
The Stata Journal (2021)
21, Number 3, pp. 818–837 DOI: 10.1177/1536867X211045582

Speaking Stata: Ordering or ranking groups of
observations

Nicholas J. Cox
Department of Geography

Durham University
Durham, UK

n.j.cox@durham.ac.uk

Abstract. Results for categorical variables may often be clearer if those variables
are reordered or reranked, say, according to some measure of absolute or relative
frequency or according to summaries of some other variable. Some graphical and
tabulation commands have dedicated options serving that end. Otherwise, in
practice a new order is often best achieved by creating a new variable holding
the desired order using one or another egen function. There is usually a need to
preserve the information in existing values or value labels and to watch out for
ties. There may be a desire to reverse the direction of ranking from the default.
I discuss procedures for datasets based on aggregate frequencies and for datasets
based on individuals and introduce a new convenience command, myaxis, that
handles many cases directly.

Keywords: st0654, myaxis, ordering, ranking, graphics, tabulation, categorical
data, geometric means, confidence intervals, egen

1 Introduction
Suppose you have a categorical variable that has only an arbitrary order, for exam-
ple, fruits that may be apples, bananas, or oranges. Such a variable is nominal scale
(named) in the much-used classification of Stevens (1946, 1975). As with our fruits, the
arbitrary order might be just alphabetical, but on the face of it no other order would be
informative either. If there were categories in a natural or evident order, for example,
opinions from strongly disagree to strongly agree, then the variable would instead be
ordinal (ordered).

However, initial analysis using a nominal variable often suggests that results for
such data would be clearer, or at least tidier, if the categories were reordered in graphs
or tables, say, according to category frequency or abundance or to the magnitude of
some outcome or response. Several Stata commands offer handles for such reordering,
including graph bar, graph hbar, and graph dot on one hand and tabulate on the
other. But it is helpful to have more general methods for ordering, particularly when
you want something similar that is not directly available through dedicated options in
other commands you are using.

Equivalently, the need may be described as one of ranking, but here the ranking is
of groups of observations. That wording may not seem to help much, because ranking

© 2021 StataCorp LLC st0654

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X211045582&domain=pdf&date_stamp=2021-10-04

N. J. Cox 819

in Stata, and statistics generally, is usually phrased in terms of ranking values in each
of several observations.

The focus of this column is on methods to produce such ordering or ranking of groups,
which in practice often hinges on some convenient functions in egen. Contrary to general
pedagogic practice, I start with examples that are about as tricky as is common (bad
news first) and end with examples where handles for sorting into the desired order
already exist (good news follows). I follow a detailed discussion of principles with
material on a new convenience command, myaxis, that covers many simple cases.

2 Example: Hospitals differing in results
In a much-used textbook, Box, Hunter, and Hunter (1978, 145–149; 2005, 112–116) gave
data on patients from five hospitals (A, B, C, D, and E) on the degree of restoration (no
improvement, partial functional restoration, complete functional restoration) of certain
joints impaired by disease effected by a certain surgical procedure. Hospital E is a re-
ferral hospital, but otherwise the identifiers are cryptic (for good reasons, let’s assume).
Box, Hunter, and Hunter carried out chi-squared analyses, focusing on the difference
between Hospital E and the others. Box’s (2013) autobiography is entertaining on the
background to this book and on much else in his life and career.

The dataset has been widely used as an example, for instance, by Daly et al. (1995,
519–522) and in the help file of distplot. On the latter, see Cox (2019) or any later
update as revealed by search distplot, sj. Although identifiers A to D are not
informative, the alphabetical order of their real names would not obviously provide a
better order, and those names would make sense only to people familiar with those
hospitals.

To see the issue, we first read the data in directly.

. input str1 hospital float freq long restore
hospital freq restore

1. "A" 13 1
2. "B" 5 1
3. "C" 8 1
4. "D" 21 1
5. "E" 43 1
6. "A" 18 2
7. "B" 10 2
8. "C" 36 2
9. "D" 56 2
10. "E" 29 2
11. "A" 16 3
12. "B" 16 3
13. "C" 35 3
14. "D" 51 3
15. "E" 10 3
16. end
. label values restore restore
. label define restore 1 "none" 2 "partial" 3 "complete"

820 Speaking Stata

. label variable restore "How far restored?"

. set scheme sj

. save sandboxhh
file sandboxhh.dta saved

For simple graphics, we can use tabplot. A detailed discussion of this command
was given in Cox (2016a), but do search tabplot, sj for the latest update if you want
to use it yourself. Using that command is manifestly a personal preference, but graphs
using any of several other official or community-contributed commands would make the
main point equally clearly.

So that we can focus on the main point of category order, I gather together first
various graphics options shared by various figures. This is backward in that sensible
options are often (in my case, almost always) worked out more slowly as one tinkers
with varying draft graphs.

. local options1 separate(restore) subtitle("% by hospital") xtitle(Hospital)

. local options2 bar1(fcolor(gs4) lc(black)) bar2(fcolor(gs8) lc(black))
> bar3(fcolor(gs12) lcolor(black))

Figure 1 is a basic two-way bar chart to show the problem. Hospital E stands out,
but the default alphabetical ordering is otherwise not helpful.

