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1 Introduction

In the past decades the Holographic principle has seen a number of key developments in
the study of observables in Quantum Gravity, especially in the context of the AdS/CFT
correspondence [1]. Scattering processes in (d+ 1)-dimensional asymptotically anti-de Sit-
ter (AdS) space can be re-cast as correlation functions of local operators in a d-dimensional
Conformal Field Theory (CFT), which are defined non-perturbatively by a combination
of conformal symmetry, unitarity and a consistent operator product expansion. These are
the three main pillars of the Conformal Bootstrap programme, which aims to carve out
the space of consistent CFTs using symmetry and mathematical consistency [2, 3] and is a
spectacular fully-functioning revival of the Bootstrap philosophy put forward in the early
days of S-matrix theory [4, 5].
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Recent years have seen a renewed interested in the challenge to extend the successes
of the Bootstrap and the AdS/CFT paradigm to more general backgrounds, in particular
those that are closer to real world. A natural testing ground is provided by de Sitter (dS)
space, which shares the isometry group with Euclidean AdS. Indeed, it has long been known
that correlators on the boundary of dS are constrained by conformal symmetry [6–15].
This has since evolved into the Cosmological Bootstrap [16–32], which aims to identify the
symmetries and consistency criteria that should be satisfied by boundary correlators in dS
(which, in contrast, for the AdS case above are known) and apply them to constrain (or
even completely determine) the form that such boundary correlators can take.

One of the first instances in which symmetry and consistency were used to successfully
deduce model independent properties of quantum theories is Weinberg’s seminal 1964 re-
sult [33, 34] on the couplings of massless particles of arbitrary integer spin to scalar matter
in flat space.1 Weinberg showed that locality and unitarity constrain the S-matrix for the
emission of a single massless spin-J particle with momentum q to take the following form
in the soft limit q → 0:

S (p1, . . . , pN , q, ε) ≈
[
N∑
a=1

ga (ε · pa)J

−2q · pa

]
× S (p1, . . . , pN ) , (1.1)

where S (p1, . . . , pN ) is the S-matrix for the process before the emission of the massless spin-
J particle, ga is its coupling to the a-th external particle and ε its polarization vector which
is null

(
ε2 = 0

)
and transverse (q · ε = 0). This however gives a redundant description of

the massless spin-J particle and (gauge invariance) requires that the spurious longitudinal
components decouple, viz.

(q ·Dε)S (p1, . . . , pN , q, ε) = 0. (1.2)

From the form (1.1) for the S-matrix in the limit q → 0, this gives the constraint

N∑
a=1

ga (ε · pa)J−1 = 0, ∀ pa. (1.3)

For spin J = 1 this constraint implies conservation of charge:

N∑
a=1

ga = 0, (1.4)

for J = 2 it implies energy-momentum conservation and the principle of equivalence

N∑
a=1

pa = 0 and g1 = . . . = gN , (1.5)

and for J > 2 that there is no coupling of a massless higher-spin particle to scalar matter,

g1 = . . . = gN = 0. (1.6)
1This was extended to Fermions and supersymmetric theories in [35, 36].
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The beauty of this argument lies in its universality: fundamental features of theories of
massless spinning particles, such as charge conservation and the equivalence principle,
follow in a model independent way as a simple consequence of locality and unitarity. It
also has the strength to rule out (in local theories) interactions of certain collections of
particles altogether.

Extending Weinberg’s analysis to a curved background has long faced various difficul-
ties, mostly related to the problem of defining an S-matrix on spaces with non-vanishing
curvature. Given the recent developments in adapting S-matrix techniques to boundary
correlators in (A)dS space however, we are increasingly in a position to start tackling this
problem concretely and, in the specific case of couplings to conformally coupled scalars in
dS4,2 we have already seen significant progress [24] for massless particles of spins J = 1, 2.
The story in dS space is moreover particularly rich from a phenomenological perspective,
where unitary irreducible representations of the de Sitter isometry group admit not only
massless but also partially-massless spinning particles [37–42], whose consistent scattering
observables also require the decoupling of (a subset of) the longitudinal components. A
natural question is then if the couplings of such partially-massless particles can be similarly
constrained in a model-independent way.

In this work we demonstrate how the Mellin-Barnes formalism for boundary correlators
in momentum space introduced in [20, 21] can be used to extend Weinberg’s analysis
to (A)dSd+1, including the matter couplings of partially-massless fields peculiar to the
dS case. For boundary correlators in (A)dS, the gauge-invariance constraint (1.2) on S-
matrix elements is replaced by a Ward-Takahashi identity which relates the longitudinal
components to lower-point correlators with the massless external field removed. As we shall
see, Ward-Takahashi identities at the level of the Mellin-Barnes representation are encoded
in a particular form of polynomial (2.41) in the Mellin variables. Upon computing three-
and four-point functions of a (partially)-massless field with scalars (see figures 1 and 2)
this feature allows us to systematically study the constraints from the Ward-Takahashi
identities.

By studying constraints from Ward-Takahashi identities at the three-point level, we
recover the results [43, 44] that gauge-invariance constrains (2.53) the scaling dimensions of
the scalar fields to which a (partially-)massless field can couple. At four-point, we find that
the Ward-Takahashi identity is generally violated by terms that are singular in the total
energy ET . This observation was also made in [24] where, for couplings to conformally
coupled scalars in dS4, it was shown that charge conservation (1.4) and the equivalence
principle (1.5) ensure that the Ward-Takahashi identity is satisfied. One should also rule
out the possibility that the total energy singularities violating the Ward-Takahashi identity
cannot be compensated by adding local quartic contact terms — i.e. those generated by
quartic vertices with a finite number of derivatives involving one (partially-)massless spin-
J field and the three external scalars. In flat space it is clear, since local quartic contact
amplitudes do not contribute singularities in q and are therefore subleading in the soft

2Note that, results for scalars of certain masses — which includes massless scalars relevant for inflation
— can be obtained from those for conformally coupled scalars by acting with a differential “weight-shifting”
operator [16, 18, 24].
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limit (1.1). In (A)dS the separation appears less sharp. Contact amplitudes associated to
local quartic vertices in (A)dS tend to dominate in the limit ET → 0, with the singularity
in ET increasing with the number of derivatives.3 By translating the problem into the
Mellin-Barnes representation, where the local contact terms are associated to polynomials
in the Mellin variables of a minimum degree, we are able to establish that there are total
energy singularities violating the Ward-Takahashi identity which cannot be compensated
by adding local quartic vertices to the theory. In particular, there are singularities in ET
that violate the Ward-Takahashi identity that are of a too low degree to be generated by
a local quartic vertex. From this, combined with our results for four-point exchanges with
a single external (partially)-massless spin-J field, in this paper we establish the following:

• Massless spin-J fields in (A)dSd+1. Weinberg’s conclusions on the couplings of
massless spinning fields to scalar matter carry over to (A)dS. In particular, the four-
point Ward-Takahashi identities require: charge conservation (1.4) for J = 1, the
equivalence principle (1.5) for J = 2 and that, in local theories, there is no coupling
of massless higher-spin fields J > 2 to scalar matter (1.6).

• Partially-massless spin-J field of depth-2 in dSd+1.4 The four-point Ward-
Takahashi identities imply that partially-massless fields of depth-2, which can have
spin-3 and higher, cannot couple consistently to scalar matter in local theories.

The paper is organised as follows. In section 2 we introduce the Mellin-Barnes rep-
resentation of three-point boundary correlators in (A)dSd+1,5 focusing on the case of cor-
relators involving two scalars and a spin-J field. For (partially-)massless spin-J field we
study how gauge-invariance manifests itself in the Mellin-Barnes representation and how
it constrains the masses of the scalar fields to which it can couple. We derive three-point
Ward-Takahashi identities for massless spinning fields and partially-massless spinning fields
of depths 1 and 2. We also provide a double check of these results by deriving the Ward-
Takahashi identities in d = 3 for the case that the scalars are conformally coupled, where
the Mellin-Barnes integrals in the three-point correlators can be lifted completely. We also
give various new explicit expressions for three-point correlators of (partially-)massless fields
with conformally coupled scalars, including all lower helicity components.

In section 3 we introduce the Mellin-Barnes representation of four-point functions,
focusing on tree-level processes — namely, four-point exchanges and quartic contact dia-
grams (including those of derivative interactions). We show how quartic contact diagrams
can be packaged as improvement terms to cubic vertices in a four-point exchange and how
this is naturally described within the Mellin-Barnes formalism.

3These have been classified in [18] for quartic contact diagrams involving only (conformally coupled)
scalar fields.

4For simplicity we focused on the scalar matter couplings to depth-2 partially-massless fields, though
from considering various examples for other depths we expect that this result holds for all non-zero depths.

5In the case of dSd+1, by boundary correlators we mean late time in-in correlators computed within
the in-in/Schwinger-Keldysh formalism [45, 46] (for a review see [47]). These should not be confused with
wavefunction coefficients which are sometimes (with an abuse of terminology) are referred to in the literature
as correlators.
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In section 4, focusing on four-point functions involving three scalars and a single
(partially)-massless spin-J field in (A)dSd+1, we explore the constraints coming from gauge-
invariance. We show that the Ward-Takahashi identity, for generic cubic couplings, is vi-
olated by quartic contact terms and argue that this cannot be restored by the addition of
local quartic vertices — thus leading to a constraint on the cubic couplings of (partially)-
massless fields to scalars. We verify this explicitly for the case of massless spin-J fields
and partially-massless spin-J fields of depth 2, deriving the corresponding constraints on
the cubic couplings. As for the three-point functions in section 2, we provide a check of
these results in d = 3 in the case that the scalars are conformally coupled, where the
Mellin-Barnes integrals can be lifted completely. We give various explicit expressions for
four-point exchanges involving conformally coupled scalars and a single external massless
spinning field, including all lower helicity components.

Various technical details are relegated to the appendices.

Notation and conventions. Throughout we denote scalar fields by the symbol φ and
spinning fields by ϕ. A scalar operator on the boundary with scaling dimension ∆ =
d
2 + iν is denoted by Oν . If the operator instead has spin-J it is denoted by Oν,J . The
d-dimensional spatial vector x parameterises the boundary directions and k denotes the
boundary momentum. These have magnitudes denoted by x = |x| and k = |k|. In dSd+1
we work with metric signature (− + . . .+ + ).

2 Three-point functions

We begin in section 2.1 by reviewing and extending the relevant aspects of the Mellin-
Barnes representation for three-point functions in momentum space introduced in [20, 21].
In section 2.2 we introduce some useful differential operators which can be used to derive
relations between correlators with operator scaling dimensions and spins that differ by
integer shifts, as well as correlators generated by derivative interactions. In section 2.3 we
consider three-point functions of a (partially)-massless field and two scalars in (A)dSd+1.
We describe how the constraints from gauge-invariance manifest themselves in the Mellin-
Barnes representation and derive explicit expressions for the corresponding three-point
Ward-Takahashi identities. In section 2.4 we detail how the freedom to add improvement
(i.e. on-shell vanishing) terms to cubic vertices can be used to simplify the Mellin-Barnes
representation of three-point functions. In section 2.5 we consider the special case in which
the two scalar fields are conformally coupled in d = 3. In this case the Mellin-Barnes
representation is not required to describe the correlator completely and the integrals can
be lifted to give explicit closed form expressions for the three-point function of a (partially-
)massless field and two conformally coupled scalars. These results provide a cross-check of
the three-point Ward-Takahashi identities we derived in section 2.3.

Momentum space three-point functions of (partially)-massless fields in (A)dS have
been studied in various works. For a (most-likely) incomplete list see
refs. [9, 10, 15, 16, 21, 24, 45, 48–57].
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2.1 Mellin-Barnes representation

The Mellin-Barnes representation of a generic three-point conformal correlation function
in d-dimensional momentum space is defined as

〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)〉′

=
∫ i∞

−i∞
[ds]3 〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)〉′s1,s2,s3 , (2.1)

where in the usual way the prime denotes the correlator with the momentum conserving
delta function stripped off,

〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)〉
= (2π)d δ(d) (k1 + k2 + k3) 〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)〉′.

The operator Oνj ,Jj has spin Jj and its scaling dimension ∆+
j parameterised as ∆+

j = d
2 +

iνj , so that the shadow scaling dimension is given by sending νj → −νj i.e. ∆−j = d
2 − iνj .6

We refer to the variables sj as Mellin variables, which are assigned to each momentum kj .7
The Mellin-Barnes representation can be expressed in the form:

〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)〉′s1,s2,s3 = Aν1,J1;ν2,J2;ν3,J3 (s1,k1, ε1; s2,k2, ε2; s3,k3, ε3)

× ρν1,ν2,ν3 (s1, s2, s3)
3∏
j=1

(
kj
2

)−2sj+iνj
, (2.2)

where the εj are null auxiliary vectors εj · εj = 0 encoding the tensor structure (as in
e.g. [59]):

Oν,J = (Oν)i1...iJ ε
i1 . . . εiJ , ia = 1, . . . , d, a = 1, . . . , J. (2.3)

The function ρν1,ν2,ν3 (s1, s2, s3) carries two infinite families of poles for each Mellin variable,

ρν1,ν2,ν3 (s1, s2, s3) =
3∏
j=1

1
2
√
π

Γ
(
sj + iνj

2

)
Γ
(
sj −

iνj
2

)
. (2.4)

These poles are associated to the Mellin-Barnes representation of the corresponding bulk-
boundary propagators, which are given by a type of Bessel functions [60]. The function
Aνi,Ji (si,ki, εi) is what we refer to throughout as the Mellin-Barnes amplitude,

A(x)
ν1,J1;ν2,J2;ν3,J3

(sj ,kj , εj) = iπδ

(
x

4 − s1 − s2 − s3

)
× Cν1,J1;ν2,J2;ν3,J3 (s1, s2, s3|εk · kj , εk · εj) , (2.5)

6Note that, throughout, the parameters νj are not necessarily real. The constraint νj ∈ R defines Prin-
ciple series representations and at the level of the Mellin-Barnes representation ensures that the integration
contours do not get pinched. Other representations can be obtained from the Principle Series by analytic
continuation and careful treatment of any divergences, for which we refer the reader to [21]. See [58] for a
nice overview of unitary irreducible representations in (anti-)de Sitter space.

7Later on Mellin variables will be divided into external and internal Mellin variables, associated to
external and internal momenta respectively. The sj above are therefore external Mellin variables.
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where the function Cν1,J1;ν2,J2;ν3,J3 (s1, s2, s3|εk · kj , εk · εj) encodes the tensorial structure,
which is a polynomial in the contractions (εk · kj) and (εk · εj) and a rational function of
the Mellin variables sj . We shall give some explicit examples below. In the next section 2.2
it will be shown that this function can always be transformed into a polynomial in the sj
through the appropriate change of Mellin integration variables, so that all poles in the sj
are encoded in functions (2.4).

The Dirac delta function in (2.5) enforces a constraint among the Mellin variables that
is analogous to momentum conservation k1 + k2 + k3 = 0. In particular, analogous to how
translation invariance implies momentum conservation, the Dilatation Ward identity (see
e.g. [49] for its form in momentum space) requires

s1 + s2 + s3 = x

4 , x = d+ 2N, (2.6)

where N is the degree of the polynomial Cν1,J1;ν2,J2;ν3,J3 (s1, s2, s3|εk · kj , εk · εj) in the
contractions (εk · kj). From a holographic perspective, the Dirac delta function can be
expressed as an integral over the bulk radial co-ordinate, which in Poincaré co-ordinates

ds2
EAdS = dz2 + dx2

z2 , (2.7)

with radial co-ordinate z, reads:8

iπδ

(
x

4 − s1 − s2 − s3

)
= lim

z0→0

∫ ∞
z0

dz

z
z
x
2−2(s1+s2+s3). (2.8)

Boundary terms are therefore encoded in the Mellin-Barnes amplitude (2.5) by terms that
vanish on the constraint (2.6), since:(

x

4 − s1 − s2 − s3

)
iπδ

(
x

4 − s1 − s2 − s3

)
= lim

z0→0

∫ ∞
z0

dz ∂z
[
z
x
2−2(s1+s2+s3)

]
. (2.9)

Dirac delta functions (2.8) which are not accompanied by a factor
(
x
4 − s1 − s2 − s3

)
as

in (2.9) above are therefore the fingerprint of genuine bulk contact interactions, and hence
of the presence of a singularity in the total energy variable ET = k1 + k2 + k3 as ET → 0.9
Boundary terms do not have a singularity in ET . The most general boundary term is given
by (2.9) dressed with a polynomial in s1, s2 and s3. This is analogous to the representation
of the momentum conserving delta function as an integral over the boundary co-ordinates x,

(2π)d δ(d) (k1 + k2 + k3) =
∫
ddx eix·(k1+k2+k3), (2.10)

where boundary terms are encoded in terms that vanish by momentum conservation:

(k1 + k2 + k3) (2π)d δ(d) (k1 + k2 + k3) =
∫
ddx i∂x

[
eix·(k1+k2+k3)

]
. (2.11)

8For scalar operators, this integral is precisely the integral in the triple-K integral representation [49]
for conformal correlation functions of scalar operators in momentum space. In that case the three Mellin
variables sj arise from the Mellin-Barnes representation for each K, which is modified Bessel function of
the second kind.

9Bulk contact terms only have singularities in ET and are characterised by the order of the pole in
ET [48, 61].
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Given the above parallels between the Mellin-Barnes and momentum space representation
of conformal correlators it is tempting to regard the Mellin-Barnes representation as an
analogue of momentum space for the bulk radial direction.

