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Abstract.—“Rogue” taxa of uncertain affinity can confound attempts to summarize the results of phylogenetic analyses.
Rogues reduce resolution and support values in consensus trees, potentially obscuring strong evidence for relationships
between other taxa. Information theory provides a principled means of assessing the congruence between a set of trees and
their consensus, allowing rogue taxa to be identified more effectively than when using ad hoc measures of tree quality. A
basic implementation of this approach in R recovers reduced consensus trees that are better resolved, more accurate, and
more informative than those generated by existing methods. [Consensus trees; information theory; phylogenetic software;
Rogue taxa.]

A principal objective of systematic biology is the
reconstruction of relationships between evolving
lineages, typically depicted as trees. Phylogenetic
analyses often return many thousands of individual
tree topologies, each of which may be associated
with an implicit probability or likelihood. In order to
summarize the relationship information represented
by such forests, researchers typically present a single
consensus tree that depicts groupings of taxa that occur
in all or a majority of underlying trees (Adams 1972;
Holder et al. 2008).

Ideally, such a consensus tree should be constructed
so as to maximize the amount of information about
the underlying tree set that is conveyed (Thorley et al.
1998). The information content of a consensus tree—
both in terms of its resolution and the support values
for individual edges—is greatly reduced by the existence
of “rogue” taxa (Wilkinson 1994, 1996, 2003; Wilkinson
et al. 1996), whose position varies from tree to tree
due to conflict or ambiguity in their associated data
(Kearney 2002). In the worst case, the strict consensus
of a set of trees that differ only in the position of a single
rogue taxon can be a single polytomy that contains no
information, whereas a consensus excluding the rogue
would perfectly convey the relationships between all
other taxa implied by every member of the tree set.

Any taxon or set of taxa whose removal from a tree
set increases the information content of a consensus
tree can be considered rogue. Aberer et al. (2013)
define the “relative bipartition information content”
(RBIC) of a consensus tree as the sum of the support
values for each of its constituent splits, where a split’s
support is defined as the proportion of underlying trees
that contain it. Successively removing rogue taxa can
result in substantial improvements to the RBIC score
(Aberer et al. 2013)—but this scoring method exhibits
certain shortcomings that hinder the identification of a
truly “optimal” consensus tree (Wilkinson and Crotti
2017). The RBIC approach uses the language, but
not the mathematics, of information theory. Using a

probabilistic definition of information (Shannon 1948)
provides a principled measure of the information
content of consensus trees (Thorley et al. 1998; Wilkinson
et al. 2004a), which I suggest might improve the
identification of rogue taxa.

METHODS

Definitions
A phylogenetic tree is an acyclic graph comprising leaves

(labeled nodes of order one) and internal nodes, with an
order greater than two. Nodes of order three are fully
resolved, whereas nodes of higher order are polytomies. A
tree in which each internal node is fully resolved is binary.
In a rooted tree, one edge is designated as the “root.”

Various indices have been proposed to measure the
stability of leaves between trees (e.g., Thorley and
Wilkinson 1999; Thomson and Shaffer 2010). I define the
instability of a pair of leaves as the natural logarithm of
the median absolute divergence in their graph geodesic
(the number of edges in the shortest path between the
leaves) across all trees, normalized against the mean
graph geodesic between those leaves across all trees. The
instability of a single leaf is the mean instability of all
pairs that include that leaf; higher values characterize
leaves whose position is more variable between trees.
Taking a logarithm emphasizes changes in leaf-to-leaf
distance when a leaf is moved a large distance over
smaller changes arising due to, for example, changes
in tree shape that have limited impact on inferred
relationships.

Each edge in a phylogenetic tree represents a unique
split S=A|B which bipartitions all leaves into two disjoint
subsets. The majority rule consensus of a set of trees is a
single tree that contains only the splits that occur in a
majority of trees. The support for a split is its frequency
in a set of trees, which is taken here as a proxy for
the implied probability that the split is true, that is, that
it occurs in the (potentially unknown) true tree, given
the data from which the trees were generated. This is
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the literal interpretation of split support where trees
represent a Bayesian posterior sample, but represents
an ambitious interpretation of bootstrap support values
(Berry and Gascuel 1996), and should be applied only
reluctantly to sets of most parsimonious trees.

