
1.  Introduction
Air pollution on the southern slopes of the Himalayas has reached high-altitude sparsely populated re-
gions such as Khumbu (5,079 m a.s.l.) in Nepal (Bonasoni et al., 2010) and Hanle (4,520 m a.s.l.) in India 
(Babu et al., 2011). The pollutants emitted from different anthropogenic sectors in the Indo-Gangetic Plains 
(Saikawa et al., 2019) are transported to the high-altitude Himalaya by the southwest Indian Summer Mon-
soon (Cristofanelli et al., 2014; Singh et al., 2020). The presence of anthropogenic emission residues on the 
Himalayan glaciers has been linked to enhanced rates of glacier melting. As a consequence, the ambient 
air at high altitude Himalayan sites has been monitored intensively over recent decades for its suspended 
particulates, greenhouse gases, and aerosols emitted from diverse anthropogenic sources (Ran et al., 2014; 
Rupakheti et al., 2017; Shrestha et al., 2010; Stockwell et al., 2016).

Among the particulate impurities deposited on glacier surface, organic carbon (OC), black carbon (BC), 
trace metals and biogenic pollutants are the major focus of current research due to their adverse impact 
on glacier health (Beaudon et al., 2017; Gabrielli et al., 2020; Hong et al., 2009; Kaspari et al., 2011; Nizam 
et al., 2020; Yan et al., 2019). Himalayan ice core record shows a threefold increase in BC concentrations 
between 1975 and 2000 (Kaspari et al., 2011). Similarly, increased anthropogenic metal pollution on glaciers 
has also been reported from several parts of the central Himalaya and Tibetan Plateau (Beaudon et al., 2017; 
Gabrielli et al., 2020; Hong et al., 2009; Zhang et al., 2009). Despite the rise in BC concentrations and an-
thropogenic metal pollution, the concentration of inorganic impurities in the western Himalayan glaciers 
remains poorly known.

Abstract  Himalayan glaciers are invariably covered by supra-glacial debris. Of these glaciers, 
the Chhota Shigri Glacier (CSG) in the western Himalaya has minimal debris cover (3.4%), yet has a 
comparable melt rate to other Himalayan glaciers. Utilizing osmium isotopic composition, and major 
and trace element geochemistry of cryoconite, a dark colored aggregate of mineral and organic materials 
on the surface of the ablation zone of the CSG, we show that the surface of CSG is essentially free of 
anthropogenically emitted particles, contrary to many previous findings. Given this and the overall lack of 
debris, we conclude that the high melt rate of CSG is primarily related to the increase of the Earth's near-
surface temperature linked directly to global warming. Therefore, the future meltwater supply for glacial-
fed rivers originating from Lahaul and Spiti region would be most vulnerable for >50 million population 
living downstream and requires immediate attention.

Plain Language Summary  Industrially derived particles are commonly deposited on 
Himalayan glaciers and have been proposed to be a major driver of glacier melting. Yet, the abundance 
of such material is highly variable across the Himalaya. The Chhota Shigri Glacier system despite having 
minimal debris cover and limited anthropogenic emission residues has experienced high ice volume loss 
since the end of the 20th century (Azam et al., 2019, https://doi.org/10.1016/j.jhydrol.2019.04.075). We 
surmise that the elevated glacial mass wastage in Lahaul Spiti valley of the western Himalaya is much 
likely insensitive to anthropogenically sourced pollutants but primarily climate controlled as claimed by 
previous studies (Azam et al., 2014, https://doi.org/10.5194/tc-8-2195-2014; Gantayat et al., 2017, https://
doi.org/10.1017/aog.2017.21).
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Existing data from the western Himalayan region focus mainly on the source of pollutants (COx, NOx, 
SO2, BC, and PM2.5) using emission inventories and receptor and chemical transport modeling (Alvarado 
et al., 2018; Bonasoni et al., 2010; Rupakheti et al., 2018; Yarragunta et al., 2020). Although these models 
provide invaluable insights into the abundance, origin, source, and transport pathways of the pollutants 
over the western Himalayan cryosphere, the results exhibit disagreement between different inventory ob-
servations as well as with model results due to the large uncertainties in emission inventory and meteoro-
logical parameters. For instance, emission inventory models deployed over South Asia suggest that biofuel 
burning accounts for 50%–90% of total emissions (Gustafsson et al., 2009 and references therein). Yet, these 
inventory models are hampered by large uncertainties, in some cases by more than 40% depending upon in-
ventories type, endmember composition, in situ meteorology and inherent model uncertainties. Therefore, 
given that the Himalaya is neighbored by some of the world's largest emitters of anthropogenic particles, 
understanding the concentration, origin, and transport pathways of other anthropogenically emitted parti-
cles, such as metals, is required to ultimately understand the mechanisms driving enhanced rates of glacier 
wastage and its impact on downstream populations.