We will often find it useful to work with the Mellin-Barnes amplitude at the level of the
integrand in the bulk radial co-ordinate z, which can be immediately read off from (2.8)

Aν1,J1;ν2,J2;ν3,J3 (si,ki, εi) = lim
z0→0

[∫ ∞
z0

dz

z
Aν1,J1;ν2,J2;ν3,J3 (si,ki, εi|z)

]
, (2.12)

where we defined

Aν1,J1;ν2,J2;ν3,J3 (si,ki, εi|z) = z
x
2−2(s1+s2+s3)Cν1,J1;ν2,J2;ν3,J3 (si|εk · kj , εk · εj) . (2.13)

The Mellin-Barnes amplitude for the corresponding in-in 3pt function in dSd+1 is ob-
tained from its EAdSd+1 counterpart by multiplying with the following constant sinusoidal
factor:10

N3 sin
(
π

(
x

4 + i (ν1 + ν2 + ν3)
2

))
. (2.14)

This factor combines the contributions from the + and − in-in contour branches, which
have equal and opposite phases generated by analytic continuation from EAdSd+1 — for
details see [21].

Having outlined the general framework for the Mellin-Barnes representation of confor-
mal 3pt functions above, below we will give some examples.

Example 1: three scalars. The simplest example is given by boundary three-point
correlation functions generated by the following simple non-derivative bulk cubic vertex of
scalar fields φi

V0,0,0 = g φ1φ2φ3, (2.15)

with coupling g. For bulk fields φi in EAdSd+1 the Mellin-Barnes amplitude (2.5) of the
dual operators Oνi,0 simply reads [21]:

A(d)
ν1,0;ν2,0;ν3,0 (sj ,kj) = g iπδ

(
d

4 − s1 − s2 − s3

)
, (2.16)

where for scalar 3pt contact diagrams x = d. Correlators of the shadow operators O−νj
with scaling dimensions ∆−j = d

2 − iνj are obtained from the above by sending νj → −νj .
To obtain the corresponding result in dSd+1 one simply multiplies by the factor (2.14) with
x = d.

The corresponding correlator (2.1) is, up to normalisation, the unique solution to the
Conformal Ward identities for scalar operators, which for the generic scaling dimensions
considered above is given by Appell’s F4 function [49, 62]. The bulk counterpart of the
uniqueness of this conformal structure is that the vertex φ1φ2φ3 generating it is unique
on-shell. Other cubic vertices involving φ1, φ2 and φ3 differ from the latter by terms that
vanish on-shell, so-called improvement terms, which generate boundary terms (2.9) that
give a vanishing contribution to the three-point function.

10The factor N3 accounts for the change in two-point function normalization as we move from EAdS to
dS. The details of this procedure can be found in [21], see e.g. equation (2.93) of the latter reference.
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Example 2: two scalars and a spin J . The cubic vertex involving a single spin-J
field ϕJ and the two scalars φ1,2 is also unique on-shell, taking the following form up to
integration by parts and the free equations of motion:

V0,0,J = g (φ1∇µ1 . . .∇µJφ2)ϕµ1...µJ . (2.17)

For bulk fields in EAdSd+1 the Mellin-Barnes amplitude it generates for the three-point
correlation function of the dual spin-J operator Oν3,J with auxiliary vector ε3 and two
scalar operators Oν1,2,0 is (see section 3.2 of [21]):

A(d+2J)
ν1,0;ν2,0;ν3,J

(s1,k1; s2,k2; s3,k3, ε3) = g
(J)
12 iπδ

(
d+ 2J

4 − s1 − s2 − s3

)
× Cν1,0;ν2,0;ν3,J (s1, s2, s3|ε3 · k1, ε3 · k2, ε3 · k3) .

(2.18)

To obtain the corresponding result in dSd+1 one simply multiplies by the factor (2.14).
The tensorial structure Cν1,0;ν2,0;ν3,J (sj |ε3 · kj) is a degree J polynomial in the contractions
(ε3 · kj):

Cν1,0;ν2,0;ν3,J (sj |ε3 · kj) =
J∑
α=0

(
J

α

)
(−ε3 · k3)α

α∑
β=0

(
α

β

)
Y(J)
ν1,ν2,ν3|α,β (ε3 · k1, ε3 · k2)

×Hν1,ν2,ν3|α,β (s1, s2, s3) , (2.19)

where

Hν1,ν2,ν3|α,β (s1, s2, s3) =

(
s1 + iν1

2

)
α−β

(
s2 + iν2

2

)
β(

s3 + iν3
2 − α

)
α

, (2.20)

and Y(J)
ν1,ν2,ν3|α,β (ε3 · k1, ε3 · k2) is a degree J−α polynomial in (ε3 · k1,2) which is indepen-

dent of the Mellin variables sj and whose explicit form is reviewed in appendix B. Vertices
that differ from the canonical choice (2.17) by on-shell vanishing terms generate the same
three-point correlation function (2.18) modulo boundary terms (2.9) that give a vanish-
ing contribution to the three-point function. In the next section we will see how rational
functions of the Mellin variables such as (B.3) can be translated into a polynomial via an
appropriate change of integration variables.

Note that above we have taken the fields participating in the vertex (2.17) to be generic.
When the spin-J field is (partially-)massless, gauge invariance constrains the masses of the
scalar fields φ1 and φ2 to which it can couple (see [43] section 3.2). In section 2.3 we will
see how such constraints manifest themselves in the Mellin-Barnes formalism.

2.2 Weight shifting operators

The Mellin-Barnes representation has the virtue of making manifest certain useful recur-
sion relations that hold between correlators with operator scaling dimensions and spins
that differ by integer shifts,11 as well as correlators with and without derivative inter-
actions. See section 4.4 of [21], which we review and expand upon in the following.

11Note that such positive integer shifts of the operator dimensions parameterised by ∆ = d
2 ± iν can be

naturally interpreted as shifts in the dimension d of the space-like de Sitter boundary.
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See e.g. [18, 22, 24, 56, 63, 64] for other works on weight-shifting operators in momentum
space CFTs.

Let us first consider three-point functions of scalar operators. Given a three-point
function of scalar operators in general boundary dimensions d, the scaling dimension of the
operator Oνj can be lowered by one unit by shifting d → d − 2 and acting with a simple
differential operator Mkj in the momentum kj on the three-point function:12

〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(d)
∣∣∣
νj→νj+i

= Mkj

[
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(d−2)

]
, (2.21)

with
Mkj = −4∂k2

j
, (2.22)

which lowers by one unit the scaling dimension of Oνj while raising by two units the bound-
ary dimension d. This relation is straightforward to establish from the Mellin-Barnes repre-
sentation (2.16), where shifts in the dimension d induce shifts in the parameters νj through
a re-definition of the Mellin variable sj . This generates the Mellin-Barnes representation
of the three-point function with the new, shifted, νj dressed with a polynomial in sj . The
latter is then naturally recast as a differential operator (2.22) in the momentum kj .

Likewise, the scaling dimension of the operator Oνj can be raised by one unit upon
shifting d→ d− 2 in (2.16) and acting with a simple differential operator Pkj :

〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(d)
∣∣∣
νj→νj−i

= Pkj
[
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(d−2)

]
, (2.23)

where
Pkj [•] = −k2i(νj−i)

j ∂k2
j

(
k
−2iνj
j •

)
, (2.24)

which instead raises by one unit the scaling dimension of Oνj while also raising by two units
the boundary dimension d. The operators (2.22) and (2.24) can then be used recursively to
obtain any integer shift ∆j → ∆j ∓ n in the scaling dimensions, which compose simply as

Mn
kj = (−4)n ∂nk2

j
, Pnkj [•] = (−1)n k2i(νj−in)

j ∂nk2
j

(
k
−2iνj
j •

)
. (2.25)

More generally, any polynomial in the Mellin variables sj that dresses the Mellin-
Barnes representation of the scalar three-point function (2.16) can be translated into the
action of a differential operator. This can be achieved by expressing the polynomial as a
sum of Pochammer factors

(
sj ± iνj

2

)
n
, which in turn can be absorbed into the action of

the following differential operators:

O(n)
k,ν [•] = (−1)nk2n+2iν∂nx

(
x−iν •

∣∣∣
k=
√
x

) ∣∣∣
x=k2

, (2.26a)

Õ(n)
k,ν [•] = (−1)nk2n∂nx

(
•
∣∣∣
k=
√
x

) ∣∣∣
x=k2

, (2.26b)

12In this section 2.2, all expressions are for correlators with the momentum conserving delta function
stripped off. To avoid notational clutter, we shall often leave implicit the ′ which denotes this. The
superscript (•) in 〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(•) denotes the boundary dimension.
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which have the property

O(n)
kj ,νj

[
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉′s1,s2,s3

]
=
(
sj + iνj

2

)
n
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉′s1,s2,s3 ,

(2.27a)

Õ(n)
kj ,νj

[
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉′s1,s2,s3

]
=
(
sj −

iνj
2

)
n
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉′s1,s2,s3 .

(2.27b)

As will become clear, the relations (2.27) are particularly useful when dealing with three-
point functions generated by derivative interactions and also operators with spin. In par-
ticular, in the previous section we saw that the Mellin-Barnes representation for spinning
correlators (2.18) differs from that for the corresponding scalar correlator (2.16) by a ra-
tional function (2.19) of the Mellin variables sj that encodes the tensorial structure and a
shift in the boundary dimension d→ d+ 2J . The key point is that the function encoding
the tensorial structure can always be transformed into a polynomial in both the Mellin
variables sj and the contractions ε3 · kj through a change of variables. For example, for
the three-point function involving a single spin-J operator (2.18) this is achieved for each
term in the finite sum over α by redefining s3 → s3 + α, which gives:

〈Oν1 (k1)Oν2 (k2)Oν3,J (k3; ε3)〉(x)
s1,s2,s3

=
J∑
α=0

(−2ε3 · k3
k2

3

)α(J
α

)
α∑
β=0

(
α

β

)
Y(J)
ν1,ν2,ν3|α,β (ε3 · k1, ε3 · k2) (2.28)

×
(
s1 + iν1

2

)
α−β

(
s2 + iν2

2

)
β

(
s3 −

iν3
2

)
α
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(x−α)

s1,s2,s3 ,

where we recall that x = d + 2J . Using the relations (2.27), the Pochhammer factors on
the second line dressing the scalar 3pt conformal structure with x−α boundary dimensions
can be absorbed into the action of the differential operators (2.26):

(
s1 + iν1

2

)
α−β

(
s2 + iν2

2

)
β

(
s3 −

iν3
2

)
α
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(x−α)

s1,s2,s3

= O(α−β)
k1,ν1

◦ O(β)
k2,ν2

◦ Õ(α)
k3,ν3

[
〈Oν1 (k1)Oν2 (k2)Oν3 (k3)〉(x−α)

s1,s2,s3

]
. (2.29)

This establishes that the Mellin-Barnes representation of three-point functions for spinning
operators can be reduced to that (2.16) of the scalar operators with the same scaling
dimensions as their spinning counterparts up to a shift in the boundary dimension.

By re-instating the Mellin-Barnes integrals via the definition (2.1), the identity (2.28)
above combined with (2.29) furthermore gives a decomposition of the three-point function
involving a single spin-J operator into a sum of three-point functions involving only scalar
operators which are acted upon by the operators (2.27). Using the Mellin-Barnes repre-
sentation we can also express the three-point function involving a single spin-J operator as
a differential operator acting on a single three-point function of scalar operators in which
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one of the scalar operators has scaling dimension shifted by the spin-J :

〈Oν1 (k1)Oν2 (k2)Oν3,J (k3; ε3)〉′

=
J∑
α=0

(
J

α

)(−2ε3 · k3
k2

3

)α α∑
β=0

(
α

β

)
Y(J)
ν1,ν2,ν3|α,β (ε3 · k1, ε3 · k2) (2.30)

×O(α−β)
k1,ν1

◦ O(β)
k2,ν2

◦ O(J−α)
k3,ν̄3

[
〈Oν1 (k1)Oν2 (k2)Oν̄3 (k3)〉′

]
,

where ν̄3 = ν3+iJ , so that the correlator with spin-J operator with scaling dimension ∆3 =
d
2 + iν3 is obtained by acting with the above differential operator on the correlator where
it is replaced by a scalar operator with scaling dimension ∆3 − J . Note that τ3 = ∆3 − J
is the twist of the spin-J operator, meaning that if two correlators where the operators in
one correlator have the same twist as their counterparts in the other footnoteE.g. conserved
operators (which are dual to massless spinning fields) all have the same twist τ = d − 2,
as do partially-conserved operators of the same depth r which have twist τ = d − 2 −
r. both correlators are obtained from the same correlation function of scalar operators
in this way. The identity (2.30) is straightforward to establish from the Mellin-Barnes
representation (2.18) by making the change of variables s3 → s3 + J

2 and using (2.26).

2.3 Ward-Takahashi identities

Correlation functions involving conserved currents are further constrained by Ward-
Takahashi identities. These restrict scaling dimension of the operators that can appear
in correlators involving conserved currents at the three-point level [43, 44]. In this section
we detail how these features manifest themselves in the Mellin-Barnes representation, fo-
cusing on three-point functions of a (partially)-massless field and two scalars. See figure 1.

The spin-J primary operator Oν3,J is a conserved current at the following special values
of ν3:

ν3 = −i
(
x

2 − 2− r
)
, r = 0, 1, 2, . . . , J − 1, (2.31)

where we refer to the parameter r as the depth.13 For these values of ν3 the operator
satisfies the conservation condition [41, 42]:

(k3 ·Dε3)r+1Oν3,J (k3, ε3) = 0. (2.32)

Operators satisfying (2.32) with depth r > 0 are often referred to in the literature as par-
tially-conserved, with the terminology “conserved current” reserved for those with depth
r = 0. For J = 2 the latter is familiar as the stress tensor. When inserted into a correlator,
the above conservation condition relates the longitudinal components to lower point corre-
lators of the other operators. For instance, for the three-point function of Oν3,J with two
scalar operators Oν1,0 and Oν2,0, whose Mellin-Barnes amplitude we gave in (2.18), we have

(k3 ·Dε3)r+1 〈Oν1,0 (k1)Oν2,0 (k2)Oν3,J (k3, ε3)〉′

= −〈Oν1,0(−k1)δε3Oν1,0(k1)〉 − 〈δε3Oν2,0(k2)Oν2,0(−k2)〉 , (2.33)

where δε3 denotes the action of the charge associated to the current (2.32).
13Sometimes in the literature another definition of depth, t, is given and is related to r above via:

t = J − 1− r.
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g
(J,r)
12

Figure 1. Boundary three-point function of two scalars φ1,2 and a spin-J partially massless field
ϕJ of depth-r in de Sitter space, with coupling g(J,r)

12 .

The Ward-Takahashi identities are intimately related to invariance under gauge trans-
formations of the corresponding field ϕJ in the bulk. In particular, the Ward-Takahashi
identity (2.33) is equivalent to the following gauge invariance condition (see e.g. [65]):14

δ
(0)
ξ S(3) [φ1, φ2, ϕJ ] + δ

(1)
ξ S(2) [φ1] + δ

(1)
ξ S(2) [φ2] = 0, (2.34)

which relates the cubic coupling in the action S(3) generating the three-point function
in (2.33) to the kinetic term S(2) of the scalar fields φ1,2 that are dual to the operators
Oν1,0 and Oν2,0. The δ(0)

ξ is the linearised gauge transformation of the spin-J field with
gauge parameter ξ, which for depth r is:

δ
(0)
ξ ϕµ1...µJ = ∇(µ1 . . .∇µr+1ξµr+1...µJ ). (2.35)

The field ϕJ therefore has helicities ranging over {J − r, J − r + 1, . . . , J}. Since massless
spin-J fields have helicity J , fields with depth r > 0 are known as partially-massless. The
δ

(1)
ξ is the transformation of the scalar fields φ1,2 induced by the cubic vertex S(3) and is
linear in φ1,2.

Since the Ward-Takahashi identities are a constraint on the longitudinal components,
it is useful consider the helicity decomposition:

〈Oν1,0 (k1)Oν2,0 (k2)Oν3,J (k3)〉′ =
J∑

m=0
ΥJ−m(ε3,k3)(m)〈Oν1,0 (k1)Oν2,0 (k2)Oν3,J (k3)〉′,

where the helicity-m component is obtained by acting on the 3pt function with the differ-
ential operator (A.2):

(m)〈Oν1,0 (k1)Oν2,0 (k2)Oν3,J (k3)〉′

= Ê(k3)
J,m

[
〈Oν1,0 (k1)Oν2,0 (k2)Oν3,J (k3)〉′

] ∣∣∣
ε3→ζ3

. (2.36)

14The notation (n) signifies that the corresponding term is power n in the fields.
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The function ΥJ−m(ε3,k3) encodes the J − m longitudinal indices and is given by the
following Gegenbauer polynomial

Υn(ε,k) = n!
2n
(
d−2

2 + J − n
)
n

εnC
( d2 +J−n−1)
n

(
ε̂ · k̂

)
, (2.37)

whose derivation is given in appendix A. The helicity-m component (m)Aν1,0;ν2,0;ν3,J of the
corresponding Mellin-Barnes amplitude (2.5) is defined as

(m)〈Oν1,0 (k1)Oν2,0 (k2)Oν3,J (k3)〉′s1,s2,s3 = (m)Aν1,0;ν2,0;ν3,J (s1,k1; s2,k2; s3,k3, ζ3)

× km−J3 ρν1,ν2,ν3 (s1, s2, s3)
3∏
j=1

(
kj
2

)−2sj+iνj
.

(2.38)

By definition this is a monomial of degree-m in the contraction ζ3 · k12, where ζ3 replaces
ε3 as an auxiliary vector which is also transverse, i.e. ζ3 · k3 = 0, in addition to being null.
In particular,

(m)A(x)
ν1,0;ν2,0;ν3,J

(s1,k1; s2,k2; s3,k3, ζ3) = g
(J,r)
12 iπ δ

(
x− 4 (J −m)

4 − s1 − s2 − s3

)
×
(
− i2

)m
(ζ3 · k12)m f

(ν1,ν2,ν3)
J−m (s1, s2, s3) ,

(2.39)

where f (ν1,ν2,ν3)
J−m (s1, s2, s3) is a polynomial in the Mellin variables sj and g(J,r)

12 is the cou-
pling of the spin-J (partially-)massless field of depth r to scalars φ1 and φ2. The polynomial
f

(ν1,ν2,ν3)
J−m (s1, s2, s3) becomes more and more involved as the helicity m decreases. In par-
ticular, for the helicity m = J and m = J − 1 components we have:

f
(ν1,ν2,ν3)
0 (s1, s2, s3) = 1, (2.40a)

f
(ν1,ν2,ν3)
1 (s1, s2, s3) =

[
(s1 − s2) (2 (s1 + s2 + s3)− iν3) + 1

2 (ν1 − ν2) (ν1 + ν2) (2.40b)

−i2 (ν1 − ν2) (s1 + s2) (2s3 − iν3)
2iν3 + x− 4 − i(ν1 − ν2)(2i (ν1 + ν2) + 4s3 + 4− x)

2 (2iν3 + x− 4)

]
,

...

