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Abstract

If life on Earth had to achieve n “hard steps“ to reach humanityʼs level, then the chance of this event rose as time to
the nth power. Integrating this over habitable star formation and planet lifetime distributions predicts >99% of
advanced life appears after today, unless n< 3 and max planet duration <50 Gyr. That is, we seem early. We offer
this explanation: a deadline is set by loud aliens who are born according to a hard steps power law, expand at a
common rate, change their volume appearances, and prevent advanced life like us from appearing in their volumes.
Quiet aliens, in contrast, are much harder to see. We fit this three-parameter model of loud aliens to data: (1) birth
power from the number of hard steps seen in Earth’s history, (2) birth constant by assuming a inform distribution
over our rank among loud alien birth dates, and (3) expansion speed from our not seeing alien volumes in our sky.
We estimate that loud alien civilizations now control 40%–50% of universe volume, each will later
control∼ 105–3 × 107 galaxies, and we could meet them in∼200Myr–2 Gyr. If loud aliens arise from quiet
ones, a depressingly low transition chance (<∼10−4 ) is required to expect that even one other quiet alien
civilization has ever been active in our galaxy. Which seems to be bad news for the Search for Extraterrestrial
Intelligence. But perhaps alien volume appearances are subtle, and their expansion speed lower, in which case we
predict many long circular arcs to find in our sky.

Unified Astronomy Thesaurus concepts: Astrobiology (74)

1. Introduction

To a first approximation, there are two kinds of aliens: quiet
and loud. Loud (or expansive) aliens expand fast, last long, and
make visible changes to their volumes. Quiet aliens fail to meet
at least one of these criteria. As quiet aliens are harder to see,
we are forced to accept rather uncertain estimates of their
density, via methods like the Drake equation (Drake 1965;
Grinspoon 2003; Westby & Conselice 2020). Loud aliens, in
contrast, are far more noticeable if they exist at any substantial
density (Hart 1975).

Loud aliens are thus much better suited for empirical study
via fitting simple models to available data. One prior researcher
has recently pursued this approach (Olson 2015, 2016, 2017,
2018a, 2018b, 2020). Olson estimated loud alien expansion
speeds from the fact that we do not now see them big in our
sky, and Olson estimated their overall appearance rate by
assuming humanityʼs current date to be a representative loud
alien birth date. Olson required only one further input to
estimate a full stochastic spacetime distribution over loud
aliens, which was a somewhat complex appearance function,
specifying the distribution of loud alien birth dates over time.

In this paper, we explore an even simpler model of loud
aliens, whom we call grabby, which we also fit to available
data. Like Olson’s, our model includes an expansion speed and
an overall appearance rate, which we estimate similarly to
Olson. But for an appearance function we use a simple power
law, which has only one additional free parameter, its power n.
This power law comes from the standard hard steps statistical
model of the origin of advanced life within a limited planetary
time window, and its power comes from the number of hard
steps in the evolution of advanced life, a number that has been

roughly estimated from the history of major events in Earth’s
history to be near the range of 3–9. Yes, this simpler
appearance function is a cruder approximation, but its
simplicity can let us better understand and apply it.
We will show that a power law at least crudely approximates

a more realistic appearance function for a large fraction of the
relevant parameter space. We will also show that, unless one
assumes fewer than two hard steps and also a very restrictive
limit on habitable planet lifetimes, one must conclude that
humanity seems to have appeared implausibly early in the
history of the universe. Loud aliens, who fill the universe early,
can robustly explain human earliness, as they set a deadline by
which advanced life must appear if it is to see an empty
universe as we do. Unlike other explanations offered, this one
does not require assuming that advanced life can only result
from evolutionary paths close to ours.
As each of our three model parameters is estimable to within

roughly a factor of 4, we can and do estimate the stochastic
spacetime distribution of grabby aliens, and thus distributions
over grabby alien densities, origin dates, visible angles, and
durations until we meet or see them. We also consider the
alternate assumption that we have not yet noticed subtle
appearance differences that mark the volumes they control, and
for this scenario we estimate how common in the sky would be
the volume borders for which astronomers might search.
If we assume that grabby civilizations (GCs) arise from

more-common non-grabby versions, then the higher the chance
p of this non-grabby to grabby transition, the less common can
be such non-grabby versions. We will show that, assuming a
generous million year average duration for non-grabby
civilizations (NGCs), depressingly low transition chances p
are needed to estimate that even one other one was ever active
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anywhere along our past light cone (p<∼10−3), has ever
existed in our galaxy (p<∼10−4), or is active now in our
galaxy (p<∼10−7). Such low chances of p would bode badly
for humanity’s future.

2. Overview

Ours is a model of grabby aliens, who by definition (a)
expand the volumes they control at a common speed, (b)
clearly change the look of their volumes (relative to
uncontrolled volumes), (c) are born according to a power law
in time except not within other GC volumes, and (d) do not die
unless displaced by other GCs.

See Figure 1 for examples of the spacetime pattern produced
by this model. GCs might allow other civilizations to be born
within their volumes, but as those should clearly see that in-
volume status, we exclude them from our GC definition. Our
assumptions reject the zoo hypothesis (Ball 1973).

Our model has three parameters, the first of which is the rate
at which GCs are born. We assume that we humans have a
nonzero chance of giving birth to a GC, and that, if this were to
happen, it would happen within roughly 10 Myr. We also
assume (with Olson 2016) that this chance is spacetime
representative, i.e., we have no good reason to expect our
spacetime location to be unusual, relative to other GC origins.
Given these assumptions, and the fact that we do not now seem
to be within a clearly changed alien volume, our current
spacetime event becomes near a sample from the distribution of
GC origins. That allows us to estimate the overall grabby birth
rate to within roughly a factor of 2 (for its interquartile range),
at least for powers of 3 or higher.
Yes, it is possible, and perhaps even desirable, that our

descendants do not become grabby. Even so, our current date
remains a data point. Surprised? Imagine that you are standing
on a strange planet wondering how strong its gravity is. Your
intuition tells you, from the way things seem to bounce and

Figure 1. These two diagrams each show a sample stochastic outcome from a grabby alien model, in one (1D) and two (2D) spatial dimensions. The top diagram
shows space on the x-axis and time moving up the y-axis. The bottom diagram shows two spatial dimensions, with time moving downward into the box. In both cases,
randomly colored GCs are each born at a spacetime event, expand in forward-time cones, and then stop upon meeting another GC. The scenarios shown are for a
clock-time volume-power n of 6. This would look the same for any expansion speed, but if it is at one half light speed the 1D diagram shows 61 GCs across a spatial
width of 2.8 Gpc, while the 2D diagram shows 144 GCs within a width of 0.6 Gpc, both widths applying at the median GC birth date if that is our current date of
13.8 Gyr. We show coordinates comoving in space and conformal in time, as explained in Section 10. A three-dimensional movie visualization is found at https://
grabbyaliens.com.
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move around you, that you could probably jump about 1.3 m
here, compared to the usual 0.5 m on Earth. Which suggests
that you are on a planet with a gravity like Mars. And it
suggests this even if you do not actually jump. A counterfactual
number can be just as valid a data point as a real number.

The second of our three model parameters is the (assumed
universal) speed at which GCs expand. Our model predicts that
on average at grabby origin dates, a third to a half of the
universe is within grabby-controlled volumes. So if the grabby
expansion speed were low, many such volumes should appear
quite large and noticeable in our sky. However, as noted by
(Olson 2015, 2017) and discussed in Section 13, if their
expansion speed were within∼25% of light speed, a selection
effect implies that we are less likely to see than to not see such
volumes. Thus, if we could have seen them, they would likely
be here now instead of us. As we do not now see such volumes,
we conclude that grabby aliens, if they exist, expand very fast.

The third of our three model parameters is a power derived
from the effective number of hard steps in the great filter
process by which simple dead matter evolves to become a GC
(Hanson 1998a). It is well known that the chance of this entire
process completing within a time duration goes as the length of
that duration raised to the power of the number of hard (i.e.,
take-very-long) steps (or their multistep equivalents) in that
evolutionary process. Using data on Earth history durations, the
literature estimates an Earth-duration-based power to lie
roughly near the range of 3–9 (Carter 1983; Caldeira &
Kasting 1992; Hanson 1998b; Carter 2008; Watson 2008;
McCabe & Lucas 2010; Aldous 2012; Waltham 2017;
Sandora 2019; Lingam & Loeb 2019a; Snyder-Beattie et al.
2021).
Such hard step power-law models are usually applied to

planets. However, we show in Appendix A that such a power
law can also apply well to the chances of advanced life arising
within a larger volume like a galaxy. This volume-based power
is our third key parameter.