. tabplot restore hospital [w=freq], showval percent(hospital) `options1'
> `options2'
(frequency weights assumed)

27.7 16.1 10.1 16.4 52.4

38.3 32.3 45.6 43.8 35.4

34.0 51.6 44.3 39.8 12.2
complete

partial

none

H
ow

 fa
r r

es
to

re
d?

A B C D E
Hospital

% by hospital

Figure 1. Restoration success in various hospitals. The referral hospital E is clearly
different, but the ordering of the other hospitals could be improved.

N. J. Cox 821

3 Solution: Use egen’s rank() function and change order,
fix labels, plot again

To do better, we need to do the following:

1. Produce a new variable that contains the categories in a desired new order. Just
occasionally, that might be a string variable if we are lucky or clever about wording.
For example, consider string values "best", "middling", and "worst". Those val-
ues would plot in the desired order but not because some homunculus inside Stata
understands meanings. The right order would be produced for the wrong reason
because Stata knows the alphabet. More usually, therefore, this new variable will
be a numeric variable with integer values and value labels.

2. Fix value labels if needed, unless what you just did means that is done already,
or exceptionally you do not care to see them.

3. Try a new plot. The needed details for a good plot may include better axis titles.

Looking at figure 1, let’s suppose that we want to rank on the proportion of cat-
egory 1 (no restoration, so essentially the bad news). We do this here step by step,
showing some detailed techniques that serious Stata users are likely to need again and
again.

The proportion of category 1 is the frequency of category 1 divided by the frequency
of all categories. If you want to see percents rather than proportions on the graph, that
is easy: you can see in figure 1 that tabplot has an option for showing them. All we
are doing here is reordering the hospitals. Multiplying proportions by 100 would make
no difference to the order.

. egen num1 = total(freq * (restore==1)), by(hospital)

. egen den = total(freq), by(hosp)

. generate pr1 = num1 / den

If the syntax restore==1 is new to you, here is the story (Cox 2016b). The true-or-
false comparison yielded by == returns 1 if restore is 1, so if the comparison is true, and
0 otherwise if the comparison is false. Applied as a weight, the result of the comparison
multiplies the frequencies of category 1 by 1 and other frequencies by 0, and so total()
just adds the frequency of category 1. Category 1 occurs just once in the dataset for
each hospital, so the total of one value is that value. With this code, we are spreading
the frequency of category 1 to be a value in all observations for the same hospital.

Backing up, we could have done this instead:

. egen den = total(freq), by(hosp)

. generate pr1 = freq / den if restore == 1

This code leaves pr1 undefined for other values of restore, but that is not fatal. We
will flag this alternative with (∗) to ease a later back-reference.

822 Speaking Stata

With the first method, the same value of pr1 will be assigned to all observations in
each hospital. (If you are following along by repeating the commands in your copy of
Stata, you can see that by using edit or list to look at the data.) So if we pushed pr1
through the rank() function of egen or any other code to produce ranks, the problem
of ties would arise. In this example, with three observations for each hospital, the ranks
would emerge as three 2s, three 5s, and so on. That can be puzzled out: The three
observations with the lowest value would have been ranked 1, 2, and 3 if their values
had been slightly different, but the same value should be assigned the same rank. The
rule followed is to preserve the sum of the ranks that would have otherwise had been
assigned, so the average, (1 + 2 + 3)/3 = 2, is assigned to each. And so on.

Ranks 2, 5, 8, 11, and 14 are at least equally spaced, so results could be worse,
which is much of the point. In any dataset with different numbers of observations in the
various categories, the ranks would not emerge even equally spaced. A general solution
that avoids such problems is to rank a subset that is based on one observation per group
and then spread the resulting ranks to the other observations in each group.

. egen rank1 = rank(pr1) if restore == 1
(10 missing values generated)
. bysort hospital (rank1): replace rank1 = rank1[1]
(10 real changes made)

We can now mention that this code would work too with the alternative flagged (∗) just
a short while back.

Going back to first principles has further advantages. By default, ranking on a
variable means that the lowest values get the lowest ranks, just as the lowest times
win in track events in athletics. If you wanted the reverse order, you can rank on the
negated variable, so here you could give -pr1, the minus sign indicating reverse order.
That would exploit the detail, often overlooked, that rank() feeds on an expression,
which can be more complicated than a bare variable name. (It does not hurt that
tabplot has yreverse and xreverse options anyway, and some graph commands have
equivalent options.)

Just to be awkward, but realistic, we may also need ways to break ties if two or
more hospitals had the same value on any criterion. The unique option can be added
to the rank() call to ensure breaking of ties.

The ranking has done no more than assign the new ranks 1, 2, 3, 4, and 5 to the
hospitals. We should add value labels to preserve the information in the original data.
labmask is a command dedicated to this purpose (Cox 2008).

