Supporting Material

Novel ruthenium complexes bearing bipyridine-based and *N*-heterocyclic carbene-supported pyridine (NCN) ligands: The influence of ligands for catalytic transfer hydrogenation of ketones

Akkharadet Piyasaengthong^{a,b},* Luke J. Williams,^a Dmitri S. Yufit^a, James W. Walton^{a,*}

^aDepartment of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom ^bBioscience program, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand

p.akkharadet@gmail.com; james.walton@durham.ac.uk

Table of Contents

1. NMR and HRMS spectra	S2
2. Single-crystal X-Ray crystallography	\$39
3. Typical procedure for transfer hydrogenation of ketones	S43
4. Kinetic analysis	S45
5. Eyring analysis	S49
6. Catalytic activity of Ru-MACHO in TH of acetophenone	S52
7. Catalytic activity of complexes 1-6 in TH of acetophenone	S52
8. Structures of catalysts and Transfer Hydrogenation Mechanism	S53
9. IR Spectra of complexes 1-6	S54

1. NMR and HRMS spectra

Fig S1. ¹H NMR spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Chloroform-*d*, 175 MHz, 298 K) of ligand **L0**.

Fig S2. 2D HSQC spectrum (Chloroform-d, 700 MHz, 298 K) of ligand LO.

Fig S3. Positive ASAP HRMS spectra of ligand **L0**: m/z calculated for $[C_{12}H_{11}^{79}Br_2N_2]^+$: 340.9289, found: 340.9274.

Fig S4. ¹H NMR spectrum (upper, Methanol- d_4 , 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Methanol- d_4 , 175 MHz, 298 K) of ligand **L1**.

Fig S5. 2D COSY spectrum (upper, Methanol- d_4 , 700 MHz, 298 K) and 2D NOESY spectrum (lower, Methanol- d_4 , 700 MHz, 298 K) of ligand **L1**.

Fig S6. 2D HSQC spectrum (Methanol-d₄, 700 MHz, 298 K) of ligand L1.

Fig S7. Positive ESI HRMS spectra of ligand **L1**: m/z calculated for $[C_{12}H_{15}N_4]^+$: 215.1297, found: 215.1296.

Fig S8. ¹H NMR spectrum (upper, Deuterium Oxide, 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Deuterium Oxide, 175 MHz, 298 K) of ligand **L2**.

Fig S9. 2D COSY spectrum (upper, Deuterium Oxide, 700 MHz, 298 K) and 2D NOESY spectrum (lower, Deuterium Oxide, 700 MHz, 298 K) of ligand **L2**.

Fig S10. 2D HSQC spectrum (upper, Deuterium Oxide, 700 MHz, 298 K) and 2D HMBC spectrum (lower, Deuterium Oxide, 700 MHz, 298 K) of ligand **L2**.

Fig S11. Positive ESI HRMS spectra of ligand **L2**: m/z calculated for $[C_{16}H_{23}N_4]^+$: 271.1923, found: 271.1928.

Fig S12. ¹H NMR spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Chloroform-*d*, 175 MHz, 298 K) of ligand **L3**.

Fig S13. 2D COSY spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and 2D NOESY spectrum (lower, Chloroform-*d*, 700 MHz, 298 K) of ligand **L3**.

Fig S14. 2D HSQC spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and 2D HMBC spectrum (lower, Chloroform-*d*, 700 MHz, 298 K) of ligand **L3**.

24-Oct-2019 AP-4_11 177 (1	.499) Cm (177:183)							1: TOF MS ES+
251.13	805							4.35e+004
100								
	252.1346							262.1360
251.0	252.0 253.0	254.0	255.0	256.0	257.0 258.0	259.0 2	260.0 261.0	262.0
Minimum: Maximum:		3.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
251.1305	251.1303 251.1297	0.2	0.8 3.2	1.5 10.5	41.4 42.7	1.3 2.5	C7 H21 N6 C15 H15 N4	P2
	251.1313	-0.8	-3.2	5.5	41.6	1.5	C13 H20 N2	O P
	251.1317	-1.2	-4.8	0.5	43.3	3.1	C11 H23 O4	S
	251.1290	1.5	6.U 8.8	1.5	45.9	5.8	C1 H19 N6	02 5
	251.1330	-2.5	-10.0	0.5	41.5	1.3	C11 H25 O2	P2
	251.1330	-2.5	-10.0	5.5	44.8	4.7	C12 H19 N4	S

Fig S15. Positive ASAP HRMS spectra of ligand L3: m/z calculated for $[C_{15}H_{15}N_4]^+$: 251.1297, found: 251.1305.