For each combination of our three estimated model
parameters, we can fully describe the stochastic spacetime
patterns of GC activity across the universe, allowing us to
estimate, for example, where they are and when we would meet
or see them. We will later show in detail how these
distributions change with our model parameters.

Our grabby alien model can explain a striking empirical
puzzle: why have we humans appeared so early in the
universe? Yes, many calculations often find our date to be
not greatly atypical of habitable durations undisturbed by
nearby sterilizing explosions, for both short and long durations
(Ward & Brownlee 2000; Gonzalez et al. 2001; Lineweaver
et al. 2004; Vukotic & Cirkovic 2007; Prantzos 2008;
Vukotic 2010; Gowanlock et al. 2011; Legassick 2015;
Morrison & Gowanlock 2015; Forgan et al. 2017; Cai et al.
2021; Spinelli et al. 2021). Other calculations find us to be
early, even if not extremely early, when planets at many lower
mass stars are considered habitable (Gale & Wandel 2017;
Haqq-Misra et al. 2018; Lingam & Loeb 2018; Wandel &
Gale 2020).

However, all but one of these calculations (Waltham 2017)
neglects the hard steps power law. When that is included,
humans look much earlier, unless one makes strong assump-
tions about both the hard steps power and the habitability of
stars that last longer than our Sun (see Figure 3). We will show
this via a somewhat less simple appearance model, which

applies the hard steps power law to planets, allows stars to form
at different dates, and allows their planets to last for different
durations.
Our grabby alien model resolves this puzzle by denying a

key assumption of this appearance model: that the birth of
some advanced life has no effect on the chances that others are
born at later dates (Ćirković & Vukotić; 2008; Berezin 2018).
Our model instead embodies a selection effect: if grabby aliens
will soon grab all the universe volume, that sets a deadline by
which others must be born, if they are not to be born within an
alien-controlled volume.
Our deadline explanation for human earliness allows for a

wide range of paths by which, and contexts in which, advanced
life might appear. In contrast, many other explanations posit
that planets around long-lifetime stars are just not habitable due
to factors like tidal locking, solar flares, insufficient early UV
light, runaway greenhouses, and early loss of atmospheres and
plate tectonics. However, these theories implicitly assume that
advanced life can only arise through a narrow range of paths
similar to Earth’s path. For example, these theories fail if
advanced life can arise on ocean worlds, which suffer few of
these problems and comprise a large fraction of planets.
The rest of this paper will now review the robustness of the

hard steps model, build a simple appearance model, use it to
show how the hard steps process makes humanity’s current
date look early, describe the basic logic of our new model and
how to simulate it, show how to change coordinates to account
for an expanding universe, show that a power law often at least
crudely approximates advanced life appearance, and finally
describe our models specific predictions for grabby alien
civilization times, distances, angles, speeds, and more, and also
describe the constraints our model places on the relative
frequency of NGCs if they are to be visible to various Search
for Extraterrestrial Intelligence (SETI) efforts.

3. The Hard Steps Model

In 1983, Brandon Carter introduced a simple statistical
model of how civilizations like ours might arise from simple
dead matter, via intermediate steps of simple life, complex life,
etc., a model that he and many others have since pursued
(Carter 1983; Caldeira & Kasting 1992; Hanson 1998b;
Carter 2008; Watson 2008; McCabe & Lucas 2010;
Aldous 2012; Simpson 2017; Waltham 2017; Sandora 2019;
Lingam & Loeb 2019a; Snyder-Beattie et al. 2021).
Carter posited a sequence of required steps i, each of which

has a rate 1/ai per unit time of being achieved, given the
achievement of its previous step. The average duration ti to
achieve step i is ai.
Assume that this process starts at t= 0 when a planet first

becomes habitable, and that we are interested in the unlikely
scenario where all of these steps are completed by time t= T
(that is, assume ∑iti< T while ∑iai? T). Assume also for
convenience that steps are divided into two classes: easy steps
with ai= T and hard steps with ai? T.
Conditional on this whole process completing within

duration T, each easy step still on average takes about ai, but
each hard step (and also the time T− E−∑iti left at the end)
on average takes about (T− E)/(n+ 1), regardless of its
difficulty ai (where E=∑iai for the easy steps). And the
chance of this unlikely completion is proportional to Tn, where
n is the number of hard steps.
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It turns out that this same model was introduced in 1953 to
describe the appearance of cancer, where it is now a standard
model (Nunney 2016; Waltham 2017). To produce cancer, an
individual cell must host a sufficient number of mutations, and
the expected time for each mutation to appear in any one cell is
much longer than the organism’s lifetime. Even so, cancer
often appears eventually at some cell in a large organism;
humans have∼ 3× 1013 cells, and ∼40% of us develop cancer.
Human cancer typically requires 6–7 hard mutations, though
sometimes as few as 2. The power law in timing has been
confirmed, and is sometimes used to infer the number of hard
mutation steps.

This basic hard steps model can be generalized in many
ways. For example, in addition to these try-try steps with a
constant per-time chance of success, we can add constant time
delays (which in effect cut available time T) or add try-once
steps, which succeed or fail immediately but allow no recovery
from failure. These additions preserve the Tn functional form.
We can also allow multisteps where the chance of completing
step i within time ti goes as t

n
i for a step specific ni. If all steps

have this t ni form (try-once steps are ni= 0, while hard try-try
steps are nearly ni= 1), then the n in the Tn chance rule
becomes n=∑ini over all such steps i (and Tn holds here
exactly; it is not an approximation).

For example, a try-menu-combo step might require the
creation of a species with a particular body design, such as the
right sort of eye, hand, leg, stomach, etc. If the length of the
available menu for each part (e.g., eye) increased randomly but
linearly with time, and if species were created by randomly
picking from the currently available menus for each part, then
the chance of completing this try-menu-combo step within time
ti goes as ti

ni, where ni is the number of different body parts
needed to be of the right sort.

We also retain this Tn form if we sum over different planets
(or parts of planets) with different constants multiplying their
Tn, for example, due to different volumes of biological activity,
or due to different metabolisms per unit volume. We could
even sum over large volumes like a galaxy. Such models can
allow for many sorts of oases, wherein life might appear and
evolve, not just planets. And similar models can accommodate
a wide range of degrees of isolation versus mixing between
these different parts and volumes.

This set of model elements can be combined in many ways
to model different relevant processes. For example, a time
delay plus a try-once step can roughly model a case where life
on a planet dies unless it achieves a particular development
within a limited time window. Such as perhaps Earth having
had only a billion year window to construct habitable
niches and a matching Gaian regulation system (Chopra &
Lineweaver 2016). If this delay-plus-try-once process could
happen in parallel with a sequence of hard steps, then this is
nearly equivalent to adding a single try-once step to that
sequence of hard steps.

4. How Many Hard Steps?

A literature tries to estimate the number of (equivalent) hard
steps passed so far in Earth’s history from key durations. Here
is an illustrative calculation.

The two most plausibly diagnostic Earth durations seem to
be the one remaining after now before Earth becomes
uninhabitable for complex life, ∼1.1 Gyr, (Ozaki & Rein-
hard 2021), and the one from when Earth was first habitable to

when life first appeared, ∼0.4 Gyr (range 0.2–0.8 Gyr, Pearce
et al. 2018). Assuming that only e hard steps have happened on
Earth so far (with no delays or easy steps), the expected value
ai for each of these durations should be ∼5.4 Gyr/(e+1).
Solving for e using the observed durations of 1.1 and 0.4 Gyr
then gives e values of 3.9 and 12.5 (range 5.7–26), suggesting a
middle estimate of at least 6.
The relevant power n that applies to our grabby alien model

can differ from this number e. For example, it becomes smaller
if evolution on Earth saw many delay steps, or big ones, such
as from many easy steps, in effect reducing Earth’s ∼5.4 Gyr
time window to complete hard steps. But the relevant number
of hard steps becomes larger than this e if there were hard steps
before Earth, or if there will be future hard steps between us
today and a future grabby stage.
Note that the enormous complexity and sophistication of

even the simplest and earliest biology of which we know
suggests to us that there may have been hard steps before Earth,
which could be plausibly accommodated via panspermia
(Sharov 2006; Sharov & Gordon 2013; Ginsburg et al.
2018). Similarly, the many obstacles to becoming grabby
allow for future filters before our descendants can reach that
stage. While calculations in this paper will assume that any
future filters are try-once or short-delay steps, it would be
straightforward (if effortful) to redo these calculations given
specific assumptions about future long delays or hard steps.
Two more corrections are relevant to the power n that applies

to our grabby alien model. First, Appendix B suggests that this
paper’s simplifying assumption of a power-law expansion of
the universe underestimates the effective volume power
regarding the spacetime distributions of events by roughly a
factor of 3 because our actual universe has recently been
transitioning toward exponential expansion. Second,
Appendix A shows that while a power law also applies to
volumes like galaxies, not just planets, that volume power
tends to be larger than the planet-based power.
In the following, we will take volume-power n= 6 as our

conservative middle estimate, and consider n in 3–12 as our
plausible range, though at times we also consider n as low as 1
and as high as 50.