. labmask rank1, values(hospital)

labmask here takes the values of hospital and uses them to define value labels for
rank1. The slightly whimsical name echoes a notion that value labels are like a mask
that numeric values wear. The same syntax would have been used if hospital had
been a numeric variable without value labels, while the extra option decode is needed
if existing value labels are to be preserved.

N. J. Cox 823

Now we can try a different plot (figure 2):

. tabplot restore rank1 [w=freq], showval percent(hospital) `options1'
> `options2'
(frequency weights assumed)

10.1 16.1 16.4 27.7 52.4

45.6 32.3 43.8 38.3 35.4

44.3 51.6 39.8 34.0 12.2
complete

partial

none

H
ow

 fa
r r

es
to

re
d?

C B D A E
Hospital

% by hospital

Figure 2. Restoration success in various hospitals. The hospitals are ordered by pro-
portion of no restoration. Recall that E is a referral hospital.

Ranking on any other criterion just entails the same kind of sequence. Ranking on
the proportions of partial or complete restoration implies an easy change from restore
== 1 to restore == 2 or restore == 3 in the code above.

Here is something a little more challenging: the use of a weighted mean over scores 1
to 3. At this point, I do not want to start a secondary debate on how logical or admissible
it is to calculate means for ordinal grades. But I will season the dish with some references
to the long-running and lively discussion of such matters within statistical science:
Duncan (1984); Velleman and Wilkinson (1993); and Hand (1996, 2004).

Note that the sum of frequencies has already been calculated as the variable den, so
that will serve as denominator. We need a numerator too.

. egen num = total(restore * freq), by(hosp)

. generate wtmean = num/den

There is a good way to select just one observation from several for each hospital.
The tag() function of egen assigns 1 to one observation in any group and 0 to the
others in the same group. Because they are all the same, it does not matter which one
is chosen, but the code uses the first observation seen in each group. A public function

824 Speaking Stata

goes back to 1999, but the basic idea was even then quite standard (Cox 1999). That
aside as a variant trick, we can follow a similar path to a different plot (figure 3).

. egen tag = tag(hospital)

. egen rank = rank(wtmean) if tag
(10 missing values generated)
. bysort hospital (rank): replace rank = rank[1]
(10 real changes made)
. labmask rank, values(hospital)
. tabplot restore rank [w=freq], showval percent(hospital) `options1'
> `options2'
(frequency weights assumed)

52.4 27.7 16.4 10.1 16.1

35.4 38.3 43.8 45.6 32.3

12.2 34.0 39.8 44.3 51.6
complete

partial

none

H
ow

 fa
r r

es
to

re
d?

E A D C B
Hospital

% by hospital

Figure 3. Restoration success in various hospitals. The hospitals are ordered by weighted
mean score. Recall that E is a referral hospital.

4 Solution: Use egen’s group() function instead
Let’s back up and show a different solution, but one in similar spirit, this time using
the group() function of egen. If you typed in the code given earlier, you can skip data
input and go back to the dataset saved from the original data.

. use sandboxhh, clear

N. J. Cox 825

Then, different code follows to get a plot with proportion with no restoration as the
ordering criterion, with commentary only on what is different.

. egen num1 = total(freq * (restore==1)), by(hospital)

. egen den = total(freq), by(hosp)

. generate pr1 = num1 / den

. egen rank1 = group(pr1 hospital)

. labmask rank1, values(hospital)

. tabplot restore rank1 [w=freq], showval percent(hospital) `options1' `options2'

The resulting graph is just figure 1 again.

So we exploit the fact that group() gives a variant of ranking, but a variant that we
often want: All observations with the same lowest value are assigned 1, all observations
with the next lowest value are assigned 2, and so on. The reason for specifying hospital
too as an argument—note the two variable names pr1 and hospital—is to break ties
if there are any; it does no harm otherwise.

If you wanted reverse ranking, you might need to negate one or more of the variables
before they are fed to group(). There is no handle for that otherwise. group() does not
allow anything but variable names in its main argument, and there is no such option.
Again, reverse ranking may be allowed anyway by your graphics or tabulation command.
Yet again, at least in simple cases, reversing the ranks is a matter of subtraction. If
your ranks run 1 to 5 and you want to reverse the order, subtract the ranks from 6:
6− 1 = 5, and so on.

5 What about individual data?
The dataset used so far was presented in concise form with a frequency variable. You
can produce such a dataset yourself by applying contract to a dataset on individuals
(here patients). Conversely, you can use expand to go the other way to get a dataset
in which each observation is a patient from a dataset with a frequency variable. If you
imagine, or even execute,

. expand freq
(352 observations created)

then the code to get figure 1 yet again is now even simpler:

. egen pr1 = mean(restore==1), by(hospital)

. egen rank1 = group(pr1 hospital)

. labmask rank1, values(hospital)

. tabplot restore rank1, showval percent(hospital) `options1' `options2'

The simple but fundamental trick here is that the proportion of any category is
just the mean of the corresponding indicator variable. See Cox (2016b) and Cox and
Schechter (2019) if that sounds novel or puzzling.

826 Speaking Stata

Naturally, we do not need this code for our dataset. It is given as an example because
datasets often arrive in similar form, with one observation for each individual.