Fig S16. ¹H NMR spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Chloroform-*d*, 175 MHz, 298 K) of complex **1**.

Fig S17. 2D COSY spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and 2D NOESY spectrum (lower, Chloroform-*d*, 700 MHz, 298 K) of complex **1**.

Fig S18. 2D HSQC spectrum (Chloroform-d, 700 MHz, 298 K) of complex 1.

Fig S19. Positive ESI HRMS spectra of complex **1**: m/z calculated for $[C_{12}H_{14}N_4{}^{35}Cl^{96}Ru]^+$: 344.9983, found: 344.9958.

Fig S20. ¹H NMR spectrum (upper, Methanol- d_4 , 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Methanol- d_4 , 175 MHz, 298 K) of complex **2**.

Fig S21. PSYCHE spectrum (upper, Methanol- d_4 , 700 MHz, 298 K) and ³¹P NMR spectrum (lower, DMSO- d_6 , 700 MHz, 298 K) of complex **2**.

Fig S22. 2D COSY spectrum (upper, Methanol- d_4 , 700 MHz, 298 K) and 2D NOESY spectrum (lower, Methanol- d_4 , 700 MHz, 298 K) of complex **2**.

Fig S23. 2D HSQC spectrum (upper, Methanol- d_4 , 700 MHz, 298 K) and 2D HMBC spectrum (lower, Methanol- d_4 , 700 MHz, 298 K) of complex **2**.

Fig S24. Positive ESI HRMS spectra of complex **2**: *m*/*z* calculated for [C₃₀H₂₉N₄P⁹⁶Ru]²⁺: 286.0591, found: 286.0566.

Fig S25. ¹H NMR spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Chloroform-*d*, 175 MHz, 298 K) of complex **3**.

Fig S26. 2D COSY spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and 2D NOESY spectrum (lower, Chloroform-*d*, 700 MHz, 298 K) of complex **3**.

Fig S27. 2D HSQC spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and 2D HMBC spectrum (lower, Chloroform-*d*, 700 MHz, 298 K) of complex **3**.

28-Jan-2020 AP-10_6112 155 (1.320) Cm (129:191)

1: TOF MS ES+ 3.50e+003

100-		407.0	593				3.500+00	13
%- 	362.0442 371.0837 	406.0597 405.0593 401.0629 	409.0586 411.0560 40000000000000000000000000000000000	448.0 447.0869 446.0851 442.0886 ++	0860 450.0834 452.0675 455.0612 455 455.0612	470.0380 498	1302505.1853 535.1669 541.1676	/z
Minimum: Maximum:		3.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm	a) Formula	
401.0629	401.0626 401.0634 401.0618 401.0641	0.3 -0.5 1.1 -1.2	0.7 -1.2 2.7 -3.0	14.5 18.5 11.5 -0.5	393.3 400.1 400.6 393.3	1.3 8.2 8.6 1.3	C14 H10 N10 O3 C1 C19 H9 N6 O5 C21 H21 O2 96Ru C5 H22 N10 O3 C1 96Ru	
	401.0612 401.0648 401.0609 401.0609	1.7 -1.9 2.0 2.0	4.2 -4.7 5.0 5.0	9.5 23.5 7.5 -0.5	393.1 400.4 394.0 398.4	1.1 8.4 2.0 6.4	C13 H14 N6 O7 C1 C20 H5 N10 O C16 H22 N4 C1 96Ru C5 H21 N8 O7 96Ru	

Fig S28. Positive ESI HRMS spectra of complex **3**: m/z calculated for $[C_{16}H_{22}N_4^{35}Cl^{96}Ru]^+$: 401.0609, found: 401.0629

Fig S29. ¹H NMR spectrum (upper, Acetone- d_6 , 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Acetone- d_6 , 175 MHz, 298 K) of complex **4**.

