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Abstract
I construct a simple model to demonstrate that when the many-electron quantum state of a
material is near a quantum phase transition and the vibrational motion of a phonon explores
the potential energy surface near the transition point, then an impenetrable barrier appears at
the potential energy surface which restricts the phonon from crossing the transition point and
abnormally increases the phonon frequency. The ensuing anomalous enhancement of the
electron phonon coupling is general and independent of the specific nature of the electronic
quantum phase transition. Understanding and modelling this strong electron–phonon coupling
may potentially lead to the design of phonon superconductors with high critical temperatures
by choosing their parameters appropriately near an electronic quantum phase transition.

Keywords: quantum phase transition, phonons, electronic state, electron–phonon coupling,
phonon-mediated superconductivity

(Some figures may appear in colour only in the online journal)

1. Introduction

The coupling between electrons and phonons is investigated
when a phonon drives an electronic system towards a transition
of the many-electron state. To analyse this effect, it is useful
to review briefly the adiabatic separation of the electronic and
nuclear degrees of freedom [1, 2, 8].

It is well known that the large difference between the
masses and energy scales of electrons and nuclei allows the
separate treatment of their respective motions. The electrons
are so much faster, that for them, nuclear motion is a slow,
adiabatic change. The corresponding electronic energy, depen-
dent on the nuclear positions, provides the potential energy
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surface (PES) where the nuclei move. In periodic solids, as
the nuclei slowly vibrate around their equilibrium positions,
the electronic wave function evolves adiabatically with them.
Traditionally, the evolved wave function is expanded in terms
of the electronic eigenfunctions for the periodic structure and
in the deviations of the phonons from equilibrium. The coeffi-
cients of the expansion give the well-known electron–phonon
couplings [7].

In the following section, to investigate what happens when
a phonon drives an electronic system towards a transition of
the many-electron state, I construct a simple one-dimensional
model where a phonon with normal coordinate Q is coupled
to an electronic state that depends parametrically on Q and
undergoes a transition at Q = Q0.

2. Model of phonon overlapping electronic
transition

To model the Q-dependent electronic state with a transition at
Q0, I employ the ground state of the eigenvalue problem:
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[
k(Q − Q0) α

α k(Q0 − Q)

](
aQ

bQ

)
= εQ

(
aQ

bQ

)
. (1)

The parameter k is the strength of the (linear) electron–phonon
coupling. The small parameter α > 0 controls the speed of
transition of the electronic ground state between the two states( 1

0

)
,
( 0

1

)
. When α→ 0, the transition becomes abrupt and

we can employ the ground state of (1) to model a quan-
tum phase transition (QPT) [11] between two qualitatively
different many-electron states. On the other hand, for finite α
we have a gradual transition, or a cross-over region connecting
the two electronic states on either side of Q0.

In order to model an electronic QPT at Q0 without a level
crossing1, I multiply the 2 × 2 matrix in (1) by A = 1 +
D/λQ, where D � 1 is an energy scale much larger than the
harmonic phonon frequency and λQ =

√
k2(Q − Q0)2 + α2.

The energy eigenvalues in (1) are ε±Q = ±(D + λQ). The elec-

tronic ground/excited states are

(
a±Q
b±Q

)
where,

a±
Q = ± 1√

2

√
1 ± Q − Q0√

(Q − Q0)2 + (α/k)2
, (2)

b±
Q =

1√
2

√
1 ∓ Q − Q0√

(Q − Q0)2 + (α/k)2
. (3)

To proceed with the construction of the model, I choose
(for zero electronic coupling, k = 0) a harmonic phonon, with
unit mass and oscillator strength. The harmonic oscillator
potential has its minimum at Q = 0, slightly offset from the
QPT at Q0 > 0. The Hamiltonian of the combined elec-
tron–phonon system is (in atomic units, h̄ = 1):

H = −1
2

d2

dQ2
+

Q2

2
+ A

[
k(Q − Q0) α

α k(Q0 − Q)

]
. (4)

Because a large gap of magnitude, ε+Q0
− ε−Q0

= 2(D + α), sep-
arates the two adiabatic electronic energy levels, the elec-
tron–phonon states |Ψn(Q)〉 are described accurately in the
adiabatic approximation [2, 8]. Hence, we can write for the
electron–phonon states |Ψn(Q)〉 involving the adiabatic elec-
tronic ground state,

|Ψn(Q)〉 �
(

a−
Q

b−
Q

)
Xn(Q). (5)

The adiabatic phonon wavefunctions Xn(Q) satisfy the one-
dimensional adiabatic phonon Schrödinger’s equation,[

−1
2

d2

dQ2
+ V(Q)

]
Xn(Q) = En Xn(Q), (6)

where V(Q) is the (anharmonic) PES corresponding to the
adiabatic electronic ground state

V(Q) =
1
2

Q2 −
√

k2(Q − Q0)2 + α2. (7)

1 To avoid couplings to higher electronic levels and allow the model to be
described accurately in the adiabatic approximation.

