medians less than 2,700 m2 in 4 of 14 

inventories. Therefore, this censoring will strongly affect ALDI-derived inventories, particularly in areas with lower relief 

(such as Haiti) where smaller landslides are expected to be more common (Jeandet et al., 2019).  675 

Finally, poor performance for Haiti is also likely to reflect the limited number and quality of Landsat images acquired over the 

study area. ALDI used imagery from 2005-12 to identify landslides triggered by the Haiti earthquake and thus relies exclusively 

on Landsat 5 and 7 data (Landsat 8 launched in 2013). Both Landsat 5 and 7 are problematic for this study site and period. All 

of the Landsat 7 data contain data gaps due to Scan Line Corrector (SLC) failure from June 2003 onwards and only small 

amounts of Landsat 5 data for areas outside the USA were retained during this period, limiting archival imagery in some areas 680 

(see Figure S5 in Pekel et al., 2015). For Haiti the pre-earthquake stack is composed of 6 Landsat 5 images and 205 Landsat 7 

images and the post-earthquake stack of 16 and 91 images, respectively. Limited availability of Landsat 5 data at this site 

means that in some areas the classifier relies exclusively on Landsat 7 and is thus unable to calculate an ALDI value for pixels 

within the data gaps (these are visible as white stripes in the eastern half of Figure 9b). While some areas of high ALDI values 

show good agreement with mapped landslides, there are also large patches of high ALDI values with complex shapes that are 685 

uncharacteristic of landslides and that manual mapping shows as likely false positives (Figure 9c).  

Given these limitations to Landsat 5 and 7 imagery, it is perhaps surprising that ALDI performs so well in the Aisen case 

(where the stack extends from 2002-2009). This is likely due to the larger number of Landsat 5 images available for the study 

site (140 in the pre-earthquake stack and 46 in the post-earthquake stack) and to the location of the area of densest landsliding 

near the centre of a Landsat 7 image where data gaps related to SLC failure are minimised. The 2015 Gorkha earthquake is the 690 

only case study for which Landsat 8 data were available, perhaps explaining the relatively good performance at this site and 

offering hope for application to more recent events.  

Sparse image data (associated with incomplete archiving of Landsat 5) and sensor problems (primarily SLC failure on Landsat 

7) from 2003-2014 suggest ALDI-based mapping in this period should be handled with care. However, the majority of our test 

earthquakes come from this period and we have demonstrated that even with these constraints, ALDI performs well in 695 

determining landslide locations for four of the five case studies, both in absolute terms and relative to manual mapping. 

Potential checks on ALDI applications during this time period could entail careful checking of the numbers of images in the 

pre- and post-earthquake stacks, the extent of Landsat 7-derived striping in the ALDI map, and the size and shape of the 

landslides in the ALDI-derived inventory. Small image stacks (particularly for Landsat 5), extensive striping, and large 
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complex landslide shapes should all be treated as indicators of potentially poor ALDI performance. However, even when large 700 

image stacks are available for an earthquake-affected area, cloud cover can limit the number of usable observations per pixel 

within the pre- and post-earthquake stacks.  

ALDI can identify landslide-affected pixels with a high degree of skill (comparable to manual mapping) but is considerably 

less skilful in identifying discrete landslides, as demonstrated by the difference in ALDI and manually-mapped area-frequency 

distributions. As with Parker et al. (2011), additional steps are required to identify separate landslides (e.g., Marc et al., 2016). 705 

Calibration based on a small subset of manually-mapped landslides followed by subsequent manual editing to remove false 

positives could result in a very good inventory in a fraction of the time associated with full manual mapping.  

5.4 Strengths and weaknesses of ALDI relative to manual mapping 

The most widely used properties of landslide inventories are landslide location and geometry (Guzzetti et al., 2012). In terms 

of location, ALDI performs comparably to manual mapping in identifying whether the majority of each pixel in a 30 m grid is 710 

landslide-affected. However, it performs worse in capturing landslide area-frequency distributions, primarily because it cannot 

identify small isolated landslides (i.e. with areas <900 m2 separated by more than 30 m) and separating the output from ALDI 

(or any other pixel-based classifier) into discrete landslide objects is not straightforward.  