14 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 f1 (ppm)

Fig S30. PSYCHE spectrum (Acetone- d_6 , 700 MHz, 298 K) of complex 4.

Fig S31. 2D COSY spectrum (upper, Acetone- d_6 , 700 MHz, 298 K) and 2D NOESY spectrum (lower, Acetone- d_6 , 700 MHz, 298 K) of complex **4**.

Fig S32. 2D HSQC spectrum (upper, Acetone- d_6 , 700 MHz, 298 K) and 2D HMBC spectrum (lower, Acetone- d_6 , 700 MHz, 298 K) of complex **4**.

Fig S33. Positive ESI HRMS spectra of complex **4**: m/z calculated for $[C_{20}H_{19}N_4{}^{96}Ru]^+$: 411.0686, found: 411.0689

Fig S34. ¹H NMR spectrum (upper, Acetone- d_6 , 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Acetone- d_6 , 175 MHz, 298 K) of complex **5**.

Fig S35. 2D COSY spectrum (upper, Acetone- d_6 , 700 MHz, 298 K) and 2D NOESY spectrum (lower, Acetone- d_6 , 700 MHz, 298 K) of complex **5**.

Fig S36. 2D HSQC spectrum (Acetone-d₆, 700 MHz, 298 K) of complex 5.

Fig S37. Positive ESI HRMS spectra of complex **5**: m/z calculated for $[C_{25}H_{19}N_4Ru]^+$: 481.1468, found: 481.1449.

Fig S38. ¹H NMR spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Chloroform-*d*, 175 MHz, 298 K) of complex **6**.

Fig S39. PSYCHE spectrum (Chloroform-*d*, 700 MHz, 298 K) of complex 6.

Fig S40. 2D COSY spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and 2D NOESY spectrum (lower, Chloroform-*d*, 700 MHz, 298 K) of complex **6**.

Fig S41. 2D HSQC spectrum (upper, Chloroform-*d*, 700 MHz, 298 K) and 2D HMBC spectrum (lower, Chloroform-*d*, 700 MHz, 298 K) of complex **6**.

05-Mar-2020 AP-13_1_31 28	8 (2.429) Cm (288:298	3)									1: TOF	MS ES+ 47e+004
100-	1 3302479.0886 485 1	432 503.19	520. 519.1 515.1067 ²⁰ 514 8400	521.1025 1033 033 523.1 523.1 524. 52	038 1052 6.1010 _535.1204	553 1213	564 134	7 570.20	084		595.2	253
0- <u></u> 460	470 480	490 50	0 510	520 5	i30 540	550 5	60	570	580	5	90	600
Minimum: Maximum:		3.0	5.0	-1.5 100.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (1	Norm)	Formu	la			
515.1067	515.1065 515.1063 515.1072 515.1060 515.1078 515.1078 515.1082 515.1050 515.1047 515.1087 515.1045	0.2 0.4 -0.5 0.7 -1.1 -1.5 1.7 2.0 -2.0 2.2	0.4 0.8 -1.0 1.4 -2.1 -2.9 3.3 3.9 -3.9 4.3	8.5 28.5 32.5 18.5 13.5 13.5 23.5 13.5 17.5 33.5	704.3 704.4 709.8 709.2 704.4 704.0 704.5 709.0 709.8 709.3	1.7 1.7 7.1 6.5 1.7 1.3 1.8 6.3 7.1 6.6		C24 C39 C26 C25 C22 C33 C25 C30 C35	H32 H16 H15 H23 H28 H20 H20 H27 H27 H11	04 02 N6 N4 N6 04 N2 02 N6	C1 C1 96Ru C1 07 C1 04 96Ru	96Ru 96Ru Cl 96Ru

Fig S42. Positive ESI HRMS spectra of complex **6**: m/z calculated for $[C_{25}H_{28}N_4^{35}Cl^{96}Ru]^+$: 515.1078, found: 515.1067.