Thus, to establish the contribution of emission sources to the western Himalayan glaciers, we utilize ma-
jor and trace element geochemistry together with osmium (Os) isotope systematic (187Os/188Os) of glacier 
surface impurities. The Os-isotope composition of natural and anthropogenic materials only records the 
time-integrated fractionation of the Re/Os ratio in the sources. Due to the extremely long half-life of 187Re 
(ca. 42 billion years), the present-day 187Os/188Os composition of natural and anthropogenic materials re-
mains practically constant throughout the process of particle generation, transportation, and deposition. 
As a result, the Re-Os isotopic system is an emerging tool widely used in tracing sources of anthropogenic 
pollutants in precipitation, snow, and ice in remote regions (Chen et al., 2009; Rauch et al., 2005; Rodushkin 
et al., 2007; Sen et al., 2013), as well as marine systems (Ownsworth et al., 2019; Sproson et al., 2020). As 
such, the objective of the study is to apply major and trace element geochemistry, coupled with 187Os/188Os 
compositions of cryoconite and moraine samples to constrain the metal composition across the ablation 
zone of the Chhota Shigri Glacier (CSG) in the western Himalaya. The latter is used to evaluate and discuss 
the sources of the metal impurities on the ablation zone of CSG and their role in determining rates and 
mechanisms of glacier mass wasting.

2.  Materials and Methods
2.1.  Sample Collection

Twenty samples of supraglacial cryoconite were collected from cryoconite holes across the ablation zone of 
the CSG between 4,500 to 4,930 m a.s.l. (Supporting Information S1 and S2 and Figure S1). The light gray 
to black colored sediments was collected into Corning® 50 mL centrifuge tube using pre-cleaned plastic 
scoops. In addition to the cryoconite samples, seven 0.3–0.5 kg samples of moraine debris containing par-
ticles ranging in size from clay to cobbles were also collected in polyethylene sterile Whirl-Pack® bags. All 
samples were kept frozen prior to analysis. To evaluate the presence of anthropogenic emission particulates 
in the CSG, samples of Gondwana and Tertiary coal from two major Indian coalfields (Jharia in the state 
of Jharkhand and Makum in the state of Assam), and diesel engine exhaust particulates obtained from 
engine-exhaust experiments were also analyzed (Supporting Information S3).

