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Abstract—Automatic crowd behaviour analysis is an important
task for intelligent transportation systems to enable effective
flow control and dynamic route planning for varying road
participants. Crowd counting is one of the keys to automatic
crowd behaviour analysis. Crowd counting using deep convolu-
tional neural networks (CNN) has achieved encouraging progress
in recent years. Researchers have devoted much effort to the
design of variant CNN architectures and most of them are
based on the pre-trained VGG16 model. Due to the insufficient
expressive capacity, the backbone network of VGG16 is usually
followed by another cumbersome network specially designed
for good counting performance. Although VGG models have
been outperformed by Inception models in image classification
tasks, the existing crowd counting networks built with Inception
modules still only have a small number of layers with basic
types of Inception modules. To fill in this gap, in this paper, we
firstly benchmark the baseline Inception-v3 model on commonly
used crowd counting datasets and achieve surprisingly good
performance comparable with or better than most existing
crowd counting models. Subsequently, we push the boundary
of this disruptive work further by proposing a Segmentation
Guided Attention Network (SGANet) with Inception-v3 as the
backbone and a novel curriculum loss for crowd counting. We
conduct thorough experiments to compare the performance of
our SGANet with prior arts and the proposed model can achieve
state-of-the-art performance with MAE of 57.6, 6.3 and 87.6 on
ShanghaiTechA, ShanghaiTechB and UCF_QNRF, respectively.

Index Terms—Crowd counting, Curriculum loss, Inception-v3,
Segmentation guided attention networks

I. INTRODUCTION

AUTOMATIC crowd counting has attracted increasing
attention in the research community since its valuable

impacts in public surveillance and intelligent transportation
systems [1], [2], [3], [4], [5]. Crowd behaviour can have a
big effect in the efficiency of public transportation. Intelligent
transportation systems deployed in a smart city should be
able to capture real-time crowd behaviour information from
public surveillance and dynamically adjust the planning for
effective transportation. Accurate people and vehicle counting
in varying conditions provide basic information for automatic
crowd behaviour analysis. People and vehicle counting can be
formulated in a unified object counting framework which aims
to estimate the number of target objects in still images or video
frames and has been applied in many real-world applications.
For instance, there have been works focusing on automatic
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counting different objects including cells [6], vehicles [7], [8],
leaves [9], [10] and people [4].

In earlier years, crowd counting in images was implemented
by detection [11], [12], [13] or direct count regression [14],
[15]. Counting by detection methods assume people signatures
(i.e. the whole body or the head) in images are detectable
and the count can be easily achieved from the detection
results. This assumption, however, does not always hold in
real scenarios, especially when the crowd is extremely dense.
Counting by direct count regression aims to learn a regression
model (e.g., support vector machine [15] or neural networks
[14]) mapping the hand-crafted image features directly to
the count of people in the image. Methods falling into this
category only give the final counts hence lack of explainability
and reliability.

Recently, crowd counting has been overwhelmingly dom-
inated by density estimation based methods since the idea
of density map was first proposed in [16]. The use of deep
Convolutional Neural Networks [17] to estimate the density
map along with the availability of large-scale datasets [18],
[19] further improved the accuracy of crowd counting in
more challenging real-world scenarios. Recent works in crowd
counting have been focusing on the design of novel archi-
tectures of deep neural networks (e.g., multi-column CNN
[18], [20] and attention mechanism [21], [22]) for accurate
density map estimation. The motivations of these designs are
usually to improve the generalization to scale-variant crowd
images. Among them, the Inception module [23] has been
employed and showed effectiveness in crowd counting [24],
[25], although only the basic Inception modules are used
and the networks are relative shallow compared with the
state-of-the-art deep CNN models for image classification
such as Inception-v3 [23] which uses heterogeneous Inception
modules to improve the expressive power of the network.
Although VGG16, VGG19 and ResNet101 have been used
as the backbone networks for crowd counting in [26], [27],
[28], to our best knowledge, the Inception models have not
been investigated.

In this paper, we make the first attempt to investigate
the effectiveness of Inception-v3 model for crowd counting.
We modify the original Inception-v3 to make it suitable for
crowd density estimation. Without bells and whistles, the
Inception-v3 model can achieve surprisingly good performance
comparable with or even better than most existing crowd
counting models on commonly used crowd counting datasets.
Subsequently, we add a segmentation map guided attention
layer to the Inception-v3 model to enhance the salient feature
extraction for accurate density map estimation and propose a
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novel curriculum loss strategy to address the issues caused
by extremely dense regions in crowd counting. As a result,
the proposed SGANet with curriculum loss is able to achieve
state-of-the-art performance for crowd counting with the em-
barrassingly simple design. The contributions of this paper are
summarized as follows:

– We make the first attempt to investigate the effectiveness
of Inception-v3 in crowd counting and achieve disruptive
results which are important for the research community.

– We present a Segmentation Guided Attention Network
(SGANet) with a novel curriculum loss function based
on the Inception-v3 model for crowd counting.

– Extensive evaluations are conducted on benchmark
datasets and the results demonstrate the superior perfor-
mance of SGANet and the effectiveness of curriculum
loss in crowd counting.

The remainder of this paper is organized as follows. Section
II reviews related work of crowd counting and curriculum
learning. In Section III we introduce our proposed segmen-
tation guided attention networks for crowd counting with
curriculum loss. Section IV presents the experiments and
results on several benchmark datasets and we conclude our
work in Section V.

II. RELATED WORK

In this section, we first review related works on CNN based
crowd counting and focus mainly on the diverse network
architectures against which our proposed crowd counting
model is compared. Subsequently, we introduce works related
to curriculum learning and how they can potentially be used
in the task of crowd counting.

