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Abstract. I construct a simple model to demonstrate that when the many-
electron quantum state of a material is near a quantum phase transition and
the vibrational motion of a phonon explores the potential energy surface near
the transition point, then an impenetrable barrier appears at the potential
energy surface which restricts the phonon from crossing the transition point and
abnormally increases the phonon frequency. The ensuing anomalous enhancement
of the electron phonon coupling is general and independent of the specific nature
of the electronic quantum phase transition. Understanding and modelling this
strong electron-phonon coupling may potentially lead to the design of phonon
superconductors with high critical temperatures by choosing their parameters
appropriately near an electronic quantum phase transition.
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1. Introduction

The coupling between electrons and phonons is
investigated when a phonon drives an electronic system
towards a transition of the many-electron state. To
analyse this effect, it is useful to review briefly the
adiabatic separation of the electronic and nuclear
degrees of freedom[I], 2] §].

It is well known that the large difference between
the masses and energy scales of electrons and nuclei
allows the separate treatment of their respective
motions. The electrons are so much faster, that for
them, nuclear motion is a slow, adiabatic change.
The corresponding electronic energy, dependent on
the nuclear positions, provides the potential energy
surface (PES) where the nuclei move. In periodic
solids, as the nuclei slowly vibrate around their
equilibrium positions, the electronic wave function
evolves adiabatically with them. Traditionally, the
evolved wave function is expanded in terms of the
electronic eigenfunctions for the periodic structure and
in the deviations of the phonons from equilibrium.
The coefficients of the expansion give the well-known
electron-phonon couplings|[7].

In the following section, to investigate what
happens when a phonon drives an electronic system
towards a transition of the many-electron state, I
construct a simple one-dimensional model where a
phonon with normal coordinate () is coupled to an
electronic state that depends parametrically on @ and
undergoes a transition at Q) = Qq.

2. Model of phonon overlapping electronic
transition

To model the @-dependent electronic state with a
transition at @Qg, I employ the ground state of the

eigenvalue problem:
aQ )
1
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The parameter k is the strength of the (linear) electron-
phonon coupling. The small parameter o > 0 controls
the speed of transition of the electronic ground state

between the two states (é), (?) When a — 0,

the transition becomes abrupt and we can employ the
ground state of|1|) to model a quantum phase transition
(QPT)[II] between two qualitatively different many-
electron states. On the other hand, for finite & we have
a gradual transition, or a cross-over region connecting
the two electronic states on either side of Q.

In order to model an electronic QPT at Qg without
a level crossin I multiply the 2 x 2 matrix in

1 To avoid couplings to higher electronic levels and allow the
model to be described accurately in the adiabatic approximation.

by A =1+ D/\g, where D > 1 is an energy scale
much larger than the harmonic phonon frequency and
‘ \/k2 Q@ — Qo)? + 2. The energy eigenvalues in
1)

are eQ = £(D+Xg). The electronic ground/excited

aQ
states are i where,

Q — Qo
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To proceed with the construction of the model, I
choose (for zero electronic coupling, k£ = 0) a harmonic
phonon, with unit mass and oscillator strength. The
harmonic oscillator potential has its minimum at @ =
0, slightly offset from the QPT at @y > 0. The
Hamiltonian of the combined electron-phonon system
is (in atomic units, i = 1):

(2)

+(a/k)?
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Because a large gap of magnitude, 650 —€g, = 2(D+a),

separates the two adiabatic electronic energy levels,
the electron-phonon states |¥,(Q)) are described
accurately in the adiabatic approximation[2,[8]. Hence,
we can write for the electron-phonon states |¥,,(Q))
involving the adiabatic electronic ground state,

aq
Q) = (,2) Xu(@. )
Q
The adiabatic phonon wavefunctions X,,(Q) satisfy
the one-dimensional adiabatic phonon Schrodinger’s
equation,
1 d?
- 2dQ?

where V(Q) is the (anharmonic) PES corresponding to
the adiabatic electronic ground state

V(Q) = 5@ - VEEQ - Qo T a2, 7

In Egs. I have shifted the PES and phonon energy
by the constant D.

The PES where the phonon vibrates is shown in
Fig. |1l for two values of a. For a small, finite value,
a = 0.3, the transition between the two electronic
states is gradual and smooth, while for « = 0, the
model mimics a QPT of the adiabatic electronic ground
state at Qg. The cusp in the PES is characteristic of
such a transition [I1].

T v<@>] X,(Q) = Eu X,(Q), (6)
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Figure 1. Anharmonic PES (blue) omitting the DBOC, showing the phonon ground and first excited state wavefunctions (solid
lines) and energies (dashed lines) in orange. On the left, for a = 0.3, the PES is smooth around Qo, indicating a continuous cross-over
region between the two electronic states. On the right, for & — 0, the cusp of the PES at Qo mimics a QPT of the electronic system.

3. Strong electron-phonon coupling near a
QPT

I now investigate if anything dramatic happens to
the coupling between the electronic state undergoing
transition and the phonon when we solve the adiabatic
phonon Schridinger (6) (using k = 1, Qo = 0.5 in a.u.).