2.2.  Rhenium-Osmium (Re-Os) Analysis

Cryoconite and moraine samples were dried, sieved (moraine only) and powdered for geochemical anal-
ysis (details in Supporting Information S4). 10 samples of cryoconite, two of moraine (<63 μm fraction), 
four of coal, and two of engine exhaust were selected for Re-Os analysis. The Re-Os concentration and 
isotopic compositions were determined at the Durham Geochemistry Center using aqua regia carius-tube 
digestion isotope-dilution negative ion mass spectrometry analytical protocols (Cumming et al., 2013; Selby 
et al., 2009). Approximately, 1 g of cryoconite and moraine, 0.2 g of coal, and 0.02–0.03 g of exhaust par-
ticulate were loaded into a carius tube with a known amount of mixed tracer solution (spike) of 190Os and 
185Re and 9 ml of aqua regia solution. The carius tube was sealed and heated to 240°C for 48 h. The Os in the 
samples digested was isolated and purified using standard solvent extraction (CHCl3) and micro-distillation 
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(CrO3-H2SO4-HBr). The Re fraction was isolated and purified using NaOH-acetone solvent extraction and 
anion chromatography. The isolated Re and Os fractions were loaded onto Ni and Pt filament; with the 
isotopic composition determined by negative thermal ionization mass spectrometry using a Thermo Fisher 
TRITON mass spectrometer via static Faraday collection mode for Re and ion-counting using a second-
ary electron multiplier in the peak-hopping mode for Os. Total procedural blanks were 2.1  ±  0.02 and 
0.1 ± 0.01 ppt for Re and Os, respectively, with an average 187Os/188Os value of 0.25 ± 0.03 (n = 2) for cryo-
conite and moraine analysis, and 2.3 ± 0.2 and 0.1 ± 0.02 ppt for Re and Os, respectively, with an average 
187Os/188Os value of 0.20 ± 0.06 (n = 4) for coal and exhaust particulate analysis. In-house standard solu-
tion measurements yielded a 185Re/187Re value of 0.59786 ± 0.00014 (1 SD, n = 7) for the Re solution and 
a 187Os/188Os value of 0.16085 ± 0.00017 (1 SD, n = 6) for the Durham Romil Osmium Solution (DROsS), 
which agree with those of previous studies (Percival et al., 2019). The average value plus uncertainty of the 
Re standard solution together with the natural 185Re/187Re value of 0.5974 (Gramlich et al., 1973) is used 
for the Re sample mass fractionation correction. Data reduction includes the instrumental mass fractiona-
tion, isobaric oxygen interference, and contribution of blanks and the tracer solution. The final two-sigma 
uncertainties of the Re-Os data include the fully propagated uncertainties of sample-spike weighing, tracer 
calibration, blank abundances, and isotope compositions, and the intermediate precision of the repeated 
measurements on the Re and Os reference solutions.

3.  Results
3.1.  Trace Element Systematics

Trace element concentrations of the cryoconite, bulk moraine (<3 mm, see Supporting Information S4 for 
details), and fine moraine (<63 μm) fraction normalized to the local rock composition are shown in Fig-
ure S2. The fine moraine fractions and cryoconite exhibit similar patterns but possess higher trace element 
concentrations in comparison to the bulk moraine fractions that resemble local rock compositions. The fine 
moraine fraction shows higher trace element concentrations than bulk moraine much likely due to addi-
tional contamination or mixing of different grain size fractions. This is evident from the negative correlation 
of SiO2 with heavy metals including Sc, Ga, Sr, Nb, and Ta (except Pb) (Pearson correlation coefficients 
R ≥ −0.70 to −0.94, p = 0.001–0.05; Figures S3a and S4) (Cai et al., 2015; Thorpe et al., 2019). Additionally, 
an overall negative correlation is exhibited between other elements (except Li, Be, Rb, Cs, and Ba) against 
SiO2. A similar relationship is exhibited between trace metals and SiO2 in cryoconite samples (Figure S3b). 
In comparison to the fine moraine fraction, the cryoconite samples exhibit higher concentrations of V, Cr, 
Co, Ni, and Cd in more than 50% of the samples. Chondrite normalized REE concentrations show LREE 
enrichment and a negative Eu anomaly for cryoconite and all moraine fractions (Figure S5).