In section 2.4 we will see how the explicit form of these polynomials can be simplified
using the freedom to add improvement (on-shell vanishing) terms to the cubic vertices. A
useful feature of the functions f (ν1,ν2,ν3)

J−m (s1, s2, s3) is that they depend on the spin-J and
the boundary dimension d only through the combination x = d+ 2J . This implies that to
extract the helicity-m component it is sufficient to extract it for spin-(J −m).15

15This in particular means that the helicity-(J − 1) component can be extracted from that of the three-
point function with J = 1; the helicity-(J − 2) from that with J = 2, . . . and so on. For the higher helicity
components this property of f (ν1,ν2,ν3)

J−m (s1, s2, s3) simplifies the task enormously.
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For generic values of ν3, the Dirac delta distribution in each helicity component (2.38)
indicates the presence of a bulk contact term. Or equivalently, a singularity in the total
energy variable ET = k1 + k2 + k3 as ET → 0. See section 2.1. For the values (2.31) of ν3
corresponding to (partially-)massless fields, for them to couple consistently to scalar matter
the bulk contact terms must be absent starting from the helicity-(J − 1− r) component
of the correlator down to helicity-0. This requires that for m = 0, . . . , J − 1 − r the
helicity-m component (2.38) of the Mellin-Barnes amplitude takes the following form at
the (partially-)massless points (2.31):

f
(ν1,ν2,ν3)
J−m (s1, s2, s3) =

(
x− 4 (J −m)

4 − s1 − s2 − s3

)
pW-T
J−m (s1, s2, s3) , (2.41)

where pW-T
J−m (s1, s2, s3) is a polynomial in s1, s2 and s3, and the factor that multiplies it

coincides with the argument of the Dirac delta function in (2.38). This requirement places
constraints on the values of ν1 and ν2 for the scalar fields that admit consistent cubic cou-
plings with (partially)-massless fields. As we saw in section 2.1, the above form corresponds
to a local boundary term (2.9) in the Mellin-Barnes representation and therefore does not
encode a singularity in the ET → 0 limit. In particular, inserting the expression (2.8) for
the Dirac delta function as an integral over the bulk radial coordinate gives the following
representation of the helicity-m component (2.39):

(m)A(x)
ν1,0;ν2,0;ν3,J

(s1,k1; s2,k2; s3,k3, ζ3)

= g
(J,r)
12 lim

z0→0

(− i2
)m

(ζ3 · k12)m f
(ν1,ν2,ν3)
J−m (s1, s2, s3) z

x−4(J−m)
2 −2(s1+s2+s3)

0
x−4(J−m)

4 − s1 − s2 − s3

 . (2.42)

In this form the presence of a bulk contact singularity is indicated by a simple pole at

x− 4 (J −m)
4 − s1 − s2 − s3 = 0. (2.43)

For consistent couplings of the (partially-)massless points (2.31) to scalar matter, this
pole is cancelled by the corresponding factor (2.41) in the polynomial f (ν1,ν2,ν3)

J−m (s1, s2, s3),
generating a boundary term. For the case of two scalars and a (partially-)massless field this
boundary term is actually non-zero and generates a non-trivial Ward-Takahashi identity,
hence the “W-T” in (2.41), which we discuss in the following.

Consistent couplings involving (partially-)massless fields come in two types [65]: those
which are exactly gauge invariant under the corresponding gauge transformations,

δ
(0)
ξ S(3) = 0, (2.44)

and those which are gauge-invariant up to terms proportional to the free equations of
motion,

δ
(0)
ξ S(3) ≈ 0. (2.45)

In order to satisfy the cubic order gauge invariance condition (2.34), the latter induce
a non-trivial deformation δ

(1)
ξ in the linearised gauge transformation via (2.34). Exactly
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gauge invariant cubic couplings (2.44) are instead non-deforming, δ(1)
ξ = 0. Correspond-

ingly, three-point functions generated by exactly gauge invariant cubic couplings are exactly
conserved, while those generated by couplings that induce deformations in the gauge trans-
formations give non-trivial Ward-Takahashi identities. Cubic vertices of two scalars and
a (partially-)massless field in (A)dSd+1 are of the latter type [44, 66, 67]. At the level
of the Mellin-Barnes representation, the latter can only be generated by the residues of
the poles (2.4) satisfying the constraint (2.43) with non-zero residue. These give a finite
contribution in the limit z0 → 0, since the constraint (2.43) sets to zero the exponent of z0
in (2.42). They are,

s1 = ± iν1
2 − n1, s2 = ∓ iν2

2 − n2, s3 =
(
x− 4− 2r

4

)
− n3, (2.46)

where nj = 0, 1, 2, 3, . . . and:

± iν1 ∓ iν2 + r = 2 (n1 + n2 + n3)− 2 (J − r − 1−m) . (2.47)

This makes clear that, for a given spin J and depth r, only a finite number of poles (2.4)
contribute to a non-trivial Ward-Takahashi identity, which furthermore only emerges for
scaling dimensions ν1,2 satisfying (2.47). As we shall see below, this is the case for all
values [43, 44] of ν1,2 for which a consistent cubic coupling to a partially-massless field
exists. This is to be expected since such couplings are only gauge invariant on-shell (2.45)
and therefore induce a non-trivial δ(1). In the following we derive the corresponding three-
point Ward-Takahashi identities, considering couplings to massless fields in section 2.3.1
and partially-massless fields in section 2.3.2. This simply consists of extracting the func-
tion (2.41) for each helicity component and evaluating the residues (2.46), which can be
implemented for a given helicity in Mathematica. Note that at the 3pt level the cubic
coupling g(J,r)

ij is not constrained by the Ward-Takahashi identity, only the masses of the
scalar fields φi and φj that can couple to a (partially-)massless field of spin-J are.16 These
are instead constrained by the four-point Ward-Takahashi identities, which is explored in
section 4.

2.3.1 Massless fields

For a massless spin-J field we have depth r = 0 and ν3 = −i
(
x−4

2

)
. From the helicity J−1

component of the Mellin-Barnes amplitude (2.40b), it is straightforward to see that a gauge
invariant three-point function only exists when the scalars have equal mass. In particular,
only if ν1 = ν2 does the polynomial f (ν1,ν2,ν3)

1 (s1, s2, s3) contain the factor (2.41) required
to generate a boundary term. This is consistent with existing results on cubic couplings
of massless spinning fields to scalar matter, where it is well known that consistent cubic
couplings, both in flat and in (A)dS space, require the scalars to have equal mass [66, 67].
In the following we shall therefore take ν1 = ν2 = µ.

16This can be understood from the constraints (2.44) and (2.45) imposed by gauge invariance, which are
homogeneous equations for S(3).
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The corresponding Ward-Takahashi identities are non-trivial and are generated by the
residues of poles (2.46) with

(J − 1)−m = n1 + n2 + n3, (2.48)

where the lower the helicity component the greater the number of poles that contribute.
This is consistent with the fact that the corresponding cubic couplings [66, 67] are gauge
invariant up to terms proportional to the free equations of motion.

For the helicity-(J − 1) component, only the poles with n1 = n2 = n3 = 0 generate
the Ward-Takahashi identity, which reads:17

(J−1)〈Oµ,0 (k1)Oµ,0 (k2)O−i(x−4
2 ),J (k3)〉′

= g
(J,0)
12

√
π

2
Γ
(
x
2
)
csch(πµ)

Γ (−iµ)2

(
− iζ3 · k12

2

)J−1

× [〈Oµ,0 (k1)Oµ,0 (−k1)〉 − 〈Oµ,0 (−k2)Oµ,0 (k2)〉] . (2.50)

The Ward-Takahashi identities for the lower helicity components (2.39) follow in the same
way. Since the number of poles that contribute increase as the helicity decreases, they also
become more involved. For instance, for the helicity-(J − 2) component we have

(J−2)〈Oµ,0 (k1)Oµ,0 (k2)O−i(x−4
2 ),J (k3)〉′

= g
(J,0)
12

√
π

4
Γ
(
x−4

2

)
csch(πµ)

(x− 4) Γ (−iµ)2

(
− iζ3 · k12

2

)J−2

×
[ (

2µk2
3 + i (x− 4) (k1 − k2)(k1 + k2)

)
〈Oµ,0 (k1)Oµ,0 (−k1)〉

+
(
2µk2

3 − i (x− 4) (k1 − k2) (k1 + k2)
)
〈Oµ,0 (−k2)Oµ,0 (k2)〉

]
. (2.51)

The polynomials f (ν1,ν2,ν3)
J−m (s1, s2, s3) which encode the above Ward-Takahashi identi-

ties at the level of the Mellin-Barnes amplitude (2.39) also become increasingly complicated
as the helicity decreases. For example, for helicity-(J − 2) component above we have:

f
(µ,µ,−i(x−4

4 ))
2 (s1, s2, s3)

=−
x−8

2 − 2(s1 + s2 + s3)
4(x− 4)

[
8s3(x−6)

(
iµ+ s2

1 − 2s1s2 + s1 + s2
2 + s2

)
−16s2

3(iµ+ s1 + s2)

+ (x− 4)
(
4µ2 + (2s2

1 − 4s1s2 + s1 + 2s2
2 + s2)(4(s1 + s2 + 2)− x)− iµ(x− 8)

) ]
.

(2.52)

17The momentum space two-point of scalar operators Oµ,0 reads (in the normalisation of [21]):

〈Oµ,0 (k)Oµ,0 (−k)〉 = Γ (−iµ)2

4π

(
k

2

)2iµ
. (2.49)
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In section 2.4 we will see how this can be simplified using the freedom to add improve-
ment terms.

As highlighted in the previous section, note that both (2.50) and (2.51) depend on d
and J only through the combination x = d+ 2J . Therefore, once they are known, say, in
general d, for some spin-J , then they are known for all spins J . Likewise, if they are known
for all spins-J in some dimension d, then they are known for all d. This is also illustrated
by the results (2.54) and (2.56) for partially-massless fields of depth-1 and -2, which are
considered in the following section.

2.3.2 Partially-massless fields

The solutions to the gauge invariance condition (2.34) for cubic couplings involving
partially-massless fields were constructed and classified in the works [43, 44]. For the
cubic coupling of a (partially)-massless field of spin-J to scalar fields, it was found that
consistent couplings exist only when the following relation holds between the depth r and
the scaling dimensions ∆1 and ∆2 of the scalar fields:

r + ∆1 −∆2 = 2Z , |∆1 −∆2| ≤ r. (2.53)

In particular:

• Partially massless fields of odd depth r can only couple to scalars with scaling di-
mensions ∆1 and ∆2 that differ by odd integers no greater than r.

• For partially massless fields of even depth r, the above condition tells us they can
only couple to scalars with scaling dimensions that differ by even integers no greater
than r. This includes scalars of equal mass.

This has interesting implications for the coupling of partially-massless fields to massive
scalars, where ∆1,2 = d

2 + iν1,2 with ν1,2 ∈ R:

• Partially massless fields of odd depth cannot couple to massive scalars since their
scaling dimensions cannot differ by (odd) integers as required by (2.53). Consistent
couplings of scalars to odd depth partially massless fields can therefore only exist
when both scalars belong to the complementary series.

• Partially massless fields of even depth can only couple to massive scalars if they have
equal mass, since the scaling dimensions of Principal series representations can only
differ by imaginary values.

The Ward-Takahashi identities associated to (2.53) are non-trivial since this condition
coincides with that (2.47) required to generate a finite, non-zero, boundary term. This is
consistent with the analysis [43, 44] of the corresponding partially-massless cubic couplings,
which are gauge invariant up to terms proportional to the free equations of motion and
hence induce a deformation in the gauge transformation.

In the following we give some examples for even and odd depths separately, focusing
for simplicity on partially massless fields with depths r = 1 and r = 2. For r = 1 we take
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ν1 = µ and ν2 = µ+ i where i is the imaginary unit, so that ∆1 −∆2 = 1, while for r = 2
we will take the scalars to have equal mass, ν1 = ν2 = µ. These choices are the simplest
ones consistent with the constraint (2.53).

Partially-massless of depth r = 1. Taking ν1 = µ and ν2 = µ+ i, the helicity-(J − 2)
component (2.39) of the Mellin-Barnes amplitude for a spin-J partially-massless field of
depth 1 is given by

f
(µ,µ+i,−i(x−6

2 ))
2 (s1, s2, s3)

= −(4(s1 + s2 + s3 + 2)− x)
16(x− 4)

×
[
− 4s2

1

(
4s2(x− 4)− 4(s3 + 5)x+ 8(4s3 + 9) + x2

)
− 4s1

(
4s2

2(x− 4) + s2(8s3(x− 6)− 2(x− 14)x− 88) + (x− 4s3)2 + 56s3 − 17x+ 60
)

− 8iµs1(4s3 + x− 2) +
(
4s2

2 − 1
)

(x− 4)(4(s2 + s3 + 3)− x) + 16s3
3(x− 4)

+ 2iµ
(
4s2(4s3 + x− 2)− (x− 4s3)2 − 56s3 + 18x− 64

) ]
.

The factor outside of the square brackets ensures that this is a boundary term (2.41). The
corresponding Ward-Takahashi identity generated by the residues of poles (2.47) reads

(J−2)〈Oµ,0 (k1)Oµ+i,0 (k2)O−i(x−6
2 ),J (k3)〉′

= −g(J,1)
12

i
√
πcsch(πµ)Γ

(
x
2 − 3

)
Γ (−iµ)2

(
− iζ3 · k12

2

)J−2 [
〈Oµ,0 (k1)Oµ,0 (−k1)〉 (2.54)

− i
(
−µ(x− 4)k2

1 + (µ+ i)(x− 4)k2
2 + 2µ(1− iµ)k2

3
)

4(x− 4)µ2 〈Oµ+i,0 (−k2)Oµ+i,0 (k2)〉
]
.

Partially-massless of depth r = 2. Taking ν1 = ν2 = µ, the helicity-(J − 3) compo-
nent (2.39) of the Mellin-Barnes amplitude for a spin-J partially-massless field of depth 2
is given by

f
(µ,µ,−i(x−8

4 ))
3 (s1, s2, s3)

= − i(s1 − s2)(4(s1 + s2 + s3 + 3)− x)(4(s1 + s2 + s3 + 4)− x)
16(x− 4)[

− 48s2
1(iµ+ s3 + s2 + 1) + 8s1(x− 10)

(
3iµ+ s2

3 + s3(3− 2s2) + s2(s2 + 3) + 2
)

− 2s2
3(4s2(x− 4) + (x− 30)x+ 128) + 8s3

3(x− 4)

+ s3
(
(4s2 − 3)x2 − 8s2(s2 + 9)x+ 32(s2 − 1)(s2 + 11) + 76x

)
+ (s2 + 1)

(
−(2s2 + 1)x2 + 4(s2 + 6)(2s2 + 1)x− 32(s2(s2 + 7) + 4)

)
+ 12µ2(x− 4)− 3iµ(x− 12)(x− 8)

]
. (2.55)
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This is again a boundary term (2.41), owing to the factor (x−12
4 − (s1 + s2 + s3)). The

corresponding Ward-Takahashi identity generated by the residues of poles (2.47) reads

(J−3)〈Oµ,0 (k1)Oµ,0 (k2)O−i(x−8
2 ),J (k3)〉′

= g
(J,2)
12

√
π

2
csch(πµ)Γ

(
x
2 − 4

)
(x− 4)Γ (−iµ)2

(
− iζ3 · k12

2

)J−3
(2.56)

×
[ (

(iµ− 1)k2
1(x− 4) + (µ− i)

(
2(µ+ i)k2

3 − ik2
2(x− 4)

))
〈Oµ,0 (k1)Oµ,0 (−k1)〉

+
(
(iµ+ 1)k2

1(x− 4) + (µ+ i)
(
−2(µ− i)k2

3 − ik2
2(x− 4)

))
〈Oµ,0 (−k2)Oµ,0 (k2)〉

]
.

In the next section 2.4 we will use the freedom to add improvement terms to reduce (2.55)
— which is a degree 6 polynomial — to a degree 5 one.

2.4 On improvement terms

As discussed in section 2.1 one can consider adding improvement terms to the canonical cu-
bic vertex (2.17) which vanish on-shell. These give vanishing boundary term contributions
to the corresponding three-point function. In particular, in the helicity-m component (2.39)
of the three-point function (2.18), an improvement generates a contribution of the form

(m)Aimpr.
ν1,0;ν2,0;ν3,J

(s1,k1; s2,k2; s3,k3, ζ3)

= g
(J,r)
12 iπδ

(
x− 4 (J −m)

4 − s1 − s2 − s3

)
×
(
− i2

)m
(ζ3 · k12)m

(
x− 4 (J −m)

4 − s1 − s2 − s3

)
pimpr.
J−m (s1, s2, s3) , (2.57)

which we know from section 2.1 gives a boundary term contribution to the three-point
function. The function pimpr.

J−m (s1, s2, s3) is a polynomial in s1, s2 and s3 which is constrained
to ensure that the boundary term is vanishing and thus leaves the three-point Ward-
Takahashi identity unaffected.