Current approaches to train and test landslide prediction models (including hazard and susceptibility models) almost 

exclusively use pixel-based information on landslide presence or absence rather than information about the size or shape of a 715 

landslide at a particular location (see Bellugi et al. (2015) for an exception). For such applications, skilful identification of 

landslide-affected pixels is the sole requirement. Our results suggest that the ALDI landslide inventory would be an appropriate 

product to use in these cases as it is better than at least one of the manual inventories in four of the five case studies (Table 3).  

Landslide geometry is required to construct landslide are-frequency distributions, and is useful to distinguish landslide 

initiation and runout zones (Marc et al., 2018). Manual mapping provides landslide geometry with a high level of accuracy,  720 

although disagreements in landslide area-frequency distributions for manually-mapped inventories have already been reported, 

with most pronounced differences being in roll-over location, usually due to differences in image resolution (Galli et al., 2008; 

Fan et al., 2019; Tanyas et al., 2019). The accuracy of landslide geometry derived from ALDI depends strongly on the extent 

to which landslide pixels can be clustered to identify separate landslides (e.g., Marc et al., 2016) and on the pixel resolution. 

The first of these is common to all pixel-based classifiers. Given the relatively coarse resolution of the underlying Landsat 725 

data, we expect ALDI-derived geometries to be accurate only for large landslides, as shown in Figure 7.  

All in all, we expect ALDI to be useful in identifying areas for further (more detailed) mapping at multiple scales: 1) globally, 

as a supplement to the existing archive of co-seismic landslide inventories by examining historic events for which a landslide 

inventory has never previously been generated but where landslides are known or expected to have been triggered; 2) at a site, 

to identify areas of interest or to extend the study area beyond that which can be feasibly mapped by hand; 3) at the finest 730 

scale, to identify individual candidate landslides to be manually checked and re-digitised if necessary. We also expect ALDI 

to be a useful check on manual mapping, enabling increased homogeneity in areas where there is only patchy coverage of high 

resolution imagery and perhaps identifying georeferencing errors.  

We do not expect ALDI in its current form to be as useful as manual mapping: 1) as a source of rapid landslide information to 

inform emergency response (because ALDI performs better with two years of post-event images); 2) for size or shape 735 

distributions (because of censoring and amalgamation inherent in 30 m pixel-based output); 3) for analysis where landslide 

initiation zones must be differentiated from runout; 4) in landscapes where vegetation is sparse (because NDVI changes in 

landslide pixels are unlikely to be detectable relative to natural variability); and 5) in landscapes where small landslides are 

widely distributed across the landscape (because the pixel-averaged NDVI change will be small if only a fraction of a pixel is 

disrupted). 740 
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5.5 Comparison to other automated detection methods 

Automated detection of landslides typically relies on vegetation change detection and involves either generating indices of 

surface disturbance from which landslides can be manually identified (e.g. Scheip and Wegmann, 2020), or performing a 

supervised classification (e.g. Barlow et al., 2003; Behling et al., 2014; 2016; Prakash et al., 2020).   

A recent example of automated surface disturbance detection, HazMapper (Scheip and Wegmann, 2020), uses similar image 745 

data (Landsat) and the same platform (Google Earth Engine) as ALDI, but for a different purpose and using different functions 

to combine and transform the imagery. HazMapper is designed to generate a qualitative metric for surface change rather than 

a landslide-specific mapping tool. As a result, the approach does not mask snow-covered areas in case these are of interest for 

a user’s particular application. The approach is simpler than that of ALDI in that HazMapper calculates the NDVI difference 

only, rather than accounting for post-event NDVI, seasonal variability and noise in the NDVI signal for each pixel. It is 750 

currently only applied to Landsat 7 onwards and only for individual sensors, rather than combining images from multiple 

Landsat sensors. This limits the events that can be examined to those occurring after 1999. However, results from HazMapper 

for the same study periods examined here show a good qualitative agreement with the ALDI results. The similarity in approach, 

using stacks of Landsat imagery before and after a suspected trigger event, means that the two approaches will likely have 

many of the same strengths (e.g., the accurate georeferencing of Landsat imagery) and limitations (e.g., the coarse resolution 755 

of Landsat imagery and long wait times required to generate the post-event stack).  