The relationship of the cryoconite trace element ratios to the local rock composition suggests that the cryo-
conite material has a local crustal provenance. For example, Cd/Zn (0.001–0.007) and Pb/Cu (0.84–1.98) 
ratios are similar to that of the local rock signature (Cd/Zn = 0.001–0.014 and Pb/Cu = 0.45–5.87). Further, 
REE ratios including, La/Ce, La/Sm, La/Yb and La/Lu ratios of cryoconite that vary between 0.44-0.51, 
30–57, 15–26, and 106–194, respectively, are similar to local rock values (0.37–0.48, 33–91, 15–41, and 113–
317, respectively). Noteworthy, the La/Ce, La/Sm, La/Yb, and La/Lu ratios of cryoconite and moraine are 
much lower than anthropogenic emission sources (La/Ce = 1.3–1.8, La/Sm = 19–28, La/Yb = 135–950, La/
Lu = 5400–1000) (Kitto et al., 1992; Olmez & Gordon, 1985) as are the Co/Cs ratios in the cryoconite sam-
ples (0.25–2.85, average = 1.12 ± 0.78, vs. >2.5 for anthropogenic emissions) (Geagea et al., 2007). Further, 
with the exception to Cr, Ni, and Cd, the enrichment factors (EF) values of ≤1 support a predominant crustal 
provenance for the cryoconite (Figure S6). The EF values for Cr (2.2), Ni (2.7), and Cd (2.6) in cryoconite 
show a detectable noncrustal input probably attributed to transported anthropogenic particulate metals. 
However, the Ni, Cr, Cd enrichment is quite low and much likely driven through grain size sorting effect as 
evident in the fine moraine fraction as well.

3.2.  Re-Os Systematics

Rhenium and Os concentrations of the cryoconite, moraine, coal, and vehicular exhaust samples are report-
ed in Table S1. In Figure 1a, the Re (ppb) and Os (ppt) concentrations together with total organic carbon 
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(TOC; wt %) are shown for cryoconite and the fine moraine fraction. Overall, cryoconite sampled between 
4,700-4,930 m a.s.l. has a higher average TOC (∼1.7%), Re (0.24–0.47 ppb), and Os (37–104 ppt) content than 
cryoconite sampled between 4,500 and 4,700 m a.s.l. (average TOC = 0.8%; Re = 0.16–0.21 ppb; Os = 11–
32 ppt). The elevated TOC, Re, and Os concentrations in cryoconite sampled from locations above 4,700 m 
a.s.l. also correspond to higher concentrations of heavy metals (Figure 1b). For example, trace metals such 
as Cr, V, Co, Cu, and Zn follow the trends shown by Re and Os suggesting that the elemental enrichment 
is probably controlled by common (chelating) mechanism/sources (Chen et al., 2016). The absolute abun-
dances of Re and Os show a moderate positive correlation with each other (R = 0.58, p = 0.1) (Figures S3b 
and S7), and similar correlation with TOC (R = 0.71 and 0.53 respectively). The cryoconite 187Os/188Os com-
position falls between 0.38 and 1.31, with cryoconite from sites between 4,700 and 4,930 m a.s.l. possessing 
187Os/188Os values between 0.38 and 0.83. Cryoconite samples from below 4,700 m a.s.l. have more radiogen-
ic 187Os/188Os values. The 187Os/188Os ratios show a significant negative correlation with Os concentrations 

Figure 1.  (a) Rhenium-Osmium concentration, 187Os/188Os ratios and Total Organic Carbon (TOC) in cryoconite (open symbols) and fine moraine fraction 
(<63 μm, filled symbols) (b) Trace metal concentration in cryoconite and TOC (scale is identical to figure a) along the ablation zone of the CSG. TOC data are 
from (Nizam et al., 2020).
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(R = −0.94, p = 0.001; Figures S3b and S7). Further, the 187Os/188Os ratios correlate positively with major 
oxides such as SiO2, Na2O, and K2O (R = 0.71–0.89, p = 0.001–0.05). In contrast, heavy REE (HREE: Er to 
Lu), MgO, Fe2O3, MnO, and TiO2 exhibit a significant negative correlation with 187Os/188Os ratios (R = −0.81 
to −0.93, p = 0.001–0.01; Figures S7 and S8).