The Shannon (1948) information content of an
observation, measured in bits, is −log2p, where p is the
probability of the observation. The Shannon entropy of a
set is the mean information content of all elements of the
set, H(X)=∑−pi log2pi, which simplifies to log2(|X|) for
a set X of equiprobable elements (MacKay 2003).

There are R(n)=2n−3!! rooted trees and U(n)=2n−5!!
unrooted trees on n leaves, where the double factorial
x!!=x×(x−2)!!, and 0!!=1!!=1. The split S=A|B occurs
in UA|B =R(|A|)+R(|B|) unrooted trees, and is absent in
the remaining UA�B =U(|S|)−UA|B trees.

The phylogenetic information content (sensu Thorley et al.
1998) of the split S=A|B is the difference in entropy
imputed by the split on the set X of all binary n-leaf
trees, that is, H(X)−H(X|S). Let split S be true with
probability p and false with probability q=1−p. The
probability of all UA|B trees that contain S sums to p;
taking all such trees to be equiprobable, any individual
tree has probability p

UA|B and an information content

of −log2
p

UA|B . Likewise, the information content of any

individual tree that does not contain S is log2
q

UA�B
. The

entropy of X given S=A|B is thus

H(X|S)=−plog2
p

UA|B
−qlog2

q
UA�B

and its phylogenetic information content is

H(X)−H(X|S)= log2U(|S|)+p(log2p−log2UA�B)

+q(log2q−log2(UA�B)) bits.

The splitwise information content of a tree is the sum
of the information content of each split in turn. Because
splits are not independent, this quantity counts some
information multiple times; it is nonetheless a useful
proxy for the total information content of a tree (Smith
2020) and can be calculated in polynomial time. I propose
using the splitwise phylogenetic information content (SPIC)
to score a consensus tree, such that a tree with the
highest SPIC score is considered optimal. This indirect
approach is used in place of the straightforward cladistic
information content of a cladogram (Thorley et al. 1998)
in order to incorporate the uncertainty associated with
split support values under 100%.

Finding an Optimal Consensus Tree
I compared two heuristic approaches to finding an

optimal consensus tree.
Starting with the input trees, the first heuristic

(H1) deletes the leaf with the highest instability value
(breaking ties arbitrarily) and generates the consensus
of the resulting trees. This step is repeated, without

replacing dropped leaves, until dropping further leaves
cannot possibly result in a consensus tree that contains
more information than the best yet found. Moving to the
consensus tree with the highest splitwise phylogenetic
information content, the method then considers the most
recently deleted leaf. If reinstating that leaf in its original
position in each of the underlying trees increases the
information content of their consensus, then the leaf
is retained; otherwise, it remains deleted. This step is
repeated for each other leaf that was removed, working
from the most recently deleted to the least. H1 can be
implemented in O(n2

leaves +n2
trees) time.

The second heuristic (H2) follows an approach
implemented in “RogueNaRok” (Aberer et al. 2013). The
SPIC of the majority-rule consensus tree is taken as a
starting score. Then, each combination of 1..d leaves in
turn is selected as a dropset, and a consensus tree is
constructed that omits all leaves in that dropset. If any
such consensus tree contains more information than the
best yet found, then the members of whichever dropset
yielded the most informative tree are deemed rogues,
and removed from each tree in the tree set. Subsequent
iterations are performed until no dropset of up to d leaves
gives rise to a more informative consensus tree. H2 can
be implemented in O(nd+1

leaves ×n2
trees) time.

Heuristics H1 and H2 are implemented alongside an
interface to the “RogueNaRok” library (Aberer et al.
2013) in the R (R Core Team 2021) package “Rogue,”
available via the Comprehensive R Archive Network.
Selected functions are integrated into the “TreeSearch”
graphical user interface (Smith 2021).