Alternative approaches to landslide detection that involve supervised classification typically rely on machine learning (e.g. 

Prakash et al., 2020) or clustering methods (e.g. Barlow et al., 2003; Behling et al., 2014; 2016). These more complex 

approaches are compatible with the data and platforms that we use here. Although we have taken a simpler approach, the 

classification surfaces generated by ALDI could be coupled with modern machine learning approaches to improve ALDI’s 760 

landslide detection skill. However, our results also highlight an important potential limitation to the use of supervised learning 

for landslide detection in general. Given the very severe disagreement between manually-mapped landslide inventories, any 

supervised learning method will have a very high risk of propagating gross errors into the classifier unless the training inventory 

is precisely co-located with the imagery used by the classifier. ALDI could help improve existing supervised classification 

efforts by providing additional well-referenced landslide inventories, or by correcting existing ones. 765 

5.6 Application to future earthquakes 

Increased frequency and quality of optical imagery suggests that ALDI should perform well for future earthquakes. In 

particular, Sentinel 2 imagery can generate NDVI at 10 m spatial resolution (Table 1). The two Sentinel 2 satellites were 

launched between June 2015 and March 2017, and thus there is a limited stack of pre- or post-earthquake images available to 

date. The 2018 Hokkaido earthquake offers the best trade-off to date between pre- and post-event data. As a test of the wider 770 

applicability of ALDI to future events, we ran ALDI using the global parameter set identified above, and evaluated its results 

against landslides mapped from aerial imagery by Wang et al. (2019). The results are extremely promising both at the scale of 

the entire epicentral area (Figure 9d and e), and of individual landslides, with few false positives, a large area under the ROC 

curve (0.94), and many landslides clearly delineated by a sharp break from high to low ALDI values (Figure 9f). 

6 Conclusion 775 

Rapid derivation of landslide inventories after large triggering events remains a key research challenge. We have developed a 

parsimonious automatic landslide classifier, ALDI, that uses pre- and post-event stacks of freely-available medium-resolution 

satellite imagery and relies on landslide-induced changes to vegetation cover and thus to NDVI values. We test the classifier 

against multiple independent manually-mapped inventories from five recent earthquakes. Considering that manually-mapped 

inventories are typically assumed to be the ‘ground truth’ against which automatic classifiers are evaluated, we find that 780 
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agreement between different manual inventories is surprisingly low (8-30% of landslide area in common). ALDI often 

identifies landslides in one inventory missed in the other and even identifies some candidate landslides not in either inventory 

but that have location and morphometric characteristics that strongly suggest they are true positives. 

We further find that ALDI can identify landslide locations with a level of skill that is comparable to manual mapping on a 

pixel-by-pixel basis. ALDI calibrated to mapped landslides at a site out-performs manual mapping in 10 of 14 cases (i.e. 71%). 785 

The only cases where manual mapping performs better are: the two inventories for the 2010 Haiti earthquake, where the stack 

of available Landsat images is extremely limited; and the cross comparison of inventories for the 2015 Gorkha earthquake, 

where strong agreement between inventories is the result of mapping from very similar satellite imagery. 

Even when using a global parameter set, ALDI outperforms manual mapping in 8 of 14 cases (57%) with 10 of 14 cases (71%) 

either performing better than manual mapping or within the uncertainty in manual mapping performance estimates. These 790 

results suggest that ALDI can be applied with considerable confidence to map the areas affected by co-seismic landslides in 

future earthquakes without the need for additional calibration. Holdback tests do not change either of these statistics and affect 

our chosen performance metrics by only a few percent, suggesting that the set of earthquakes that we have used is large enough 

to develop a robust global parameter set. 

The area-frequency distributions for clusters of pixels that are classified as landslides both from manual and automated 795 

landslide classification are broadly similar, particularly in their heavy right tail. However, the classifier-derived inventories 

are fundamentally limited by the resolution of the imagery and their inability to disaggregate amalgamated landslides, so that 

an object-based approach is required to recover realistic area-frequency information. 