The Re and Os concentrations of two moraine samples from ∼4,750 and 4,550 m a.s.l are 0.14 and 0.21 ppb 
and 13 and 30 ppt, being similar to the average upper continental crust (UCC) composition (Re = ∼0.20 ppb; 
Os = ∼31 ppt) (Esser & Turekian, 1993; Peucker-Ehrenbrink & Jahn, 2001). The Re and Os concentrations 
in Gondwana coal range between 0.26 and 0.76 ppb and 7 and 18 ppt, respectively. The Re and Os concen-
trations in Tertiary coal samples range between 0.47 and 0.53 ppb and 63 and 726 ppt respectively. Unlike 
cryoconite, the Gondwana and Tertiary coals show limited variability and are characterized by radiogenic 
(187Os/188Os = 1.61–1.64) and unradiogenic osmium isotope compositions (187Os/188Os = 0.14 and 0.21), 
respectively. The analysis of two engine exhausts yielded Re and Os concentrations of 0.07 and 1.04 ppb and 
2 and 6 ppt, respectively. The engine exhaust samples are characterized by an unradiogenic osmium isotope 
composition (187Os/188Os = 0.21–0.22), similar to catalytic converters (Poirier & Gariépy, 2005).

4.  Discussion
4.1.  Cryoconite Provenance

Glaciers are sites of active physical erosion, with their continuous movement effectively powdering rock 
units in the glacial catchment that can be further eroded by wind action and deflation (Brown et al., 1996; 
Sharp et al., 1995; Tranter et al., 2002). This local freshly weathered rock that is subjected to deflation will 
overwhelm any long-range dust transport signal by covering the neighbouring glacier. This is illustrated by 
both the major (Figure S9) and trace element systematics (Figure S2) of the CSG cryoconite, which are de-
rived from weakly weathered rocks of the glacial catchment. Most of the cryoconite (14 samples) exhibit Co, 
Cr, Ni, and Sc enrichment that indicates a detectable noncrustal component. In contrast, cryoconite from 
Arctic, European, Canadian, and other South Asian glaciers exhibits heavy metal enrichment several orders 
of magnitude higher than were found in their local rock and moraine, which is consistent with high activity 
concentrations of anthropogenic radionuclides (Baccolo et al., 2017; Beaudon et al., 2017; Łokas et al., 2016; 
Owens et al., 2019; Singh et al., 2013). This suggests that the CSG can be classified as being relatively pris-
tine compared to other glaciers on which significant anthropogenic pollution signal has been recorded and 
linked to long-range transport of the anthropogenic emission residues. Moreover, samples showing detect-
able metals enrichment occurs mainly in the upper reaches (except first sample) of the CSG ablation zone, 
that is, above 4,700 m a.s.l. Additionally, these samples show minor deviation from the local moraine com-
position toward a more mafic rock composition (Figures S10 and S11). Although heavy metal enrichment 
can also be attributed to anthropogenic contributions, the correlation with TOC suggests that enrichment 
is most plausibly attributed to sources of TOC (microorganisms) owing to their inherent tendency to accu-
mulate fine chelate metals (Łokas et al., 2016). Furthermore, given that air-mass back trajectory modeling 
clearly shows that 50% of the air mass that reaches the CSG originates from the west, within ∼250 km of the 
study site and possesses limited inputs from the Indo-Gangetic Basin (Nizam et al., 2020), only minor input 
from anthropogenic sources can be considered. Lastly, the chondrite normalized REE signature of moraine, 
local country rocks from the Himalaya, river sediments from glacial catchments, cryoconite, snow, and ice 
core dust (Figure S12) show similar REE patterns, all exhibiting REE enrichment similar to that of granitic 
or shale (PAAS)-like sources, which are commonly observed in the Higher and the Lesser Himalayan rocks 
and sediment. The anthropogenic dust mostly exhibits fractionated (enriched) LREE patterns with smooth 
HREE enrichment and often contains a strong positive Gd anomaly (Geagea et al., 2007; Hatje et al., 2016). 
The cryoconite shows a large range of 187Os/188Os compositions (0.4–1.3) that overlaps with both natural 
and anthropogenic sources (Figure 2).