6 Example: Geometric means
I continue with another example in which the small labor of sorting into congenial order
is delegated to a graphical command. The example is included partly as a reminder to
myself to write about geometric means in some future column. The geometric mean
as the exponential of the mean logarithm remains valuable as a way of nodding to
logarithmic thinking while producing a summary in the original units of measurement.
Its use for summarizing data, in a suitably broad sense, seems to go back at least to
Galileo Galilei, better known as an astronomer and a physicist (Reston 1994, 218):

In 1627 Galileo ‘was presented with an amiable dispute between a Florentine
gentleman and a parish priest over the proper method to price a horse . . .
one bidder—undoubtedly the priest—had offered ten crowns and the other
one thousand. In arriving at the proper value, the equestrians asked Galileo
to be their arbiter. Was it better to employ an arithmetic or a geometric
proportion in arriving at a fair price between divergent estimates? A geo-
metric proportion was Galileo’s answer. The real value of the horse was one
hundred.’

Geometric means are possible only when all values are positive. They are useful
mostly when data arrive positively skewed. Their canonical application is to lognormal
distributions, for which geometric means and medians coincide, but it has wider utility.
(Note: If all values are negative, the signs can be treated as conventional and ignored.)
Community-contributed code for putting geometric means into variables is easy enough
to find, although by the time you have found and installed it, you could have done it
slowly with two or at most three commands. The solution here exploits the detail, often
overlooked, that the egen function mean(), just like rank(), feeds on an expression,
which can be more complicated than a bare variable name.

The next application is to hourly wages from the U.S. National Longitudinal Survey
of Young Women and Mature Women in 1988. The graph orders industries by their
geometric means of hourly wage (figure 4).

. sysuse nlsw88, clear
(NLSW, 1988 extract)
. egen gmean = mean(ln(wage)), by(industry)
. replace gmean = exp(gmean)
(2,246 real changes made)
. egen tag = tag(industry)
. graph dot (asis) gmean if tag, over(industry, sort(1) descending)
> linetype(line) lines(lc(gs12) lw(vthin))
> ytitle(Geometric mean hourly wage (USD)) ysc(alt)

N. J. Cox 827

0 2 4 6 8 10
Geometric mean hourly wage (USD)

Personal Services

Ag/Forestry/Fisheries
Wholesale/Retail Trade

Entertainment/Rec Svc

Business/Repair Svc
Manufacturing

Construction
Professional Services

Finance/Ins/Real Estate
Public Administration

Transport/Comm/Utility
Mining

Figure 4. Geometric mean hourly wage for different industries

I find the default dotted grid in graph dot a little distracting—and it is often
degraded on export to other software. So my usual choice is, as just given, more like

linetype(line) lines(lc(gs12) lw(vthin))

Using a light-gray color to downplay less important graph elements is a standard yet
underplayed strategy. See, for example, Schwabish (2021) for general emphasis and Cox
(2009) for particular Stata applications. Another personal choice is ysc(alt) for many
graphs with something of a table flavor. See Cox (2012a) for more on what goes (best)
on what axis.

Ordering industries by geometric mean wage is suggested as one helpful choice, but
other choices are entirely possible. In this dataset, the order of the variable industry
is evidently, in economic terms, a sequence from primary through secondary to tertiary
or even quaternary sectors, so that might be helpful too.

7 Missing values
The small question of wanting to reorder categorical variables leads to several smaller
questions, and this column has not covered them all.

Are there missing values for categorical variables? You need to decide whether to
include or to exclude them, and you may find that the default behavior of a command
jumps the other way. This does not seem much of an issue in practice, so I will leave
the matter there.

828 Speaking Stata

8 Tables as well as graphics
What about tables? Some table commands also have handles to vary sort order:
tabulate is a good example. Mostly, you need to create the ordered variable you want
first, as in this column. That said, do not underestimate the scope for do-it-yourself
tables on the fly, using, say, list or tabdisp (Cox 2003, 2012b).

Given the geometric means just calculated, here is a simple table constructed on the
fly.

. char gmean[varname] "geometric mean wage (USD/hr)"

. gsort -tag -gmean

. format gmean %3.2f

. list industry gmean if tag, noobs sep(0) abbrev(28) subvarname

industry geometric mean wage (USD/hr)

Mining 10.62
Transport/Comm/Utility 10.26
Public Administration 8.24

Finance/Ins/Real Estate 7.80
Professional Services 6.76

Construction 6.58
Manufacturing 6.37

Business/Repair Svc 6.01
Entertainment/Rec Svc 5.54
Wholesale/Retail Trade 5.06
Ag/Forestry/Fisheries 4.86

Personal Services 3.93

So far, so good, but by many standards we are still at the trivial shallow end of the
tabulation pool. Let’s try a two-way table and spell out a device that can help in tidying
up a messy table. We need an example large enough to be convincing as messy and
small enough not to take up too much space. Keeping with the industry variable, we
note a variable age with a range from 34 to 46 years. Let’s bin that a little arbitrarily.
I like self-describing bins:

. generate age_cat = cond(age >= 42, 42, cond(age >= 38, 38, 34))

. label define age_cat 34 "34-" 38 "38-" 42 "42-"

. label values age_cat age_cat

. label variable age_cat "age intervals (years)"

So our binning variable has distinct values 34, 38, and 42, corresponding to the lower
inclusive limits of bins 34 up, 38 up, and 42 up. The value labels are explicit about
what happens at the limits. Pragmatically, a few women aged 46 have been included
in the top bin. For more on binning, including the need to be explicit about binning
rules, see Cox (2018).