ALDI is fast to run, uses free imagery with near-global coverage and generates landslide information that is of comparable 

quality to that of costly and time-consuming manual mapping, depending on its intended use. Thus, even in its current form it 800 

has the potential to significantly improve the coverage and quantity of landslide inventories. However, its simplicity 

(performing only pixel-wise analysis) and parsimony of inputs (using only optical imagery) suggests that considerable further 

improvement should be possible. 

 

Code availability  805 

The Google Earth Engine code to run ALDI is available on Github (https://github.com/DavidMilledge/ALDI), and as a GEE 

App: https://dgmilledge.users.earthengine.app/view/aldi-landslide-detection  

Data availability.  
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Figure 1: ALDI pre-processing steps. (a) Time series of NDVI values for a single landslide-affected pixel (circled in panels b and d) 

before and after the trigger event, with cloud-free values shown as solid symbols. This time series is derived from a stack of NDVI 1040 
images (b) and is used to calculate monthly median NDVI before and after the earthquake and their difference (c), which can be 

used to calculate dV, Pt and Vpost for every pixel in the study area (d). 
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Figure 2: Mapped landslides and the ALDI classifier for the Gorkha study site. a) Mapped landslides at the scale of the full study 1045 
area with AOIs (the mapped area) shown in grey. Zhang, Roback and Watt refers to the inventories of Zhang et al. (2016), Roback 

et al. (2018), and Watt (2016). b) ALDI values for the full study area, using locally-optimised parameters. c) Mapped landslides from 

the three inventories for a subset of the study area, with areas that were unmapped in one or more inventory shaded grey. d) ALDI 

values using locally-optimised parameters for the same subset of the study area shown in (c); e) detailed view of mapped landslides 

from the three inventories and ALDI values. Yellow boxes in each panel show the locations of nested panels (e.g. (c) in (a) and (d) in 1050 
(b)). Green labels indicate examples of: A) missed landslides, B) agreement between inventories, C) offset landslide outlines, D) 

distorted landslide outlines, and E) landslides identified by ALDI but missed by manual mapping.  

 



28 

 

 

Figure 3: Dotty plots and posterior parameter distributions for the Gorkha case study for the seven tuneable parameters associated 1055 
with ALDI (columns) evaluated using two of the test datasets (Watt and Roback) and two performance metrics (rows): TPRdiff, the 

difference in TPR between ALDI and the competitor inventory at the FPR defined by the competitor inventory; and AUC, the area 

under the ROC curve, a more general indicator of classifier performance over the full range of FPRs. ‘Roback/Watt’ refers to using 

Roback as the check dataset and Watt as the competitor in row 1; ‘Watt/Roback’ refers to the converse in row 2. Roback is used as 

the check dataset in row 3, and Watt as the check dataset in row 4. Points plotting above the yellow line are results for the best 100 1060 
parameter values. In each case the parameter distributions are for the best 100 parameter sets evaluated using the same metric and 

datasets as the dotty plot below it. Dotty plots for the other Gorkha inventories and for all other sites are given in the Supplementary 

Information. 
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Figure 4: Dotty plots and posterior parameter distributions for the seven tuneable parameters associated with ALDI (columns A-G) 1065 
for the five study earthquakes (rows 1-5). Dotty plots show classifier performance evaluated using AUC, the area under the ROC 

curve. Blue or red colours indicate the inventory used as the check dataset, as shown to the right. Parameter distributions are for 

the best 100 parameter sets evaluated using the same metric. 
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Figure 5: Posterior parameter distributions for the four parameters external to Google Earth Engine after global optimisation (top 1070 
row) and local optimisation for each earthquake. Rows 2-6 show posterior frequency distributions for each ALDI parameter 

following local optimisation (grey bars) and the holdback parameter set derived from the global set excluding locally optimised 

parameters (hollow bars).   
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 1075 

Figure 6: a) TPR, FPR pairs for the 14 inventory cross comparisons. Open symbols are calculated from a pixel-based analysis at 30 

m resolution, solid symbols are calculated from an object-based analysis using mapped polygons. The grey line shows the naïve 

(random) 1:1 relationship. Note difference in x- and y-axis scales for this and all other panels; b)-f) ROC curves for ALDI for each 

case study. There are three ROC curves for ALDI evaluated against each check inventory (e.g., KSB) all with the same line style 