The unradiogenic 187Os/188Os signature of cryoconite (∼0.4) could be explained by contributions from both 
natural Os sources such as cosmic dust, volcanic aerosols, mafic and ultramafic rocks, and anthropogenic 
Os from catalytic converters that are often recycled (187Os/188Os = ∼0.38) (Poirier & Gariépy, 2005) and 
from fossil fuels, smelting of chromite, base-metal sulfide, PGE ores, and municipal solid waste incinera-
tors (MSWIs). Contributions from volcanic aerosols and cosmic dust seem unlikely due to the absence of 
active volcanism in and around the Himalaya and extremely low (40,000 ± 20,000 t yr−1; t = 106 g) global 
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cosmic dust flux (Love & Brownlee,  1993) that can significantly affect 
the 187Os/188Os of sediments in the highly active glacial ablation zones. 
However, a contribution from mafic rocks is plausible as ultramafic 
dykes, sills, and pegmatitic veins (early Proterozoic-late Paleozoic age) 
are common in Higher Himalayan Crystalline Sequence (HHCS) and lo-
cally in the glacial catchment (Thakur & Patel, 2012; Thöni et al., 2012). 
Given that the unradiogenic 187Os/188Os signature in the cryoconite cor-
relates with high Fe2O3-MgO and low SiO2 concentrations (Figure S8), 
a mafic/ultramafic source rock input is likely instead of anthropogenic 
input and is supported by the cryoconite trace element geochemistry. 
Therefore, from trace element systematics, Re and Os concentrations, 
and 187Os/188Os compositions it can be concluded that the glacial debris 
contains felsic and mafic/ultramafic rock components, with essentially 
no input from anthropogenic sources.

4.2.  Further Evaluation of Natural and Anthropogenic Sourced 
Osmium

The relative contributions from various source endmembers are quan-
tified using a three-component mixing model using 187Os/188Os and Os 
concentration as tracers. The first end-member represents local rocks, 
which are very similar in composition to the HHCS (Pierson-Wickmann 
et  al.,  2000) and eroding UCC (Peucker-Ehrenbrink & Jahn,  2001) for 
which we assign an Os abundance of 30.4 ppt and 187Os/188Os value of 
∼1.48 (Table  S1). For the second end-member, mafic-ultramafic rocks 
are selected having an Os concentration of 850 ppt and an 187Os/188Os 
value of ∼0.12 (Table 4; Data from Meisel et al., 2001, sample number: 
KH80-100, peridotite xenoliths). To explain the data distribution (Fig-
ure 3a), the third endmember should have low Os concentration and an 
intermediate 187Os/188Os composition. This end-member could represent 
an Os-poor mineral such as aeolian quartz or granitoid and/or gneisses 
(Peucker-Ehrenbrink & Blum, 1998). We therefore assign an Os concen-
tration of 1 ppt and a 187Os/188Os value of ∼0.90. It is noteworthy that 
the 187Os/188Os composition could be more radiogenic and Os concentra-
tions could be significantly lesser (Peucker-Ehrenbrink & Blum, 1998). 
Keeping in mind that the three end-members of our mixing model with 
the defined endmembers should enclose all data points (Figure 3a), we 
performed our mixing model with the defined endmembers as outlined 
above. Our mixing calculations suggest that the cryoconite 187Os/188Os 

signature is mainly derived from local rocks (67.4 ± 18.6%), and Os-poor mineral phase (29.6 ± 19.9%), with 
limited input from the mafic-ultramafic rocks (3.0 ± 2.8%, Figure 3b). In general, the upper elevation of the 
glacier showed a greater Os contribution from mafic rock/mineral phases, which is consistent with the trace 
element systematics (Figure 1b).

We acknowledge that the choice of end-member compositions will change the end-member contributions, 
but we emphasize that the conclusion of the study will not change. Further, we did not include any an-
thropogenic sources because enrichment factors and trace and major element concentrations support a 
predominantly crustal provenance for the cryoconite. Moreover, this is supported by the fact that the gla-
cier ablation zone is mostly free of fossil fuel derived carbon (Nizam et al., 2020). We did not, therefore, 
include coal and engine exhaust as suitable endmembers. We also emphasize that the metal enrichment in 
the cryoconite can be influenced by microbial processes. Given the elevated TOC concentration observed 
in upper ablation zone of the CSG, a higher level of microbial activity is implied (Anesio et al., 2009). The 
δ13C enrichment (−18.19‰) in cryoconite samples and its relationship with N enrichment and or deple-
tion supports contributions from photo-autotrophic and heterotrophic micro-organisms that may also have 
modified predominantly heavy metal (Cr, V, Ni, and Co) signature (Nizam et al., 2020).