5. Advanced Life Timing

We have just seen how power laws can describe the timing
of the appearance of advanced life on individual planets. But
how well can power laws approximate advanced life timing for
much larger, perhaps galaxy-sized, comoving volumes that
contain changing mixes of planets?
To explore this question, and to estimate human earliness,

we now consider a somewhat more realistic model for the
timing of the appearance of advanced life. In this model, stars
form at different dates, planet lifetimes vary with star lifetimes,
and only planets with lifetimes ¯<L L are suitable for advanced
life. The probability density function α(t) of advanced life to
appear at date t becomes

( ) ( ) ( )[ ( ¯) ( )]

( )
( ¯)òa = - - -

-

- t q t b b H L H t b db,

1
t L

t
n

max 0,

1

where b is each star’s birth date, ñ(t) is a star formation rate
(SFR), H[L] is a cumulative distribution function (CDF) over
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planet lifetimes, n is a planet-based hard steps CDF power, and
q is a normalization constant (to make ( )ò a =

¥
t 1

0
).

The CDF of stellar lifetimes L can be approximated as
roughly H[L]= L0.5 over an important range (up to a maximum
star lifetime ¯ ~ ´L 2 104 Gyr) because stellar mass m has a
CDF that goes roughly as m−1.5, while stellar lifetimes go
roughly as m−3.0 (down to∼ 0.08 Me). Yes, more accurate and
complex approximations exist, but this level of accuracy seems
sufficient for our purposes.

A large literature tries to estimate a general SFR. While this
literature embraces a wide range of functional forms, a
common form is ñ(t)= tλe− t/j, which peaks at χ= λj. And
the most canonical parameter estimates in this literature seem to
be power λ= 1 and decay time j= 4 Gyr (Madau &
Dickinson 2014; Mason & Biermann 2017; Carnall et al.
2019). However, as the literature on SFR also finds a wide
range of other decay times, we will below consider three decay
times: j in 2, 4, and 8 Gyr, all of which we consider plausible.

For the purposes of estimating advanced life timing, we do
not want general SFRs ñ(t) and lifetime distributions H[L], but
habitable SFRs ñ(t) and lifetime distributions H[L]. A habitable
SFR ñ(t) selects from among all stars only those suitable for
hosting advanced life. And a habitable lifetime distribution
H[L] describes the durations of habitability of planets, not their
durations of existence.

A literature on a galactic habitable zone tries to estimate star
habitability as a function of galactic position and time, in part
by considering rates of nearby sterilizing explosions such as
supernovae and gamma-ray bursts (Ward & Brownlee 2000;
Gonzalez et al. 2001; Lineweaver et al. 2004; Vukotic &
Cirkovic 2007; Prantzos 2008; Vukotic 2010; Gowanlock et al.
2011; Legassick 2015; Morrison & Gowanlock 2015; Forgan
et al. 2017; Cai et al. 2021; Spinelli et al. 2021). While such
explosions are much less damaging to simpler life (Sloan et al.
2017), in this paper we accept the usual assumption of no
panspermia, and thus require habitable planets to support
complex life, which is more fragile.

As this literature has focused on advising SETI efforts, it has
focused mostly on dates before today. But it almost always
finds peak dates χ much later than the canonical SFR peak of
χ= 4 Gyr, and as often as not finds peak dates after our current
date of 13.8 Gyr. We conservatively approximate typical results
of this literature by retaining for our habitable ñ(t) the SFR
functional form ñ(t)= tλe− t/j, but now with a habitable peak
of χ= 12 Gyr and combining this with the three plausible SFR
decay times: j in 2, 4, and 8 Gyr. In this literature, the early
rise to a peak often seems convex, fitting λ> 1. Appendix B
also considers varying this peak χ in 4, 8, and 12 Gyr.

(Our approach here of representing habitability via a
habitable SFR in effect marks most early universe stars as
entirely unsuitable for life due to overly frequent nearby
explosions. A more precise calculation would consider each
star’s specific duration lengths between such explosions.)

A related literature asks how the habitable planet lifetime
distribution H[L] relates to the raw star lifetime distribution.
Many suggest that low-mass star planets are not habitable due
to ways in which they tend to differ from Earth. For example,
such planets tend to suffer more that Earth from tidal locking,
solar flares, insufficient early UV light, runaway greenhouses,
and early loss of atmospheres and plate tectonics. Others,
however, see these problems as real but not so severe (Gale &

Wandel 2017; Haqq-Misra et al. 2018; Lingam & Loeb 2018;
Wandel & Gale 2020).
In Appendix A, we will show that Equation (1) is, for our

purposes, often at least crudely approximated by a power law.
In our grabby alien model, we will thus assume that the chance
for an advanced civilization to arise in each small (perhaps
galaxy size) volume by date t after the big bang goes as t n. We
assume that this t n form applies not just to the class of all
advanced life and civilizations, but also in particular to the
subclass of grabby civilizations.

6. Are Humans Early?

In the history of the universe, humans have arrived late
relative to the peak of star formation. However, many have
noted that we seem to have arrived early relative to habitable
places and times. Only ∼8% of interstellar gas has yet been
turned into stars, and if stars of all masses were equally
habitable, most habitable years should lie in planets at the far-
longer-lived small mass stars (Behroozi & Peeples 2015; Loeb
et al. 2016; Gale & Wandel 2017; Haqq-Misra et al. 2018;
Lingam & Loeb 2018; Wandel & Gale 2020) After all, 95% of
stars last longer than our Sun, and some last roughly 2000
times longer.
Most calculations of human earliness estimate the timing of

habitable planet durations, and many assume minimum
duration lengths to produce advanced life. However, only one
prior timing analysis (Waltham 2017) includes the hard steps
power law that we include in Equation (1). That one prior
analysis finds, as we also find here, that high powers greatly
favor later arrival dates, and so make our current date look
much earlier. (Other authors have acknowledged the relevance
of the hard steps model, but have not applied its power law to
timing estimates (Simpson 2017; Lingam & Loeb 2019a).
We now estimate human earliness as a function of the planet-

based hard steps power n and planet habitability, using two
model parameters to represent variation in low-mass star
habitability. First, we allow the maximum habitable planet
lifetime L̄ to vary from half of our Sun’s lifetime of Le≈ 10
Gyr (or roughly Earth’s habitable lifetime) to the apparent max
stellar lifetime of∼ 2× 104 Gyr. Second, we multiply the usual
star mass CDF m−1.5 by a factor m κ, to favor larger star
habitability by this factor. This changes the planet lifetime CDF
to go as roughly H[L]= L(3−2κ)/6. (When this is unbounded,
we apply a low lifetime lower bound, which turns out not to
matter.) We consider 0 and 3 as values for this mass-favoring
power (MFP) κ.
Figure 2 shows the percentile rank of today’s 13.8 Gyr date

within the predicted α(t) distribution of advanced life arrival
dates, according to Equation (1). It shows how this rank varies
with planet-power n, and max planet lifetime L̄ (Wolfram
Research 2020). In Figure 3, we also show how this percentile
rank varies with SFR decay j and MFP κ. Appendix B also
shows how results change as we vary the habitable SFR peak χ
in 4, 8, and 12 Gyr.
Figure 2 shows that for substantial powers, the effect of the

power law tends to be overwhelming, while Figure 3 suggests
that changes to habitable SFR decay j and MFP κ only make
modest differences relative to this strong power-law effect. For
MFP κ= 0, our percentile rank is always below 1% for max
lifetimes L̄ beyond a 1012 yr, no matter what the values of other
parameters are. This also holds for MFP κ= 3, when planet-
power n> 1.5.
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Given our middle estimate planet power of n= 6, then even
with a very restrictive max lifetime ¯ =L 10 Gyr, all percentile
ranks are< 10.6%. For power n= 3, at the low end of our
plausible range, all ranks are< 10% for max lifetime ¯ =L 15
Gyr. And at power n= 2, all ranks are< 8.4% for max lifetime
¯ =L 20 when MFP κ= 0, and all are< 12.4% when κ= 3.
Thus, we are roughly at least 10% surprisingly early for

( ¯)n L, combinations in (6, 10), (3, 15), and (2, 20). And these
are all very restrictive limits on planet lifetimes. Modest
increases in power n or max lifetime L̄ beyond these values
quickly make our rank look quite surprisingly early. (As
Appendix B shows, assuming earlier SFR peaks χ only
modestly reduces the conflict.) So unless one is willing to
assume rather low powers n, and also quite restrictive max
planet lifetimes L̄, there seems to be a real puzzle in need of
explanation: why have we humans appeared so early in the
history of the universe?