It is useful to expand the above polynomial in the following basis

pimpr.
J−m (s1, s2, s3) =

∑
ni

cn1,n2,n3

(
s1 −

iν1
2

)
n1

(
s2 −

iν2
2

)
n2

(
s3 −

x− 4− 2r
4

)
n3

. (2.58)

From section 2.2 we see that such basis elements are in one-to-one correspondence with
the differential operators (2.27): the degree of the polynomial in the sj corresponds to the
order of the differential operator that generates it. In other words:(

s1 −
iν1
2

)
n1

(
s2 −

iν2
2

)
n2

(
s3 −

iν3
2

)
n3

↔ Õ(n1)
k1,ν1

◦ Õ(n2)
k2,ν2

◦ Õ(n3)
k3,ν3

. (2.59)

The higher the degree of the improvement as a polynomial in sj the higher the derivative
of the (on-shell vanishing) cubic vertex it represents.18 The coefficients cn1,n2,n3 in (2.58)

18See section 3.2 for more details on this statement.
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are constrained to give a vanishing boundary term contribution. In particular, the require-
ment is that the polynomial vanishes on the values (2.47) of s1, s2, s3. This does not fix
the coefficients cn1,n2,n3 completely and the leftover freedom can be used to simplify the
functions f (ν1,ν2,ν3)

J−m (s1, s2, s3) in (2.39).
For example, for massless fields, ν1 = ν2 = µ, the improvements (2.58) of degree 4 that

we can add to the helicity-(J − 2) component (2.52) are:

c000 → 0, (2.60a)
c100 → (µ+ i)(ic200 + (µ+ 2i)(c300 + c400(3− iµ))), (2.60b)
c010 → (µ+ i)(ic020 + (µ+ 2i)(c030 + c040(3− iµ))), (2.60c)
c110 → (µ+ i)(ic210 + c310(µ+ 2i) + ic120 + c220µ+ ic220 + c130µ+ 2ic130). (2.60d)

Using this freedom we can choose simpler representatives for f(µ,µ,−i(x−4
4 ))

2 (s1, s2, s3). For
example,

f
(µ,µ,−i(x−4

4 ))
2 (s1, s2, s3) = (x− 4(s1 + s2 + s3 + 2))

[
s2

1(1 + s1 − s2) + s2
2(1− s1 + s2)

+ (x− 6)(x− 4− 4s3)
(
µ2 + 4s1s2

)
8(x− 4) + µ2

2

]
, (2.61)

which is simplified compared to (2.52).
Similarly, for the partially massless field of depth 2 with ν1 = µ and ν2 = µ + i, by

considering improvements (2.58) of degree 5 one can find the following simpler degree-5
representative for the helicity-(J − 3) component (2.55):

f
(µ,µ,−i(x−8

4 ))
3 (s1, s2, s3)

= −i(x− 4(s3 +1))
(
x−12

4 − (s1 + s2 + s3)
)[

(i+ µ) (2i+ µ)
(
µ

2 + is1

)(
µ

2 + i (s1 + 1)
)

− (i+ µ)
(
µ

2 + is1

)(
µ

2 + i (s1 + 1)
)(

µ

2 + i (s1 + 2)
)

(2.62)

− 3 (i+ µ)
(
µ

2 + is2

)(
µ

2 + is1

)(
µ

2 + i (s1 + 1)
)

+ i(x− 10)
(
µ2 + 1

)
(x− 4(s3 + 2))(µ+ 2is1)

16(x− 4) − (s1 ↔ s2)
]

− i

2

(
x− 12

4 − (s1 + s2 + s3)
)

(µ+ 2is2)(µ+ 2is1)(µ+ 2i(s1 + 1))(µ+ 2i(s1 + 2)).

2.5 Special case: conformally coupled scalars

In the previous sections we studied three-point functions of two scalar operators and a
spinning operator, in particular the Ward-Takahashi identities that must be satisfied when
the spinning operator is (partially-)conserved and how they arise in the Mellin-Barnes
formalism. As noted in [21] (section 4.6), for certain scaling dimensions the Mellin-Barnes
representation is not needed to capture the full analytic structure of the correlator and
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the Mellin-Barnes integrals can be straightforwardly evaluated to give simple closed form
expressions. This includes correlators involving conformally coupled scalars which, via the
weightshifting operators of section 2.2, can then be used to obtain explicit closed form
expressions for correlators of certain spinning operators and also scalar operators with
scaling dimensions that differ from those of conformally coupled scalars by integers (which
are ∆ = d

2 +iν, ν = ± i
2). In particular, recall that for partially conserved operators we have

∆3 = d

2 + iν3, iν3 = d− 4
2 + J − r, (2.63)

whose three-point functions, via the weight-shifting identity (2.30), can be generated from
those with the partially conserved operator replaced by a scalar operator with scaling
dimension

∆̄3 = d

2 + iν̄3, iν̄3 = d− 4
2 − r. (2.64)

For d odd this differs by an integer from the scaling dimension of conformally coupled
scalars, so the three-point function involving the scalar operator with (2.64) can, in turn,
be obtained from that of a conformally coupled scalar via application of the differential
operators (2.21) and (2.23).

The action of the differential operators (2.30), (2.21) and (2.23) are straightforward to
implement in Mathematica. Below we give some examples of how this can be used to obtain
such expressions for correlators of a (partially-)massless field with conformally coupled
scalars, focusing on the case d = 3. We will also obtain the corresponding Ward-Takahashi
identities, which serves as a consistency check for the more general results obtained at the
level of the Mellin-Barnes representation in the previous section.

Massless spinning field and two conformally coupled scalars. Consistent three-
point functions of a massless spinning field and two scalar fields necessarily require that
the scalars have the same mass (reviewed in the sections above). For two conformally
coupled scalar operators of the same scaling dimension given by ν1 = ν2 = − i

2 , following
the discussion above, their three-point function with a spin-J conserved current in d = 3
can be obtained by from the following scalar three-point function with ν̄3 = i

2 :

〈O− i
2 ,0

(k1)O− i
2 ,0

(k2)O i
2 ,0

(k3)〉′ = 2πiΓ
(
d− 3

2

) 1
k3

1
(k1 + k2 + k3)

d−3
2
. (2.65)

This expression can be obtained from the Mellin-Barnes representation (2.16) simply by
evaluating the integrals in s1, s2 and s3, see [20, 21]. The three-point correlation of the
massless spin-J field can then be obtained for d = 3 by acting on the above with the
differential operator (2.30) and setting d = 3. Below we give some examples for spins
J = 1, 2, 3.19

19Note that the helicity-J component of the 3pt function for a massless spin-J field and two conformally
coupled scalars in d = 3 was shown to be given by a Gauss hypergeometric function in (3.46) of [21], while
the lower helicity components were left implicit through the action of a differential operator. In the view of
extracting the corresponding Ward-Takahashi identity, in the following examples we give the lower helicity
components explicitly. For massless spin-1 and spin-2, the explicit 3pt functions were given in [24, 49] which
agree with the expressions we obtain in (2.66) and (2.68).
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Massless spin-1 field (ν3 = − i
2):20 applying the differential operator (2.30) to (2.65)

with J = 1 and d = 3 we obtain:

〈O− i
2 ,0

(k1)O− i
2 ,0

(k2)O− i
2 ,1

(k3; ε3)〉′

= g
(1,0)
12

[
i

8(k1 + k2 + k3) ε3 · k2 + i(k1 − k2 + k3)
16k3(k1 + k2 + k3) ε3 · k3

]
. (2.66)

The helicity-0 component is extracted by acting with the projector (A.9), giving:

Ê(k3)
1,0

[
〈O− i

2 ,0
(k1)O− i

2 ,0
(k2)O− i

2 ,1
(k3)〉′

] ∣∣∣
ε3→ζ3

= g
(1,0)
12

i

16(k1 − k2), (2.67)

which matches the Ward-Takahashi identity (2.50) upon setting d = 3, J = 1 and µ = − i
2 .

Massless spin-2 field (ν3 = −3i
2 ): Applying the differential operator (2.30) to (2.65)

with J = 2 and d = 3 we obtain:

〈O− i
2 ,0

(k1)O− i
2 ,0

(k2)O− 3i
2 ,2

(k3; ε3)〉′

= g
(2,0)
12

[
(ε3 · k3)2(k1 − k2 + k3)2

64k3(k1 + k2 + k3)2 + (ε3 · k2)2(−k1 + k2 + k3)2

64k3(k1 + k2 + k3)2

+ (ε3 · k3)(ε3 · k2) [(k1 − k2 − k3)(k1 − k2 + k3)− 2k3(k1 + k2 + k3)]
32k3(k1 + k2 + k3)2

]
. (2.68)

The helicity-1 and helicity-0 components are

Ê(k3)
2,1

[
〈O− i

2 ,0
(k1)O− i

2 ,0
(k2)O− 3i

2 ,2
(k3; ε3)〉′

]∣∣∣
ε3→ζ3

= −g(2,0)
12

i

16

(−iζ3 · k12
2

)
(k1 − k2) ,

(2.69a)

Ê(k3)
2,0

[
〈O− i

2 ,0
(k1)O− i

2 ,0
(k2)O− 3i

2 ,2
(k3; ε3)〉′

]∣∣∣
ε3→ζ3

= g
(2,0)
12

1
192 (k1+k2)

(
3 (k1−k2)2−k2

3

)
.

(2.69b)

These match the Ward-Takahashi identities (2.50) and (2.51) setting d = 3, J = 2 and
µ = − i

2 .

Massless spin-3 field (ν3 = −5i
2 ): applying the differential operator (2.30) to (2.65)

with J = 3 and d = 3 we obtain:

〈O− i
2 ,0

(k1)O− i
2 ,0

(k2)O− 5i
2 ,3

(k3; ε3)〉′

= g
(3,0)
12

[
i(ε3 · k1)3(k1 − k2 + k3)3

128k3(k1 + k2 + k3)3 + i(ε3 · k2)3(k1 − k2 − k3)3

128k3(k1 + k2 + k3)3

+ 3i(ε3 · k1)(ε3 · k2)2 (k3
1 − k2

1(3k2 + k3) + 3k1(k2 + k3)2 − (k2 − 5k3)(k2 + k3)2)
128k3(k1 + k2 + k3)3

−3i(ε3 · k1)2(ε3 · k2)
(
k3
(
3k2

1 + 6k1k2 − k2
2
)

+ 3k2
3(3k1 + k2)− (k1 − k2)3 + 5k3

3
)

128k3(k1 + k2 + k3)3

]
.

20We remind the reader that in order to have a non-vanishing 3pt function for odd spins J the two scalars
should carry a colour index, which we leave implicit throughout.
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To the best of our knowledge this explicit expression for spin-3 is new.21 The helicity-2
and helicity-1 components are:

Ê(k3)
3,2

[
〈O− i

2 ,0
(k1)O− i

2 ,0
(k2)O− 5i

2 ,3
(k3; ε3)〉′

] ∣∣∣
ε3→ζ3

= g
(3,0)
12

3i
64

(−iζ3 · k12
2

)2
(k1 − k2) ,

(2.70a)

Ê(k3)
3,1

[
〈O− i

2 ,0
(k1)O− i

2 ,0
(k2)O− 5i

2 ,3
(k3; ε3)〉′

] ∣∣∣
ε3→ζ3

= −g(3,0)
12

9
10

1
192

(−iζ3 · k12
2

)
(k1 + k2)

(
5(k1 − k2)2 − k2

3

)
. (2.70b)

These match the Ward-Takahashi identities (2.50) and (2.51) setting d = 3, J = 3 and
µ = − i

2 . What we did not give previously is the helicity-0 component, which reads:

Ê(k3)
3,0

[
〈O− i

2 ,0
(k1)O− i

2 ,0
(k2)O− 5i

2 ,3
(k3; ε3)〉′

] ∣∣∣
ε3→ζ3

= −g(3,0)
12

i (k1 − k2)
(
−2k2

3
(
7k2

1 + 4k1k2 + 7k2
2
)

+ 15
(
k2

1 − k2
2
)2 + 3k4

3

)
1280 . (2.71)

Partially-massless spinning field and two conformally coupled scalars. Recall
that consistent three-point functions involving a partially conserved operator and two scalar
operators only exist when the scaling dimensions of the scalar operators satisfy (2.53).

For example, for partially conserved operators of depth-1, according to (2.53) the
scaling dimensions of the scalar operators in the three-point function must differ by ±1.
The simplest case is if they both correspond to conformally coupled scalars, one with
ν1 = − i

2 and the other with ν2 = i
2 . In d = 3 the three-point function of a partially

conserved operator of depth-1 is generated via (2.30) from the three-point function of the
latter scalars and a third scalar operator with ν̄3 = 3i

2 , given explicitly by:

〈O− i
2 ,0

(k1)O i
2 ,0

(k2)O 3i
2 ,0

(k3)〉′

= 1
2Γ
(
d− 5

2

) 1
k2k3

3
(2k1 + 2k2 + k3(d− 3)) 1

(k1 + k2 + k3)
d−3

2
, (2.72)

which can either be obtained by directly evaluating the Mellin-Barnes integrals in (2.16)
or by acting on the three-point function (2.65) of conformally coupled scalars with the
differential operator (2.21).

Below we give some examples, which to the best of our knowledge were not previously
given explicitly in the literature.

21Expressions for any spin-J can be obtained similarly, acting with the differential operator (2.30)
on (2.65), but due to the increasing complexity of the result we do not give them explicitly here.
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Partially-massless spin-2 depth 1 (ν3 = − i
2): applying the differential operator (2.30)

to (2.72) with J = 2 and d = 3 we obtain:

〈O− i
2 ,0

(k1)O i
2 ,0

(k2)O− i
2 ,2

(k3; ε3)〉′ (2.73)

= g
(2,1)
12

[
(ε3 · k1)2(k1 − k2 + k3) ((k1 − k2)(k1 + k2 + k3)− 2k2k3)

16k2k3
3(k1 + k2 + k3)2

+ (ε3 · k1)(ε3 · k2)(k1 − k2 + k3)(k1 − k2 − k3)(k1 + k2 + 2k3)
8k2k3

3(k1 + k2 + k3)2

+(ε3 · k2)2(k1 − k2 − k3) ((k1 − k2)(k1 + k2 + k3) + 2k2k3))
16k2k3

3(k1 + k2 + k3)2

]
.

The helicity-0 component is

Ê(k3)
2,0

[
〈O− i

2 ,0
(k1)O i

2 ,0
(k2)O− i

2 ,2
(k3; ε3)〉′

] ∣∣∣
ε3→ζ3

= −g(2,1)
12

k2
3 − 3(k1 − k2)2

48k2
, (2.74)

which matches (2.54) with d = 3, J = 2 and µ = − i
2 .

Partially-massless spin-3 depth 1 (ν3 = −3i
2 ): applying the differential operator (2.30)

to (2.72) with J = 3 and d = 3 we obtain:

〈O− i
2 ,0

(k1)O i
2 ,0

(k2)O− 3i
2 ,2

(k3; ε3)〉′ (2.75)

= g
(3,1)
12

[
3i (ε3 · k1) (ε3 · k2)2 (−k1 + k2 + k3)2 (k2

1 + 5k1k3 − k2
2 − k2k3 + 4k2

3
)

64k2k3
3(k1 + k2 + k3)3

+ 3i (ε3 · k1)2 (ε3 · k2) (k1 − k2 + k3)2 (k2
1 + k1k3 − (k2 + k3)(k2 + 4k3)

)
64k2k3

3(k1 + k2 + k3)3

+ i (ε3 · k1)3 (k1 − k2 + k3)2 (k2
1 + k1k3 − k2(k2 + 5k3)

)
64k2k3

3(k1 + k2 + k3)3

+ i (ε3 · k2)3 (−k1 + k2 + k3)2 (k2
1 + 5k1k3 − k2(k2 + k3)

)
64k2k3

3(k1 + k2 + k3)3

]
.

The helicity-1 component matches with (2.54) upon setting d = 3, J = 3 and µ = − i
2 :

Ê(k3)
3,1

[
〈O− i

2 ,0
(k1)O i

2 ,0
(k2)O− 3i

2 ,2
(k3; ε3)〉′

] ∣∣∣
ε3→ζ3

= g
(3,1)
12

(
− iζ3 · k1

2

) 1
80k2

(
5(k1 − k2)2 − k2

3

)
. (2.76)

The helicity-0 component was not given previously and reads:

Ê(k3)
3,0

[
〈O− i

2 ,0
(k1)O i

2 ,0
(k2)O− 3i

2 ,2
(k3; ε3)〉′

] ∣∣∣
ε3→ζ3

= g
(3,1)
12

i

320k2
(k1 − k2)(k1 + k2)

(
5(k1 − k2)2 − 3k2

3

)
. (2.77)

– 25 –



J
H
E
P
1
0
(
2
0
2
1
)
1
5
6

3 Four-point functions

In this section we review and extend some relevant aspects of the Mellin-Barnes represen-
tations of four-point functions introduced in [20, 21]. The main new result is a systematic
study of four-point contact diagrams generated by quartic vertices with and without deriva-
tives in the Mellin formalism, which can be found in section 3.2.

3.1 Exchanges

We adopt the Mellin-Barnes representation for four-point exchanges introduced in [21], to
which we refer the reader for details and technicalities. The only novelty we present here
is an improvement on the notation and presentation. The Mellin-Barnes representation for
four-point exchanges is defined as:

〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)Oν4,J4 (k4)〉′

=
∫ i∞

−i∞
[ds]4 [dudū] 〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)Oν4,J4 (k4)〉′s1,s2,s3,s4;u,ū, (3.1)

which takes the form

〈Oν1,J1 (k1)Oν2,J2 (k2)Oν3,J3 (k3)Oν4,J4 (k4)〉′s1,...,s4;u,ū

=
(
A(s)
νi,Ji

(si,ki, εi;u, ū,ks) + t- + u-channel
)

× ρν,ν (u, ū) ρν1,ν2,ν3,ν4 (s1, s2, s3, s4)
4∏
j=1

(
kj
2

)−2sj+iνj
. (3.2)

The poles in the sj are encoded in

ρν1,ν2,ν3,ν4 (s1, s2, s3, s4) =
4∏
j=1

1
2
√
π

Γ
(
sj + iνj

2

)
Γ
(
sj −

iνj
2

)
, (3.3)

which is the extension of (2.4) to 4pts. These poles are associated to the external legs
and accordingly we refer to the sj as external Mellin variables. The poles in u and ū are
encoded in

ρν,ν (u, ū) = 1
4πΓ

(
u+ iν

2

)
Γ
(
u− iν

2

)
Γ
(
ū+ iν

2

)
Γ
(
ū− iν

2

)
, (3.4)

and are associated to the internal leg of the exchange with momentum ks = k1 + k2, so we
refer to u and ū as internal Mellin variables.