We know how to get geometric means into a variable. The issue is going to be getting
them into a good order. If gmean is still lurking from a previous burst of calculation,
we need to get rid of it, as done here, or else use a different variable name.

N. J. Cox 829

. drop gmean

. egen gmean = mean(ln(wage)), by(industry age_cat)

. replace gmean = exp(gmean)
(2,246 real changes made)
. tabdisp industry age_cat, c(gmean) format(%3.2f)

age intervals
(years)

industry 34- 38- 42-

Ag/Forestry/Fisheries 3.71 7.99 3.25
Mining 12.50 6.51

Construction 6.70 6.41 6.66
Manufacturing 6.41 6.51 6.17

Transport/Comm/Utility 9.76 9.94 11.47
Wholesale/Retail Trade 5.24 5.16 4.71
Finance/Ins/Real Estate 7.59 8.27 7.45

Business/Repair Svc 7.31 4.88 6.01
Personal Services 4.02 4.08 3.61

Entertainment/Rec Svc 6.91 4.49 5.07
Professional Services 6.56 7.00 6.63
Public Administration 8.07 8.75 7.49

. 4.24 3.22 7.45

Bringing up the rear are a bunch of people with industry unknown, so we will leave
them out as sadly uninformative. We can tidy up the table in various ways, but one
simple choice is to order on geometric mean wage for age group 34 to 37. The trick
is to ensure that observations for other age categories are populated too so that all
observations of interest get classified correctly. Here is one way to do it, explained in
detail in an earlier column (Cox 2011):

. egen GMEAN = mean(cond(age_cat == 34, ln(wage), .)) if industry < .,
> by(industry)
(14 missing values generated)

830 Speaking Stata

We do not need to exponentiate that; the values of GMEAN are necessarily in the
desired order already. Now the commands are already familiar or will shortly make
sense:

. egen order = group(GMEAN)
(14 missing values generated)
. label variable order "geometric mean wage (USD/hr)"
. labmask order, values(industry) decode
. tabdisp order age_cat if order < ., c(gmean) format(%3.2f)

age intervals
geometric mean wage (years)
(USD/hr) 34- 38- 42-

Ag/Forestry/Fisheries 3.71 7.99 3.25
Personal Services 4.02 4.08 3.61

Wholesale/Retail Trade 5.24 5.16 4.71
Manufacturing 6.41 6.51 6.17

Professional Services 6.56 7.00 6.63
Construction 6.70 6.41 6.66

Entertainment/Rec Svc 6.91 4.49 5.07
Business/Repair Svc 7.31 4.88 6.01

Finance/Ins/Real Estate 7.59 8.27 7.45
Public Administration 8.07 8.75 7.49
Transport/Comm/Utility 9.76 9.94 11.47

Mining 12.50 6.51

We have been careless about the possibility of ties. And we could have a small
discussion about whether a graph would work as well or better.

9 Example: Confidence intervals
Another kind of challenge is solved by creating a dataset consisting entirely of results,
so that then a sort on one or more variables suffices to get the order you want. Using
statsby to get a dataset for a confidence interval plot is a standard example (Cox
2010). We go back to those geometric means for the hourly wage. This code starts with
reading the dataset in once more, partly to give a self-contained example that is easier
to adapt for your own use if you have a similar need.

. sysuse nlsw88, clear
(NLSW, 1988 extract)
. statsby N=r(N_pos) gmean=r(mean_g) ub=r(ub_g) lb=r(lb_g), by(industry):
> ameans wage

(output omitted)
. sort gmean
. generate order = _n
. labmask order, values(industry) decode

The next two commands are presented disingenuously. Some experience and exper-
iment underlined that numbers in mining are very small and the associated confidence

N. J. Cox 831

interval correspondingly wide. Then it seemed that showing sample sizes would be a
good idea, but some trial and error is needed to work out where and how they should
be shown (figure 5).

. generate where = 51

. scatter order gmean, ms(Dh) ||
> scatter order where, ms(none) mla(N) mlabsize(medsmall) mlabpos(9)
> xmla(49 "{it:n}", labsize(medsmall) tlc(none)) ||
> rcap ub lb order, horizontal ytitle("") yla(1/`=_N', noticks ang(h) valuelabel)
> xsc(alt) xla(0(10)40, grid) t1title(95% CIs for geometric mean wage in USD/hr)
> legend(off)

97

17

333

17

86

367

29

824

192

176

90

4

Personal Services

Ag/Forestry/Fisheries

Wholesale/Retail Trade

Entertainment/Rec Svc

Business/Repair Svc

Manufacturing

Construction

Professional Services

Finance/Ins/Real Estate

Public Administration

Transport/Comm/Utility

Mining
n0 10 20 30 40

95% CIs for geometric mean wage in USD/hr

Figure 5. Confidence intervals for geometric mean wage by industry. Despite the intrin-
sic interest of this graph, its importance here is how it was produced by using statsby
to collate results of ameans. Sorting categories by their geometric means was then
straightforward.