Figure 2.  Comparison of osmium isotopic ratio of cryoconite and 
moraine with different potential sources. The dashed vertical line marks 
the limit of the measured unradiogenic Os that can be directly contributed 
by vehicular emission in the atmosphere. Moraine Os isotopic ratios lie 
within the crustal range of both eroding, that is, global river (Levasseur 
et al., 1999) and noneroding crust: Higher Himalayan Crystalline Sequence 
(Pierson-Wickmann et al., 2000), black shale (Ackerman et al., 2019; Selby 
& Creaser, 2003; Singh et al., 1999; van Acken et al., 2019). Cryoconite, 
in contrast, exhibits a range in 187Os/188Os ratios that encompass crustal 
to unradiogenic signature similar to that of recycled catalytic converters 
(Poirier & Gariépy, 2005), volcanic aerosol (Krähenbühl et al., 1992; 
Yudovskaya et al., 2008), and municipal waste (Funari et al., 2016). Data 
reference: cosmic dust (Schmitz et al., 1997; Walker et al., 2002), mafic/
ultramafic rock (Hanski et al., 2001; Meisel et al., 2001), Taklimakan 
desert and Kunlun moraine (Hattori et al., 2003), catalytic convertor 
(Poirier & Gariépy, 2005), liquid fossil fuel (Corrick et al., 2019; Cumming 
et al., 2014; Lillis & Selby, 2013; Selby et al., 2007), chromite ore (Mondal 
et al., 2007), PGE ore (Coggon et al., 2012), and municipal waste (Funari 
et al., 2016).
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4.3.  Implications of the Absence of Anthropogenic Emission 
Residues From the Western Himalayan Glacier

Glaciers receive a large supply of metals in the form of windblown min-
eral dust from the erosion of the UCC and mafic rocks, with inputs from 
anthropogenic sources (Casey,  2012; Cristofanelli et  al.,  2014; Wake 
et al., 1993). Knowledge of the amount, composition, and source of dust 
and anthropogenic emissions is essential to calculate the heat-absorbing 
capacity of the residue, and in turn, ice melting rates. For example, 1 ppb 
of BC residue on the glacier has the same effect on albedo as that of 75 ppb 
dust (Jacobi et al., 2015). In this study, we show that CSG debris contains 
negligible impurity contributions from fossil fuel emission sources. Fur-
ther, carbon characterization (Ramped Pyrolysis Oxidation: RPO, δ13C, 
and 14C chronology) of TOC in both cryoconite and the <63 μm (fine) 
fraction of moraine from the same glacier revealed that the cryoconite 
has negligible contributions from fossil fuel emission sources (Nizam 
et al., 2020). The RPO, δ13C, and 14C data reveal that 98.3 ± 1.6% of the 
OC is sourced from local biomass sources, atmospheric organic matter, 
and glacial microbes, with only 1.7 ± 1.6% of the OC being sourced from 
petrogenetic sources. Further, it has been shown that, on annual basis, 
50% of the air mass originates from far (>1,000 km) to the west of the 
receptor site (CSG) Nizam et al. (2020). Therefore, based on the Os iso-
topic systematics and previous findings we conclude that the CSG is es-
sentially free of anthropogenic residues and receives limited long-range 
dust inputs.