A. Crowd Counting Networks

Successful efforts have been devoted to the design of novel
network architectures to improve the performance of crowd
counting. Commonly used principles of network design for
crowd counting include multi-column networks, rich feature
fusion and attention mechanism.

Multi-column neural networks were employed to address the
scale-variant issue in crowd counting [18], [29], [30]. As one
of the earliest CNN based models for crowd counting, MCNN
[18] consists of three branches aiming to handle crowds of dif-
ferent densities. Following this idea, Sam et al. [29] proposed
SwitchCNN which employs a classifier to explicitly select one
of the three branches for a given input patch based on its level
of crowd density. While these methods aim to use different
kernel sizes in different branches to capture scale-variant
information, Liu et al. [31] proposed a model consisting of
multiple branches of VGG16 networks with shared weights to
process scaled input images respectively. Similarly, Ranjan et
al. [32] devised a two-column network which learns the low-
and high-resolution density maps iteratively via two branches
of CNN. The success of these specially designed network
architectures has validated that multi-column CNN models are
capable of capturing scale-variant features for crowd counting.

The second direction of network design is to pursue effec-
tive fusion of rich features from different layers [33], [25].

These attempts are based on the fact different layers have
variant receptive fields hence capturing features of variant-
scale information. Different feature fusion strategies including
direct fusion [33], top-down fusion [34] and bidirectional
fusion [35] have been employed in crowd counting.

To take advantage of the two aforementioned ideas for
crowd counting, one straightforward solution is to utilise the
Inception module [23] which was firstly proposed in [36] and
has evolved into a variety of more efficient forms to date.
The Inception modules have been employed in crowd counting
models before in SANet [24] and the TEDNet [25]. Both of
them use only the basic types of Inception modules similar to
those used in the first version of Inception net (i.e. GoogLeNet
[36]). In our work, we aim to explore the more advanced
Inception modules in the framework of Inception-v3.

The attention mechanism is another useful technique consid-
ered when designing network architectures for crowd counting
[21], [33], [26], [37]. Attention layers are usually combined
with multi-column structures so that regions of different se-
mantic information (e.g., background, sparse, dense, etc.) can
be attended and processed by different branches respectively.
Attention maps learned by these models have proved to be
aware of semantic regions [26], however, they cannot provide
fine-grained scale awareness within the images. To address
this issue explicitly, perspective maps have been employed
to guide the accurate estimation of density maps [38], [39],
[40]. In many scenarios where the perspective maps are not
available, it is possible to estimate these perspective maps from
the crowd images via a specially designed and trained network
[41].

Alternatively, binary segmentation maps generated from
point annotation [42] are introduced as additional supervision
for the training of crowd counting networks via multi-task
learning [42]. In our work, binary segmentation maps are
treated as explicit attention maps guiding the learning of
salient visual features for density map estimation. In this
sense, our work is more related to [43] and [44] in which
the segmentation maps are also used as attention maps but in
essentially different ways as explained in Section III-B and
validated in Section IV-F.

B. Curriculum Learning

Curriculum learning is a strategy of model training (e.g.,
neural networks) in machine learning and was proposed by
Bengio et al. [45]. The idea of curriculum learning can date
back to no later than 1993 when Elman [46] proved the
benefit of training neural networks to learn a simple grammar
by “starting small". The strategy of curriculum learning is
inspired by the way how humans learn knowledge from easy
concepts to hard abstractions gradually. In the specific case of
training a machine learning model, curriculum learning selects
easy examples at the beginning of training and allows more
difficult ones added to the training set gradually. A curriculum
is usually defined as a ranking of training examples by some
prior knowledge to determine the level of difficulty of a given
example. Jiang et al. [47] extended curriculum learning to a so-
called self-paced curriculum learning by integrated the ideas
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of original curriculum learning and self-paced learning [48] in
a unified framework.

In this work, we apply the strategy of curriculum learning
in crowd counting to address the issue of large variance of the
crowd density in the images. Curriculum learning has been
employed for crowd counting in [49] where the curriculum
is designed on the image level, i.e., a difficulty score is
calculated for each training image. The training images are
divided into multiple subsets based on their difficulty scores
and the easiest subset is added into the training set first. By
contrast, our curriculum learning strategy is characterized by
a novel curriculum loss defined on the pixel level as described
in Section III-D. We define that density map pixels of higher
values than a threshold have higher difficulty scores because
these pixels are within regions of denser crowds. We use all
training images throughout the training process but set the
threshold to a low value at the beginning and increase it
gradually so that the difficult pixels become easy ones and
contribute more to the training. As a result, our curriculum
learning strategy is simple to implement with zero extra cost
and has been proved effective especially when there exist
extremely dense crowd regions in the images.

III. SEGMENTATION GUIDED ATTENTION NETWORK

Crowd counting is formulated as a density map regression
problem in this study. Given a crowd image I, we aim to learn
a Fully Convolutional Network (FCN) denoted as F so that
the corresponding density map Mden can be estimated by:

M̂den = F (I;Θ). (1)

where Θ is a collection of parameters of the FCN.
As shown in Figure 1, our proposed network is adapted from

the famous Inception-v3 originally designed for image classi-
fication by Google Research [23]. We first modify Inception-
v3 to an FCN so that it can process images of arbitrary
sizes and generates the estimated density maps Mden as the
outputs. An attention layer is added to the network to filter out
features within the background region and concentrate on the
foreground features for accurate density map estimation. Since
the attention maps generated by this attention layer aim to
discriminate the regions of background and foreground of the
feature maps, we use a ground truth segmentation map, which
can be easily derived from point annotations, as extra guidance
for the training of the attention layer. As a result, the learned
attention maps are forced to be similar to the segmentation
maps during training.