2. Single-crystal X-Ray crystallography

Compound	2	5	LO	L1
Empirical formula	$C_{32}H_{36}CI_2N_4O_{2.5}PRu\\$	$C_{26}H_{31}CI_2F_6N_4PRu$	$C_{12}H_{10}Br_2N_2$	$C_{12}H_{19}CI_3N_4O$
Formula weight	719.59	716.49	342.04	341.66
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/c	P21/c	P21/c	P2 ₁ /n
a/Å	19.9245(9)	12.6371(4)	12.0100(4)	11.2416(11)
b/Å	11.0559(5)	14.0622(5)	4.4177(2)	6.6518(7)
c/Å	30.7401(14)	16.8293(6)	10.9527(4)	21.523(2)
α/°	90	90	90	90
β/°	107.531(2)	94.3000(10)	94.1004(14)	104.610(3)
γ/°	90	90	90	90
Volume/Å ³	6457.0(5)	2982.24(18)	579.63(4)	1557.4(3)
Z	8	4	2	4
ρ _{calc} g/cm ³	1.480	1.596	1.960	1.457
µ/mm⁻¹	0.738	0.820	6.964	0.589
F(000)	2952.0	1448.0	332.0	712.0
Reflections collected	55339	44067	8661	30404
Independent refl., R _{int}	9406, 0.0522	8700, 0.0501	1609, 0.0268	4131, 0.0804
Data/restraints/parameters	9406/8/396	8700/114/457	1609/0/73	4131/7/261
Goodness-of-fit on F ²	1.071	1.075	1.126	1.101
Final R_1 [≥2 σ (I)]	0.0404	0.0662	0.0201	0.0675
Final wR ₂ [all data]	0.1024	0.1721	0.0520	0.1684
Largest diff. peak/hole /e Å ⁻³	1.01/-1.57	1.54/-1.14	1.14/-0.30	0.98/-0.60

 Table S1 Crystal data and structure refinement.

Fig S43. Molecular and packing structures of LO with thermal ellipsoids shown at 50% probability.

Fig S44. Molecular and packing structures of L1 with thermal ellipsoids shown at 50% probability.

Fig S45. Molecular and packing structures of 2 with thermal ellipsoids shown at 50% probability.

Fig S46. Molecular and packing structures of 5 with thermal ellipsoids shown at 20% probability.

3. Typical procedure for transfer hydrogenation of ketones

Fig S47. Demonstrate the calculated percent conversion by NMR spectroscopy.

Fig S48. ¹H NMR spectrum (upper, Acetone- d_6 , 600 MHz, 298 K) and ¹³C{¹H} NMR spectrum (lower, Acetone- d_6 , 151 MHz, 298 K) of 1-phenylethanol.

4. Kinetic analysis

Fig S49. Upper Stacked ¹H NMR spectrums (Acetone- d_6 , 400 MHz, 298 K) of acetophenone TH catalysed by **1** with condition: [Ru] = 2.0 mM, [*i*PrOH] = 13.1 M, [acetophenone]₀ = 0.2 M, 80 °C. *Lower* Kinetic data plots, showing a reaction first order in acetophenone.

Fig S50. Upper Stacked ¹H NMR spectrums (Acetone- d_6 , 400 MHz, 298 K) of acetophenone TH catalysed by **1** with condition: [Ru] = 2.0 mM, [*i*PrOH] = 13.1 M, [acetophenone]₀ = 0.8 M, 80 °C. *Lower* Kinetic data plots, showing a reaction first order in acetophenone.

Fig S51. Upper Stacked ¹H NMR spectrums (Acetone- d_6 , 400 MHz, 298 K) of acetophenone TH catalysed by **1** with condition: [Ru] = 2.0 mM, [*i*PrOH] = 13.1 M, [acetophenone]₀ = 1.6 M, 80 °C. *Lower* Kinetic data plots, showing a reaction first order in acetophenone.