10 A convenience command: myaxis
A tension or tradeoff for all Stata users, whether beginners or more experienced, is how
far to break down a problem into a series of simple code steps and how far to seek or
(depending on your experience) even to write a new command that ideally will solve
the problem in one call. Many, perhaps even most, users tend to resolve this through
do-files so that they bundle a series of commands into one script. As they extend or
correct their code, they can cut down on the amount of retyping because all previous
work has been saved in a file. A benefit but also a cost of do-files is that they can be
utterly ad hoc and geared to particular datasets.

832 Speaking Stata

Users who have begun to program still face a dilemma. Programming can be pre-
mature: You can write programs that do not deserve existence, but usually they fade
into oblivion without pain. I have written commands that I have regretted. Some such
commands I later thought trivial because just a few standard lines could replace them
without any need for me to rediscover the syntax, let alone remember what the com-
mand was called. Others were insufficiently focused or too elaborate to seem convenient
or congenial on later use.

The structure of this column loosely matches my work on the topic. I first decided
to write up the little tricks so far discussed that I was using again and again and
recommending to others. Then later the small project crystallized in a decision to
bundle the main ideas into a command called myaxis.

Let’s first exemplify how myaxis works for some of the problems discussed so far.

Here is how to re-create figure 2, starting from calculation of pr1.

. myaxis RANK1=hospital, sort(mean pr1) subset(restore==1)

. tabplot restore RANK1 [w=freq], showval percent(hospital) `options1' `options2'

RANK1 is the new variable created using calculations for the subset of observations
restore == 1. pr1 already exists as a constant for each hospital, but using the egen
function mean is a simple and harmless way to pick up that constant because the mean
of one (repeated) value is just that value. Otherwise explained, the first argument of
sort() is always the name of an egen function. That could be a community-contributed
egen function so long as its code is visible along your adopath.

Variable and value labels are handled automatically, so there is no need to invoke
labmask or otherwise to define labels.

Here is how to re-create figure 3, starting from calculation of wtmean.

. myaxis RANK=hospital, sort(mean wtmean)

. tabplot restore RANK [w=freq], showval percent(hospital) `options1' `options2'

Perhaps more strikingly, the step backward of trying to think more generally showed
that other related problems could be treated easily within a larger framework. With
the auto data read in, these simple exercises can be executed by curious readers. The
results are suppressed to save space.

. sysuse auto, clear

First up is a simple tabulation where we decide we want to sort categories by fre-
quency. As it happens, tabulate already has a sort option, but knowing how to do
it could be useful for many other commands. One obvious and one more subtle twist
to the syntax: descending reverses the conventional sort order because people usually
want to see the most frequent categories first. Note that sort() has one argument only,
although a second argument now turns out to be tacit. count means in context count
rep78, meaning use the egen function count() to count nonmissing values of repair
record rep78.

N. J. Cox 833

. myaxis wanted=rep78, sort(count) descending

. tabulate wanted

. tabulate wanted, nolabel

The flavor of the next example is similar. We want categories to be sorted by the
mean of miles per gallon mpg, so we get myaxis to work that out and record the order
of categories (again, high mpg is good; low litres per km or per 100 km is good if such
units are more familiar to you).

. myaxis wanted2=rep78, sort(mean mpg) descending

. format mpg %2.1f

. tabulate wanted2, summarize(mpg)

As a final twist, we look ahead to a two-way table. We want to bring in whether cars
are domestic (manufactured inside the United States) or foreign (not so) and decide to
sort on the foreign performance.

. myaxis wanted3=rep78, sort(mean mpg) subset(foreign==1) descending

. tabulate wanted3 foreign, summarize(mpg) nost nofreq

Although myaxis can be used for many problems, no command ever tackles all the
problems in its territory. For example, myaxis makes no attempt to support weights
directly if only because weights do not match the framework of egen. Problems involving
weights require a focused decision on what makes sense and how to calculate it. Our
very first example in Section 2 was really about frequency weights, so weights need not
be difficult.

11 Syntax of myaxis
myaxis reorders a categorical variable by a specified sort criterion.

myaxis newvar=varname
[
if
] [

in
]
, sort(criterion)[

subset(true_or_false_condition) missing descending varlabel(string)
valuelabelname(string)

]
11.1 Description

myaxis maps an existing “categorical” variable, meaning usually a numeric variable
with integer codes and value labels, or equivalently a string variable, to a new variable
with integer values 1 up and with value labels, sorted according to a specified criterion.

