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1 Introduction

The determination of the parameters of the CKM matrix is an important test of the Standard
Model (SM). Its least known element is |Vub|, which can be determined at B-factories from
semileptonic B-decays in the exclusive B → π`ν channel [1–4] as well as from inclusive
B → Xu`ν decays [5–7]. Moreover, it can be tested at the LHCb experiment in Λb → pµνµ
decays [8]. The current average value of inclusive and exclusive measurements is |Vub| =
(3.82±0.24)×10−3 [9]. However, there is a long-standing 3σ tension between them, making
the determination of |Vub| in the inclusive mode an exciting future measurement for Belle II.
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From the theoretical standpoint, the total B → Xu`ν decay rate would offer the
cleanest extraction of |Vub|. It can be calculated using the local operator product expansion
(OPE) familiar from inclusive semileptonic decay into charm quarks, B → Xc`ν [10–13].
At leading order in this 1/mb expansion the result for the inclusive decay is equal to that
for the quark-level process b→ u`ν, whose total [14] and differential [15] decay rates are
known up next-to-next-to-leading order in QCD. At relative order 1/m2

b only a handful
of non-perturbative parameters appear, and recently even for these power corrections the
next-to-leading-order QCD corrections have been calculated [16].

From the experimental standpoint, the large background from charmed final states
precludes a straightforward measurement of the total inclusive B → Xu`ν decay rate. The
traditional approach to inclusive |Vub| measurements has thus been to make kinematic cuts
to restrict measurements in phase-space regions which, neglecting detector effects, are free
from charm background. Examples of such cuts are MX < mD, where MX is the invariant
mass of the hadronic final state X and mD is the D-meson mass, or P+ < m2

D/mB, where
P+ = EX − |~PX | is the energy-momentum difference of the hadronic final state and mB is
the B-meson mass.

Even apart from the fact that detector effects cause the charm background to populate
these theoretically charm-free phase-space regions (see figure 1 below), requiring a non-
trivial separation of signal and background also for these restrictive kinematic cuts, the
theoretical description of the partial B → Xu`ν decay rates becomes considerably more
involved. To the extent that the phase-space cuts limit the partial decay rates to the
“shape function region”, where the hadronic final state is a collimated jet whose energy
is much larger than its invariant mass, the local OPE breaks down and is replaced by a
non-local, shape function OPE. The leading-order contribution in the corresponding 1/mb

expansion involves a single non-perturbative shape function [17, 18], which is a function of
one light-cone variable. Analyses in soft-collinear effective theory have shown that the 1/mb

power corrections in this non-local OPE involve a plethora of subleading shape functions
beyond tree level, some of which are a function of up to three light-cone variables [19–21],
and that the next-to-next-to-leading order QCD corrections to the leading-power decay rate
can be substantial [22].

Phenomenologically, several theoretical approaches to partial B → Xu`ν decay rates are
used in |Vub| extractions, going under the acronyms ADFR [23], BLNP [24, 25], DGE [26]
and GGOU [27]. These differ in the treatment of QCD effects in the shape function region,
but all reduce to the conventional, local OPE results if the kinematic cuts do not introduce
new scales which are parametrically much smaller than the b-quark mass. Given the
complicated structure of the factorisation theorems, the debate over the precise nature of
the shape-function OPE, and the fact that there is no obvious new physics explanation for
the current discrepancies between inclusive and exclusive determinations [28], it is clearly
desirable to extend measurements over as large a region of phase space as possible, such
that the theoretically clean local OPE results can be applied.

Multivariate analysis techniques based on machine learning (ML) are ideally suited for
accessing the B → Xu`ν decays in regions dominated by the B → Xc`ν background, while
still achieving good signal-to-background ratios. From the ML perspective, the challenge
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is to build a classifier between signal (B → Xu`ν) and background (B → Xc`ν and other
decays). The first example of such a ML approach to |Vub| determinations was the Belle
analysis of ref. [5]. It used a boosted decision tree (BDT) based classifier taking various
high-level kinematic and global features as input and gave a result for the partial decay rate
with the single restriction that the charged lepton carries momentum greater than 1GeV in
the B-meson rest frame. Thereby, it samples more than 90% of the inclusive B → Xu`ν

phase space such that a theoretical description based on the local OPE is applicable. A
potential criticism is that such a classifier needs to be trained on Monte Carlo (MC) samples
of signal and background events, and is thus especially susceptible to systematic errors based
on the kinematic modelling of the signal. A possible approach to evading this criticism was
presented recently in the reanalysis of the Belle data in ref. [7], where kinematic properties
were not included as input features in a BDT classifier. Although the classification power
of such a BDT is reduced when viewed in terms of typical machine-learning metrics such as
the area under the curve, it can be used to enhance the signal-to-background ratio to a
level which permits a binned one- and two-dimensional likelihood analyses of the kinematic
features of the signal and background after event selection resulting in a similar significance
after the likelihood analysis.