Fig S52 Kinetic analytical dependence of acetophenone on the initial rates (k_i) of Acetophenone TH catalysed by **1** with conditions: [Ru] = 2.0 mM, [*i*PrOH] = 13.1 M, [acetophenone]₀ = 0.2-1.6 M, 80 °C

5. Eyring analysis

Fig S53. Stacked ¹H NMR spectrums (Acetone-*d*₆, 400 MHz, 298 K) of acetophenone TH catalysed by **1** with condition: Ru:KO*t*Bu:acetophenone = 1:5:100 at temperatures 50 °C. From *bottom* to *top* 5 min, 10 min, 15 min, 20 min.

Fig S54. Stacked ¹H NMR spectrums (Acetone- d_6 , 400 MHz, 298 K) of acetophenone TH catalysed by **1** with condition: Ru:KOtBu:acetophenone = 1:5:100 at temperatures 60 °C. From *bottom* to *top* 5 min, 10 min, 15 min, 20 min.

Fig S55. Stacked ¹H NMR spectrums (Acetone- d_6 , 400 MHz, 298 K) of acetophenone TH catalysed by with condition: Ru:KO*t*Bu:acetophenone = 1:5:100 at temperatures 70 °C. From *bottom* to *top* 5 min, 10 min, 15 min, 20 min.

Fig S56. Stacked ¹H NMR spectrums (Acetone- d_6 , 400 MHz, 298 K) of acetophenone TH catalysed by **1** with condition: Ru:KOtBu:acetophenone = 1:5:100 at temperatures 80 °C. From *bottom* to *top* 5 min, 10 min, 15 min, 20 min.

Fig S57. Summary of kinetic data for Eyring analysis.

Table S2 Eyring analysis of catalytic transfer hydrogenation of acetophenone in 2-propanol.

Time(min)		1-phenylet	nanol (mM)ª	
	50 °C	60 °C	70 °C	80 °C
5	2.82	2.82	5.63	11.26
10	2.82	5.63	11.26	28.16
15	2.82	8.45	19.71	39.42
20	5.63	11.26	25.34	53.50
Initial rate (k) (mM/min)	0.17	0.56	1.35	2.76
In(k/T)	-7.56	-6.38	-5.54	-4.85
1/T (K ⁻¹ × 10 ⁻³)	3.09	3.00	2.91	2.83

Reaction conditions: Ru:KO/Bu:acetophenone = 1:5:100 at temperatures 50-80 °C. "Determined by ¹H NMR spectroscopy using dimethyl sulfoxide as internal standard, conversions correspond to yields.

According to Eyring equation:

$$\ln\frac{k}{T} = \frac{-\Delta H^*}{R} \cdot \frac{1}{T} + \ln\frac{K_B}{h} + \frac{\Delta S^*}{R}$$

Eyring plot between $\ln(k/T)$ and 1/T obtains a straight linear with negative slope $\left(\frac{-\Delta H^*}{R}\right)$ and a y-intercept $\left(\ln\frac{K_B}{h} + \frac{\Delta S^*}{R}\right)$. See main text.

 $-\Lambda H^{\ddagger}$

Slo

Slope:

$$(\frac{\Delta R}{R}) = -10.2$$

 $\Delta H^{\pm} = 85.3 \text{ kJ mol}^{-1}$
($\ln \frac{K_B}{h} + \frac{\Delta S^{\pm}}{R}$) = 24.3
 $\Delta S^{\pm} = 4.2 \text{ J mol}^{-1} \text{ K}^{-1}$
At 80 °C
 $\Delta G^{\pm} = \Delta H^{\pm} - T\Delta S^{\pm}$
 $\Delta G^{\pm} = 85.3 - (353)(0.0042)$
 $\Delta G^{\pm} = 83.8 \text{ kJ mol}^{-1}$

6. Catalytic activity of Ru-MACHO in TH of acetophenone

Procedure

Ru-MACHO catalyst (1 mol%) and base (5 mol%) were added into a microwave vial with a magnetic stirring bar. After replacing atmosphere with nitrogen gas four times, 2.5 mL of degassed anhydrous 2-propanol were added and stirred for 30 min. Acetophenone (0.05 mmol) was added into the solution and stirred with/without heat. DI water (0.5 ml) was added to stop the reaction. DMSO (0.05 mL, 0.704 mmol) was added as the internal standard. Around 0.1 mL of the reaction mixture was dissolved in acetone- d_6 to obtain a NMR sample.