Some have tried to explain this puzzle as due to planets at
low-mass stars being less habitable due to the many ways that
they tend to be different from Earth. For example, such planets
may tend to suffer more from tidal locking, solar flares,
insufficient early UV light, runaway greenhouses, and early
loss of atmospheres and plate tectonics. But as we saw by
varying MFP κ above, merely favoring higher mass stars by
large factors is not sufficient to solve the puzzle; one must
instead do something closer to eliminating low-mass stars
entirely from consideration.

However, to infer strict habitability limits from specific ways
in which planets around low-mass stars are not like Earth, such
as tidal locking, one needs to assume that advanced life can
only arise through a narrow range of paths similar to the path
that it took on Earth. If instead advanced life can arise through
many different paths across a wide range of environments, then
low-mass-star-planet conditions that make it harder for such
planets to follow Earth’s path do not strongly eliminate such

stars from consideration. For example, a large fraction of
planets seem to be ocean worlds, for which most of the
mentioned problems seem largely irrelevant (Martin &
McMinn 2018; Zeng et al. 2018; Lingam & Loeb 2019b).
Earth seems to have long been an ocean world (Voosen 2021).
And life may also be possible around binary stars, or even near
and within brown dwarves (Mason et al. 2015; Lingam &
Loeb 2019c; Lingam et al. 2020).
Our loud alien hypothesis instead offers an explanation for

human earliness that allows for a wide range of paths to
advanced life. If loud aliens will soon fill the universe, setting a
deadline by which advanced life must appear if it is to not
arrive within a grabby-controlled volume, that deadline applies
regardless of the type of advanced life or the path it might take
to become advanced.
Given model parameters ¯n L, , the integral over star birth date

b of Equation (1) can be used not only to give the percentile
rank of our current date t0= 13.8 Gyr, but also the percentile
rank of our Sun’s birth date be= 9.2 Gyr within the period [0,
t0]. Figure 4 shows how that rank varies with parameters ( ¯)n L,
for our standard values of other parameters. For maximum
lifetimes L̄ over∼ 20 Gyr, less than∼ 10% of stars are born as
late as our Sun, unless power n�∼ 4. This argues for either
relatively low planet powers n, or for panspermia, which favors
higher powers and requires a later Sun birth date to fit in a
earlier star with a planet at which some hard steps were
achieved before Earth.

7. Model Rationale

While our grabby alien model should ultimately stand or fall
on how well it accounts for observations, readers may want to
hear plausibility arguments regarding its key assumptions.
We have already discussed (in Section 3) reasons to expect a

power-law time dependence in the chances to originate
advanced life in any one place, due to evolution needing to
pass through several difficult steps. We will also suggest (in
Appendix A) that this kind of dependence often applies
sufficiently well not just to planets, but also to large volumes
like galaxies. But why might there exist civilizations who
expand fast, steadily, and indefinitely, changing how their
volumes look in the process?
In Earth’s history, competing species, cultures, and organi-

zations have shown consistent tendencies, when possible, to
expand into new territories and niches previously unoccupied
by such units. When such new territories offer supporting
resources that can aid reproduction, then behaviors that
encourage and enable such colonization have often been
selected for over repeated episodes of expansion (Hudson et al.
2016). (Note that individual motives are mostly irrelevant when
considering such selection effects.)
In addition, expansions that harness resources tend to cause

substantial changes to local processes, which induce changed
appearances, at least to observers who can sufficiently see key
resources and processes. While these two tendencies are hardly
immutable laws of nature, they seem common enough to
suggest that we consider stochastic models that embody them.
Furthermore, when uncoordinated local stochastic processes

are aggregated to large enough scales, they often result in
relatively steady and consistent trends, trends whose average
rates are set by more fundamental constraints. Examples
include the spread of species and peoples into territories,
diseases into populations, and innovations into communities of

Figure 2. Percentile rank of today’s date in distribution of advanced life arrival
dates, as given by Equation (1), for planet-power n and max habitable planet
lifetime L̄ , assuming habitable SFR decay j = 4, peak χ = 12 Gyr, and
MFP κ = 0.
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practice. Without wide coordination, processes that halt or
reverse their spread locally only rarely stop their spread across
very wide scales.
Yes, expanding into the universe seems to us today a very

difficult technical and social challenge, far beyond current
abilities. Even so, many foresee a nontrivial chance that some
of our distant descendants may be up to the challenge within
10 Myr. Furthermore, the large distances and times involved
suggest that large-scale coordination will be difficult, making it
more plausible that uncoordinated local processes may
aggregate into consistent overall trends. The spatial uniformity
of the universe on large scales, and competitive pressures to
expand faster, also suggest that such trends could result in a
steady and universal expansion speed.
Yes, perhaps there is only a tiny chance that any one

civilization will fall into such a scenario wherein internal
selection successfully promotes sustained rapid overall expan-
sion. (We discuss such chances in Section 15.) Even so, the few
exceptions could have a vastly disproportionate impact on the
universe. If such expansions are at all possible, we should
consider their consequences.

8. The Model

Our basic model sits in a cosmology that is static relative to
its coordinates. (An expanding cosmology is addressed in

Figure 4. Fraction of advanced life star birth dates within period from the big
bang to today that are after Sun’s birth date be = 9.2 Gyr, as given by
Equation (1), using the same parameters as in Figure 2.

Figure 3. Percentile rank of today’s date in distribution of advanced life arrival dates, as given by Equation (1). The six diagrams show six combinations of MFP κ and
SFR decay j.
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Section 10). That is, galaxies sit at constant spatial position
vectors v in a D-dimensional space, time moves forward after
t= 0, and movement at constant speed s in the x coordinate
direction satisfies s=Δx/Δt. (We are mainly interested in
D= 3, but will at times consider D in 1, 2.)

Within this space, GCs spontaneously arise at spacetime
events (v,t). By definition, GC volumes look clearly different,
and consistently expand in every direction at a constant local
speed s until meeting volumes controlled by other GCs.

GCs are presumed to arise from NGCs within a short
duration (less than 10 Myr) of the NGC’s birth (Olson 2018a).
We assume that NGCs that do not give birth to GCs have little
cosmic impact, and thus do not block GCs from the activities
that define them: being born, expanding, and changing volume
appearances. Though we at times presume that humans today
count as an NGC, we otherwise purposely say little about how
exactly to define NGCs, so that many possible definitions can
be applied.

We assume that only 1 in R such NGCs gives birth to a GC,
and that this rate 1/R is independent of the other parameters in
our model, at least for NGCs that are not born within a GC-
controlled volume. We will later show how this ratio R relates
to the chances that each NGC could see evidence of other
NGCs in various spacetime regions.

We assume that once a volume is controlled by any GC, it is
forever controlled by some GC, and forever looks different
from non-GC-controlled volumes. We make no further
assumptions about what happens after GCs meet, as our
analysis will only consider GC and NGC origin events where
residents can see that they are not in a GC-controlled volume.
Once they meet, GCs might fight over volumes, or maintain
peaceful borders at their meeting locations. Each GC might
even, soon after birth, trigger a false vacuum decay, in effect
destroying the universe, though this scenario requires expan-
sion at light speed (credit for this suggestion goes to Adam
Brown).