We also investigate the use of curriculum loss in the
training of crowd counting networks. Specifically, we define
a curriculum based on the pixel-wise difficulty level so that
the network starts training by focusing more on the “easy"
regions (sparse) within the density maps and down-weighting
the “hard" pixels (dense). During training, the “hard" pixels
are gradually exposed to the model and finally, the learned
model can perform well for all situations.

A. Density and Segmentation Maps
In this study, we use simple ways to generate density and

segmentation maps from the point annotations although more

complicated ones [44] might benefit the performance. For
density maps Mden ∈ R+H×W , where H and W are the height
and width of the image, we follow [18] using a Gaussian kernel
Gσ ∈ R

+15×15 with a kernel size of 15 × 15 and fixed σ = 4:

Mden(x) = H(x) ∗ Gσ(x), (2)

where H(x) =
∑N

i=1 δ(x − xi), N is the number of point
annotations in the image and δ(·) is the Delta function. As
a result, H(x) is a binary matrix of the same size as the
image and only has values of ones at the positions of point
annotations. The density map is derived by the convolution
between H(x) and the Gaussian kernel Gσ(x).

For segmentation maps Mseg ∈ {0,1}H×W , we use a similar
method:

Mseg(x) = H(x) ∗ Jn(x), (3)

where Jn(x) is an all-one matrix of size n × n centred at the
position x. As a result, ones and zeros in the matrix Mseg

denote the pixels belong to the foreground and background
regions, respectively. We empirically set n = 25 across all our
experiments to ensure that a specific head within an image is
characterized by more pixels in the segmentation map than in
the density map to avoid losing useful contextual information.
Our choice of n = 25 cannot guarantee precise foreground
segmentation maps due to the head-scale variance. A larger
value would affect the discrimination of the foreground and
background in crowded regions. Our experimental results
demonstrate the our choice is suitable and can benefits the
density map estimation.

B. Network Configuration

Instead of designing a novel network from scratch, we
exploit the state-of-the-art CNN model for image classification
Inception-v3 in our study. To apply the original Inception-
v3 network in crowd counting, some favourable modifications
have been made. Firstly, we remove the final fully-connected
layers and reserve all the convolutional layers. The input size
of the original Inception-v3 network is 299 × 299 and the
output size of the final convolutional layer is 8 × 8. That is
to say, feature maps generated by the last convolutional layer
have approximately 1

25 spatial resolutions of the input image.
This is achieved by the first convolutional layers (stride of
2), two max-pooling layers (stride of 2) and two Inception
modules in which max-pooling (stride of 2) is employed.
To ensure the outputs of the network (i.e. estimated density
maps) have sufficient spatial resolutions, we remove the first
two max-pooling layers from the original network and add
one upsample layer before the final Inception module. As
a result, the output of the modified network has exactly 1

4
spatial resolution of the input image when the input size is
2n (e.g., 128 × 128 in our case). Such modification does not
change the number of parameters of the network hence the
pre-trained weights can be directly loaded and used. However,
since the spatial resolutions of intermediate feature maps have
been increased, the number of operations is also increased.
This modified model will also denoted as Inception-v3 without
introducing ambiguity and used as a baseline method in our
experiments.
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Fig. 1. The framework of our proposed Segmentation Guided Attention Network (SGANet) which is adapted from Inception-v3 by: 1) removing the fully-
connected layers; 2) removing two maxpooling layers to reserve high spatial resolution feature maps; 3) adding an upsampling layer before the last Inception
module; 4) adding an attention layer whose output is applied to the feature maps generated by the last Inception module; 5) adding a convolutional layer for
density map estimation.

Distinct from existing works using the segmentation map
in the framework of multi-task learning [42] to extract more
salient features for density map estimation, we claim that the
segmentation map can be used as an ideal attention map to
emphasize the contributions of features within the foreground
regions to the density map estimation whilst compressing the
effects of features within the background regions. To this
end, we add an attention layer to estimate the attention map.
The attention layer is a convolutional layer followed by a
sigmoid layer which restricts the output values in the range
of 0–1. The attention layer takes the feature maps generated
by the second last Inception module as input and outputs a
one-channel attention map of the same spatial resolution as
the input. Subsequently, the attention map estimated by the
attention layer is applied to the feature map generated by the
last Inception module by an elementwise multiplication with
each channel of the feature map.

Fl = Fl−1 � Matt, (4)

where � denotes the operation of element-wise product.
The attention layer designed in our framework is similar

to that in [43], [44]. However, a so-called inverse attention
map is estimated in [43] while our attention layer generates
an attention map directly applied to the feature map. Also, the
foreground regions in the ground truth segmentation map in
[43] are derived by thresholding the density map hence both
maps have the same positive fields for each head while ours are
different (c.f. Eq.(2-3)). In [44], the attention layer takes the
feature map as input to estimate an attention map which again
is applied to the same feature map. This may limit the capacity
of the model since it is forced to learn two different maps from
the same feature map via two convolutional layers which have
limited parameters. In contrast, as mentioned above, the input
of our attention layer is the feature map from the previous
layer which has higher spatial resolutions and is different from
the one the generated attention map will be applied to. These
favourable distinctions collectively benefit the estimation of
the density map and will be empirically evaluated in our
experiments.