Table S4 Catalytic activity of Ru-MACHO in TH of acetophenone.

Entry	Cat.	Base	Ketone/base/cat.	Temp.	Time	Conv. (%) ^a
			(mol %)	(°C)	(h)	
1	Ru-MACHO	KO <i>t</i> Bu	100/5/1	80	1	92
2	Ru-MACHO	KO <i>t</i> Bu	100/5/1	80	3	96
3	Ru-MACHO	KO <i>t</i> Bu	100/5/1	80	5	97
4	Ru-MACHO	KO <i>t</i> Bu	100/5/1	80	16	98
5	Ru-MACHO	KO <i>t</i> Bu	100/10/1	80	1	89
6	Ru-MACHO	NaOH	100/10/1	80	1	91
7	Ru-MACHO	КОН	100/10/1	80	1	88
8	Ru-MACHO	KO <i>t</i> Bu	100/5/1	60	1	93
9	Ru-MACHO	KO <i>t</i> Bu	100/5/1	40	1	90
10	Ru-MACHO	KO <i>t</i> Bu	100/5/1	20	0.02	28
11	Ru-MACHO	KO <i>t</i> Bu	100/5/0.5	20	0.08	79
12	Ru-MACHO	KO <i>t</i> Bu	100/5/2.5	20	0.20	82
13	Ru-MACHO	KO <i>t</i> Bu	100/5/5	20	0.25	85
14	Ru-MACHO	KO <i>t</i> Bu	100/5/5	20	0.50	89
15	Ru-MACHO	KO <i>t</i> Bu	100/5/5	20	1	90

Reaction conditions: acetophenone (0.5 mmol), base, Ru catalyst, and 2-propanol (2.5 mL). ^aDetermined by ¹H NMR spectroscopy using dimethyl sulfoxide as internal standard, conversions correspond to yields.

7. Catalytic activity of complexes 1-6 in TH of acetophenone

Table S5 Catalytic activity of complexes 1-6 in TH of acetophenone at 20 °C.

			KOłBu (5 mol %) iPrOH, 20 °C, 30 min			
Entry	Cat.	Base	Ketone/base/cat.	Temp.	Time	Conv. (%)ª
			(mol %)	(°C)	(h)	
1	1	KO <i>t</i> Bu	100/5/1	20	0.5	0
2	2	KO <i>t</i> Bu	100/5/1	20	0.5	0
3	3	KO <i>t</i> Bu	100/5/1	20	0.5	0
4	4	KO <i>t</i> Bu	100/5/1	20	0.5	0
5	5	KO <i>t</i> Bu	100/5/1	20	0.5	0
6	6	KO <i>t</i> Bu	100/5/1	20	0.5	0
7	Milstein	KO <i>t</i> Bu	100/5/1	20	0.5	0

Ru catalyst (1 mol %)

Reaction conditions: acetophenone (0.5 mmol), base, Ru catalyst, and 2-propanol (2.5 mL). ^aDetermined by ¹H NMR spectroscopy using dimethyl sulfoxide as internal standard, conversions correspond to yields.

8. Structures of catalysts and Transfer Hydrogenation Mechanism

RuMACHO

Milstein Catalyst

Figure\$58*left*:RuMACHO({Bis[2-(diphenylphosphino)ethyl]amine}carboynlchlorohydridoruthenium(II));*right*:Milsteincatalyst[2-(Di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine]carbonylchlorohydridoruthenium(II)

Figure S59 Hydride transfer step in Inner sphere (IT, *left*) and outer sphere (OT, *right*) Ru-catalysed transfer hydrogenation. LA = Lewis acid or other electrophilic group. Each process can be ligand assisted, whereby polarisation of the ketone is enhanced by ligand coordinated to the [Ru] centre. See article reference 35 for more details.

9. IR Spectra of complexes 1-6

Fig S60 IR spectrum of complex 1.

Fig S61 IR spectrum of complex 2.

Fig S62 IR spectrum of complex 3.

Fig S63 IR spectrum of complex 4.

Fig S64 IR spectrum of complex 5.

Fig S65 IR spectrum of complex 6.