I used Mathematica[d] to solve numerically (6]
for the phonon ground and first excited state
wavefunctions (solid lines) and energies (dashed lines),
which are shown in Fig. [1| in orange. The energy gap
between the two energy levels gives an estimate for the
phonon frequency. (The PES is anharmonic and the
low lying phonon energy levels are not equally spaced.)
The phonon frequencies, wy, for various values of « are
shown in the first row of Table [

Having chosen the parameters of the model
appropriately, the wavefunction for the vibrating
phonon coordinate @Q overlaps the QPT at Qo, Fig. [I]
Hence, the zero-point motion allows the phonon to
explore the PES in the neighbourhood of the transition.
When there is a true transition of the electronic state
(o — 0), this is surprising because the phonon, in
its vibrational motion carries along, adiabatically, the
electronic wavefunction . Consequently, according
to the solution of this model shown in Fig.
(right), the material is predicted to undergo successive
phase transitions (at the phonon zero-point frequency)
as the phonon oscillates crossing the QPT at Q.
However, this result is unphysical; such recurring phase
transitions are not observed in real materials.

One might expect that non-adiabatic effects|5]
6] would come into play and change the adiabatic
picture[§]. However, in our model non-adiabatic effects
are small (by choosing D > 1). In any case, the
unphysical prediction remains valid for materials well
described by the adiabatic approximation.

The paradox is resolved by including a term that
is routinely omitted in the adiabatic approximation for

solids, but in this case it becomes important. In the
adiabatic approximation, the potential surface includes
a correction energy term, known in the literature as
the diagonal Born-Oppenheimer correction (DBOC) 8],
4, [I2]. The correction term is given by,

W(Rla"'aRN) -
B2
Z W<VRQ‘I)R1,...,RNIVRQ(I)Rl,...,RN) (8)

a

where |®Pgr,,  m,) is the many-electron ground state.
In the adiabatic approximation the state |®r,. . my)
depends parametrically on the nuclear positions,
{R4,...,Ry}. The sum is over the nuclei, 1 <
a < N, the gradients Vg, are over the nuclear
positions; M, are the nuclear masses and the bra-
ket notation shows integration over electronic degrees
of freedom. A simple inspection of the term reveals
that W(Rq,...,Ry) is a positive (repulsive) energy
term and that it is a measure of the rate of change
of the electronic state |®r,,. . wry) When the nuclear
positions change, e.g. along a phonon. Because each
term of the sum is divided by the corresponding nuclear
mass, the DBOC term is thought to be vanishingly
small and is typically omitted. However, this omission
is not justified when a phonon drives the many-
electron ground state towards a transition: The rapid
change of the electronic wave function in the vicinity
of the transition makes the derivatives of electronic
state grow and ultimately diverge at the point of
the transition. Division by the large nuclear mass
can no longer give a vanishingly small term. As a
result, the DBOC energy term increases and takes the
shape of a barrier in the PES, preventing the phonon
from crossing the transition point and thereby strongly
affecting its energy and wave function.

In the following, I illustrate this effect with the
help of our model. We shall see that inclusion of the
DBOC leads to an abnormal increase of the phonon
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Figure 2. Blue: PES including the DBOC for two different a. When a — 0 the DBOC has become an impenetrable delta function
barrier. Orange: ground and first excited state phonon wavefunctions (solid lines) and energies (dashed lines).

frequency.
Using the @-dependent electronic ground state

o=
(bQ> and unit phonon mass the DBOC in

Q
becomes (in a.u.)

1] d d (ag
W(Q) ==|-=(a5b5)] - |-—=( <. 9
Note the derivatives act only inside the square
brackets. The inner product of the electronic states
in is reduced to the dot product of a row times a

column vector in @D Carrying out the dot product we
have,

2 2
1 [ dag 1 [ dbg
w =_ | —= == .
(@) 2<dQ> +2<dQ
Finally, using Egs. (2li3lj10) we obtain,

2
WQ) = (a/k) N
8 [(@—Qo)*+ (a/k)?]
W(Q) is a function peaked at Qg. In the limit o — 0,
it becomes a delta function barrier with diverging
weight, proportional to 1/«. Scattering of a wave on
a one-dimensional delta function barrier with infinite
weight gives transmission coefficient equal to zero and

reflection coefficient equal to one.

Fig. [2] shows the potential energy surfaces,
including the DBOC barrier for a small o and for
a — 0, together with the phonon wavefunctions and
energies. Comparing with Fig. it is evident that
introducing the DBOC for a finite «, the phonon
wavefunctions tunnel less to the right side of the
transition. At the same time, the phonon frequency
(gap) increases (by 19%, see Table . In the limit
a — 0, the DBOC term has become an infinitely
thin but impenetrable, delta-function barrier, confining
perfectly the phonon wave functions on the left of the
transition point.

(10)

(11)

This picture is physically intuitive, especially
compared with the prediction when the DBOC is
ignored, that phonons near e.g. a metal to Mott-
insulator transition can tunnel between the two regions
and thus induce recurring metal-insulator transitions,
or perhaps bring the electronic state in a superposition
of entirely different macroscopic states (but see
Ref.[3]).