(solid or dashed). In every case the upper curve is from ALDI with locally optimised parameters, the middle curve (indicated with 1080 
an arrowed end) is from ALDI with global parameters and the lower curve is from ALDI with holdback parameters. The global and 

holdback curves are indistinguishable in almost all cases. Red lines indicate the value of TPRdiff, the difference in TPR between 

ALDI and the competitor inventory when both are evaluated using the same check inventory. Legend acronyms indicate the study 

site (e.g., K) with the check and then competitor inventory labels as subscripts; see Table 3. 
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 1085 

Figure 7: Empirical area-frequency distributions for manually-mapped and classified landslides for the five case studies. Manually-

mapped pdfs are calculated from areas of mapped polygons, resampled pdfs are calculated from patch areas generated from the 

mapped polygons resampled to a 30 m grid, and classified pdfs are calculated from clustered pixel areas generated by thresholding 

the ALDI classification values. 

  1090 
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Figure 8: Manually mapped landslides and ALDI classifier results for the Wenchuan study site. a) Mapped landslides at the scale of 

the full study area with AOIs shown in grey, Xu and Li refer to the inventories of Xu et al. (2014) and Li et al. (2014) respectively; 

b) ALDI values for the full study area; c) mapped landslides and d) ALDI values for a subset of the study area; e) detailed view of 

mapped landslides overlain on ALDI values. Yellow boxes in each panel show the locations of nested panels (e.g. (c) in (a) and (d) in 1095 
(b)). Thicker outlines in (e) indicate landslides of very similar geometry that are offset by ~1 km in the different inventories; the 

ALDI pattern suggests that the map by Xu et al. (2014) is more likely to be correctly georeferenced in this case.  
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Figure 9: Mapped landslides and the ALDI classifier for the Haiti (left) and Hokkaido (right) study sites. a) Mapped landslides from 1100 
Harp et al. (2016) in Haiti at the scale of the full study area with the associated AOI shown in grey; b) ALDI values for the full study 

area, the yellow box shows the location of panel c; c) ALDI values overlain by mapped landslides from Harp et al. (2016) for a subset 

of the study area; d) Mapped landslides from Wang et al. (2019) in Hokkaido at the scale of the full study area with the associated 

AOI shown in grey; e) ALDI values for the full study area. The yellow box shows the location of panel f; f) ALDI values overlain by 

mapped landslides from Wang et al. (2019) for a subset of the study area. ALDI uses Landsat 5 and Landsat 7 for Haiti and Sentinel 1105 
2 for Hokkaido, both gridded at 30 m resolution.  
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Table 1: Landsat and Sentinel image characteristics (Barsi et al., 2014; ESA. 2017b).  

 Landsat 5 and 7 Landsat 8 Sentinel 2 

Green (m) Band 2: 0.52-0.60  Band 3: 0.53-0.59 Band 3: 0.52-0.60 

Red (m) Band 3: 0.63-0.69 Band 4: 0.64-0.67 Band 4: 0.65-0.69 

Near infra-red (m) Band 4: 0.77-0.90 Band 5: 0.85-0.88 Band 8: 0.76-0.91 

Shortwave infra-red (m) Band 5: 1.55-1.75 Band 6: 1.57-1.65 Band 11: 1.51-1.70 

Spatial resolution (m) 30 30 10 

Revisit time (days) 16 16 5 

Operational life 1984-2013 (L5) 

1999-present (L7) 

2013-present June 2015-present (S2a) 

March 2017-present (S2b) 

 

Table 2: Parameters for Landsat simple cloudscore, Equations 4a-f 1110 

Threshold Minimum Maximum 

Blue (Eqn 4a) Rbmin = 0.1 Rbmax = 0.3 

Visible (Eqn 4b) Rvmin = 0.2 Rvmax = 0.8 

Infra-red (Eqn 4c) Rirmin = 0.3 Rirmax = 0.8 

Temperature (Eqn 4d) Rtmin = 290 Rtmax = 300 

NDSI (Eqn 4e) NDSImin = 0.6 NDSImax = 0.8 

 

  



36 

 