11.2 Remarks

The command name myaxis is to be parsed “my axis”. The second element “axis” arises
from a leading application of the command. You have a categorical variable that would

834 Speaking Stata

define an axis of a graph or one dimension of a table (the rows or the columns, say),
but the existing order of categories is not ideal. Some graph and table commands offer
sorting on the fly, but this command may help wherever other commands do not offer
that.

The first element “my” is at best harmless whimsy, but it arises because mentions
of a command named just axis would be harder to spot among other uses of the term.

The problem is split by myaxis into these parts:

1. Calculation of a numeric variable on which to sort categories. myaxis treats this
as an application of egen. Note: If a variable already exists that defines the sort
order and is constant within categories, then asking for (say) its minimum, mean,
or maximum within each category will suffice.

2. Deciding whether you want ascending order (the default) or descending order
(highest value goes first). Descending order requires negation of the variable from
the first step.

3. Mapping your categorical variable to integers 1 up. The group() function of egen
does the work here, but myaxis is careful to split ties according to the original
variable. (For example: Suppose nominal categories A, B, C, D, and E have
frequencies 7, 7, 42, 3, and 1 and you want them sorted by frequency. You do not
want A and B lumped together, because they have the same frequency.)

4. Fixing a variable label. myaxis uses a new variable label if supplied; otherwise,
it uses the original variable label; and, if that does not exist, it uses the original
variable name.

5. Fixing value labels. This is even more important than the previous point for
helpful display in a graph or table. myaxis uses the original value labels if defined
and otherwise the original string or numeric values.

11.3 Options

sort(criterion) specifies the criterion for sorting. sort() is required. The criterion
should always include the name of an egen function. That function may be com-
munity contributed so long as the code is visible along your adopath. The criterion
may also include the name of an existing variable, and that is essential whenever the
sort criterion is not based on varname.

subset(true_or_false_condition) specifies a subset of the data on which the sort crite-
rion should be calculated. Concretely, imagine two variables that define y and x axes
of a graph or rows and columns of a table. You might want rows to be sorted by val-
ues calculated for a particular column or columns to be sorted by values calculated
for a particular row.

missing specifies that missing values of varname be included. The default is to ignore
them.

N. J. Cox 835

descending specifies sorting with highest value first. The default sort order is ascending
with lowest value first.

varlabel(string) specifies a variable label for the new variable. Otherwise, see point 4
in section 11.2 Remarks.

valuelabelname(string) specifies a new value label name for the value labels of the new
variable. This will be needed if there is already a set of value labels called newvar.

12 Conclusion
Results for nominal variables may often be clearer if those variables are reordered or
reranked, say, according to some measure of absolute or relative frequency or according
to summaries of some other variable. Some graphical and tabulation commands have
dedicated options serving that end. Alternatively, a dataset consisting of results can
be sorted directly. We have seen examples using graph dot and graph twoway, while
graph bar or graph hbar could have been used to provide other illustrations.

Otherwise, in practice a new order is often best achieved by creating a new variable
holding the desired order, using along the way one or more egen functions: rank(),
group(), tag(), total(), count(), and mean() all appeared in examples, and several
more functions are available. There is usually a need to preserve the information in
values or value labels and to watch out for ties. There may be a desire to reverse
ranking from the default. Procedures for datasets based on aggregate frequencies and
for datasets based on individuals may also differ in detail.

All of this can be done step by step, and understanding the small details will serve
you well in many other problems. Alternatively, the new command myaxis offers a
convenience command for many such problems and is introduced in this column.

13 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-3

. net install st0654 (to install program files, if available)

. net get st0654 (to install ancillary files, if available)

836 Speaking Stata

14 References
Box, G. E. P. 2013. An Accidental Statistician: The Life and Memories of George E. P.

Box. Hoboken, NJ: Wiley.

Box, G. E. P., J. S. Hunter, and W. G. Hunter. 2005. Statistics for Experimenters:
Design, Innovation, and Discovery. 2nd ed. Hoboken, NJ: Wiley.

Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for Experimenters: An
Introduction to Design, Data Analysis, and Model Building. New York: Wiley.

Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin
50: 9–17. Reprinted in Stata Technical Bulletin Reprints. Vol. 9, pp. 34–45. College
Station, TX: Stata Press.

. 2003. Speaking Stata: Problems with tables, Part I. Stata Journal 3: 309–324.
https://doi.org/10.1177/1536867X0300300308.

. 2008. Speaking Stata: Between tables and graphs. Stata Journal 8: 269–289.
https://doi.org/10.1177/1536867X0800800208.

. 2009. Stata tip 78: Going gray gracefully: Highlighting subsets and downplaying
substrates. Stata Journal 9: 499–503. https://doi.org/10.1177/1536867X0900900311.

. 2010. Speaking Stata: The statsby strategy. Stata Journal 10: 143–151. https:
//doi.org/10.1177/1536867X1001000112.

. 2011. Speaking Stata: Compared with Stata Journal 11: 305–314. https:
//doi.org/10.1177/1536867X1101100210.

. 2012a. Speaking Stata: Axis practice, or what goes where on a graph. Stata
Journal 12: 549–561. https://doi.org/10.1177/1536867X1201200314.