C. Loss Function

We first describe the loss function used to train the SGANet
without curriculum loss in this section and describe the
curriculum loss in the following section. The loss function
consists of two components. The first one is the Mean Squared
Error (MSE) loss applied to the estimation of the density map
and is denoted as Lden. The density map loss can be calculated
as follows:

Lden(Θ) =
1

2N

N∑
i=1
| |M̂den

i − Mden
i | |2F , (5)

where | | · | |2F is a Frobenius norm of a matrix. The second
component of the loss function is the segmentation map loss
Lseg which is defined as the cross-entropy loss:

Lseg(Θ) = −
1
N

N∑
i=1

∑
j ,k

Hi( j, k), (6)

Hi = M
seg
i � log(M̂seg

i )

+ (1 − M
seg
i ) � log(1 − M̂

seg
i ),

(7)

where � denotes elementwise multiplication of two matrices
with the same size and H( j, k) denotes an element of the ma-
trix H . These two components are combined during network
training and the compositional loss function is:

L(Θ) = Lden(Θ) + λLseg(Θ) (8)

where λ is a hyper-parameter which ensures the two com-
ponents to have comparable values and is set 20 across our
experiments.

D. Curriculum Loss

To benefit from the strategy of curriculum learning, we
present a novel curriculum loss function in this section to
replace the traditional density map loss function defined in Eq.
(5). The curriculum loss function is designed to be aware of
the pixel-wise difficulty level when computing the density map
loss. Based on the fact that dense crowds are generally more
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b

Fig. 2. An illustration of how to determine the value of b in Eq.(10).

difficult to count than sparse ones, we design a curriculum
where pixels of higher values than a dynamic threshold in
the density map are defined as difficult pixels. We set the
dynamic threshold and assign variant weights to different
pixels of the density map when calculating the density map
loss. Specifically, we define a weight matrix W as follows:

W =
T(e)

max{Mden − T(e),0} + T(e)
. (9)

The weight matrix W has the same size as the density map
matrix Mden used in Eq.(5) and the pixel-wise weights are
determined by the dynamic threshold T(e) and the pixel values
in the density map. If the pixel value of the density map is
higher than the threshold, this pixel is treated as a difficult one
and the corresponding weight is set less than one, otherwise
the weight is equal to one. The higher the pixel values are,
the smaller the weights will be. As a result, the training will
focus more on the pixels of lower density value than T(e).

The dynamic threshold T(e) is defined as a function of the
training epoch index e in the form of:

T(e) = ke + b (10)

where k and b can be determined empirically in the following
way. The value of b is the initial threshold when epoch = 0
and it is set to be equivalent to the maximum density value
in the region characterizing a single head (as shown in Figure
2). As a result, all the density values within the regions where
heads are not overlapped are smaller than the threshold T(e)
throughout the training (i.e., e = 0, 1, 2, ...). On the other hand,
the value of k controls the speed of increasing the difficulty
and its value is determined so that T(e) increases to a value
higher than the maximum density values before training stops.
This guarantees the final weight matrix W has all one values
hence all pixels contribute equally to the training. In practice,
we just need to find the density value in the center of a single-
head region in a ground truth density map to determine b,
whilst the maximum pixel value of the density maps in the
training data and the number of training epochs collaboratively
determine k.

Finally, the curriculum loss function for density map can be
derived by modifying Eq.(5) as:

Lden(Θ) =
1

2N

N∑
i=1
| |W (e) � (M̂den

i − Mden
i )| |2F . (11)

where W (e) is also a function with respect to the training
epoch index e.

IV. EXPERIMENTS

Extensive experiments have been conducted on benchmark
datasets to evaluate the performance of SGANet and the
effectiveness of curriculum loss in crowd counting. We will
briefly describe the datasets and evaluation metrics used in
our experiments, details of experimental protocols and network
training. Experimental results are compared with state-of-the-
art methods and analysed. We also present an ablation study
to investigate the contributions of different components to the
performance of the proposed framework.

A. Datasets

ShanghaiTech dataset was collected and published by
Zhang et al. [18] consisting of two parts. Part A consists
of 300 and 182 images of different resolutions for training
and testing respectively. The minimum and maximum counts
are 33 and 3139 respectively, and the average count is 501.4.
Part B consists of 400 and 316 images of a unique resolution
(768×1024) for training and testing respectively. Compared
with part A, the numbers of people in these images are much
smaller with the minimum and maximum counts of 9 and 578
respectively, and the average count is 123.6.

UCF_QNRF dataset [19] contains 1,535 high-quality im-
ages, among which 1201 images are used for training and 334
images for testing. The minimum and maximum counts are
49 and 12,865 respectively, and the average count is 815.

UCF_CC_50 dataset [50] contains 50 images with the
minimum and maximum counts of 94 and 4,534 respectively.
It is a challenging dataset due to the limited number of images.
Following the suggestion in [50] and many other works, we
use 5-fold cross-validation in our experiments.

B. Evaluation Metrics

We follow the previous works using two metrics, i.e., the
mean absolute error (MAE) and the root mean squared error
(RMSE), to evaluate the performance of different models in
our experiments. The two metrics can be calculated as follows:

M AE =
1

Ntest

Nt est∑
i=1
|yi − ŷi | (12)

RMSE =

√√√
1

Ntest

Nt est∑
i=1
(yi − ŷi)2 (13)

where yi and ŷi are the ground truth and predicted count for
i-th test image respectively, Ntest is the number of test images.

C. Network Training

SGANet is implemented in PyTorch [51] and the source
code is publicly available 1. The “Adam" optimizer [52] is
employed for training. The initial learning rate is set to 1e-
4 and reduced by a factor of 0.5 after every 50 epochs. The
total number of training epochs is set 500 since the model can
always converge much earlier than that. The network is trained

1https://github.com/hellowangqian/sganet-crowd-counting
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with image patches with a size of 128×128 randomly cropped
from the training images. Instead of preparing the patches in
advance, we do the random patch cropping on-the-fly during
training. Specifically, we randomly select 8 images from the
training set and 4 patches are randomly cropped from each
selected image. This leads to a batch of 32 training patches
in each iteration of training. The training patches generated in
this way can be more diverse and help to alleviate the potential
over-fitting problem. Since the output of SGANet has the size
of 32 × 32 (i.e. 1/4 of the input size), we use sum-pooling
to adapt the ground truth density and segmentation map so
that they have the same size of 32 × 32 as the output. The
training patches, as well as their corresponding density and
segmentation maps, are horizontally flipped with a probability
of 0.5 for data augmentation which has been shown beneficial
in many works [26], [53]. For testing, we feed the whole image
into the network and obtain the density map from which the
predicted count can be computed. For the UCF_QNRF dataset,
to save the memory usage during testing, we also resize the
images from both training and test sets so that all images are
limited to have their longer sides no higher than 2048 whilst
the original aspect ratios are kept, if not specified otherwise.