Evaluation
Aberer et al. (2013) compared approaches to rogue

identification by simulating 400 data sets of DNA
sequences for approximately 100, 200, or 500 taxa, using
the generalized time-reversible model (Tavaré 1986)
under four different sets of parameters representative
of real-world data sets; then for each data set, generating
200 bootstrap trees using RAxML (Stamatakis 2006). The
tree from which DNA sequences were simulated was
treated as the “true” reference tree.

I analyzed each set of bootstrap trees under each
heuristic method in order to identify rogue taxa, using
a maximum dropset size of two for heuristic H2. As
the 500-leaf tree sets exhibited long run times under
heuristic H2, only the 100-leaf and 200-leaf tree sets
were analyzed with this approach. A consensus tree was
constructed after dropping the n rogues identified by
each analysis. For context, a second consensus tree was
generated after dropping n randomly selected leaves.
Results were compared with previously reported results
for “RogueNaRok” using a maximum dropset size of
three (Aberer et al. 2013).

The principal criterion against which a consensus
tree should be evaluated is how well it reflects
the information in the trees it summarizes—whose
similarity to a “true” tree will depend on the properties
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of the method and data used to generate the tree set.
To evaluate consensus trees, for each tree in the tree
set, I removed any leaf not present in the consensus
tree, then subtracted the information content of any split
explicitly contradicted by the consensus tree from the
sum of the information content of each split held in
common with the consensus tree. The resulting total
was normalized against the total splitwise information
content of all splits in the original tree set. Separately, I
calculated the net quartet similarity—that is, the number
of quartets resolved the same way minus the number
resolved differently—between the consensus tree and
each member of the original tree set.

Aberer et al. (2013) evaluated consensus trees based
on their similarity to the known tree topology used to
generate data sets, assuming the underlying tree set to
adequately reflect the “true” tree topology. To usefully
inform phylogenetic conclusions, a summary tree
should be both precise (i.e., resolve many informative
splits) and accurate (i.e., resolve splits correctly) (e.g.,
Smith 2019a). To measure precision, I calculated the
splitwise phylogenetic information content of each
consensus tree (Inftotal). To measure the phylogenetic
signal contained within a tree, I calculated the amount
of phylogenetic information shared between the splits
in the consensus tree and the “true” tree when splits are
optimally matched (Infsignal, the shared phylogenetic
information score of Smith (2020)). I classified the
information that is not signal (Inftotal −Infsignal) as noise.
Subtracting the amount of noise from the signal gives
a measure of accuracy that accounts for differences in
resolution: an unresolved tree will have zero accuracy;
resolving more relationships correctly increases
accuracy, whereas resolving additional relationships
incorrectly reduces accuracy: it is preferable to have
no information than to have misleading information
(Holder et al. 2008).

In order to pinpoint the effect of removing rogue taxa
on tree quality, all results are presented as differences
from the scores of the plenary consensus tree (Wilkinson
et al. 2004b)—that is, the consensus of all trees before the
removal of rogues.

As a complementary measure of tree similarity, I used
“tqDist” (Sand et al. 2014) and “Quartet” (Smith 2019b)
to count the number of quartets (Estabrook et al. 1985)
in the consensus tree that were unresolved (u), resolved
in the same way (s), or resolved differently (d), to each
corresponding quartet in the true tree, and to each tree
in the underlying tree set. As tqDist only supports trees
with <478 leaves, trees in the 500-leaf set could not be
analyzed by this method.

For simplicity, the evaluation of precision and
accuracy considered only the topology of each majority
rule consensus tree, without incorporating measures
of split support—though doing so did not materially
affect the outcome. The same pattern of results was also
evident when using clustering information (Smith 2020)
rather than phylogenetic information to evaluate tree
similarity and information content.

RESULTS

All methods of rogue detection increased the mean
amount of information from the underlying tree
set reflected in the consensus tree, with the SPIC
heuristic H2 producing consensus trees that are most
representative of the underlying trees (Fig. 1a). Under
each method, deleting an equivalent number of leaves
at random resulted in a consensus tree that was less
concordant with the underlying tree set (-r suffix in
Fig. 1).