Increase of phonon frequency with DBOC

a=03 a=02 a=01 a—0
wo 0.805 0.818 0.830 0.836
w 0.954 1.027 1.130 1.244
Aw/wg 0.19 0.26 0.36 0.49
Table 1. Phonon frequencies in atomic units, approximated

as the energy differences between the two lowest phonon energy
levels. Smaller value of « indicates a faster transition. wg is the
reference phonon frequency when the DBOC is omitted (Fig.
The phonon frequency w includes the DBOC (Fig. Auw is the
frequency increase due to the DBOC, Aw = w — wo.

Finally, Table |1 shows the increase and relative
increase of the phonon frequency, due to the
confinement from the DBOC barrier. The jump for
a — 0 is almost 50%. I note the critical temperature
in phonon-mediated superconductivity increases quasi-
linearly with phonon frequency[I0].

4. Discussion

For materials described accurately by the adiabatic
approximation, when a phonon brings the adiabatic
electronic state near a QPT, a dramatic enhancement
is predicted in the coupling between the phonon
and the many-electron ground state. The coupling
manifests primarily by the erection of a DBOC
barrier that pushes the phonon wave function away
from the transition thus raising abruptly the phonon
frequency. The topology of the phonons is important,
as the confinement of the phonon wave function is
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more effective in reduced dimensions. The predicted
mechanism is strongest near a true phase transition
of the many-electron ground state but is still nonzero
with a more gradual change between the two end-
ground-states of the infinite system, as for example in
the cross-over region between two electronic phases.
In that case, a secondary effect is that the PES
changes in the entire cross-over region with the mass-
dependent DBOC term. Then, the dynamical matrix
(Hessian) will also change and the diagonalization of
the corrected Hessian will give corrected normal modes,
corrected phonon frequencies and corrected electron-
phonon coupling matrix elements. The theoretical
derivation of these corrections will be presented in a
future publication.

In this work, the theoretical prediction relies
on the validity of the adiabatic approximation. In
a forthcoming paper, I study the extension of the
proposed mechanism to materials where the adiabatic
approximation breaks down [B] [@].

The immediate area of application of the theoret-
ical prediction is in phonon-mediated superconductiv-
ity. In real materials, it is feasible to estimate quantita-
tively the DBOC (from using ab-initio calculations.
A possible theoretical discovery of strong DBOC barri-
ers near electronic QPTs with such calculations would
confirm the predicted mechanism and deepen our quan-
titative understanding of the coupling between elec-
trons and phonons. It would also open the way to con-
trol the critical temperature of superconducting mate-
rials with a QPT, by tuning their parameters to bring
the many-electron ground state optimally in the neigh-
bourhood of the phase transition.

Acknowledgments

I thank Prof. S.J. Clark and Prof. D. Hampshire for
useful discussions.

References

[1] M. Born and R. Oppenheimer. Zur quantentheorie der
molekeln. Annalen der Physik, 389(20):457-484, 1927.

[2] Max Born and Kun Huang. Dynamical theory of crystal
lattices. Clarendon Press, 1968.

[3] Jonathan R Friedman, Vijay Patel, Wei Chen, SK Tolpygo,
and James E Lukens. Quantum superposition of distinct
macroscopic states. Nature, 406(6791):43-46, 2000.

[4] Jirgen Gauss, Attila Tajti, Mihdly Kallay, John F
Stanton, and Péter G Szalay. Analytic calculation
of the diagonal born-oppenheimer correction within
configuration-interaction and coupled-cluster theory.
The Journal of chemical physics, 125(14):144111, 2006.

[5] N. Gidopoulos and E. Gross. Electronic non-adiabatic
states. arXiv:cond-mat/05024383, 2005.

[6] Nikitas I Gidopoulos and EKU Gross. Electronic non-
adiabatic states: towards a density functional theory be-
yond the born-oppenheimer approximation. Philosoph-
ical Transactions of the Royal Society A: Mathematical,

[7

8

[0

(10]

(11]

(12]

Physical and Engineering Sciences, 372(2011):20130059,
2014.

Feliciano Giustino. Electron-phonon interactions from first
principles. Reviews of Modern Physics, 89(1):015003,
2017.

Nicholas C Handy and Aaron M Lee. The adiabatic
approximation. Chemical physics letters, 252(5-6):425—
430, 1996.

Wolfram Research, Inc.
Champaign, IL, 2021.

Warren E Pickett. The next breakthrough in phonon-
mediated superconductivity. Physica C: Superconduc-
tivity, 468(2):126—-135, 2008.

Subir Sachdev. Quantum phase transitions.
university press, 2011.

Patrick E Schneider, Fabijan PavoSevi¢, and Sharon
Hammes-Schiffer. Diagonal born—-oppenheimer correc-
tions within the nuclear—electronic orbital framework.
The journal of physical chemistry letters, 10(16):4639—
4643, 2019.

Mathematica, Version 12.3.1.

Cambridge



	Introduction
	Model of phonon overlapping electronic transition
	Strong electron-phonon coupling near a QPT
	Discussion