We assume that each small (perhaps galaxy-region-sized)
volume has the same uniform per-volume chance of a GC
being born there, a chance that is independent of the chances in
other volumes (Olson 2015). As this uniformity ignores the
actual spatial clustering of galaxies, which is mainly on scales
below 30Mpc, we expect our model to be less accurate on such
smaller scales.

We assume that over time the CDF chance of birth by t at
some position v rises as ( )t k n, a volume-power n of time since
t= 0 divided by a timescale constant k. Except that this per-
time chance falls to zero as soon as the expanding volume of
another GC includes this position v. There may in fact be
civilizations born within GC volumes, but we decline to call
them grabby to keep the GC concept relevant to human
observations. As we discuss in Appendix A, this power-law
dependence can be a robust feature of the origin of advanced
civilizations.

And that is our whole model. It has three free parameters: the
speed s of expansion and the constant k and volume-power n of
the appearance power law. It turns out that we can estimate
each of these parameters at least roughly from data.

Specific examples of the spacetime distribution resulting
from this process are shown in Figure 1. Notice how smaller
GCs tend to be found at later origin times in the spatial crevices
near where larger earlier GCs would meet. (This correlation
between origin date and size is explored in Figure 16.) For

simplicity, these examples show each GC retaining control of
its initial volume after GCs meet. This assumption is made for
concreteness only; our analysis only depends on it when we
show examples or find distributions over final GC volumes.

9. Heuristic 1D Model

A simple deterministic model gives a rough approximation
to this stochastic model in one dimension.
Assume that a regular array of constraining GC origins all

have the same origin time t= x, and are equally spaced so that
neighboring expansion cones all intersect at t= 1 (see
Figure 5). If these cones set the deadline for the origins of
other arriving GCs, we can then find a distribution over
arriving GC origin times that results from integrating the arrival
power-law t n−1 over the regions allowed by the constrain-
ing GC.
The key modeling assumption of this simplified heuristic

model is to equate the constraining GC origin time x with the
percentile rank r of the resulting distribution of arriving GC
origins. This assumption implies
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which is independent of speed s or constant k. This math model
thus captures two key symmetries of our stochastic model,
which are described in Section 11.
For each volume-power n, there is some matching rank r,

where this heuristic model’s prediction of (1− x)/x for the
ratio of median time until meet aliens to the median GC origin
time equals a 1D simulation result for this ratio. This matching
rank is∼ 0.88 at n= 1, falls to a minimum of∼ 0.61 at n= 4,
and then rises up to∼ 0.88 again at n= 24. This simple
heuristic math model thus roughly captures some key features
of our full stochastic model, such as having an overall
stochastic shape that is independent of speed s and constant k.

10. Cosmology

Our model seems to have a big problem: its cosmology has
key objects maintaining constant spatial relations, yet our
universe is expanding. Our rather standard solution: a change
of coordinates.
Usually, using ordinary local ruler spatial distances dv and

clock-time differences dt, the spacetime metric distance d
between events is (for light speed c= 1) given by
d2= dt2− dv2. We instead use model coordinates that are

Figure 5. Illustration of the heuristic math model of Section 9.
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comoving spatial positions du= dv/a(t) and conformal times
dτ= dt/a(t). Here, a(t) is a scale factor denoting how much the
universe has expanded at time t relative to time t= 1. Metric
distance then becomes d2= a2(t)× (dτ2− du2). (Note that this
coordinate change preserves local speeds and also relative
angles between spatial positions. We can thus calculate such
things in whichever coordinate system is more convenient.)

In terms of our model spatial coordinates u, galaxies tend to
stay near the same spatial positions. However, in an expanding
universe a freely falling object that starts at an initial speed
Δu/Δτ, and has no forces acting on it, does not maintain that
Δu/Δτ coordinate speed as the universe expands. It instead
slows down (Caroll 2004). Does this show that a GC that might
in a static universe expand at a constant speed Δu/Δτ does not
in fact expand at such a constant speed in an expanding
universe?

No, because the frontier of an expanding civilization is less
like an object thrown and more like the speed of a plane; a
given scenario of wing drag and plane engine power will set a
plane speed relative to the local air, not relative to the ground or
its initial launch. Similarly, a civilization expands by stopping
at local resources, developing those resources for a time, and
then using them to travel another spatial distance
(Hanson 1998c). As this process is relative to local comoving
materials, it does maintain a constant model speed Δu/Δτ.

We run our simulations in a static model space u, and in
model-time τ. To convert our results from model-time τ to
clock-time t, it suffices to know the scale factor function a(t).
This scale factor a(t) went as t1/2 during the “radiation-
dominated” era from the first second until about 50,000 yr after
the Big Bang, after which it went as t2/3 during the “matter-
dominated” era. In the last few billion years, it has been slowly
approaching eΩ t as dark energy comes to dominate.

Assume that the scale factor is a power-law a(t)= t m, and
that we today are at percentile rank r in the distribution over
GC origin dates. If so, we can convert from model-time τ to
clock-time t via ( ) ( )t t= -t t m

0 0
1 1 and r= F(τ0), where

t0= 13.787 Gyr is a best estimate of the current age of the
universe, and F(τ) is the CDF over GC model origin times. We
can also convert between clock-time volume-power n and
model-time volume-power η via η= n/(1−m).

Now, a least-squared-error fit of a power law to the actual a
(t) within 0–20 Gyr after the big bang gives a best fit of
m≈ 0.90. However, as this m value tends to give more extreme
results, we conservatively use m= 2/3 in most of our analysis.
In Appendix B, we show how some results change for m= 0.9.

Note that by assuming a uniform distribution over our origin
rank r (i.e., that we are equally likely to be any percentile rank
in the GC origin time distribution), we can convert distributions
over model times τ (e.g., an F(τ) over GC model origin times)
into distributions over clock times t. This in effect uses our
current date of 13.8 Gyr to estimate a distribution over the
model timescale constant k. If instead of the distribution F(τ),
we use the distribution F0(τ), which considers only those GCs
that do not see any aliens at their origin date, we can also apply
the information that we humans do not now see aliens.

In the rest of this paper we will show spacetime diagrams in
terms of model coordinates (u, τ), but when possible we will
discuss and show statistics and distributions in terms of clock
times t, including clock-time volume-power n. To describe
distributions of events in space within an expanding universe,
we will focus when possible on counting galaxies, as their

number seems to be largely conserved on our timescales of
concern, and galaxies tend to stay near the same comoving
spatial coordinates u.
At the current date, our universe now has g=∼ 7× 107

galaxies per Gpc3 (Conselice et al. 2016). (This applies to
galaxies defined as star clusters with mass> 106 Me; there are
∼ 7 times more galaxies if we define them as mass> 105 Me).
As the average stars per galaxy is ∼ 108, while our galaxy has
∼ 1011, our Milky Way galaxy should count as M=∼ 103

average galaxies for events we expect to happen per star, such
as GC and NGC births.
If we identify our current date of t0= 13.787 Gyr with

model-time τ in [0, 1], then a speed s= 1 model box [ ]0,1 3

corresponds to proper volume of ( ) ( )tt s c Gpc0
3 3 3 at that time

t0. Thus, the model box holds ( ) ( )t=G g t s c0
3 3 galaxies at

all model and clock times. And the model volume corresp-
onding to one average galaxy is at all times 1/G.