The SPIC heuristics consistently improved the
precision of consensus trees (Fig. 1b) and their
congruence with “true” reference trees (Fig. 1c). Despite
its larger maximum dropset size, “RogueNaRok”
produced much smaller gains; indeed, with 100-
leaf trees, it produced no median improvement in
precision and a decrease in mean and median accuracy.
Gains in resolution obtained by omitting rogue taxa
identified by “RogueNaRok” were largely offset by the
loss of all information regarding the position of the
rogues.

Under quartet measures, the relative resolution of
trees—the proportion of quartets in a tree that are
resolved—is improved by deleting rogues, but not by
deleting leaves at random. The three rogue detection
methods produce the same median improvement
(Fig. 1d), but the mean improvement under the
SPIC criterion is higher than that accomplished using
the RBIC; heuristic H1 produces the highest mean
resolution. Relative accuracy (the proportion of quartets
resolved “correctly” minus the proportion resolved
“incorrectly”) displays the same pattern, largely because
the proportion of quartets resolved “incorrectly,” relative
to either the true tree or trees in the underpinning tree
set, is small: as the proportion of incorrect quartets
tends to zero, the two measures converge. Low numbers
of “incorrect” quartets reflect the lower sensitivity of
the quartet approach to individually misplaced leaves
relative to bipartition-based measures.

Overall, the fast H1 heuristic identifies rogue taxa as
well as or better than the “RogueNaRok” heuristic with
a dropset size of three, with the additional benefit of
a shorter run time (Table 1). Rogue detection is better
still under the H2 heuristic, at the cost of substantially
higher time and memory requirements as presently
implemented.

DISCUSSION

Alongside its better performance on empirical data
sets, the SPIC score exhibits additional properties that
make it a suitable tool for evaluating consensus trees.

Wilkinson and Crotti (2017) demonstrate examples
where the RBIC measure employed by RogueNaRok
(Aberer et al. 2013) undesirably favors one topology over
another; the SPIC score ranks these tree pairs correctly
(Fig. 2).

A further advantage of the SPIC over the RBIC
criterion is that removing a leaf is associated with
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FIGURE 1. Performance of rogue-detection approaches. Changes in consensus tree quality after removing rogue taxa. Rogues were identified
using relative bipartition information content (“R,” using RogueNaRok) and shared phylogenetic information content (heuristics H1, H2); or by
selecting the same number of leaves at random (-r suffix). Zero indicates no change in quality from the plenary consensus. a) extra percentage of
information retained from tree set: phylogenetic information content (PIC) of retained splits, minus PIC of contradicted splits, normalized against
total PIC of all splits; b) extra precision (total PIC of all splits in consensus); c), extra accuracy (PIC of “true” splits minus PIC of “false” splits);
d) extra proportion of quartets that are resolved (i.e., precision); e) extra accuracy (“true” quartet statements minus “false” quartet statements),
trees with c. 100–200 leaves. Columns in a–d correspond to data sets with c. 100, c. 200, and c. 500 leaves. Crosses denote means; hinges denote
interquartile range; whiskers extend to the most extreme data point that is no more than 1 interquartile range from the box. Differences between
medians (bars) are significantly different at the 5% level where notches do not overlap (Chambers et al. 1983).

an intrinsic cost. If a tree contains a polytomy, then
removing one leaf from that polytomy will only impact
the RBIC score if it results in changes to node supports

elsewhere in the tree, even though the removal means
that the tree no longer contains any information about
the possible relationships of that leaf—information
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TABLE 1. Run time and memory requirements when detecting
rogue taxa in three data sets with the “Rogue” R package, using: R,
RBIC, via RogueNaRok; H1, SPIC heuristic 1; H2, SPIC heuristic 2

Leaves Dropset size Time (s) Cumulative
memory
use (Mb)

R 99 1 47.3 53
R 99 2 50.9 49
R 99 3 57.5 50
H1 99 — 2.1 816
H2 99 1 4.9 1541
H2 99 2 84.7 30,518
H2 99 3 2252.6 826,750
R 200 1 1.0 103
R 200 2 12.3 97
R 200 3 142.0 96
H1 200 — 11.5 4214
H2 200 1 77.1 25,081
H2 200 2 686.0 230,240
H2 200 3 20,626.8 7,166,800
R 490 1 10.1 225
R 490 2 398.9 222
R 490 3 17,457.6 223
H1 490 — 160.1 94,212

that is an intrinsic component of a tree’s splitwise
phylogenetic information content score.