Table 3: Performance metrics for ALDI applied with the different parameter sets to identify landslide-affected areas from each of the 14 

inventory pairs. Abbreviated names for the inventory pairs indicate the case study with subscripts denoting first check and then competitor 

inventories (e.g., KSB denotes the Kashmir earthquake with Sato as the check inventory and Basharat as the competitor inventory). True 1115 
positive rate (TPR) and false positive rate (FPR) are reported for both object-based analysis (in brackets), and pixel-based analysis at 30 

m resolution. Overlap indicates the percentage overlap between pairs of landslide inventories. Shading in right-hand columns indicates 

performance of ALDI relative to each competitor and for each metric and calibration, with linear colour scale from blue where ALDI 

out-performs the manual competitor to red where the manual competitor out-performs ALDI. Vertical blocks reflect different 

performance metrics: TPRdiff and AUC (see text). Columns within each block reflect different ALDI calibration strategies: local 1120 
calibration optimised to both site and check inventory; global calibration using a compilation of the best parameter sets from all sites; 

and holdback calibration where parameter sets from the test site are excluded. Note that positive values of TPRdiff reflect cases where 

ALDI out-performs manual mapping while negative values reflect cases where manual mapping is better.  

 TPR [-] FPR [-]    TPRdiff [%]   AUC [-] 
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Kashmir (K)     
 

   
  

   

(KSB) Sato et al. (2007) Basharat et al. (2016) 0.58 (0.56) 0.029 (0.030) 
8.2  

30 26 27   0.94 0.93 0.93 

(KBS) Basharat et al. (2016) Sato et al. (2007) 0.09 (0.09) 0.002 (0.002) 
 

0.2 -7 -5   0.72 0.69 0.69 

Aisen (A)  

 

 

  

        

(AGS) Gorum et al. (2014) Sepulveda et al. (2010) 0.52 (0.52) 0.010 (0.009) 
29.7  

56 39 39   0.93 0.93 0.93 

(ASG) Sepulveda et al. (2010) Gorum et al. (2014) 0.4 (0.41) 0.006 (0.006) 
 

6 5 5   0.77 0.78 0.78 

Wenchuan (W)     

 

        

(WLX) Li et al. (2014) Xu et al. (2014) 0.35 (0.35) 0.026 (0.029) 
14.0  

36 26 27   0.87 0.85 0.85 

(WXL) Xu et al. (2014) Li et al. (2014) 0.19 (0.19) 0.011 (0.012) 
 

62 50 51   0.86 0.84 0.84 

Haiti (H)     

 

        

(HHG) Harp et al. (2016) Gorum et al. (2013) 0.24 (0.21) 0.001 (0.001) 
18.8  

-51 -74 -73   0.88 0.84 0.84 

(HGH) Gorum et al. (2013) Harp et al. (2016) 0.64 (0.62) 0.005 (0.007) 
 

-52 -62 -60   0.9 0.83 0.83 

Gorkha (G)     

 

        

(GWR) Watt (2016)  Roback et al. (2018) 0.27 (0.33) 0.004 (0.005) 
22.8  

22 1 1   0.92 0.92 0.92 

(GRW) Roback et al. (2018) Watt (2016)   0.42 (0.43) 0.008 (0.008) 
 

20 7 6   0.94 0.93 0.93 

(GRZ) Roback et al. (2018) Zhang et al. (2016) 0.1 (0.09) 0.001 (0.001) 
8.3  

30 -4 -3   0.92 0.90 0.90 

(GZR) Zhang et al. (2016) Roback et al. (2018) 0.49 (0.51) 0.004 (0.005) 
 

19 4 5   0.96 0.95 0.95 

(GZW) Zhang et al. (2016) Watt (2016)  0.11 (0.11) .0003 (.0003) 
11.1  

-28 -47 -47   0.92 0.92 0.92 

(GWZ) Watt (2016)  Zhang et al. (2016) 0.79 (0.80) 0.010 (0.010) 
 

-9 -17 -17   0.97 0.97 0.97 

  Median 0.38 0.006 14.0 
 

20 3 3   0.92 0.91 0.91 

  Mean 0.37 0.008 16.1 
 

10 -4 -3   0.89 0.88 0.88 
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