11. Simulating the Model

Our stochastic model scales in two ways. That is, two kinds
of transformations preserve its stochastic pattern of GC
spacetime origins, when expressed in model coordinates. First,
halving the speed s of expansion halves the average spatial
distance between GC, but otherwise preserves their relative
spacetime pattern. (Though this can change parameters that
depend on this speed s relative to c, such as which GC can see
what other GCs.) Second, changing timescale k changes the
median GC origin time, but preserves the pattern once times
and distances are rescaled by the same factor to give the same
median origin time as before. (This even preserves who-can-
see-who relations.)
Thus, simulations need only vary dimension D and volume-

power n, and repeatedly sample, to see the full range of
stochastic GC origin patterns that can be produced by this
model. This ability to explore its full range is one of the main
virtues of our admittedly oversimplified model.
So we can fix expansion speed at s= 1, focus on a unit time

range [0, 1] and spatial volume [ ]W0, D, and use a wraparound
(toroidal) metric that identifies x= 0 with x=W, etc. in all
spatial dimensions. (W� 1 seems wise, and W= 1 usually
seems fine; in Appendix B we check for robustness to this
choice.) We generate N candidate GC origins (u, τ) as
(uniformly) random positions u within this unit volume, paired
with random times τ drawn from a CDF that goes as τ n on
[0, 1].
Let us say that, for s= 1, spacetime event A precludes event

B if A’s time is earlier and if the spatial distance between them
is less than their time difference. Given a set of N candidate
origin events, we filter out any members precluded by other
members, and the remaining set C of origins then defines a
stochastic sample from our model. (It helps to test earlier
candidates first, each against the test-passing origins collected
so far.)
We then rescale all times and distances in C by the same

factor, to make the median origin time be 1. We can then
transform such a sample into a sample with a differing speed s
by rescaling all distances by the same factor. And we can
transform it into samples with differing timescales k by
rescaling all times and distances by the same factor. (Such
samples may describe the same basic stochastic pattern over
larger or smaller spatial volumes, in essence holding more or
less copies of the same basic stochastic pattern.)
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We know that a spacetime event is controlled by some GC if
it is precluded by any GC origin. While a larger sample of N
candidate GC origins tends to induce a larger non-precluded set
C, eventually C stops increasing substantially with N, giving a
full sample.

Light speed c can be varied relative to speed s to calculate
who can see who in such a sample. When c is large compared
to s, calculations of what can be seen must look outside the
model box to consider an indefinite array of exact copies of that
box and its contents in every direction.

12. Simulation Statistics

Assume one has a sample of simulation runs, each of which
tried N candidates and produced a set of C GCs at origins (u, τ)
within the model box [ ]W0, 3. Here are some interesting
statistics that one can calculate within each run (and average
over multiple runs).

The following statistics describe how GCs are distributed in
space and time:

1. We can collect a distribution F(τ) over model GC origin
times τ. (This is independent of speed s.)

2. Given a set of GC model origin times, if we assume Earth
today has its GC origin rank r, that gives a constant for
converting all model times in that simulation into clock
times. If we then assume a uniform distribution over
Earth rank r (expressing the assumption that we have a
spacetime-representative chance of birthing grabby
descendants soon), we can convert any distribution over
model times into a distribution over clock times. We can
also take any distribution over pairs of model times into a
distribution over clock durations between those times.
(This is independent of speed s.)

3. If at some date, the model volume wherein a particular
GC is first to arrive is V< 1, then it covers VG galaxies at
that date, at least if we assume that GCs who meet simply
stop and keep control of their prior volumes (Olson
2018b). (Alternatively, we might call this a GC’s volume
when meet neighbors.) Iterating through the GC, a
distribution over galaxies per GC can be found for
different times, as can the volume fraction of the universe
that is controlled by GCs at that GC origin time τ. (This
fraction is independent of speed s.)

4. We can collect a two-dimensional distribution showing
the relation between GC origin times and galaxies
per GC.

The following statistics describe what we may see in our
future regarding GCs:

1. For each GC origin position, we can find the model-time
τ at which a speed s= 1 traveler would arrive at that
position from each other’s GC origin event. The
minimum of these is the arrival time when the first other
GC expansion wave would, if allowed, arrive at this GC
position. (This is independent of speed s.)

2. The model-time average of that min arrival time and this
GC origin time is the meet time, when the two GC
expansion waves would collide (if both were in fact
GCs). The first GC it meets is also the first one to arrive.
(This is independent of speed s.)

3. If a GC has not yet seen any other GC, it will first see the
GC that it will first meet, and see it before their meeting

for s< c. For s= 1 that when see time is τ= (d+ τ0+
cτ1)/(1+ c), where τ0 is the viewer’s origin time, and τ1
is the viewed’s origin time.

4. We can convert origin and view times from model times
into clock times, take the difference and get a distribution
over clock time until see aliens. (That duration is zero if
aliens can already be seen from a GC origin.)

The following statistics describe what we may see now
regarding GCs:

1. If b and d are the (model) time and space distances
between two GC origins, then for s= 1 if d< cb the
earlier one would be visible to the later one. The earlier
GC-controlled volume would (unless it had already
collided with another GC) appear as a disk in the sky
to the later one, with diameter angle θ given by

( ) ( ( ))q = -x c b xtan 2 , where x solves = +d x2 2

( ( ))-c b x 2. We can thus find a distribution over the
max angle that each GC can see (Olson 2016). (If the GC
sees none, its max angle is zero.)

2. We can find a distribution over GCs of the number of
other GC origins that each GC can see at its origin. (This
assumes transparent GC volumes.)

3. A GC that appears as a disk of angle θ in the sky will
have a border B(θ) of angular length in the sky

( ) ( ( ))q p q= -B 2 1 cos 23 2 1 2 . If GCs are transparent,
we can add up these border lengths over visible GCs to
find a total border length visible at each GC origin, and
then collect that into a distribution over all GCs.

4. We can select the subset of GCs who do not see any other
GC-controlled-volume at their origin. This GC set can be
used to compute other statistics conditional on not
seeing GCs.

The following statistics describe what we may see now
regarding NGCs:

1. An NGC-to-GC ratio ( )( ) t= h- -R gt MN s c0
3 3 3 is

required to expect one prior NGC in the same Milky
Way-sized galaxy in the past light cone of a GC (or
NGC) origin there at (model) time τ. Iterating through
GC origin dates τ gives a distribution of such ratios.

2. To be visible from Earth today, an NGC in our galaxy
with a lifetime of L would have been born in a clock-time
window of width [t0− L, t0], which for L= t0 is the
model-time range [τ(1− (L/(3t0)), τ] , at least when
m= 2/3. An NGC-to-GC ratio ( (h= -R gt MNL3 0

2

))( ) t h- -s c1 3 2 is required to expect an active NGC
visible in a Milky Way-sized galaxy at a GC (or NGC)
origin there at τ.

3. An NGC-to-GC ratio ( )( ( )p h= G +R N1 8 4
( ( )( )))( )h h tG - h- -s c1 3 3 is required to expect one
prior NGC anywhere in the past light cone of a GC (or
NGC) origin at time τ.

4. An NGC-to-GC ratio ( ) (p h h= -R N1 8
)( ) ( )t h- -s c t L2 32

0
3 is required to expect one NGC

whose active period intersects with the past light cone of
a GC (or NGC) origin at time τ.

The code to simulate the grabby alien model and compute
the above statistics can be found at https://github.com/
jonathanpaulson/grabby_aliens.
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13. Estimating Expansion Speed

Our grabby alien model has three free parameters, and we
have so far discussed empirical estimates of two of them: the
volume-power n (in Section 4 and Appendix A) and the power-
law constant k (in Section 10). The remaining parameter,
expansion speed s, can also be estimated empirically, via the
datum that we humans today do not see alien volumes in our
sky (Olson 2015, 2016, 2017).

We will see in Figure 13 that visible alien volumes are
typically huge in the sky, much larger than the full moon. So
there is only a tiny chance of a visible GC volume being too
small to be seen by the naked eye, much less by our powerful
telescopes. So if alien volumes looked noticeably different, as
we assume in our definition of grabby, and if their volumes
intersected with our backward light cone, then we should see
them clearly.

We will also see in Figure 11 that, averaging over GC origin
dates, a third to a half of the volume of the universe is
controlled by GCs. So from a random location at such dates,
one is likely to see large alien-controlled volumes. However, if
the GC expansion speed is a high enough fraction of the speed
of light, a selection effect, illustrated in Figure 6, makes it
unlikely for a random GC to see such an alien volume at its
origin date. If they were where we could see them, then they
would be here now instead of us.

Given prior estimates regarding the chances for various
combinations of power n and GC expansion speed ratio s/c, we
can update such priors via the likelihood ratio of such a pair (n,
s/c) to predict our key evidence that we do not now see alien
volumes. Figure 7 show that likelihood ratio, i.e., the number
of GC origin events that see no alien volumes, divided by the
number that do. Speed ratios of s/c<∼ 1/3 are greatly
disfavored, especially for high powers.

Updating on not seeing alien volumes should also update
one toward estimating an earlier rank, as earlier GCs are less
likely to see alien volumes. Even so, this does not weaken the
inference from Figure 7 of a high speed s.