This consideration serves to militate against the
removal of large rogue clades, as doing so removes
not just any relationship information within the clade,
but also the information that the affected taxa are
monophyletic. By way of example, Wilkinson and Crotti
(2017) envisage a situation in which a rogue pair of taxa
occur at one of two opposite points on a balanced rooted
six-leaf tree (Fig. 2c). Under my information-theoretic
framework, the information that the pair of taxa are each
other’s closest relatives can outweigh the information
lost when the leaves are included in a consensus tree
(reducing the support values of other clades), but only
where one of the two positions occurs with a frequency
greater than 58.5%.

Perhaps because of its grounding in information
theory, the SPIC score can be used to obtain consensus
trees that are more informative than those produced by
optimizing the RBIC. Finding the reduced consensus tree
with the highest SPIC score is nevertheless a nontrivial
problem. Whereas the dropset-based approach of H2
often finds a better set of rogues than H1, its present
implementation is resource intensive. Much of the
difference in run time between RogueNaRok and the
SPIC implementation in “Rogue” can be attributed to
aggressive optimization of the RogueNaRok subroutines
(Aberer et al. 2013), and their implementation in
exclusively in C, rather than a combination of R and
C++. Similar optimization might be expected to reduce
the computational cost of the H2 approach substantially.
Alternatively, the relatively strong performance of H1
demonstrates the promise of computationally simpler
heuristic approaches. Further improvements may be
possible by modifying aspects of this approach, for

a)

b)

c)

FIGURE 2. Evaluation of tree pairs presented by Wilkinson and Crotti
(2017) using the SPIC score. a) A single rogue leaf X may occupy any
of the five possible positions on a four-leaf tree; the reduced consensus
reveals the unanimous agreement about the relationships between taxa
1–4 and is thus preferred to the plenary. b) Rogue leaf X is sister to
leaf 3 in 67 trees and leaf 4 in 33 trees; the reduced consensus reveals
unanimous agreement about relationships between taxa 1–6 and is
preferred to the plenary consensus. c) A rogue clade comprising two
leaves X and Y is sister to leaf 1 with probability p1 =60% and sister to
leaf 6 with probability 40%. The plenary retains the information that
X and Y form a clade at the cost of lower branch supports elsewhere in
the tree; the reduced consensus reveals unanimity in the relationships
between leaves 1–6 but contains no information about leaves X and Y.
The SPIC score prefers the reduced consensus only when the position
of X and Y is uncertain (p1 <58.6%).
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example by using other quantifications of leaf stability
(e.g., Estabrook 1992; Thorley and Wilkinson 1999; Pol
and Escapa 2009; Goloboff and Szumik 2015), or by
integrating other heuristic methods, such as a “genetic”
evolutionary approach (Srivastava et al. 2018).

CONCLUSION

I have shown that an information-theoretic definition
of information can provide an improved means of
evaluating consensus trees, and thus the detection
of rogue taxa—despite the repeated counting of
information that results from treating splits as
independent, which might in future be circumvented
through the application of hierarchical measures of
information (Perotti et al. 2015, 2020).

Whenever a consensus tree exhibits low resolution
or low branch support values, I recommend searching
for rogue leaves using a method that aims to maximize
the SPIC score. The existence of rogues militates for
a detailed evaluation of optimal trees. The only way
to fully evaluate the signal within a set of trees is to
scrutinize each individual topology, perhaps assisted by
an exploration of the underlying tree space (St. John
2017; Smith 2022) and the construction of a “profile”
of complementary consensus trees (Wilkinson 1996;
Wilkinson 2003).

Nevertheless, removing rogues thus identified—
perhaps in combination with a priori identification of
noninformative taxa (Wilkinson 1995) and depiction
of the position of omitted rogues (e.g., Smith and
Dunn 2008; Klopfstein and Spasojevic 2019)—allows
the construction of a consensus tree that optimally
summarizes the phylogenetic signal in a set of rogue-
bearing phylogenetic trees.
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