D. Comparative Study
We select both classic and state-of-the-art models for the

comparison, including MCNN [18] which is a three-column
CNN, CSRNet [54] which uses VGG16 as the front-end
and dilated convolutional layers as the back-end, SANet [24]
which employs the basic Inception modules but has a relatively
shallow depth, DADNet [26] which employs the ideas of
dilated convolution, attention map and deformable convolution
in the framework, CANNet [55] which captures context-aware
feature by multiple branches, TEDNet [25] which also uses
Inception-style modules, RANet [53] which uses an itera-
tive distillation algorithm, ANF [57] which uses conditional
random fields (CRFs) to aggregate multi-scale features, and
SPANet [58] which incorporates the spatial context within
images into the crowd counting model.

The experimental results are listed in Table I where the
best result in each column is highlighted in bold and the
second best in underscored italic. From Table I, we can
see our modified Inception-v3 can achieve very competitive
performance on all four datasets. Especially on ShanghaiTech
part B, it achieves the second best MAE of 6.4 and the best
RMSE of 9.8. On the UCF_QNRF dataset, Inception-v3 also
achieves significantly better results than most existing models
including TEDNet (MAE: 95.6 vs 113 and MSE: 165.4 vs
188) which also employs the Inception modules. These results
demonstrate the superiority of heterogeneous Inception mod-
ules in classification problems can be transferred to the task
of crowd counting hence different Inception modules deserve
more attention when designing a novel CNN architecture for
crowd counting as well as other tasks suffering from the
issue of scale variance. On the other hand, the disruptive
performance of Inception-v3 in crowd counting provides more
insight for the research community regarding the selection of
backbone models when designing novel network architectures
for crowd counting.

By adding the segmentation guided attention layer, our
SGANet can achieve better performance on all datasets in
terms of MAE (i.e. 58.0 vs 60.1 for ShanghaiTech part A,
89.1 vs 95.6 for UCF-QNRF and 224.6 vs 236.0 for UCF-
CC-50), although the improvement on ShanghaiTech part B
dataset is very marginal (i.e. 6.3 vs 6.4). Regarding RMSE,
SGANet achieves better performance on ShanghaiTech part A
(i.e. 100.4 vs 105.0) and UCF_QNRF (i.e. 150.6 vs 165.4) but
worse results on the other two datasets (i.e. 10.6 vs 9.8 for
ShanghaiTech part B and 314.6 vs 304.9 for UCF_CC_50).
Overall, our proposed SGANet with the combination of
Inception-v3 and a segmentation guided attention layer can
achieve state-of-the-art performance on several benchmark
datasets.

The use of curriculum loss (SGANet+CL) further improves
the performance of SGANet on three out of four datasets in
terms of MAE and these three datasets (i.e. ShanghaiTech
part A, UCF_QNRF and UCF_CC_50) consist of crowds with
significant density variations. On the ShanghaiTech part B
dataset, the use of curriculum loss does not improve the per-
formance because the images from this dataset contain crowds
with a relatively small variance of head scales. However, we
also observe slight increases of MSE on ShanghaiTech part
A and UCF-QNRF datasets when curriculum loss is applied.
This demonstrates the limitation of curriculum loss in the cases
where extreme crowds exist. Curriculum loss cares more about
regions with lower density from the very beginning of the
training process and gradually attends the regions with higher
density. As a result, the regions with very high density can
be less exposed to the learning process. The resultant model
performs well for the majority of the regions but also suffers
from large errors in the regions of extreme density. These
sparse large errors can contribute to MSE more significantly
than to MAE on datasets containing very crowded images. In
summary, these results provide evidence that the issue of large
scale variance can be partially alleviated by the use of our
proposed curriculum loss. We will provide more evidence for
the effectiveness of curriculum loss in the following ablation
study.

E. Results on Curriculum Loss

The use of curriculum loss has shown a positive effect
when applied to SGANet for crowd counting (Table I). In this
section, we attempt to explore the effectiveness of curriculum
learning in the training of other crowd counting networks. To
this end, we consider “MCNN", “CSRNet", “SANet", “CAN-
Net", “DADNet" and our modified “Inception-v3" and use the
curriculum loss when training these networks on ShanghaiTech
part A. Firstly, we try to reproduce the results of these crowd
counting models using conventional density map loss under
our training protocols to remove the effects of various factors
such as the ways of density map generation, patch cropping,
data augmentation and so on for a fair comparison and focus
on the effect of curriculum loss. It is noteworthy that the
generated density maps have different sizes for these models
(e.g., the size ratio between input and output is 1 for “SANet",
2 for “DADNet", 4 four “MCNN" and “Inception-v3", 8 for



IEEE TRANS. INTELLIGENT TRANSPORTATION SYSTEMS - PREPRINT, DECEMBER 2021 7

TABLE I
COMPARISON RESULTS WITH STATE-OF-THE-ART MODELS FOR CROWD COUNTING ( – DENOTES THE RESULTS ARE NOT AVAILABLE; CL DENOTES

CURRICULUM LOSS).