The Mellin-Barnes amplitude for the s-channel exchange is given by

A(s)
νi,Ji

(si,ki, εi;u, ū,kI) = A(s)
�|νi,Ji (si,ki, εi;u, ū,ks)

−A(s)
<|νi,Ji (si,ki, εi;u, ū,ks)−A(s)

>|νi,Ji (si,ki, εi;u, ū,ks) , (3.5)

where each of the three terms can be identified with a specific term in the corresponding
bulk-bulk propagators.22 Two of these can be expressed as a convolution integral of the

22In particular, the terms with subscript < and > correspond to those generated by terms with a specific
ordering of the radial components of the two bulk points. See [21] for the details.
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constituent three-point Mellin-Barnes amplitudes (2.5)23

A(s)
>|νi,Ji (si,ki, εi;u, ū,ks) (3.6a)

= N4
2

∫ +i∞

−i∞

dw

2πi
1

w + ε
cos

(
π

2 (4(s1 + s2 + w)− x− x̄
2 + i (ν1 + ν2 + ν3 + ν4))

)
×A(x−4w)

ν1,J1;ν2,J2;ν,J (s1,2,k1,2, ε1,2;u,ks, Dε)A(x̄+4w)
ν3,J3;ν4,J4;−ν,J (ū,−ks, ε; s3,4,k3,4, ε3,4) ,

A(s)
<|νi,Ji (si,ki, εi;u, ū,ks) (3.6b)

= N4
2

∫ +i∞

−i∞

dw

2πi
1

w + ε
cos

(
π

2 (4(s3 + s4 + w) + x− x̄
2 + i (ν1 + ν2 + ν3 + ν4))

)
×A(x+4w)

ν1,J1;ν2,J2;ν,J (s1,2,k1,2, ε1,2;u,ks, Dε)A(x̄−4w)
ν3,J3;ν4,J4;−ν,J (ū,−ks, ε; s3,4,k3,4, ε3,4) ,

where

x = d+N, x̄ = d+ N̄ , (3.7)

are the parameters (2.6) associated to each three-point function. The ε-prescription ensures
that the integration contour passes to the right of the pole w ∼ 0. Note that the cosine
factors arise from combining the contributions from each branch of the in-in contour,
which differ by phases (see section 4 of [21]).24 The remaining contribution is completely
factorised:

A(s)
�|νi,Ji (si,ki, εi;u, ū,ks)

= N4
2 cos

(
π

2

(
x− x̄

2 + i (ν1 + ν2 − ν3 − ν4)
))

(3.8)

×A(x)
ν1,J1;ν2,J2;ν,J (s1,2,k1,2, ε1,2;u,ks, Dε)A(x̄)

ν3,J3;ν4,J4;−ν,J (ū,−ks, ε; s3,4,k3,4, ε3,4) .

The expressions for the corresponding t- and u-channel exchanges follow from the s-channel
expressions above via the appropriate interchange of si, ki, εi, Ji and νi.

Notice that contributions (3.6) factorise on the simple pole at w = 0. This is the
on-shell factorisation of the exchange into its constituent three-point Mellin-Barnes ampli-
tudes, which appears in a way that is reminiscent of the on-shell factorisation of exchanges
in flat space — the simple pole in the variable w plays an analogous role to the simple pole
in the appropriate Mandelstam variable.

In section 2.58 we saw that improvement terms in three-point functions give (vanishing)
boundary term contributions. This is no longer the case for exchange diagrams because
the internal leg is off-shell. In this case such terms generate bulk contact terms since the

23The three-point Mellin-Barnes amplitudes in (3.6) are contracted together which is implemented by the
Thomas-D operator Dε given in (A.1a). Note that, as detailed in [21], these 3pt Mellin-Barnes amplitudes
are those for EAdSd+1 e.g. (2.16) and (2.18), and the cosine factors in (3.6) and (3.8) account for the
analytic continuation to dSd+1. The factor N4 accounts for the change in 2pt function normalisation from
AdS to dS, see (2.93) of [21].

24In particular, these cosine factors are absent from the Mellin-Barnes representation for the exchange in
Euclidean AdS.

– 27 –



J
H
E
P
1
0
(
2
0
2
1
)
1
5
6

improvement terms — which are proportional to the free equations of motion — cancel
with the bulk-bulk propagator. Let’s consider the most general improvement term we can
add to the three-point Mellin-Barnes amplitude (2.5),

A(x)
ν1,J1;ν2,J2;ν,J (sj ,kj , εj)→ δ

(
x

4 − s1−s2−s3

)[
1+
(
x

4 − s1−s2−s3

)
pimpr. (s1, s2, s3)

]
× Cν1,J1;ν2,J2;ν3,J3 (s1, s2, s3|εk · kj , εk · εj) , (3.9)

where pimpr. (s1, s2, s3) is a polynomial in the Mellin variables s1, s2 and s3, and the factor(
x
4 − s1 − s2 − s3

)
that multiplies it generates the boundary term in the way we saw in

section 2. In the Mellin-Barnes exchange amplitude (3.5) however, such improvement
terms generate terms proportional to w in the contributions (3.6):

A(x±4w)
ν1,J1;ν2,J2;ν,J (s1,2,k1,2, ε1,2;u,ks, ε)→ δ

(
x± 4w

4 − s1−s2 − u
) [

1∓ w pimpr. (s1, s2, u)
]

× Cν1,J1;ν2,J2;ν,J (s1, s2, u) , (3.10a)

A(x̄±4w)
ν3,J3;ν4,J4;−ν,J (ū,−ks, ε; s3,4,k3,4, ε3,4)→ δ

(
x̄± 4w

4 −s3−s4 − ū
)[

1∓ w p̄impr. (s3, s4, ū)
]

× Cν3,J3;ν4,J4;−ν,J (s3, s4, ū) . (3.10b)

These terms then cancel the simple pole in (3.6) at w = 0. The residue of this pole in the
contributions (3.6) is therefore universal i.e. blind to improvements and, together with the
purely factorised contribution (3.8), gives the on-shell exchange. The improvement terms
instead correspond to bulk contact terms that can be uplifted to local quartic vertices in a
Lagrangian. This is the Mellin-Barnes counterpart of the fact that one gets a bulk contact
term when you act on a bulk-bulk propagator with the operator corresponding to the free
equations of motion.

3.2 On bulk quartic contact terms

At the end of the previous section we argued that improvement terms in cubic vertices
contribute bulk quartic contact terms in their corresponding 4pt exchange diagrams four-
point exchange diagrams (3.10). In this section we explore this relation in more detail,
focusing for ease of illustration on the four-point functions involving only scalar fields —
where we can take Cνi,0 (si) = 1. The discussion for spinning fields follows in the same way
using the corresponding expressions (2.5) for the spinning 3pt Mellin-Barnes amplitudes.
The total contribution to the exchange generated by, say, the improvement (3.10a) reads

〈Oν1,0 (k1)Oν2,0 (k2)Oν3,0 (k3)Oν4,0 (k4)〉impr.

=
∫ i∞

−i∞
[ds]4

[
(s)Aimpr.

νi,0 (si,ki) + t- + u-channel
]

× ρν1,ν2,ν3,ν4 (s1, s2, s3, s4)
4∏
j=1

(
kj
2

)−2sj+iνj
, (3.11)
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where

(s)Aimpr.
ν1,0;ν2,0;ν3,0;ν4,0 (s1,k1, s2,k2, s3,k3, s4,k4) (3.12)

= N4

∫ +i∞

−i∞
[dudū] ρν,ν (u, ū)

(
ks
2

)−2(u+ū)

× sin (π (ū− u)) sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2 − 2 (u+ ū)
))

×
∫ +i∞

−i∞

dw

2πi 2πi δ
(
x−4w

4 − s1−s2 − u
)

2πi δ
(
x̄+ 4w

4 − s3−s4 − ū
)
pimpr. (s1, s2, u) ,

which is obtained simply by combining the contributions (3.6) with the replacement (3.10).
To make the connection with bulk quartic contact terms more explicit the integrals

in (3.12) need to be evaluated. This simply amounts to evaluating the integral in w since
the integral in u and ū are eliminated by the presence of the two Dirac delta functions. To
evaluate the w integral, the key is that in the basis (2.58) the improvement pimpr. (s1, s2, u)
takes the following form

pimpr. (s1, s2, u) =
∑
n

cn (s1, s2)
(
u− iν

2

)
n
, (3.13)

where the coefficients cn (s1, s2) are polynomials in s1 and s2, which in the basis (2.58)
takes the form

cn (s1, s2) =
∑
n1,n2

cn1,n2,n

(
s1 −

iν1
2

)
n1

(
s2 −

iν2
2

)
n2

. (3.14)

The integral in w can then be evaluated using the following identity:25

∫ i∞

−i∞

dw

2πi sin (π (ū− u)) sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2 − 2 (u+ ū)
))

(3.15)

×
(
u− iν

2

)
n
ρν,ν (u, ū)

(
ks
2

)−2(u+ū)
∣∣∣∣∣ū=x+4w

4 −s3−s4
u=x−4w

4 −s1−s2

= sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2

))

×

n−1∑
j=0

(−1)j+1(j−(n−1))jΓ(iν + n−j)
j!Γ(1 + j − iν)

(
k2

s
4

)j
iπδ

(
x+ x̄

4 + j − s1 − s2 − s3 − s4

) .
The result (3.15), inserted in (3.12), gives the Mellin-Barnes representation of a four-
point contact diagram. These are polynomials in the four external Mellin variables sj
which multiply a Dirac delta function in their sum s1 + s2 + s3 + s4. The latter encode
the bulk contact singularities for ET = k1 + k2 + k3 + k4 → 0. To see this let us first
consider improvements with n1 = n2 = 0 and take the external scalars to be conformally
coupled, keeping the exchanged scalar generic. In this case it is straightforward to lift in

25This is proven in appendix C, together with its generalisation to include the possibility of adding
improvements p̄impr. (s3, s4, ū) in (3.10b) as well.
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integrals (3.11) in the external Mellin variables sj . In particular, each term in the sum
over j in (3.15) is equal to the Mellin-Barnes representation of the φ4 contact diagram
with conformally coupled scalars φ (which have ν1,2,3,4 = i

2) and boundary dimension
d′ = x+x̄

2 + 2j, which is given by

Aφ
4
i
2 ,0; i2 ,0; i2 ,0; i2 ,0

(sj ,kj) = N4 sin
(
π

2

(
d′ − 4

2

))
iπδ

(
d′

2 − s1 − s2 − s3 − s4

)
. (3.16)

The Mellin-Barnes integrals in s1,2,3,4 were evaluated in [20] to give the expression [16]:

〈O i
2 ,0

(k1)O i
2 ,0

(k2)O i
2 ,0

(k3)O i
2 ,0

(k4)〉φ4 = 2N4 sin
(
π

2

(
d′ − 4

2

)) 1
k1k2k3k4

Γ (d′ − 2)
(ET )d′−2 .

(3.17)

Combining this with (3.15) gives us the following bulk contact term generated by the
improvement (3.13) with n1 = n2 = 0:

〈O i
2 ,0

(k1)O i
2 ,0

(k2)O i
2 ,0

(k3)O i
2 ,0

(k4)〉impr., n1=n2=0 (3.18)

= 2N4 sin
(
π

2

(
x+ x̄

4 + j − 2
))

× 1
k1k2k3k4

n−1∑
j=0

(−1)j+1(j − (n− 1))jΓ(iν + n− j)
j!Γ(1 + j − iν)

Γ
(
x+x̄−4

2 + 2j
)

(ET )
x+x̄

2 +2j−2

(
k2

s
4

)j
.

This is a quartic contact diagram for a local quartic vertex of conformally coupled scalars
φ with (n− 1) derivatives, where each term in the sum (i.e. for fixed j) involves no more
than j derivatives — which one can read off from the degree of the singularity in ET [18].26

Notice that for n = 0 the contact term (3.18) is vanishing, meaning that they can only be
generated by improvements (3.13) with a non-trivial u-dependence where, the higher the
degree of the polynomial in u, the greater the number of derivatives that appear in the
contact interaction it generates.

For improvements that also depend on s1, s2, i.e. with non-zero n1, n2 in (3.13), the
basis (2.58) is extremely useful. As explained in section 2.4, each basis element can be recast
as a differential operator (2.59) in the momentum, meaning that contact terms generated
by improvements with non-zero n1, n2 can be obtained by acting with Õ(n1)

k1,ν1
, Õ(n2)

k2,ν2
on

that (3.18) generated by improvements with n1 = n2 = 0. This increases the degree of the
singularity in ET , where the Õ(nj)

kj ,νj
adds derivatives to the field described by the external

Mellin variable sj in the quartic vertex.
From the above we can make the following observations about improvements

pimpr. (s1, s2, u), which we shall make use of later on:

1. Improvements can only generate non-trivial bulk quartic contact terms if they have
a non-trivial dependence on u. The higher the degree the improvement is as a poly-
nomial in s1, s2 and u, the higher the derivative of the quartic vertex that it corre-
sponds to.

26Recall that when all the fields in the exchange are scalars, which we are considering here, we have
x = x̄ = d. If we have a single external leg of spin-J recall that we have x = d + 2J or x̄ = d + 2J .
From (3.18) we can conclude that spinning external legs only increase the degree of the singularity in ET .
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2. Improvements that are linear in u and have no s1, s2 dependence generate the bulk
quartic contact term with Mellin-Barnes representation

iπ δ

(
x+ x̄

4 − s1 − s2 − s3 − s4

)
, (3.19)

which is that of a quartic contact diagram given by the vertex φ1φ2φ3φ4 of scalar
fields φj with no derivatives. If there is also a dependence on s1, s2 the bulk contact
term has the form

c1 (s1, s2) iπ δ
(
x+ x̄

4 − s1 − s2 − s3 − s4

)
, (3.20)

where c1 (s1, s2) is a polynomial in s1 and s2. Through the correspondence (2.59)
we can understand this is generated by a quartic vertex φ1φ2φ3φ4 with derivatives
acting on φ1 and φ2.

3. Improvements that have a u-dependence given by u2 do not generate bulk contact
terms — their integral (3.15) is vanishing. This can be understood by noting that
the integral for the n = 2 basis element reads(

u− iν

2

)
2

= u2 + (1− iν)u− iν

2

(
1− iν

2

)
, (3.21)

and plugging n = 2 into the integral (3.15) gives (1− iν) times the result for n = 1.
The contact term generated by the constant term in (3.21) is vanishing, as established
in point 1, hence the contact term generated by the u2 term must be vanishing.

4. More generally, an improvement that is degree n in u generates a derivative contact
term that is degree-(n− 2) in k2

s . The reason this is not degree (n− 1), as the
formula (3.15) naively seems to indicate, is that for n > 1 the term in the sum with
j = (n− 1) is vanishing by virtue of the Pochhammer factor (j − (n− 1))j .

5. The lowest derivative quartic vertex that generates a contact term proportional to
k2

s is given by the improvement

pimpr. (s1, s2, u) = u

(
u− iν

2

)(
u+ iν

2

)
, (3.22)

which one can confirm by plugging it into (3.15).

As a final comment we emphasise that for external (partially-)massless fields the im-
provements (3.13) are further constrained by the requirement that they do not affect the
three-point Ward-Takahashi identity — see section 2.4. As we shall see in section 4, this
implies that some of the above possibilities cannot be realised in this case as it imposes a
lower bound on the degree of the polynomial (3.13) and hence, via the analysis above, also
on the degree of the singularity in ET .
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Figure 2. s-, t- and u-channel exchange of a scalar φ0 between scalars φ2,3,4 and a single partially-
massless spin-J field of depth-r in de Sitter space.

4 Consistency of (partially)-massless matter couplings

In section 2 we saw that at the three-point level the Ward-Takahashi identities constrain the
masses of scalars that can interact with a (partially)-massless field. The coupling constant,
however, is not constrained by such a three-point analysis and for this one must go to
four-points. In particular, considering the four-point function of three scalars φi with a
single (partially-)conserved operator, for the tree-level exchange of a scalar field φ0 of mass
m2

0 = −(d2 + iν)(d2 − iν) in dSd+1, in the following we will explore how the Ward-Takahashi
identity can be used to constrain its coupling g(J,r)

i0 with a spin-J partially massless field
of depth r and one other scalar φi. See figure 2. Previous works on momentum space
four-point functions of (partially)-massless fields in (A)dS include [24, 25, 31, 60, 68–76].

The full four-point function is the sum of the s-, t- and u-channel contributions:

Aν1,J ;ν2,0;ν3,0;ν4,0 = A(s)
ν1,J ;ν2,0;ν3,0;ν4,0 + t-channel + u-channel. (4.1)

To study the consequences of Ward-Takahashi identities, as for the three-point functions
in section 2.3, it is useful to consider the decomposition into helicities m = 0, 1, . . . , J ,

A(s)
ν1,J ;ν2,0;ν3,0;ν4,0 =

J∑
m=0

ΥJ−m(ε1,k1) km−J1
(m)A(s)

ν1,J ;ν2,0;ν3,0;ν4,0, (4.2)

where the spin-J operator Oν1,J with scaling dimension ∆1 = d
2 + iν1 has momentum k1

and auxiliary vector ε1. The helicity-m component of the s-channel exchange (3.5) is

(m)A(s)
ν1,J ;ν2,0;ν3,0;ν4,0

= (m)A(s)
�|ν1,J ;ν2,0;ν3,0;ν4,0 −

(m)A(s)
<|ν1,J ;ν2,0;ν3,0;ν4,0 −

(m)A(s)
>|ν1,J ;ν2,0;ν3,0;ν4,0 .