This analysis, like most in our paper, assumes we would
have noticed by now differences between volumes controlled
or not by GCs. Another possibility, however, is that GCs make
their volumes look only subtly different, a difference that we
have not yet noticed. If even so we would have noticed being
inside a GC-controlled volume, then our model still applies,

except that we cannot use current data to constrain the
expansion speed s.
In this case, there could be hope for astronomers to search

the sky for subtle circular borders between GC volumes and
surrounding volumes. Figures 8 and 9 show how predicted
distributions over the number of GC volumes and the total
length of such sky borders vary with speed s and power n.

14. Simulation Results

We now show more graphs describing how distributions
over GC statistics vary with volume-power n, and sometimes
also with speed ratio s/c. Unless stated otherwise, these each
come from averaging over five simulation repetitions, each
with W= s= c= 1 and N= 108 sample GC origin events.
Model-to-clock-time mappings are made using only GCs who
see no others at their origins, but all GCs are shown in the
distributions, even GCs who do see others. The correctness of
the code has often been checked by comparing independent
implementations.
Figure 10 shows clock GC origin dates, and regarding those

origin events Figure 11 shows GC-controlled volume fractions.

Figure 6. Illustration of selection effect. When expansion speeds s are near light speed c, GC origin events in most of our past light cone would have created a GC that
controls the event from which we are viewing, preventing us-now from becoming a candidate GC origin (Olson 2017).

Figure 7. Likelihood ratios, for volume power and speed (n, s/c) parameter
pairs, regarding the observation that one sees no large alien-controlled volumes
in the sky. To obtain a posterior distribution over these pairs, multiply this
likelihood ratio by a prior for each pair, then renormalize.
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Figure 12 shows clock durations until a GC descendant meets
aliens, Figure 13 shows the largest alien volume angle seen,
and Figure 14 shows clock durations until a GC descendant
sees aliens.

Figure 15 shows distributions over the number of galaxies
per GC at the simulation end, when GCs fill all volumes, under
the assumption that GCs who meet, stop and retain their
volumes. We apparently live on a one-in-a-million-galaxies
rare Earth (Ward & Brownlee 2000).

Figure 16 shows how GC origin dates and volumes are
related to each other. Note that the higher the volume power,
the more closely spaced GC origin times are, the fewer galaxies
each GC encompasses, and the less time until our GC
descendants would meet or see aliens. The earliest GCs tend
to have the largest volumes.

Figure 8. Distributions over how many other GCs each one sees at its origin.
At speed s = c, none see any others.

Figure 9. The total angular length of GC borders on the sky at GC origin dates.

Figure 10. CDFs over GC origin clock times, given a uniform distribution on
humanity’s rank. This is for speed s = c, where aliens are never seen.

Figure 11. Fraction of universe volume controlled by GCs, as a function of
rank of GC origin time.

Figure 12. CDFs over clock time until some of our descendants directly
meet aliens.
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Out of all the figures in this paper, only Figures 10, 12, 14,
and 16 depend on our assumption of a uniform distribution
over humanity’s origin rank among GCs.

For those frustrated by difficulties in reading numbers off our
many graphs, Table 1 gives specific numbers for two scenarios.

15. SETI Implications

The results we have shown so far have been on GCs,
including where and when they exist, and how we might see or
meet them. Let us now consider NGCs, who we have said are R
times more common than grabby ones; each NGC has a 1/R
chance to soon birth a GC. This unknown ratio R sets the
chances for both humanity’s grabbiness in the next 10 Myr, and
also for success in SETI efforts.

On human futures, we can think of humans today as an
NGC, or soon to become one. While we might not want to
become a GC, many of the scenarios in which we do not are
because we cannot. For example, we may become extinct, or
become permanently and strongly limited. So we might at least
like to have the option to become grabby. Thus, human future
optimists tend to think that our descendants have a decent

Figure 13. CDFs over largest angle in sky of GC seen from GC origins. Red
line shows our Moon’s diameter ( )¢ 29 20 .

Figure 14. CDFs over clock time until some GC descendant sees aliens. For
s = 0.1c, almost all GC have already seen aliens.

Figure 15. Final galaxies per GC-controlled volume, if GCs retain initial
volumes after meeting. This for s = c; others go as ( )s c 3.

Figure 16. Final galaxies per GC-controlled volume vs. the origin time of each
GC. Results from one simulation run.

Table 1
Specific Numbers for Two Scenarios, (n, s/c) = (6, 1/2) and (12, 3/4)

Scenario: Scenario:

s/c = 1/2, n = 6 s/c = 3/4, n = 12

Percentile 1% 25% 75% 1% 25% 75%
Origin (Gyr) 8.99 15.25 21.24 10.20 13.46 16.02
MinTillMeet (Gyr) 0.019 0.488 2.226 0.006 0.188 0.882
MinTillSee (Gyr) 0 0 0 0 0 0.425
MaxAngle 0 0.132 0.908 0 0 0.313
% Empty 0.010 0.320 0.830 0.010 0.290 0.810
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chance to birth a GC, and thus have low estimates of R. (One
author’s Twitter poll gave a median for humanity of R∼ 2.5.)

In contrast, high estimates of R are needed to expect SETI
success anytime soon. The four Figures 17, 18, 19, and 20
show distributions over the ratio R required to expect one active
NGC in these four different spacetime regions where SETI
might look:

1. Within our past light cone (Figure 17)
2. Intersecting our past light cone (Figure 18)
3. Before now in our galaxy (Figure 19)
4. Now in our galaxy (Figure 20)

NGCs in regions further down this list seem easier for us to
see if they are there, but require larger ratios of R for any to be
there to see. For example, human future optimists who see
R> 103 as implausible should agree with SETI pessmimists
who say there have probably never been aliens in our galaxy
(Hart 1975).

To expect 10 times as many NGCs in a region, you need a
ratio R 10 times higher. GCs lower in the percentile rank r have
a smaller required Rr, and would for a true ratio R expect R/Rr

NGC per region. Figures 17, 18, 19, and 20 show results for
s= c; for s= c/2, ratios 8 or 4 times smaller are required.
Figures 18 and 20 are for expected NGC lifetimes of L= 1
Myr; for a lifetime 10 times smaller, you need a ratio 10 times
larger. Thus, the longevity of alien techno-signatures is a key to
SETI success (Balbi & Ćirković 2021). For example, aliens
who build beacons that function long after their civilizations
die may be much easier to see (Benford et al. 2010;
Lacki 2020).
Note that Figures 17 and 19 are actually versions of

Figures 18 and 20 in the limit of indefinite lifetime L. Note also
that higher powers n usually require lower ratios R, and thus
offer more room for SETI optimism, though high n also
strengthens the human earliness puzzle, and so pushes more for
the grabby alien model.

Figure 17. Ratio R required to expect one NGC ever anywhere within our past
light cone. This is for s = c; others go as ( )s c 3.

Figure 18. Ratio R required to expect one NGC intersecting with our past light
cone. This is for s = c; others go as ( )s c 2. This is for an expected NGC
lifetime L = 1 Myr; others go as L−1.

Figure 19. Ratio R required to expect one NGC has ever existed in our galaxy.
That is, both within our past light cone, and also in our galaxy. This is for
s = c; others go as ( )s c 3.

Figure 20. Ratio R to expect one NGC now in our galaxy. That is, intersects
our past light cone, and in our galaxy. This is for s = c; others as ( )s c 2. This is
for lifetime L = 1 Myr; others go as L−1.
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At our middle estimate volume power of n= 6, an NGC-to-
GC ratio of over 1000 is required to expect even one NGC
active on our past light cone, and a ratio of over 10,000 is
required to expect one anywhere in the past of our galaxy.
Furthermore, a ratio of over 10 million is required to expect one
NGC active now in our galaxy. (And that is for a million year
NGC lifetime; shorter lived NGCs require even higher ratios.)
Yet today SETI struggles to see NGC techno-signatures for
even a tiny fraction of the stars in our galaxy. Overall these
seem to be discouraging results for SETI.

Note that the widely used self-indication prior for indexical
probability analysis favors larger values of R in proportion to R,
at least relative to the chances that one might estimate
neglecting anthropic considerations (Grace 2010; Olson &
Ord 2021).

Note also that GC-controlled volumes, like other volumes,
are mostly empty and probably transparent, and that we may
have not yet learned how to see their differences; Section 13
shows the angle lengths of the circular borders we might then
find in our sky.

16. Conclusion

A literature has modeled the evolution of life on Earth as a
sequence of hard steps, and has compared specific predictions
of this model to Earth’s historical record. This model seems to
roughly fit, and supports inferences about the number of hard
steps experienced on Earth so far. While some argue that other
processes besides hard steps also happened (like the easy,
delay, try-once, and multi-try steps discussed in Section 3), we
know of no published criticism of the basic idea that some hard
steps occurred. That is, this hard steps model seems to be
widely accepted.