Model ShTechA ShTechB UCF-QNRF UCF-CC-50
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN [18] 110.2 173.2 26.4 41.3 – – 377.6 509.1
CSRNet [54] 68.2 115.0 10.6 16.0 – – 266.1 397.5
SANet [24] 67.0 104.5 8.4 13.6 – – 258.4 334.9
DADNet [26] 64.2 99.9 8.8 13.5 113.2 189.4 285.5 389.7
CANNet [55] 62.3 100.0 7.8 12.2 107 183 212.2 243.7
TEDNet [25] 64.2 109.1 8.2 12.8 113 188 249.4 354.5
Wan et al. [56] 64.7 97.1 8.1 13.6 101 176 – –
RANet[53] 59.4 102.0 7.9 12.9 111 190 239.8 319.4
ANF [57] 63.9 99.4 8.3 13.2 110 174 250.2 340.0
SPANet [58] 59.4 92.5 6.5 9.9 – – 232.6 311.7
Inception-v3 60.1 105.0 6.4 9.8 95.6 165.4 236.0 304.9
SGANet 58.0 100.4 6.3 10.6 89.1 150.6 224.6 314.6
SGANet + CL 57.6 101.1 6.6 10.2 87.6 152.5 221.9 289.8

TABLE II
THE EFFECT OF CURRICULUM LEARNING IN DIFFERENT MODELS ON

SHANGHAITECH PART A (THE SYMBOL ↓ MEANS THE ERROR DECREASES
WITH THE USE OF CURRICULUM LOSS).

Model Without CL With CL
MAE RMSE MAE RMSE

MCNN 91.8 144.9 89.1 ↓ 142.3 ↓
CSRNet 67.2 110.5 66.7 ↓ 113.7
SANet 64.0 103.4 62.1 ↓ 100.3 ↓
CANNet 65.6 106.7 63.9 ↓ 103.9 ↓
DADNet 63.7 107.4 64.2 102.1 ↓
Inception-v3 60.1 105.0 58.2 ↓ 97.9 ↓
SGANet 58.0 100.4 57.6 ↓ 101.1

“CSRNet" and “CANNet"). The ground truth density maps
need to be resized by sum pooling to have the same size as
the corresponding outputs. As a result, the pixel values of
the ground truth density maps for different models will have
different distributions. This leads to model-specific curriculum
designs (i.e. the parameter values in Eq.(10)). Specifically, we
set b as the maximum value in the Gaussian kernel matrix
Gσ used for density map generation (c.f. Eq. (2)) so that the
sparse crowd regions without annotation overlapping will not
be affected throughout the training process. The value of k in
Eq. (10) is determined by the number of epochs so that all
the crowd regions will contribute to the loss equally before
training is finished. In our experiments, we set k = 1e− 3 and
b = 0.1 for SGANet. Experimental results are shown in Table
II. The use of curriculum loss improves the performance of
most models. Specifically, the MAE decreases for all models
except “DADNet" and the RMSE decrease for all models
except “CSRNet". These experimental results demonstrate the
curriculum loss is useful not only for our SGANet but also
many other crowd counting models.

To evaluate the effect of crowd density in the performance
of SGANet and the curriculum loss, an additional experiment
is conducted on the UCF_QNRF dataset. As mentioned above,

we have changed the image resolutions in this dataset to be
no higher than 2048 for computation efficiency. In this exper-
iment, we create two more datasets by setting the image reso-
lution thresholds as 1024 and 512 respectively. As a result, the
images in the UCF_QNRF_512 dataset will have higher crowd
density than those in the UCF_QNRF_1024 dataset which
again consists of denser crowds than the UCF_QNRF_2048
dataset. We use SGANet on these three datasets and the exper-
imental results are shown in Table III. It is obvious the image
resolutions make a significant different in the performance and
the models perform the best on the UCF_QNRF_2048 dataset
whose image resolutions are higher hence have less crowded
images. By comparing the performance of SGANet without
and with curriculum loss, the use of curriculum loss leads
to better results on all three datasets in terms of both MAE
and RMSE except that in the last column of Table III. The
performance gains achieved by the use of curriculum loss are
also related to the image resolutions or the crowd densities in
the datasets. Specifically, the MAE and RMSE are reduced by
7.6 and 18.9 respectively on UCF_QNRF_512, 5.0 and 9.2 on
UCF_QNRF_1024, 1.5 and -1.9 on UCF_QNRF_2048. These
results provide more evidence that the use of curriculum loss
is more effective when the crowds are denser in the images.

In summary, the experimental results in Tables I–III provide
sufficient evidence that the use of curriculum learning can
benefit the training of crowd counting models in most cases
especially when the head scales vary a lot in the crowd images.

F. Results on Segmentation Guided Attention

From Table I we can see the performance enhancement
contributed by the segmentation guided attention layer by com-
paring the performance between Inception-v3 and SGANet. To
validate the superiority of our segmentation guided attention
layer to other similar designs [44], we conduct an experiment
on ShanghaiTech part A and UCF_QNRF. In this experiment,
we follow [44] and modify the SGANet by feeding the feature
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TABLE III
THE EFFECT OF IMAGE RESOLUTIONS IN THE PERFORMANCE OF SGANET ON UCF_QNRF DATASET.

Model UCF_QNRF_512 UCF_QNRF_1024 UCF_QNRF_2048
MAE RMSE MAE RMSE MAE RMSE

SGANet 126.1 236.1 102.5 178.4 89.1 150.6
SGANet + CL 118.5 217.2 97.5 169.2 87.6 152.5
Performance gain 7.6 18.9 5.0 9.2 1.5 -1.9

Test image Ground truth density map Predicted density map Predicted segmentation map

1068 1027

1210 1235

584 596

417 473

172 261

Fig. 3. Visualization of estimated density and segmentation maps for five test images from ShanghaiTech part A. The numbers shown on the images in the
second and third columns are the ground truth and estimated counts respectively.

maps of the last Inception module into the attention layer
and keeping the rest unchanged. The experimental results
are shown in Table IV from which we conclude the way
segmentation maps are used in our SGANet outperforms that
in [44].