It is well established that glaciers in the CSG basin have been losing mass 
at an average rate of 0.50 meter water-equivalent per year (m w.e. yr−1) 
over the last two decades (Azam et al., 2019), which is relatively high-
er than the regional rate of loss from glaciers in the central (0.35  m 
w.e. yr−1) and eastern Himalaya (0.43 m w.e. yr−1), having more exten-
sive debris cover (18%–24%) and substantial inputs of anthropogenically 
sourced pollutants from the Indian subcontinent (Babu et al., 2011; Brun 
et al., 2017; Li et al., 2016). The high glacial mass wastage rate observed in 
the western Himalaya is likely due to a mean annual tropospheric warm-
ing trend (0.016 ± 0.005 K yr−1) during ablation season, which is high-
er than that found in the central and eastern Himalayan region (Prasad 
et al., 2009). Consequently, warming-induced melting of snow (which is 

80% of total precipitation) constitutes the large faction (15%–66%) of the annual hydrological budget in the 
western Himalaya (Azam et al., 2019; Bookhagen & Burbank, 2010). In contrast, central and western Hima-
layan glaciers are fed by the Indian Summer Monsoon (which contributes ∼80% of the annual hydrological 
budget) and receive a significant fraction of anthropogenic pollutants (50% of total anthropogenic carbon) 
from the heavily polluted Indo-Gangetic Plain (Li et al., 2016) that can enhance melting by 340 kg m−2 yr−1 
(Ginot et  al.,  2014). However, other surface darkening factors such as presence of pigmented microbes, 
detrital organic matter, accumulations of particulates on the glacier surface may also enhance the glacial 
melting and cannot be ruled out without further research.

Therefore the near absence of anthropogenic particles on the nearly debris free CSG reveals that any 
heat-absorbing anthropogenic particles deposited on the surface of the CSG are not one of the primary 
drivers behind CSG melting, as observed on glaciers in other parts of the world, such as Greenland, Alaska, 
and Tibet (Dumont et al., 2014; Nagorski et al., 2019; Xu et al., 2009). Despite an increase in anthropogenic 
emissions from the Indian subcontinent over the last 50 years (Crippa et al., 2018), we conclude that an-
thropogenic emission residues (due to negligible occurrence) on the surface of CSG might not significantly 
enhance glacier mass wastage rates in the near future. The rapid retreat of CSG can be best explained by 
rising air temperatures, and morphological characteristics of the CSG catchment. It is noteworthy that nu-
merical modeling (under RCP 8.6 climatic scenario, see Chaturvedi. et al., 2014 for details) of the surface 

Figure 3.  (a) Three-component mixing modeling plot for Os 
concentration and 187Os/188Os for cryoconite and the proposed three 
end-members: LM (Local Moraine), LR (Less Radiogenic Os poor mineral 
phase: aeolian quartz/granite/orthogneiss), and UR (Ultramafic Rocks). (b) 
Percent contribution of the Os sources in cryoconite with elevation along 
the ablation zone of the Chhota Shigri Glacier. See text for discussion.
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mass balance of CSG reveals that the glacier will cease to exist by 2109 CE with a temperature rise of 5.5 K 
from the local mean annual temperature of the year 2009 (Gantayat et al., 2017).

5.  Conclusion
The concentration, origin, and depositional pathways of metals on the CSG were investigated for the first 
time using major and trace elements, and Re-Os isotope systematic of debris samples from supraglacial 
cryoconite holes and moraines. Our study highlights two important points regarding the presence of metal 
impurities on the CSG surface. First, although the Himalaya is surrounded by some of the world's largest 
emitters of anthropogenic particles, however, we find limited evidence for anthropogenic metal impurities 
on the CSG likely due to the source region of the air mass reaching the CSG mainly coming from west. 
Mixing model calculations show that Os in the CSG is exclusively sourced from local crustal rocks. Second, 
integration of geochemical and air-mass back trajectory modeling data reveals that the sediment/dust is 
mostly of local origin. We conclude that the impact of anthropogenic particulate emission on the CSG melt-
ing is limited and caused by climate warming and other glacier surface darkening factors viz., presence of 
pigmented microbial cells, detrital organic matter, OC from local biomass sources, and natural dust/debris 
cover. Therefore, future glacial melt modeling studies should include the anthropogenic emission impuri-
ties for clean glaciers like CSG with caution.
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