We suggest that this standard hard steps model does not
seem to have been taken sufficiently seriously. For example,
the literature that estimates the timing of the appearance of
advanced life has only once included the key hard steps timing
power law. In Section 5, we presented a simple model that
includes this effect, and in Section 6, we find that according to
this model, humanity today seems to be quite early, unless one
assumes both a rather low planet power and a very restrictive
limit on habitable planet lifetimes.

Related studies in the literature have also apparently not
considered applying this hard steps-based power law to larger
volumes like galaxies, instead of just to planets. Sterilizing
explosions reduced galactic habitability eons ago, and some
have suggested that this supports a scenario wherein advanced
civilizations are far more common today than they were eons
ago (Ćirković & Vukotić 2008). But such authors do not seem
to have realized that, with a sufficiently high power, a volume-
based hard steps power law directly produces a similar effect.

Nor do most prior authors seem to have noticed that a
scenario wherein advanced civilizations grab most of the
available volumes can robustly explain humanity’s early
arrival. While others have offered explanations based on the
assumption that the evolution of advanced life must follow a
path close to Earth’s path, our deadline explanation allows for a
very wide range of evolutionary paths and contexts.

To formalize this argument, we have presented in this paper a
very simple model (plausibly oversimplified in fact) of what we
call a GC, a model that is a modest variation on models by

Olson, who recently pursued a similar approach, minus the hard
steps power law (Olson 2015, 2016, 2017, 2018a, 2018b, 2020).
In our model, GCs are born according to a volume-based

power law, and once born they simply expand at a constant
speed relative to local materials. We show that this power law
is often at least a crude approximation to a more realistic
model. This expansion speed and the two parameters of this
power law are the only three parameters of our model, each of
which can be estimated from data to within roughly a factor
of 4.
The literature on hard steps in Earth’s history helps to

estimate the power, and our current date helps to estimate the
power-law timescale. Furthermore, the fact that we do not now
see large alien-controlled volumes in our sky, even though they
should control much of the universe volume now, gives us our
last estimate, that aliens expand at over half of light speed.
Given estimates of all three parameters, we have shown in this
paper many model predictions regarding alien timing, spacing,
appearance, and the durations until we see or meet them. And
we have shown how optimism regarding humanity’s future is
in conflict with optimism regarding SETI efforts.
Being especially simple, our model is unlikely to be an exact

representation of reality. So future research might explore more
realistic variations. For example, one might more precisely
account for the recent exponential expansion of the universe,
and use a more accurate appearance function instead of our
power-law approximation. Instead of being uniform across
space, the GC’s birth rate might be higher within galaxies,
higher within larger galaxies, and follow their typical spatial
distributions. A GC expansion might take a duration to bring its
full effect to any one location, and the GC expansion speed
might vary and depend on local geographies of resources and
obstacles. Finally, GC sub-volumes might sometimes stop
expanding or die, either spontaneously or in response to local
disturbances.
Note, however, that in many cases we may not have data

available to estimate the extra parameters that these extended
models would introduce. A virtue of our oversimplified model
is that we can estimate all its parameters using available data,
and show the full range of variation of its behavior.
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participants in the 2021 February 8 online meeting of the
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participants in the 2021 March 5 online seminar at the Future
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Appendix A
Power-law Test

Our grabby alien model makes the conveniently simple
assumption that advanced civilizations arrive according to a
volume-based power law in time. But while we have seen how
such a power law can apply during an individual planet
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lifetime, and while we have included a planet-based power law
in our more general volume-based expression α(t) of
Equation (1), that formula is not itself a power law. So
how well does a power law approximate this appearance
function?

As Equation (1) is the time integral of a product of several
powers laws and an exponential decay, we expect an overall
power law to better fit at early times, before the exponential
decay gets strong. We also expect a better fit when contributing
powers are larger, such as for larger planet powers n, and when
powers can act over longer time periods, such as for larger
maximum planet lifetimes L̄.

To study this error, we have approximated many particular
arrival chance functions α(t) by the power-law ( ) -t k v 1, where
v is the volume-based CDF power. Specifically, given a
particular α(t) set by particular parameter values, including a
planet-power n, we vary the power-law parameters v, k to
minimize, over GC origin dates ti, the average absolute percent
error (( ) ( ))a-t k tln i

v
i

1 . These origin times ti are clock times
taken from a ( ) -t k v 1 grabby alien simulation using that same

clock-time power v, and assuming that humanity is at rank r
among its GC origins.
Regarding this power-law approximation, Figure 21 shows

this percent error, and Figure 22 shows the best-fit volume-
power v. Both figures vary planet-power n, max lifetime L̄, and
humanity rank r. Note that as we could also have varied the
SFR parameters j and χ, these graphs are only representative
of more possibilities.
As expected, the error is smaller when planet-power n is

larger, max lifetime L̄ is larger, and when humanity’s rank r is
higher, as in this case most GCs appear at much earlier dates
than today, and thus before the 12 Gyr peak we have assumed
for the habitable SFR function ñ(t).
At high humanity ranks r, a power law is almost always a

decent approximation, and the volume power is larger than the
planet power. At middle ranks r, the approximation is at least
crude (i.e., on average within a factor of 2) for most of this 2D
parameter space, such as for planet powers of n� 3 and lifetimes
¯ >L 50 Gyr, or when planet-power n� 10. Volume powers
remain higher than planet powers for all but the shortest lifetimes.

Figure 21. Average absolute error between natural logarithms of the appearance function α(t) in Equation (1) and a best approximating power-law ( ) -t k v 1, for
volume-power v, averaged over GC origin dates from a ( ) -t k v 1 simulation with humanity at percentile rank r. This percent error varies with planet-power n, max
lifetime L̄ , and rank r. A 1% absolute error is where the ratio of α(t) to ( ) -t k v 1 is 1.01 or 0.99, while a 100% error is where that ratio is 2 or 0.5.

Figure 22. Best-fit volume-power v, found varying the same parameters and via the same approximation process as Figure 21.
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A power law is a worse approximation to GC appearance,
however, at low humanity ranks r, unless the planet powers is
very large (n� 10), or unless both the power n is substantial
and planet lifetime L̄ is long. In this case, most GCs appear
after the habitable SFR peak of 12 Gyr, and so appear in the
SFR exponential decay region. If our analysis is less reliable
when humanity is one of the earliest GCs to arise, these parts of
our graphs become less trustworthy: early origin ranks, later
origin dates, longer times until see or meet aliens, and more
galaxies per GC.

Thus, we see that for a large fraction of the relevant
parameter space, a general t n power law is at least a crude
approximation of the great filter, not just regarding the
appearance of advanced life on individual planets, but also
regarding (limited-enough periods of) much larger comoving
volumes that contain changing mixes of planets and other
possible oases.

Appendix B
Miscellaneous

One might worry about simulation border effects due to
using speed s= 1, a unit time interval [0, 1], and a wraparound
metric in a unit width box [ ]0,1 D. Figure 23 varies box width by
using a box [ ]W0, 3. It seems that width W= 1 is sufficiently
large.

As discussed in Section 10, most of our simulations have
assumed a power-law cosmological scale factor of a(t)= t m,
with m= 2/3. Figure 24 shows how some of our results change
when m= 0.9 instead. It seems that the main effect is to, in
effect, increase the clock-time volume-power n, as we expect
from the relation η= n/(1−m). Figure 25 shows how both of
these power-law approximations compare to the actual scale
factor a(t).

Figure 26 tests the robustness of our earliness estimates to
varying the habitable SFR peak, by comparing the three values
of peak χ in 4, 8, and 12 Gyr, all given MFP κ= 0.

Figure 23. Testing if W = 1 is sufficiently large, when s = 1.
Figure 24. Comparison of results for cosmological scale factor powers of
m = 2/3 and m = 0.90.
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Figure 25. Cosmological scale factor over time in gigayears, in reality and as assumed in this paper.

Figure 26. Percentile rank of today’s 13.8 Gyr date within the distribution of advanced life arrival dates, as given by Equation (1), assuming MFP κ = 0. The nine
diagrams show different combinations of habitable SFR peak χ and decay j, while each diagram varies planet-power n and max habitable planet lifetime L̄ .
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