In equations (6) and (7) I have shifted the PES and phonon
energy by the constant D.

The PES where the phonon vibrates is shown in figure 1, for
two values of α. For a small, finite value, α = 0.3, the transi-
tion between the two electronic states is gradual and smooth,
while forα = 0, the model mimics a QPT of the adiabatic elec-
tronic ground state at Q0. The cusp in the PES is characteristic
of such a transition [11].

3. Strong electron–phonon coupling near a QPT

I now investigate if anything dramatic happens to the cou-
pling between the electronic state undergoing transition and
the phonon when we solve the adiabatic phonon Schrödinger
(6) (using k = 1, Q0 = 0.5 in a.u.).

I used Mathematica [9] to solve numerically (6) for the
phonon ground and first excited state wavefunctions (solid
lines) and energies (dashed lines), which are shown in figure 1
in orange. The energy gap between the two energy levels gives
an estimate for the phonon frequency. (The PES is anharmonic
and the low lying phonon energy levels are not equally spaced.)
The phonon frequencies,ω0, for various values of α are shown
in the first row of table 1.

Having chosen the parameters of the model appropri-
ately, the wavefunction for the vibrating phonon coordinate
Q overlaps the QPT at Q0, figure 1. Hence, the zero-point
motion allows the phonon to explore the PES in the neigh-
bourhood of the transition. When there is a true transition
of the electronic state (α→ 0), this is surprising because the
phonon, in its vibrational motion carries along, adiabatically,
the electronic wavefunction (5). Consequently, according to
the solution of this model shown in figure 1 (right), the mate-
rial is predicted to undergo successive phase transitions (at
the phonon zero-point frequency) as the phonon oscillates
crossing the QPT at Q0. However, this result is unphysi-
cal; such recurring phase transitions are not observed in real
materials.

One might expect that non-adiabatic effects [5, 6] would
come into play and change the adiabatic picture [8]. How-
ever, in our model non-adiabatic effects are small (by
choosing D � 1). In any case, the unphysical prediction
remains valid for materials well described by the adiabatic
approximation.

The paradox is resolved by including a term that is routinely
omitted in the adiabatic approximation for solids, but in this
case it becomes important. In the adiabatic approximation, the
potential surface includes a correction energy term, known in
the literature as the diagonal Born–Oppenheimer correction
(DBOC) [4, 8, 12]. The correction term is given by,

W(R1, . . . , RN)

=
∑

a

h̄2

2Ma
〈∇RaΦR1,...,RN |∇RaΦR1,...,RN 〉 (8)

where |ΦR1,...,RN 〉 is the many-electron ground state. In the adi-
abatic approximation the state |ΦR1,...,RN 〉 depends paramet-
rically on the nuclear positions, {R1, . . . , RN}. The sum is
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Figure 1. Anharmonic PES (blue) omitting the DBOC, showing the phonon ground and first excited state wavefunctions (solid lines) and
energies (dashed lines) in orange. On the left, for α = 0.3, the PES is smooth around Q0, indicating a continuous cross-over region between
the two electronic states. On the right, for α→ 0, the cusp of the PES at Q0 mimics a QPT of the electronic system.

Table 1. Phonon frequencies in atomic units, approximated as the
energy differences between the two lowest phonon energy levels.
Smaller value of α indicates a faster transition. ω0 is the reference
phonon frequency when the DBOC is omitted (figure 1). The
phonon frequency ω includes the DBOC (figure 2). Δω is the
frequency increase due to the DBOC, Δω = ω − ω0.

Increase of phonon frequency with DBOC

α = 0.3 α = 0.2 α = 0.1 α→ 0

ω0 0.805 0.818 0.830 0.836
ω 0.954 1.027 1.130 1.244
Δω/ω0 0.19 0.26 0.36 0.49

over the nuclei, 1 � a � N, the gradients ∇Ra are over the
nuclear positions; Ma are the nuclear masses and the bra-ket
notation shows integration over electronic degrees of freedom.
A simple inspection of the term reveals that W(R1, . . . , RN)
is a positive (repulsive) energy term and that it is a mea-
sure of the rate of change of the electronic state |ΦR1,...,RN 〉
when the nuclear positions change, e.g. along a phonon.
Because each term of the sum is divided by the correspond-
ing nuclear mass, the DBOC term is thought to be vanishingly
small and is typically omitted. However, this omission is not
justified when a phonon drives the many-electron ground state
towards a transition: the rapid change of the electronic wave
function in the vicinity of the transition makes the derivatives
of electronic state grow and ultimately diverge at the point
of the transition. Division by the large nuclear mass can no
longer give a vanishingly small term. As a result, the DBOC
energy term increases and takes the shape of a barrier in
the PES, preventing the phonon from crossing the transition
point and thereby strongly affecting its energy and wave
function.