. 2012b. Speaking Stata: Output to order. Stata Journal 12: 147–158. https:
//doi.org/10.1177/1536867X1201200109.

. 2016a. Speaking Stata: Multiple bar charts in table form. Stata Journal 16:
491–510. https://doi.org/10.1177/1536867X1601600214.

. 2016b. Speaking Stata: Truth, falsity, indication, and negation. Stata Journal
16: 229–236. https://doi.org/10.1177/1536867X1601600117.

. 2018. Speaking Stata: From rounding to binning. Stata Journal 18: 741–754.
https://doi.org/10.1177/1536867X1801800311.

. 2019. Software Updates: gr41_5: Distribution function plots. Stata Journal
19: 260. https://doi.org/10.1177/1536867X19833285.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indi-
cator or dummy variables. Stata Journal 19: 246–259. https: // doi.org / 10.1177 /
1536867X19830921.

https://doi.org/10.1177/1536867X0300300308
https://doi.org/10.1177/1536867X0800800208
https://doi.org/10.1177/1536867X0900900311
https://doi.org/10.1177/1536867X1001000112
https://doi.org/10.1177/1536867X1001000112
https://doi.org/10.1177/1536867X1101100210
https://doi.org/10.1177/1536867X1101100210
https://doi.org/10.1177/1536867X1201200314
https://doi.org/10.1177/1536867X1201200109
https://doi.org/10.1177/1536867X1201200109
https://doi.org/10.1177/1536867X1601600214
https://doi.org/10.1177/1536867X1601600117
https://doi.org/10.1177/1536867X1801800311
https://doi.org/10.1177/1536867X19833285
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X19830921

N. J. Cox 837

Daly, F., D. J. Hand, M. C. Jones, A. D. Lunn, and K. J. McConway. 1995. Elements
of Statistics. Wokingham: Addison–Wesley.

Duncan, O. D. 1984. Notes on Social Measurement: Historical and Critical. New York:
Russell Sage Foundation.

Hand, D. J. 1996. Statistics and the theory of measurement. Journal of the Royal
Statistical Society, Series A 159: 445–492. https://doi.org/10.2307/2983326.

. 2004. Measurement Theory and Practice: The World through Quantification.
London: Arnold.

Reston, J., Jr. 1994. Galileo: A Life. New York: HarperCollins.

Schwabish, J. 2021. Better Data Visualizations: A Guide for Scholars, Researchers, and
Wonks. New York: Columbia University Press.

Stevens, S. S. 1946. On the theory of scales of measurement. Science 103: 677–680.
https://doi.org/10.1126/science.103.2684.677.

. 1975. Psychophysics: Introduction to Its Perceptual, Neural, and Social
Prospects. New York: Wiley.

Velleman, P. F., and L. Wilkinson. 1993. Nominal, ordinal, interval, and ratio typologies
are misleading. American Statistician 47: 65–72. See also discussions and replies 47:
314–316 and 48: 61–62. https://doi.org/10.1080/00031305.1993.10475938.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 16 com-
mands in official Stata. He was an author of several inserts in the Stata Technical Bulletin and
is an editor of the Stata Journal. His “Speaking Stata” articles on graphics from 2004 to 2013
have been collected as Speaking Stata Graphics (2014, College Station, TX: Stata Press).

https://doi.org/10.2307/2983326
https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.1080/00031305.1993.10475938

	Table of Contents
	Articles and Columns
	A regression-with-residuals method for analyzing causal mediation: The rwrmed packageto.44em.A. Linden, C. Huber, and G. T. Wodtke
	Power and sample-size calculations for trials that compare slopes over time: Introducing the slopepower commandto.44em.to.44em.S. Nash, K. E. Morgan, C. Frost, and A. Mulick
	arhomme: An implementation of the Arellano and Bonhomme (2017) estimator for quantile regression with selection correctionto.44em.M. Biewen and P. Erhardt
	randregret: A command for fitting random regret minimization models using Stata to.44em.to.44em.Á. A. Gutiérrez-Vargas, M. Meulders, and M. Vandebroek
	Instrumental-variable estimation of large-T panel-data models with common factorsto.44em.to.44em.S. Kripfganz and V. Sarafidis
	Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2to.44em.J. Ditzen
	icio: Economic analysis with intercountry input–output tablesto.44em.to.44em.F. Belotti, A. Borin, and M. Mancini
	Test scores' robustness to scaling: The scale_transformation commandto.44em.to.44em.A. Yi Chang
	kinkyreg: Instrument-free inference for linear regression models with endogenous regressorsto.44em.S. Kripfganz and J. F. Kiviet
	Review of Michael N. Mitchell's Data Management Using Stata: A Practical Handbook, Second Editionto.44em.W. D. Dupont
	Speaking Stata: Ordering or ranking groups of observationsto.44em.N. J. Cox

	Notes and Comments
	Stata tip 141: Adding marginal spike histograms to quantile and cumulative distribution plotsto.44em.N. J. Cox

	Software Updates
	announce52.pdf
	Articles and Columns
	Notes and Comments

	Blank Page