This is in fact inherited from the helicity-m component of the constituent 3pt function
with spin-J via (3.6) and (3.8):

(m)A(s)
>|ν1,J ;ν2,0;ν3,0;ν4,0

= N4
2

∫ +i∞

−i∞

dw

2πi
1

w + ε
cos

(
π

2 (4(s1 + s2 + w)− x− x̄
2 + i (ν1 + ν2 + ν3 + ν4))

)
× (m)A(x−4w)

ν1,J ;ν2,0;ν,0 (s1,k1, ε1; s2,k2;u,ks)A(x̄+4w)
ν3,0;ν4,0;−ν,0 (ū,−ks; s3,4,k3,4) , (4.3a)
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and

(m)A(s)
<|ν1,J ;ν2,0;ν3,0;ν4,0

= N4
2

∫ +i∞

−i∞

dw

2πi
1

w + ε
cos

(
π

2 (4(s3 + s4 + w) + x− x̄
2 + i (ν1 + ν2 + ν3 + ν4))

)
× (m)A(x+4w)

ν1,J ;ν2,0;ν,0 (s1,k1, ε1; s2,k2;u,ks)A(x̄−4w)
ν3,0;ν4,0;−ν,0 (ū,−ks; s3,4,k3,4) , (4.3b)

and

(m)A(s)
�|ν1,J ;ν2,0;ν3,0;ν4,0

= N4
2 cos

(
π

2

(
x− x̄

2 + i (ν1 + ν2 − ν3 − ν4)
))

× (m)A(x)
ν1,J ;ν2,0;ν,0 (s1,k1, ε1; s2,k2;u,ks)A(x̄)

ν3,0;ν4,0;−ν,0 (ū,−ks; s3,4,k3,4) . (4.4)

The helicity decomposition of the t- and u-channel exchanges follow similarly: the t-channel
expressions follow from the s-channel ones above through the interchanges s2 ↔ s3, k2 ↔ k3
and ν2 ↔ ν3. The u-channel expressions follow from s2 ↔ s4, k2 ↔ k4 and ν2 ↔ ν4.

Let us now suppose that the spin-J operator Oν1,J is partially conserved (2.32), which
occurs for:

ν1 = −i
(
x

2 − 2− r
)
, r = 0, 1, 2, . . . , J − 1. (4.5)

In order for the four-point function (4.1) to be consistent, as for the 3pt functions involving
a partially conserved operator considered in section 2.3, the components with helicity
m = 0, . . . , J − 1 − r must not contain bulk quartic contact terms — meaning that there
are no singularities in the four-point total energy variable ET = k1 +k2 +k3 +k4 as ET → 0.

Note that such bulk quartic contact terms cannot be generated by the contributions
(m)A(s,t,u)

� , which from (4.4) we see are completely factorised into the product of the three-
point function of scalar operators and the helicity-m component of the three-point function
involving the spin-J operator Oν1,J . Owing to this property, for helicities m = 0, . . . , J −
1 − r their contribution to the four-point Ward-Takahashi identity is in fact inherited
from the Ward-Takahashi identity for the helicity-m component of the three-point function
considered in section 2.3.

The remaining contributions (m)A(s,t,u)
< and (m)A(s,t,u)

> only give bulk quartic contact
terms and are thus the only source of such terms in the exchange. To see this, note that

(m)A(x±4w)
ν1,J ;ν2,0;ν,0 (s1,k1, ε1; s2,k2; s3,ks) = g

(J,r)
20 iπ δ

(
x± 4w − 4 (J−m)

4 − s1 − s2 − s3

)
×
(
− i2

)m
(ζ1 · k2s)m f (ν1,ν2,ν3)

J−m (s1, s2, s3) , (4.6)

where k2s = k2−ks and gauge invariance requires that for m = 0, . . . , J−1−r the function
f

(ν1,ν2,ν3)
J−m has the form (see section 2.3):

f
(ν1,ν2,ν3)
J−m (s1, s2, s3) =

(
x− 4 (J −m)

4 − s1 − s2 − s3

)
pW-T
J−m (s1, s2, s3) . (4.7)
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The factor of
(
x−4(J−m)

4 − s1 − s2 − s3
)
in (4.7) implies that the three-point factors (4.6)

are proportional to w:

(m)A(x±4w)
ν1,J ;ν2,0;ν,0 (s1,k1, ε1; s2,k2; s3,k3) = ∓ w g(J,r)

20 iπδ

(
x± 4w−4 (J−m)

4 − s1−s2−s3

)
×
(
− i2

)m
(ζ1 · k2s)m pW-T

J−m (s1, s2, s3) . (4.8)

As we saw at the end of section 3.1, when inserted into both (m)A(s,t,u)
< and (m)A(s,t,u)

> , this
factor of w cancels the simple poles at w = 0 in (4.3a) and (4.3b) and with it generates
bulk quartic contact terms with Mellin-Barnes representation given by (cf. (3.11)):

(m)A(s)
ν1,J ;ν2,0;ν3,0;ν4,0 (ε1, s1,k1; s2,k2, s3,k3, s4,k4)

∣∣∣∣∣
contact

= g
(J,r)
20

(
− i2

)m
(ζ1 · k2s)mN4

∫ +i∞

−i∞
[dudū] ρν,ν (u, ū)

(
ks
2

)−2(u+ū)

× sin (π (ū− u)) sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2 − 2 (u+ ū)
))

×
∫ +i∞

−i∞

dw

2πi 2πi δ
(
x− 4w − 4 (J −m)

4 − s1 − s2 − u
)

× 2πi δ
(
x̄+ 4w

4 − s3 − s4 − ū
)
pW-T
J−m (s1, s2, u) , (4.9)

which can be evaluated using (3.15). In total we therefore have

(m)Aν1,J ;ν2,0;ν3,0;ν4,0 = (m)Aν1,J ;ν2,0;ν3,0;ν4,0

∣∣∣∣∣
W-T

+ (m)Aν1,J ;ν2,0;ν3,0;ν4,0

∣∣∣∣∣
contact

, (4.10)

where, as explained above, the four-point Ward-Takahashi identity is given by the factorised
contributions (4.4):

(m)Aν1,J ;ν2,0;ν3,0;ν4,0

∣∣∣∣∣
W-T

= (m)A(s)
�|ν1,J ;ν2,0;ν3,0;ν4,0 + t-channel + u-channel. (4.11)

This would appear to be violated by the contributions (4.9), where

(m)Aν1,J ;ν2,0;ν3,0;ν4,0

∣∣∣∣∣
contact

= (m)A(s)
ν1,J ;ν2,0;ν3,0;ν4,0

∣∣∣∣∣
contact

+ t-channel + u-channel. (4.12)

At this point there are two possibilities that might restore the four-point Ward-Takahashi
identity:

1. By adding bulk quartic contact terms that would cancel the offending ones generated
by (m)A(s,t,u)

< and (m)A(s,t,u)
> . This would correspond to adding quartic contact inter-

actions involving the three external scalars and the (partially-)massless spin-J field
to the Lagrangian.
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2. Fixing the cubic coupling g(J,r)
ij of the (partially-)massless field to scalars φi and φj

so that the offending bulk contact singularities cancel among themselves.

Using the language of the Mellin-Barnes representation it does not take much to see that the
first possibility would not work, at least assuming locality of quartic contact interactions.
In particular, quartic contact terms that have a tensorial structure given by a power of
(ζ1 · k2s) as in (4.9) can be reinterpreted as improvements pimpr. (s1, s2, s3) in the cubic
vertices that mediate the scalar exchange in the s-channel (and similar for the t- and u-
channels).27 These however cannot cancel all the bulk quartic contact terms generated
by pW-T (s1, s2, s3) in (4.7) which encodes the three-point Ward-Takahashi identity —
otherwise the identity could be violated by improvements. See the analysis in section 2.4.
The four-point Ward-Takahashi identity can therefore only be restored by constraining the
cubic coupling g(J,r)

ij of the (partially-)massless field with two scalars. This will be studied
more rigorously in the following sections.

4.1 Coupling massless spinning fields to scalar matter

At the four-point level, for a massless spin-J field the Ward-Takahashi identity requires the
cancellation of bulk quartic contact terms (4.9) in the helicity m = 0, . . . , J−1 components
of the exchange (4.1). This constrains the coupling g(J,0)

i0 of generic scalar fields φ0 and φi
of equal mass to a massless field of spin-J in (A)dSd+1. For the helicity-(J − 1) component
we have (from (2.40b) with ν1 = ν2):

pW-T
J−1 (s1, s2, u) = −2 (s2 − u) , (4.13)

which is linear in u. Using (4.9), the corresponding bulk quartic contact term is (where
ν1 = −i

(
x−4

2

)
):28

(J−1)A(s)
ν1,J ;ν2,0;ν3,0;ν4,0 (ε1, s1,k1; s2,k2, s3,k3, s4,k4) + t-channel + u-channel

∣∣∣∣∣
contact

= N4 sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2

))
iπδ

(
x− 4 + x̄

4 − s1 − s2 − s3 − s4

)
×
(
g

(J,0)
20 (ζ1 · k2)J−1 + g

(J,0)
30 (ζ1 · k3)J−1 + g

(J,0)
40 (ζ1 · k4)J−1

)
, (4.15)

27Contact terms that have a mixed tensorial structure involving (in addition to (ζ1 · k2s)) also (ζ1 · k3)
and/or (ζ1 · k4), cannot be written as improvements in a scalar exchanges — only as improvements in
exchanges of spinning fields.

28If instead we were considering the same exchange process but in AdSd+1 we would obtain the same
result for the for the helicity-(J − 1)-component but without the factor:

sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2

))
. (4.14)

In [20] it was shown that the bulk contact terms of in-in four-point functions in dSd+1 differ from those in
AdSd+1 precisely by the factor (4.14). The conclusions that we draw therefore hold for AdSd+1.
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As argued at the end of the last section, this bulk contact term cannot be cancelled by
adding improvement terms to the cubic vertices that mediate the exchange. In more detail,
the Mellin-Barnes representation of the above bulk contact term is given by the Dirac delta
function:

iπ δ

(
x− 4 + x̄

4 − s1 − s2 − s3 − s4

)
. (4.16)

Such a contact term could only be compensated by an improvement (3.13) that is linear
in u, see section 3.2. As discussed in section 2.4, the improvement itself cannot be chosen
arbitrarily and is constrained to vanish for the values (2.46)29 of s1, s2 and u so as to
give a vanishing boundary term in the corresponding three-point function. This can be
achieved in various ways. In particular, in this case, for the helicity-(J − 1) component we
have n1 = n2 = n3 = 0 in (2.46). Therefore, to give a vanishing boundary term, such an
improvement is restricted to take one of the following forms:

pimpr. (s1, s2, u) = u

(
s1 −

x− 4
4

)
qimpr.

1 (s1, s2) , (4.17a)

pimpr. (s1, s2, u) = u

(
s2 + iν2

2

)(
s2 −

iν2
2

)
qimpr.

2 (s1, s2) , (4.17b)

where qimpr.
1 and qimpr.

2 are polynomials in s1 and s2. Each of the above forms are linear in u
so that they generate the Dirac delta function (4.16). Neither of them however can cancel
the offending contact term (4.15), since the latter is given by a constant multiplying the
Dirac delta function (4.16), while the above improvements ensure that the contact terms
they generate dress the Dirac delta function (4.16) with a polynomial in s1 and s2 which is
at least degree 1. In other words, from the analysis of section 3.2, the improvements (4.17)
generate contact terms with a degree of singularity in ET that is higher than that of (4.15).
The offending contact term (4.15) therefore cannot be cancelled by a finite number of local
quartic contact terms and therefore must vanish by itself. In particular, assuming that the
factor (4.14) is non-vanishing — which we can do for generic d or generic scaling dimensions
νi — the bulk quartic contact terms (4.15) can only vanish if

(
g

(J,0)
20 (ζ1 · k2)J−1 + g

(J,0)
30 (ζ1 · k3)J−1 + g

(J,0)
40 (ζ1 · k4)J−1

)
= 0. (4.18)

Setting spin J = 1 this recovers conservation of charge:

g
(1,0)
20 + g

(1,0)
30 + g

(1,0)
40 = 0, (4.19)

and, for spin J = 2, the Equivalence Principle:

g
(2,0)
20 = g

(2,0)
30 = g

(2,0)
40 . (4.20)

29When using equation (2.46) we are taking sthere
3 to be shere

1 and sthere
1 to be uhere.
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For spin-J > 2 we find that the gauge invariance condition (4.18) can only be satisfied if
there is no consistent coupling of massless higher-spin fields to scalar matter :

g
(J>2,0)
20 = g

(J>2,0)
30 = g

(J>2,0)
40 = 0. (4.21)

We emphasise that this result assumes locality of interactions, as in Weinberg’s flat-space
analysis [33].30 This is complementary to the result [78], which showed that Ward iden-
tities of an underlying global higher-spin symmetry require quartic interactions that are
as non-local as exchanges if consistent interactions of higher-spin gauge fields are to exist
in AdSd+1. It is clear that, if we allow ourselves to add quartic contact interactions that
are as non-local as the exchange, the obstruction (4.18) — which itself is generated by the
exchange — can in principle be cancelled.

For de Sitter space, strictly speaking our analysis does not cover the values of d and
scaling dimensions νj that give a vanishing sine factor (4.14), in which case the Ward-
Takahashi identity is satisfied without any constraint on the couplings g(J,0)

i0 . This vanishing
of the sine factor (4.14) is actually a consequence of unitarity in dS [26]. For completeness it
should be clarified if this could allow for non-trivial couplings of massless higher-spin fields
to scalars of certain mass in de Sitter space, though it would be unexpected. We expect
this possibility to be ruled out by a similar analysis at the level of the Wave Function,
where the exchange can be obtained from the AdS result by a simple Wick rotation [45] —
so the dS couplings would be constrained just as they are in the AdS case, which is covered
by our analysis above simply by dividing by the factor (4.14). The same statements apply
to the partially-massless case (4.23) considered in the next section.

4.2 Coupling partially-massless spinning fields to scalar matter

In a similar fashion the couplings g(J,r)
ij of a spin-J partially massless field of depth-r

can be constrained by requiring that the bulk contact terms all cancel in the helicity
m = 0, . . . , J − 1− r components of the exchange (4.1).

In the following we focus on partially massless fields of depth r = 2, since it is the
lowest depth at which there exist matter couplings to generic equal mass scalars,31 where
in the following we take ν = ν2 = ν3 = ν4 = µ. Consistency of depth-2 partially massless
couplings requires that there are no bulk contact terms starting from the helicity-(J − 3)
downwards. The three-point functions of depth-2 partially massless fields were studied in

30By now it is well known that this conclusion of Weinberg’s result for higher spins J > 2 in flat space
do not hold if one allows quartic contact interactions that are as non-local as the exchange amplitude [77].
The same has also been shown to be true in AdSd+1 [78]. Allowing such non-localities in field theory would
however render them ill defined in the absence of a guiding principle that would replace space-time locality,
see e.g. [79].

31The exception is the coupling of a depth-1 partially massless field to conformally coupled scalars in
dS4, which can have scaling dimensions that differ by 1 — as consistent with the constraint (2.53). See
discussion above equation (2.72).
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section 2.3.2. In particular, from (2.62) we have

pW-T
J−3 (s1, s2, u) =− i(x− 4(s1 + 1))

[1
4(i+ µ)(2i+ µ)(µ+ 2iu)(µ+ 2i(u+ 1))

− 1
8 (i+ µ) (µ+ 2iu)(µ+ 2i(u+ 1))(µ+ 2i(u+ 2))

− 3
8(i+ µ)(µ+ 2is2)(µ+ 2iu)(µ+ 2i(u+ 1))

+ i(x− 10)
(
µ2 + 1

)
(x− 4(s1 + 2))(µ+ 2iu)

16(x− 4) − (u↔ s2)
]

− i

2(µ+ 2is2)(µ+ 2iu)(µ+ 2i(u+ 1))(µ+ 2i(u+ 2)), (4.22)

which is a degree-4 polynomial. Using the analysis of section 3.2, the bulk contact term
contribution to the helicity-(J − 3) component of the exchange then has the following form
(where ν1 = −i

(
x−8

2

)
and ν = ν2 = ν3 = ν4 = µ):32

(J−3)A(s)
ν1,J ;ν2,0;ν3,0;ν4,0 (ε1, s1,k1; s2,k2, s3,k3, s4,k4) + t-channel + u-channel

∣∣∣
contact

= N4 sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2

)) 1∑
j=0

iπδ

(
x− 12 + x̄

4 + j−s1−s2 − s3 − s4

)

×
(
g

(J,2)
20|j (s1, s2)

(
k2

s

)j
(ζ1 · k2)J−3 + g

(J,2)
30|j (s1, s3)

(
k2

t

)j
(ζ1 · k3)J−3

+ g
(J,2)
40|j (s1, s4)

(
k2

u

)j
(ζ1 · k4)J−3

)
, (4.23)

where g(J,2)
i0|j (s1, si), i = 2, 3, 4, are polynomials of at most degree 3 − j in s1 and si. For

instance, for the j = 0 contribution, by evaluating (4.9) using (3.15) we have:

g
(J,2)
20|0 (s1, s2)

g
(J,2)
20

= −
i
[
8(1−iµ)s1

(
12s2

2(x−4)−x2+3µ2(x−4)−iµ(x−10)(x−6)+16x−60
)]

8(x− 4)

−
i
[
(x−4)

(
16s2µ

2+x (x−18)+24s2
2(iµ(x−8)−x+12)+64s3

2+6iµ3(x−8)+µ2((x−24)x+152)+80
)]

8(x− 4)

−
i
[
16
(
µ2 + 1

)
s2

1(x− 10)
]

8(x− 4) , (4.24)

which is degree 3 in s1 and s2.
We can then ask if a contact term of the above form can be cancelled by adding

improvement terms to the cubic vertex. It is sufficient to focus on those improvements which
could cancel the contact term with j = 0 which, as we saw in the previous section, can only
be linear in u. In the case of a partially massless-field, the improvement pimpr. (s1, s2, u)
must vanish on more values of s1, s2 and u compared to the massless case considered

32The reason j runs from 0 to 1 and not 0 to 2 is that the polynomial pW-T (s1, s2, u), although degree 4,
is only degree 3 in u.
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previously. For r = 2 and helicity-m = J − 3, these are given by (2.46) with

n1 = 1, n2 = 0, n3 = 0, (4.25a)
n1 = 0, n2 = 1, n3 = 0, (4.25b)
n1 = 0, n2 = 0, n3 = 1. (4.25c)

This constrains improvements that are linear in u to take one of the following forms:

pimpr. (s1, s2, u) = u

(
s1 −

x− 8
4

)(
s1 −

x− 8
4 + 1

)
qimpr.