To give an intuitive evidence on how the attention layer
helps for density map estimation, we visualize the estimated
attention maps and density maps for five exemplar test images
from ShanghaiTech part A. In Figure 3, we show the original

TABLE IV
RESULTS OF DIFFERENT APPROACHES TO SEGMENTATION MAP

SUPERVISION.

Model ShTechA UCF_QNRF
MAE RMSE MAE RMSE

W/o Seg. map 60.1 105.0 95.6 165.4
W/ Seg. map as [44] 59.5 102.2 92.3 155.3
W/ Seg. map as SGANet 58.0 100.4 89.1 150.6
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TABLE V
COMPARISON RESULTS OF DIFFERENT TYPICAL DEEP NEURAL NETWORKS (MEAN±STD OVER FIVE TRIALS ARE REPORTED).

Model #Param ShTechA ShTechB UCF-QNRF UCF-CC-50
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VGG16-bn [59] 14.8M 72.2±0.7 124.5±3.2 9.0±0.2 15.6±1.1 125.7±0.7 202.3±4.8 319.6±6.7 437.4±14.1
VGG16-bn* 14.8M 72.3±0.8 124.0±1.6 8.8±0.3 14.4±0.5 121.1±2.8 193.6±6.1 326.4±11.9 448.4±13.7
ResNet50 [60] 23.8M 73.1±1.3 117.9±2.6 8.6±0.3 13.9±0.5 93.1±1.0 163.9±2.6 301.9±9.2 408.3±23.5
ResNet50* 23.8M 70.3±1.3 109.4±4.1 8.8±0.2 13.4±0.4 91.3±0.6 158.4±2.2 278.8±11.5 375.6±18.9
ResNet101 [60] 42.8M 81.0±2.6 127.3±4.1 8.6±0.1 14.3±0.5 94.5±1.4 166.2±3.4 321.1±13.4 432.7±24.3
ResNet101* 42.8M 76.8±6.5 119.1±7.5 8.5±0.2 14.1±0.4 91.9±2.3 161.2±7.3 299.2±10.0 379.8±18.8
DenseNet121 [61] 7.1M 78.4±5.4 128.1±13. 9.4±0.5 15.3±0.5 93.5±1.3 166.2±2.2 446.5±12.1 616.1±24.5
DenseNet121* 7.1M 68.5±3.5 113.3±8.5 8.8±0.7 14.5±1.0 91.0±1.8 161.8±4.1 294.3±24.2 404.3±33.0
ShuffleNet-v2 [62] 0.5M 96.8±0.7 148.9±1.4 15.1±0.5 23.8±0.4 137.4±1.2 226.2±3.2 618.2±37.8 806.3±37.1
ShuffleNet-v2* 0.5M 93.2±2.0 145.9±2.9 14.5±0.7 23.4±1.5 127.4±1.8 217.9±2.1 626.2±55.4 798.2±57.4
Inception-v3 [23] 21.8M 60.1±1.2 105.0±1.8 6.4±0.3 9.8±0.8 95.6±1.3 165.4±2.8 236.0±5.8 304.9±17.8
SGANet 21.8M 58.0±0.9 100.4±1.3 6.3±0.3 10.6±0.7 89.1±1.1 150.6±3.3 224.6±6.6 314.6±19.2
SGANet + CL 21.8M 57.6±0.7 101.1±1.5 6.6±0.4 10.2±0.5 87.6±0.9 152.5±2.5 221.9±6.3 289.8±15.6

images, ground truth density maps, predicted density maps
and predicted segmentation maps in four columns respectively.
The real and predicted counts are also shown on the density
maps for a direct comparison. We can see that the prediction
errors for the top three examples are relatively low given the
accurately predicted segmentation maps. However, the bottom
two images suffer from higher errors since the model can not
predict accurate foreground regions. For example, the image
in the fourth row contains people raising their hands in the air
and the hands are easy to be counted since they have similar
colours with human faces. In the bottom image, the trees in
the background are mistakenly recognised as foreground and
result in the over-estimated count.

G. Results on Typical Deep Neural Networks

In this experiment, we compare the performance of
Inception-v3 and our proposed variants with several typical
deep neural networks. Specifically, we consider the most popu-
lar and performant models including VGG16bn (VGG16 with
batch normalisation layers) [59], ResNet50 [60], ResNet101
[60], DenseNet121 [60] and ShuffleNet-v2-0.5x [62]. Similar
to the modifications we have made on Inception-v3, we replace
the final fully-connected layers with convolutional layers for
density map estimation. For each model, we also consider
their counterpart with the segmentation guided attention map
(those marked with * in Table V). Specifically, an attention
map is learned from an intermediate feature map close to the
final output layer by two convolutional layers. Similar to our
SGANet, the attention map is learned by the supervision of the
segmentation map and applied to the final feature map before
the density map estimation.

Experiments are conducted on the four crowd counting
benchmark datasets and the results are shown in Table V.
For each model, we repeat the experiment for five times with
random initialisation to get the statistics (i.e. mean ± standard
deviation) as reported in Table V.