In the following, I illustrate this effect with the help of our
model. We shall see that inclusion of the DBOC leads to an
abnormal increase of the phonon frequency.

Using the Q-dependent electronic ground state

(
a−Q
b−Q

)
and

unit phonon mass the DBOC in (8) becomes (in a.u.)

W(Q) =
1
2

[
d

dQ

(
a−

Q b−
Q

)]
·
[

d
dQ

(
a−

Q

b−
Q

)]
. (9)

Note the derivatives act only inside the square brackets. The
inner product of the electronic states in (8) is reduced to the
dot product of a row times a column vector in (9). Carrying
out the dot product we have,

W(Q) =
1
2

(
da−

Q

dQ

)2

+
1
2

(
db−

Q

dQ

)2

. (10)

Finally, using equations (2), (3) and (10) we obtain,

W(Q) =
1
8

(α/k)2[
(Q − Q0)2 + (α/k)2

]2 . (11)

W(Q) is a function peaked at Q0. In the limitα→ 0, it becomes
a delta function barrier with diverging weight, proportional to
1/α. Scattering of a wave on a one-dimensional delta func-
tion barrier with infinite weight gives transmission coefficient
equal to zero and reflection coefficient equal to one.

Figure 2 shows the PESs, including the DBOC barrier for
a small α and for α→ 0, together with the phonon wave-
functions and energies. Comparing with figure 1, it is evi-
dent that introducing the DBOC for a finite α, the phonon
wavefunctions tunnel less to the right side of the transition.
At the same time, the phonon frequency (gap) increases (by
19%, see table 1). In the limit α→ 0, the DBOC term has
become an infinitely thin but impenetrable, delta-function bar-
rier, confining perfectly the phonon wave functions on the left
of the transition point.

This picture is physically intuitive, especially compared
with the prediction when the DBOC is ignored, that phonons
near e.g. a metal to Mott-insulator transition can tun-
nel between the two regions and thus induce recurring
metal–insulator transitions, or perhaps bring the electronic
state in a superposition of entirely different macroscopic states
(but see reference [3]).

Finally, table 1 shows the increase and relative increase of
the phonon frequency, due to the confinement from the DBOC
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Figure 2. Blue: PES including the DBOC for two different α. When α→ 0 the DBOC has become an impenetrable delta function barrier.
Orange: ground and first excited state phonon wavefunctions (solid lines) and energies (dashed lines).

barrier. The jump for α→ 0 is almost 50%. I note the critical
temperature in phonon-mediated superconductivity increases
quasi-linearly with phonon frequency [10].

4. Discussion

For materials described accurately by the adiabatic approxi-
mation, when a phonon brings the adiabatic electronic state
near a QPT, a dramatic enhancement is predicted in the
coupling between the phonon and the many-electron ground
state. The coupling manifests primarily by the erection of a
DBOC barrier that pushes the phonon wave function away
from the transition thus raising abruptly the phonon frequency.
The topology of the phonons is important, as the confine-
ment of the phonon wave function is more effective in reduced
dimensions. The predicted mechanism is strongest near a
true phase transition of the many-electron ground state but
is still nonzero with a more gradual change between the
two end-ground-states of the infinite system, as for example
in the cross-over region between two electronic phases. In
that case, a secondary effect is that the PES changes in the
entire cross-over region with the mass-dependent DBOC term.
Then, the dynamical matrix (Hessian) will also change and the
diagonalization of the corrected Hessian will give corrected
normal modes, corrected phonon frequencies and corrected
electron–phonon coupling matrix elements. The theoretical
derivation of these corrections will be presented in a future
publication.

In this work, the theoretical prediction relies on the validity
of the adiabatic approximation. In a forthcoming paper, I study
the extension of the proposed mechanism to materials where
the adiabatic approximation breaks down [5, 6].

The immediate area of application of the theoretical pre-
diction is in phonon-mediated superconductivity. In real mate-
rials, it is feasible to estimate quantitatively the DBOC
(from (8)) using ab initio calculations. A possible theoreti-
cal discovery of strong DBOC barriers near electronic QPTs
with such calculations would confirm the predicted mecha-
nism and deepen our quantitative understanding of the cou-
pling between electrons and phonons. It would also open the

way to control the critical temperature of superconducting
materials with a QPT, by tuning their parameters to bring the
many-electron ground state optimally in the neighbourhood of
the phase transition.
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