1 (s1, s2) (4.26a)

pimpr. (s1, s2, u) = u

(
s1 −

x− 8
4

)(
s2 + iν2

2

)(
s2 −

iν2
2

)
qimpr.

2 (s1, s2) , (4.26b)

pimpr. (s1, s2, u) = u

(
s2 + iν2

2 + 1
)(

s2 −
iν2
2 + 1

)(
s2 + iν2

2

)(
s2 −

iν2
2

)
qimpr.

3 (s1, s2) ,

(4.26c)

where qimpr.
1 , qimpr.

2 and qimpr.
3 are polynomials in s1 and s2. Note that improvements of the

form (4.26c) are polynomials of at least degree 4 in s2 and are therefore not useful to cancel
the contact term (4.24), which is degree 3 in s1 and s2. The other two possible forms of
improvement (4.26a) and (4.26b) are of at least degree-2 and degree-3 respectively, but they
both have zeros at s1 = x−4

4 . It is straightforward to check that the contact term (4.24)
does not have a zero at s1 = x−4

4 and therefore no combination of (4.26a) and (4.26b)
can be chosen to cancel it. The contact term must therefore vanish by itself, giving the
constraint:(

g
(J,2)
20|0 (s1, s2)(ζ1 · k2)J−3 + g

(J,2)
30|0 (s1, s3)(ζ1 · k3)J−3 + g

(J,2)
40|0 (s1, s4)(ζ1 · k4)J−3

)
= 0.
(4.27)

The difference between this constraint and that (4.18) for the massless case is that in the
above each tensorial structure is multiplied by a function g(J,2)

i0|0 (s1, si) of the Mellin variables
rather than a constant. For J > 4 this requires:

g
(J>4,2)
20|0 (s1, s2) = g

(J>4,2)
30|0 (s1, s3) = g

(J>4,2)
40|0 (s1, s4) = 0, (4.28)

which in turn implies
g

(J>4,2)
20 = g

(J>4,2)
30 = g

(J>4,2)
40 = 0. (4.29)

This is the partially-massless depth-2 analogue of the higher-spin constraint (4.21) in the
massless case. For spin J = 4 the constraint (4.27) requires:

g
(J=4,2)
20|0 (s1, s2) = g

(J=4,2)
30|0 (s1, s3) = g

(J=4,2)
40|0 (s1, s4), (4.30)

while for spin J = 3 we have

g
(J=3,2)
20|0 (s1, s2) + g

(J=3,2)
30|0 (s1, s3) + g

(J=3,2)
40|0 (s1, s4) = 0. (4.31)

We have checked explicitly that neither of (4.30) and (4.31) hold for the expression (4.24)
for g(J,2)

i0|0 (s1, si), taking into account that the external Mellin variables are related via the
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constraint s1 + s2 + s3 + s4 = x−12+x̄
4 and the possibility to add improvement terms. We

therefore have
g

(J,2)
20|0 (s1, s2) = g

(J,2)
30|0 (s1, s3) = g

(J,2)
40|0 (s1, s4) = 0, (4.32)

for all spins J ,33 which in turn implies that there is no consistent cubic coupling of a depth-2
partially-massless field to scalar matter :

g
(J,2)
20 = g

(J,2)
30 = g

(J,2)
40 = 0. (4.33)

Like for the massless case in the previous section this assumes locality of quartic interac-
tions. As a further confirmation of this result, in the following we will recover it (and those
of the previous section) using an alternative approach for conformally coupled scalars and
d = 3.

4.3 Special case: conformally coupled scalars

In section 2.5 we saw that three-point functions of conformally coupled scalars have sim-
ple explicit expressions that do not involve Mellin-Barnes integrals. For the four-point
exchanges, this implies that the representation given by (4.3a), (4.3b) and (4.4) can be
reduced to simpler form when the scalars are conformally coupled upon evaluating the
integrals in s1,2,3,4, u and ū. If we also replace the spin-J field with a conformally coupled
scalar, these read (see section 4.6 of [21]):

A(s)
>| i2 ,0; i2 ,0; i2 ,0; i2 ,0

= N4

k̄s k1k2k3k4

∫ +i∞

−i∞

dw

2πi
1

w + ε
cos

(
2πω + π(x̄− x)

4

)
× Γ

(
−2w + x− 3

2

)
Γ
(

2w + x̄− 3
2

)
× (−ks + k1 + k2)2w+ 3−x

2 (k3 + k4 + k̄s)−2w+ 3−x̄
2 (4.34a)

A(s)
<| i2 ,0; i2 ,0; i2 ,0; i2 ,0

=− N4

k̄s k1k2k3k4

∫ +i∞

−i∞

dw

2πi
1

w + ε
cos

(
2πw + π(x− x̄)

4

)
× Γ

(
−2w + x̄− 3

2

)
Γ
(

2w + x− 3
2

)
× (ks + k1 + k2)−2w+ 3−x̄

2 (−k3 − k4 + k̄s)2w+ 3−x̄
2 (4.34b)

A(s)
�| i2 ,0; i2 ,0; i2 ,0; i2 ,0

= N4

k̄sk1k2k3k4
cos

(
π

4 (x− x̄)
)

× Γ
(
d− 3

2

)2
(ks + k1 + k2)

3−x
2 (k3 + k4 + k̄s)

3−x̄
2 . (4.34c)

The final w-integral in (4.34) can be evaluated to give an explicit expression for the exchange
in terms of the Gauss hypergeometric function (see [20] equation (4.54)):

A(s)
>| i2 ,0; i2 ,0; i2 ,0; i2 ,0

= N4
sin
(
π(x+x̄)

4

)
Γ
(
x+x̄

2 − 3
)

8k̄s(x− 3)

(
k3 + k4 + k̄s

)3−x+x̄
2 (4.35a)

×2 F1

(
x− 3

2 ,
x+ x̄

2 − 3; x− 1
2 ; ks − k1 − k2

k3 + k4 + k̄s

)
,

33Note that partially massless fields of depth-2 only have spin J > 2.
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and

A(s)
<| i2 ,0; i2 ,0; i2 ,0; i2 ,0

= N4
sin
(
π(x+x̄

4

)
Γ
(
x+x̄

2 − 3
)

8k̄s(x− 3)
(4.35b)

× (−k3 − k4 + k̄s)3−x+x̄
2 2F1

(
x− 3

2 ,
x+ x̄

2 − 3; x− 1
2 ; ks + k1 + k2

k̄s − k3 − k4

)
.

Above we kept k̄s 6= ks and x, x̄, so that one can then act with the weight-shifting operators
of section 2.2 on the constituent 3pt structures to change the scaling dimension and the spin
of the external fields — in the same spirit as section 2.5. Afterwards one should set ks = k̄s.
In this way, one can generate the exchange with a single external (partially-)massless field
and conformally coupled scalars starting from the above scalar seed.

In the following we will take this approach to derive some examples of explicit ex-
pressions for the exchange (4.1) and with a single external (partially-)massless spinning
field and conformally coupled scalars for d = 3. We also study the constraints coming
from gauge-invariance, confirming the more general analysis given in sections 4.1 and 4.2.
In particular, we will show that there are contact singularities in ET in the lower helic-
ity components of exchange diagrams that cannot be generated by local quartic contact
interactions, which can only be higher order singularities in ET .

Coupling massless spinning fields to conformally coupled scalars. The exchange
for an external massless spinning field is generated in the same spirit as the corresponding
three-point function considered in section 2.5: we act with the weight-shifting differential
operator (2.30) on the explicit expression for the exchange involving only conformally
coupled scalars (given by (4.35a) and (4.35b)), then set d = 3 and k̄s = ks. This is
straightforwardly implemented in Mathematica.

External Massless spin-1 field (ν1 = − i
2): following the procedure described above we

obtain:

A(s)
− i

2 ,1; i2 ,0; i2 ,0; i2 ,0
(ε1,k1,k2,k3,k4) =N4 g

(1,0)
20

[
iε1 · k1

k1k3k4(ks + k12)(k12 − ks)
log
(
ks + k34
ET

)
− iε1 · k2
k2k3k4(k12 − ks)(ks + k12) log

(
ks + k34
ET

)]
. (4.36)

The helicity-1 part of this exchange was given in [24], which matches with the second line
of our expression above. As before, the helicity-0 component is extracted by acting with
the projector (A.9), giving:

Ê(k1)
1,0

[
A(s)
− i

2 ,1; i2 ,0; i2 ,0; i2 ,0
(ε1,k1,k2,k3,k4)

] ∣∣∣
ε1→ζ1

= −N4 g
(1,0)
20

i

2k1k2k3k4

[
log (ks + k34)− logET

]
. (4.37)

Note that this is zeroth order in k2
s , as consistent with (4.15) which is proportional to the

Dirac delta function (4.16). The term on the left in the square bracket is proportional to the
three-point function of conformally coupled scalars in d = 3 (see e.g. (3.35) in [20]) and so
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gives the four-point Ward-Takahashi identity. The term on the second line has a singularity
in ET = k1 + k2 + k3 + k4 and so is a bulk quartic contact term that violates the Ward-
Takahashi identity. This singularity is however logarithmic, i.e. proportional to logET ,
which cannot be generated by a local quartic vertex involving a single massless spin-1 field
and three conformally coupled scalars. This can be understood from the following simple
argument:34 The singularity of the contact diagram (3.17) generated by the φ4 interaction
where φ is a conformally coupled scalar is a simple pole in ET for d = 3. Derivatives only
increase the order of the singularity in ET . Therefore, for contact diagrams of conformally
coupled scalars the lowest order singularity is a simple pole and so, in particular, they
cannot contain logET terms. Now, for d = 3, conformally coupled scalars are in the
same higher-spin multiplet as massless spinning fields [80] and their contact diagrams are
therefore related by higher-spin symmetry. Contact diagrams involving a massless spinning
field and three conformally coupled scalars therefore cannot contain singularities in ET that
are lower order than those of four conformally coupled scalars.35 The logET singularity
in (4.37) must therefore cancel upon summing the s-, t- and u-channel exchanges, giving:(

g
(1,0)
20 + g

(1,0)
30 + g

(1,0)
40

)
logET = 0, (4.38)

which recovers charge conservation (4.19).

External Massless spin-2 field (ν1 = −3i
2 ): in this case we obtain

A(s)
− 3i

2 ,2; i2 ,0; i2 ,0; i2 ,0
(ε1,k1,k2,k3,k4) (4.39)

= N4 g
(2,0)
20

1
k2k3k4

[
(ε1 · k2)2

(
k2

s − k2
12 − 2k12k1

2 (ks + k12)2 (ks − k12)2 log
(
k34 + ks
ET

)
− k1

2 (k12 + ks) (k12 − ks)ET

)
+ (ε1 · k2)(ε1 · k1)

(
k2

s − k2
1 + k2

2
k2

s (ks+k12)2 (ks−k12)2 log
(
k34+ks
ET

)
− k2
k2

s (ks−k12) (ks+k12)
1
ET

)

+ (ε1 · k1)2
(

k2
1 − k2

2 − k2
s

2k2
s (ks + k12)2 (ks − k12)2 log

(
k34 + ks
ET

)
− k2

2k2
s (k12 + ks) (k12 − ks)

1
ET

+ 1
12k2k2

s

1
ET

+ 1
24k1k2k2

s

)]
.

The helicity-2 component was given in [24] which matches with the first line of the expres-
sion above. For the helicity-1 component we have:

Ê(k1)
2,1

[
A(s)
− 3i

2 ,2; i2 ,0; i2 ,0; i2 ,0
(ε1,k1,k2,k3,k4)

] ∣∣∣
ε1→ζ1

= N4 g
(2,0)
20

ζ1 · k2
4k2k3k4

[
log(k3 + k4 + ks)− logET + k1

ET

]
. (4.40)

34We have also checked this explicitly by extracting the explicit contact terms generated by the lowest
derivative admissible improvements (4.17) which have qimpr.

1 = qimpr.
1 = const. and evaluating the integrals

in sj , confirming that there is no logET singularity.
35The higher-spin symmetry transformation can be realised as derivative operators, an example of which

is the operator (2.30).
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Like for the massless spin-1 case above, the left term in the square brackets is proportional
to the three-point function of conformally coupled scalars and so gives the corresponding
4pt Ward-Takahashi identity. In addition to this we have singularities in ET which violate
the Ward-Takahashi identity. One of this is a simple pole in ET which in principle can
be compensated by adding a local quartic contact interaction. The other is logET which,
like for the massless spin-1 case, cannot be compensated and must therefore vanish upon
summing the s-, t- and u-channel exchanges, giving:(

g
(2,0)
20 (ζ1 · k2) + g

(2,0)
30 (ζ1 · k3) + (ζ1 · k4) g(2,0)

40

)
logET = 0, (4.41)

which recovers the equivalence principle (4.20). The helicity-0 component is given by:

Ê(k1)
2,0

[
A(s)
− 3i

2 ,2; i2 ,0; i2 ,0; i2 ,0
(ε1,k1,k2,k3,k4)

] ∣∣∣
ε1→ζ1

= N4
g

(2,0)
20

k2k3k4

[
− 1

24
(
k2

1 + 3(k2 − ks)(k2 + ks)
)

log (k3 + k4 + ks)

+ k1
72ET

(
−3k2

1 + 2k1(−2k2 + k3 + k4)−9k2
2 +9k2

s

)
+
(
k2

1 +3(k2−ks)(k2+ks)
)

24 logET
]
,

where we recognise the first term on the r.h.s. gives the four-point Ward-Takahashi identity,
since it is proportional to the three-point function of conformally coupled scalars in d = 3.
The other terms contain singularities in ET and, using that

k2
s + k2

t + k2
u − k2

1 − k2
2 − k2

3 − k2
4 = 0 , (4.42)

where

ks = |k1 + k2| , kt = |k1 + k3| , ku = |k1 + k4| , (4.43)

it is straightforward to show that these cancel upon summing the s-, t- and u-channel
exchanges only if the equivalence principle (4.20) holds.

External Massless spin-J field (ν1 = −
(
J − 1

2

)
i): for higher spins J the action of the

operator (2.30) which generates the exchange from the scalar seed (4.34) gets increasingly
involved, though it is straightforward to generate explicit results for a given spin-J by
implementing its action in Mathematica. Such explicit expressions, as one can already
understand from the corresponding three-point functions in section 2.5, get more and more
complicated as the spin-J increases. In the following we therefore just focus on the con-
straints coming from gauge-invariance where, following the analysis in section 4.1, it is
sufficient to focus on the helicity-(J − 1) contribution (4.15). For conformally coupled
scalars, the Mellin-Barnes integrals that appear in the helicity-(J − 1) contribution (4.15)
are equivalent to that of the quartic contact diagram generated by the non-derivative in-
teraction of three conformally coupled scalars and a scalar with ν1 = −

(
J − 1

2

)
i and

boundary dimension:36

d′ = x+ x̄− 4
2 = d+ J − 2. (4.44)

36This is read off from the Dirac delta function (4.16) and in the second equality we made the replacements:
x = d+ 2J and x̄ = d.
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Such a contact diagram can be generated by acting J times with the differential opera-
tor (2.24) on the four-point contact diagram (3.17) of conformally coupled scalars where x
in d′ shifted by x→ x− 2J , giving boundary dimension d′ = d− 2. From (3.17), the latter
is given explicitly by

N4
2

k1k2k3k4
sin
(
dπ

2

)
Γ (d− 4)E4−d

T . (4.45)

For d = 3, by carefully expanding, one obtains

N4
2

k1k2k3k4

[
ET

1− (γ − 1)(d− 3)
(d− 3) − ET logET +O (d− 3)

]
, (4.46)

which in particular contains the non-analytic term ET logET . Upon acting J times with the
differential operator (2.24), this term is responsible for logET singularities in the exchange
for external massless spin-J , for all J . To illustrate, for external massless spin-1, the
helicity-0 component is obtained upon acting with (2.24) on (4.45), which gives

(0)A(s)
− i

2 ,1; i2 ,0; i2 ,0; i2 ,0
(ε1,k1; k2,k3,k4)

∣∣∣∣
contact

= N4 g
(1,0)
20

1
k2k3k4

[1− γ (d− 3)
(d− 3) + logET +O (d− 3)

]
. (4.47)

For massless spin-2, acting twice with (2.24) on (4.45), for the helicity-1 component we have

(1)A(s)
− 3i

2 ,2; i2 ,0; i2 ,0; i2 ,0
(ε1,k1; k2,k3,k4)

∣∣∣∣
contact

= N4 g
(2,0)
20 (ζ1 · k2) 1

k2k3k4

[
− d− 4

2(d− 3) + (γ − 1)ET + 1
2 logET −

k1
2ET

+O (d− 3)
]
.