In general, Inception-v3 performs significantly better than
other five models on all three out of four datasets. On the
UCF_QNRF dataset, Inception-v3 performs comparably with
ResNet50, ResNet101 and DenseNet121. This demonstrates

that inception modules in Inception-v3 are beneficial to crowd
counting since the inception module was designed to capture
different scales of contextual information in each convolu-
tional layer. ResNet50 achieves the second best overall perfor-
mance over four benchmark datasets whilst the deeper version
ResNet101 performs consistently worse than ResNet50. This
phenomenon is also observed when a deeper version of
DenseNet121 was employed in our preliminary experiments on
the ShanghaiTech A dataset which are not presented here. This
may be due to the fact that the outputs of deeper models have
lower spatial resolution and lead to less accurate density map
estimation. Among six investigated DNN models, ShuffleNet-
v2 performs the worst and this is expected since this model has
a significant smaller number of parameters (0.7M) than others
(7.1-42.8M). Our proposed SGANet (a variant of Inception-
v3) with or without the curriculum loss can generally achieve
statistically significant better performance than the original
Inception-v3 with only negligible additional parameters.

The effectiveness of segmentation guided attention maps is
also observed consistently when they are added to the other
deep models. As shown in Table V, for five considered deep
models, their variants with the use of segmentation guided
attention maps achieve better performance in almost all cases.

H. Results on Cross-Dataset Transfer Learning

In this experiment, we investigate the capabilities of cross-
dataset transfer learning of different baseline models and
our proposed methods. To this end, we train the models on
UCF_QNRF training data and test them on ShanghaiTech A
and B test data. We choose UCF_QNRF as the training data
due to the fact it consists of much more training images than
other datasets and the training images have a large range
of resolutions. Experimental results are shown in Table VI.
Again, we repeat each experiment for five times to get the
statistics. The experimental results show that models trained
on UCF_QNRF perform slightly worse than those trained
within datasets without the need of tranfer learning. This is
due to the distribution shift across different datasets. One
exception is DenseNet121 performs better on ShanghaiTech
A test data when it is trained on the UCF_QNRF trainign
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TABLE VI
RESULTS OF CROSS-DATASET TRANSFER LEARNING (MEAN±STD OVER

FIVE TRIALS ARE REPORTED).

Model ShTechA shTechB
MAE RMSE MAE RMSE

VGG16-bn [59] 78.4±1.9 138.5±2.2 12.0±0.8 19.3±1.3
ResNet50 [60] 75.6±2.8 130.1±5.1 13.6±1.2 22.5±1.5
ResNet101 [60] 77.8±1.2 139.1±2.6 11.8±1.1 20.0±1.3
DenseNet121 [61] 68.0±0.9 114.9±1.1 11.6±1.3 19.4±1.5
ShuffleNet-v2 0.5x [62] 102.9±2.9 167.8±5.6 19.1±1.1 28.6±1.0
Inception-v3 [23] 72.8±3.2 125.6±5.2 11.4±1.5 20.0±1.9
SGANet 74.6±1.8 128.2±3.4 9.8±0.5 18.2±1.1
SGANet+CL 71.3±2.4 122.4±3.9 10.1±0.8 19.1±1.4

data. Other than this exception, the performances of different
models on cross-dataset transfer learning are consistent with
the results in Table V. Our proposed methods SGANet with or
without curriculum loss outperform other comparative models.
These results provide evidence the proposed methods based on
the Inception-v3 are more capable of transfer learning across
datasets hence are more useful in practice.

V. DISCUSSION AND CONCLUSION

In this paper, we address an important problem in crowd
counting which can be of great values to intelligent transporta-
tion systems. We investigated the effectiveness of Inception-
v3 in crowd counting and proposed a segmentation guided
attention network using Inception-v3 as the backbone. We also
proposed a novel curriculum loss function for crowd counting
by defining pixel-wise difficulty levels to resolve the issue of
scale variance in crowd images. Experimental results on four
commonly used datasets demonstrate the proposed SGANet
can achieve superior performance due to the combination of
Inception-v3 and the segmentation guided attention layer. The
proposed strategy of curriculum learning is also proved to be
helpful for a variety of existing crowd counting models in
general.

Although the proposed two strategies can promote the
crowd counting performance in most scenarios, there exist
cases where they could fail. For example, when the heads
in images are less crowded (e.g., ShanghaiTech part B), both
the segmentation guided attention and the curriculum loss will
not make a difference to the counting accuracy since they can
provide little additional information for the learning process
in these situations. As a result, we can expect more benefit
from the proposed two strategies when the images contain
extremely dense crowds, otherwise a more powerful backbone
such as Inception-v3 will be the optimal solution to achieve
high counting accuracy.

This is the first attempt to use the whole Inception-v3 model
for crowd counting and achieves state-of-the-art performance
on commonly used datasets. Although the employed Inception-
v3 model (with our own modifications) is not designed from
scratch, it is quantitatively shown to be able to achieve superior
performance to many specially designed models in the recent
couple of years. To these ends, our work is both disruptive
and important to the crowd counting research community.
Researchers in this community have devoted too much effort
to the design of variant CNN architectures and most of them
are based on the pre-trained VGG16 model which just has

insufficient expressive capacity for crowd counting tasks. In
this sense, we believe it is important and necessary to make
the community aware of the fact Inception-v3 is a more
suitable architecture for effective crowd counting and divert
the attention of the community to more diverse research
directions.

Most existing crowd counting methods including ours in this
paper rely on a large amount of training data which require
extensive efforts of data collection and annotation. In real-
world applications, it is challenging to get access to sufficient
training data for various scenarios (e.g., different camera
resolutions, illumination conditions, weather conditions and
perspectives). To solve this realistic problem, our future work
will focus on weakly supervised learning such as domain
adaptation [63] and transfer learning [28] for which the method
proposed in this paper can be served as a strong baseline. On
the other hand, our proposed method using Inception-v3 as
the backbone also inherits its limitations that it suffers from
gradient vanishing issues when becoming deeper. To resolve
this issue, the skip connections [60] and self-attention modules
[64] should be considered in the future work.
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