(4.48)
For massless spin-3, acting three times with (2.24) on (4.45), for the helicity-2 component
we have

(2)A(s)
− 5i

2 ,2; i2 ,0; i2 ,0; i2 ,0
(ε1,k1; k2,k3,k4)

∣∣∣∣∣
contact

= N4 g
(3,0)
20 (ζ1 · k2)2 1

k2k3k4

[ 3
4(d− 3)

+
(
(4− 3γ)k2

1 − 3(2γ − 1)k1(k2 + k3 + k4)− 3γ(k2 + k3 + k4)2
) 1

4E2
T

−3
4 logET +O (d− 3)

]
, (4.49)

and so on for higher spin J which is obtained by acting J times with the operator (2.24),
where each application generates a logET singularity as demonstrated above. As we saw
in the above examples these must cancel upon summing the s-, t- and u-channels, giving
rise to the following constraint for general spin-J :(

g
(J,0)
20 (ζ1 · k2)J−1 + g

(J,0)
30 (ζ1 · k3)J−1 + (ζ1 · k4)J−1 g

(J,0)
40

)
logET = 0 , (4.50)

which once again recovers charge conservation (4.19) and the equivalence principle (4.20)
for J = 1 and J = 2, while for J > 2 that there can be no consistent coupling of massless
higher-spin fields to scalar matter (in local theories).
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Coupling depth-2 P-M spinning fields to conformally coupled scalars. From
section 2.5 we know that the d = 3 exchange with a single external depth-2 partially
massless field and conformally coupled scalars can be generated, via the weight-shifting
identity (2.30), from the exchange with the partially massless field replaced by a scalar of
scaling dimension ν̄1 = 5i

2 .
In the following we will focus on the constraints coming from gauge invariance, which

only requires to study the bulk quartic contact terms (4.23) in the helicity-(J − 3) compo-
nent of the exchange and to identify any terms which cannot be generated by local quartic
vertices. We first note that the contact terms in (4.23) with j = 1, that are linear in
k2

s , k2
t and k2

u, contain a logET singularity. This can be understood by making a similar
argument to that which we gave for the massless case above. In particular, by decomposing
the polynomial g(J,2)

20|1 (s1, s2) in the basis
(
s1 − iν1

2

)
n1

(
s2 − iν2

2

)
n2
, one notes that for the

non-zero n1 = n2 = 0 component the Mellin-Barnes integrals are equivalent to that of the
quartic contact diagram generated by the zero-derivative interaction of three-conformally
coupled scalars and a scalar with ν1 = −i

(
J − 5

2

)
, and with boundary dimension37

d′ = x+ x̄− 12 + 4
2 = d+ J − 4. (4.51)

The latter contact diagram can be generated by acting (J − 2) times with the differential
operator (2.22) on the zero-derivative four-point contact diagram (3.17) of conformally
coupled scalars, where x in the boundary dimension d′ is shifted by x → x − 2 (J − 2),
giving d′ = d − 2. The latter is precisely (4.45) which, by the same argument as the
massless case above, is responsible for logET singularities in the exchange with a single
external partially massless spin-J , for all J , upon acting on (4.45) with the differential
operator (2.24). We can therefore conclude that the helicity-(J − 3) component of the
s-channel exchange contains the following singularity in ET (where ν1 = −i

(
J − 5

2

)
):

(J−3)A(s)
ν1,J ; i2 ,0; i2 ,0; i2 ,0

(ε1,k1; k2,k3,k4)
∣∣∣∣∣
contact

⊃ N4 g
(J,2)
20 (ζ1 · k2)J−3 k2

s
k2k3k4

logET . (4.52)

Like for the massless case considered above, a simple argument shows that such a sin-
gularity cannot be generated by a local quartic vertex involving a single depth-2 partially-
massless field and three conformally coupled scalars. The latter can be generated, via the
application of the differential operator (2.30), from contact diagrams involving a scalar field
with ν̄1 = 5i

2 and three conformally coupled scalars. The contact diagram with the external
partially-massless field cannot have a lower order singularity in ET than the scalar seed
from which it is generated. For d = 3 the contact diagram generated by the zero-derivative
quartic vertex involving a scalar field with ν̄1 = 5i

2 and three conformally coupled scalars

37This is read off from the Dirac delta function with j = 1 in (4.23) and in the second equality we replaced
x = d+ 2J and x̄ = d.
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is given by38

1
k2k3k4

(
1

k2
1E

2
T

+ 1
k3

1ET
+O (d− 3)

)
, (4.53)

which does not have a logET singularity. Diagrams generated by derivative vertices can
only increase the singularity in ET . We can therefore conclude that the logET singularity
in the helicity-(J − 3) component of the exchange cannot be compensated by adding a local
quartic vertex to the Lagrangian. It must therefore vanish by itself upon summing the s-,
t- and u-channels, which gives the constraint:(

g
(J,2)
20 k2

s (ζ1 · k2)J−3 + g
(J,2)
30 k2

t (ζ1 · k3)J−3 + g
(J,2)
40 k2

u (ζ1 · k4)J−3
)

logET = 0 (4.54)

This can only be satisfied if, for all J ,

g
(J,2)
20 = g

(J,2)
30 = g

(J,2)
40 = 0, (4.55)

which recovers the result of section 4.2, i.e. that there can be no consistent coupling of a
depth-2 partially-massless field of any spin J to scalar matter (in local theories).
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A Helicity projection operators

In this appendix we introduce a convenient formalism to project a given spinning conformal
structure into its helicity components.

The main tools are the following Thomas-D operators [81]:

(Dε)i =
(
d

2 − 1 + ε · ∂ε
)
∂εi −

1
2ε

i∂ε2 , (A.1a)(
D(p)
ε

)i
=
(
d− 3

2 + ε · ∂ε
) [
∂εi − p̂i p̂ · ∂ε

]
− 1

2ε
i
[
∂ε2 − (p̂ · ∂ε)2

]
, (A.1b)

where p̂ ≡ p/|p|. The first differential operator (A.1a) is the standard Thomas-D oper-
ator which acts on equivalence classes of ε-polynomials, modulo the relation ε2 ∼ 0. It

38This expression was obtained by acting twice with the differential operator (2.22) on the contact di-
agram (3.17) generated by the non-derivative quartic vertex φ4 with φ a conformally coupled scalar and
boundary dimension d′ = d− 4. One then expands around d = 3.
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returns the traceless/harmonic representative of such polynomials/tensors. The second
operator (A.1b) is still a Thomas-D operator but its action is now defined on equivalence
classes of polynomials modulo ε2 ∼ 0 and ε ·p ∼ 0. It returns the transverse (with respect
to the vector p) and traceless representative. Since polynomials in ε are in one to one
correspondence with tensors, in the following we shall loosely refer to such polynomials
as tensors and to the corresponding traceless and transverse representatives as helicity
components.

The helicity-m component of a traceless symmetric rank-J tensor with respect to a
vector p then can be evaluated by combining the above two differential operators. One
first projects (J −m) symmetric indices in the longitudinal direction using (A.1a) and then
the remaining indices in the transverse direction via (A.1b). This is implemented by the
following operator:

ζE(p)
J,m = cJ,m

J !
(
d−2

2 +m
)
J−m

(
d−3

2

)
m

(ζ · D(p)
ε )m(p̂ ·Dε)J−m , (A.2)

where completeness fixes the coefficient cJ,m to be:

cJ,m =
2d+J+m−3Γ

(
d
2 + J − 1

)
Γ
(
d
2 +m− 1

2

)
√
πΓ(d+ J +m− 2) . (A.3)

This is manifestly transverse and traceless with respect to the vector ζ and has by definition
helicity-m.

The action of (A.2) on the monomial (ε · ζ2)J is given by

ζ1E(p)
J,m

[
(ε · ζ2)J

]
= cJ,m Ξm(ζ1, ζ2) ΥJ−m(ζ2) , (A.4)

where we have defined the following normalised Gegenbauer polynomials:

Υn(ζ) = n!
2n
(
d−2

2 + J − n
)
n

ζnC
( d2 +J−n−1)
n

(
ζ̂ · p̂

)
, (A.5a)

Ξn(ζ1, ζ2) = n!
2n
(
d−3

2

)
n

[
ζ2

1 − (ζ1 · p̂)2
]n/2 [

ζ2
2 − (ζ2 · p̂)2

]n/2
(A.5b)

× C
( d−3

2 )
n

 ζ1 · ζ2 − (ζ1 · p̂)(ζ2 · p̂)√[
ζ2

1 − (ζ1 · p̂)2] [ζ2
2 − (ζ2 · p̂)2]

 .
From this follows the completeness relation:

J !
2J
(
d−2

2

)
J

(ε1ε2)JC
d−2

2
J (ε̂1 · ε̂2) =

J∑
m=0

ΥJ−m(ε1) ε1E(p)
J,m

[
(ε · ε2)J

]
(A.6)

=
J∑

m=0
cJ,mΥJ−m(ε1)Ξm(ε1, ε2)ΥJ−m(ε2) ,
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which expresses the traceless contraction, encoded by the Gegenbauer polynomial on the
left-hand side, in terms of a sum of transverse-traceless contractions encoded by the cor-
responding helicity harmonics Ξm. The above decomposition is equivalent to the following
representation of the identity on traceless tensors:

φJ(ε1) =
J∑

m=0
ΥJ−m(ε1) ε1E(p)

J,m [φJ(ε)] . (A.7)

Employing on the left-hand side of (A.6) the equivalence relation ε2
i ∼ 0 and on the

right hand side the transverse and traceless equivalence relation ε2
i − (εi · p)2 ∼ 0 one can

write the suggestive identity:

(ε1 · ε2)J ∼
J∑

m=0
cJ,mΥJ−m(ε1)(ε̃1 · ε2)mΥJ−m(ε2) , (A.8)

where ε̃1 · ε2 denotes the transverse and traceless contraction of ε1 and ε2. The above form
suggests to define the following transverse projection operations:

Ê(p)
J,m = 1

(m+ 1)J−m
(
d−2

2 +m
)
J−m

(p ·Dε)J−m , (A.9)

which can be used to define the m-th transverse-traceless component of an arbitrary ten-
sorial structure.

In view of the above decomposition it is therefore useful to work in terms of the helicity
components so defined:

φJ(ε1) =


φ

(J)
J (ε1)
...

φ
(0)
J (ε1)

 ≡

Ê(p)
J,J [φ]
...

Ê(p)
J,0 [φ]

 . (A.10)

In terms of the above components the traceless contraction between traceless tensors reads:

φ1(ε1) ◦ φ2(ε2) =
J∑

m=0

cJ,m
p2m

(
Ê(p)
J,m [φ1(ε1)]

)
◦̂
(
Ê(p)
J,m [φ2(ε2)]

)
, (A.11)

where ◦̂ is the transverse and traceless contraction defined on the transverse subspace. E.g.:

φ1 ◦(p) φ2 = 1
m!
(
d−3

2

)
m

φ1
(
D(p)
ζ

)
φ2(ζ) . (A.12)

B Mellin-Barnes representation of 3pt functions with a spin-J operator

The Mellin-Barnes amplitude for the three-point correlation function of a spin-J operator
Oν3,J with auxiliary vector ε3 and two scalar operators Oν1,2,0 reads (see section 3.2 of [21]):

A(d+2J)
ν1,0;ν2,0;ν3,J

(s1,k1; s2,k2; s3,k3, ε3) = g
(J)
12 iπδ

(
d+ 2J

4 − s1 − s2 − s3

)
(B.1)

× Cν1,0;ν2,0;ν3,J (s1, s2, s3|ε3 · k1, ε3 · k2, ε3 · k3) .
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The tensorial structure Cν1,0;ν2,0;ν3,J (sj |ε3 · kj) is a degree J polynomial in the contractions
(ε3 · kj):

Cν1,0;ν2,0;ν3,J (sj |ε3 · kj) =
J∑
α=0

(
J

α

)
(−ε3 · k3)α

α∑
β=0

(
α

β

)
Y(J)
ν1,ν2,ν3|α,β (ε3 · k1, ε3 · k2)

×Hν1,ν2,ν3|α,β (s1, s2, s3) , (B.2)

where

Hν1,ν2,ν3|α,β (s1, s2, s3) =

(
s1 + iν1

2

)
α−β

(
s2 + iν2

2

)
β(

s3 + iν3
2 − α

)
α

, (B.3)

and

Y(J)
ν1,ν2,ν3|α,β (ε3 · k1, ε3 · k2)

= (−i)J
(

4−d−2J−2i(ν1−ν2+ν3)
4

)
β

(
d−4α+4β+2J−2i(ν1−ν2−ν3)

4

)
α−β(

d
2 + iν3 − 1

)
J−α

(
d
2 + iν3 + J − α− 1

)
α

×
J−α∑
n=0

(
d− 4β + 2J − 4n+ 2iν1 − 2iν2 + 2iν3

4

)
n

×
(
d+ 4β − 2J + 4n− 2iν1 + 2iν2 + 2iν3

4

)
J−α−n

×
(
J − α
n

)
(ε3 · k1)J−α−n (−ε3 · k2)n. (B.4)

The above representation has the nice property that the helicity-(J − J ′) component
can be obtained from the helicity-0 component of the three-point function with an operator
of spin-J ′:

(J−J ′)A(x)
ν1,0;ν2,0;ν3,J

(s1,k1; s2,k2; s3,k3, ε3)

=
(
− i2

)J−J ′
(ζ3 · k12)J−J

′ (0)A(x)
ν1,0;ν2,0;ν3,J ′

(s1,k1; s2,k2; s3,k3, ε3) . (B.5)

This identity in particular implies that the highest helicity component of a spin-J three-
point function can be obtained from the three-point function in x boundary dimensions with
the spin-J operator replaced with a scalar operator (J ′ = 0) of the same scaling dimension.

Likewise, the helicity-(J − 1) and -(J − 2) components can be obtained from the
helicity-0 component of the spin-1 and -2 three-point functions. This property allowed us in
section 2.3 to obtain Ward-Takahashi identities for (partially-)massless fields of arbitrary
spin-J from a computation that is of no greater complexity than that for spins-1 and 2.

C Bulk quartic contact terms from improvements

In this appendix we detail the evaluation of the w-integral in (3.6) for improvement
terms (3.10). As we saw in section 3.2, such terms give rise to bulk quartic contact
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terms in the four-point exchange. The key is to decompose the u, ū-dependence of the
improvements (3.10) in the Pochhammer basis (2.58):

pimpr. (s1, s2, u) =
∑
n

cn (s1, s2)
(
u− iν

2

)
n
, (C.1a)

p̄impr. (s3, s4, ū) =
∑
n̄

c̄n̄ (s3, s4)
(
ū− iν

2

)
n̄
, (C.1b)

where cn (s1, s2) and c̄n̄ (s3, s4) are polynomials in s1, s2 and s3, s4 respectively. The integral
over w can then be evaluated using the following identity (which is proven below):∫ +i∞

−i∞

dw

2πi sin (π (ū− u)) sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2 − 2 (u+ ū)
))

×
(
u− iν

2

)
n

(
ū− iν

2

)
n̄
ρν,ν (u, ū)

(
ks
2

)−2(u+ū)
∣∣∣∣∣ū=x+4w

4 −s3−s4
u=x−4w

4 −s1−s2

= sin
(
π

2

(
iν1 + iν2 + iν3 + iν4 + x+ x̄

2

))

×

n̄−1∑
j=0

(
k2

s
4

)(n+j) (−1)n̄+j+1(n− n̄+ j + 1)jΓ(iν − n− j)
j!Γ(1− n̄+ j + iν)

×iπ δ
(
s1 + s2 + s3 + s4 −

x+ x̄

4 − n− j
)

+
n−1∑
j=0

(
k2

s
4

)(n̄+j) (−1)n̄+j+1(n̄− n+ j + 1)jΓ(iν + n− j)
j!Γ(1 + n̄+ j − iν)

×iπ δ
(
s1 + s2 + s3 + s4 −

x+ x̄

4 − n̄− j
)]

. (C.2)

Dirac delta functions of the above form are the signature of bulk quartic contact terms
at the level of the Mellin-Barnes representation, which was explained in section 3.2. In
section 3.2 this identity was given only for improvements (C.1a), which is obtained from
the above by setting n̄ = 0.

There is an important subtlety in the evaluation of the w-integral (C.2). In particular,
closing the integration contour on either the positive or negative real axis and summing
the residues of the poles that are enclosed naively gives a vanishing result! However, one
notes that the w-integral has poor behaviour at infinity of the form

∼ R
x+x̄

2 −2−2<(s1+s2+s3+s4) , R→∞, (C.3)

which gives an additional pole in the remaining Mellin variables si. This suggest that,
rather than vanishing, the w-integral should be defined as a distribution.

Looking closer at the sum over the residues and using the Gauss summation theorem,
it turns out that the contours for Mellin-Barnes integrals in the variables si cannot be
chosen in the same way for all terms in the sum.39 For this reason, it is actually incorrect

39This observation was also made in [21].
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to directly sum the residues coming from evaluating the w-integral — which is what would
give a vanishing result. One should first bring the integration contours in si to the same
path for all terms, for which one should carefully take into account the residues of the
poles that are crossed in the process. This is what gives a non-vanishing result and is how
distributions are encoded in Mellin-Barnes integrals! More in detail, for the case at hand,
after summing over the residues of poles:

w = 1
4(−4n̄− 4j + 4s3 + 4s4 − x̄) + iν

2 , j ∈ N , (C.4a)

w = 1
4(−4j + 4s3 + 4s4 − x̄)− iν

2 , j ∈ N , (C.4b)

and using the Gauss summation theorem to sum the two series one is left with two contri-
butions. One proportional to

Γ
(4n− 4s1 − 4s3 − 4s2 − 4s4 + x+ x̄

4

)
Γ
(
−n− n̄+ 2s1 + 2s3 + 2s2 + 2s4 −

x

2 −
x̄

2 +1
)
,

(C.5)

and the second proportional to

Γ
(4n− 4s1 − 4s3 − 4s2 − 4s4 + x+ x̄

4

)
Γ
(
−n− n̄+ 2s1 + 2s3 + 2s2 + 2s4 −

x

2 −
x̄

2 +1
)
.

(C.6)

We can then explicitly see that in order to bring the contour to the same path for both
terms we must pass the following poles:

4 (s1 + s2 + s3 + s4) = x+ x̄+ j + n , 0 ≤ j ≤ n̄− 1 , (C.7)

for the first term and

4 (s1 + s2 + s3 + s4) = x+ x̄+ j + n̄ , 0 ≤ j ≤ n− 1 , (C.8)

for the second. Gathering their residues one arrives to eq. (C.2).

Open Access. This article is distributed under the terms of the Creative Commons
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