The purpose of this paper is to perform a systematic study on the use of ML-based
classifiers for inclusive |Vub| analyses. We focus on two main aspects. First, we explore the
use of deep neural nets (NNs) as an alternative ML architecture to BDTs. While BDTs
typically work best when given a small set of carefully engineered, high-level features such
as the hadronic invariant mass, NNs can take as input the very high-dimensional set of
low-level features characterising the event (such as the four-momenta of the final-state
particles) and use it to learn an optimal way to classify signal and background.1 Second,
we study in detail the inclusivity of the classifiers and their sensitivity not only to the set
of input features chosen, but also to the event generator used producing the training data.
In particular, while present |Vub| analyses rely on the generator EVTGEN [32], in this paper
we compare results using combinations of SHERPA [33] and EVTGEN event samples, which
differ very little in their description of the B → Xc`ν background but much more so in the
description of the B → Xu`ν signal.

This paper is organised as follows. In section 2, we discuss the generation of the MC
event samples used in our analysis, both with EVTGEN and SHERPA, and show selected
distributions before and after an in-house detector simulation. In section 3, we present
the input features of our ML analysis and compare the performance of BDTs and NNs for
different levels of input variables. While ML techniques have great potential in extending
the fiducial regions of experimental analyses, it is also vital to understand their limitations.
Therefore, in section 4, we study the inclusivity of different ML approaches and their
dependence on the MC generator used to produce the training data. Finally, we conclude
in section 5.

1For some discussions on the benefits of using low-level features rather than expert engineered high-level
input features only, see e.g. refs. [29, 30] or the ML review [31].
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2 Event generation

Our analysis aims at distinguishing B → Xu`ν signal events from the ∼ 50 times larger
background induced by the CKM-favoured B → Xc`ν process. Other background con-
tributions from continuum and combinatorial backgrounds are neglected. The training
and test samples of the signal and background events for our ML analyses are produced
using MC event generators. In this section we explain our simulation set-up and explore
characteristics of the signal and background before and after a detector simulation. We
also compare MC samples produced with the default generator for B-physics analyses,
EVTGEN-v01.07.00 [32], with those from SHERPA-v2.2.8 [33].

2.1 Monte Carlo samples and event selection

Our event samples are generated at SuperKEKB/Belle II beam energies of 4GeV and 7GeV
or, equivalently, an Υ(4S) resonance with a four-momentum of pΥ(4S) = (11, 0, 0, 3)GeV.

For the EVTGEN sample, we generate signal and background events with the default
run card. For the B → Xu`ν signal we use the built-in hybrid model for combining resonant
and non-resonant modes, with the default input values mb = 4.8GeV for the b-quark mass,
a = 1.29 for the Fermi motion parameter and αs(mb) = 0.22 for the strong coupling at the
b-quark mass.2 The fragmentation of the Xu system into final-state hadrons is performed
by PYTHIA8 [34, 35], and final state QED radiation is performed by PHOTOS [36, 37].

In the SHERPA simulations, we make use of the standard run card for B-hadron pair
production on the Υ(4S) pole and use the SHERPA default settings for fragmentation.

In both cases, our baseline event selection process is based on ref. [5]. We select events
with one fully hadronically decaying B meson on the tagging side (Btag), and require the
other B meson on the signal side (Bsig) to decay semileptonically to an electron or muon
with p∗` > 1.0GeV, where p∗` is the magnitude of the electron or muon momentum in the
B-meson rest frame.

2.2 Detector effects

In order to mimic detector effects, we pass our MC data through an in-house detector
simulation described in appendix A. In that appendix we also show some validation plots
comparing our MC samples with those produced by the Belle collaboration (see figure 10).

Our detector simulation includes detector efficiencies and mistagging for particles on
the signal side; it does not take into account that decay products from the tag side can be
incorrectly assigned as signal-side particles. While this in-house detector simulation is too
simplified to create completely realistic event samples, it does show reasonable agreement
with MC results from the Belle collaboration, and can be considered sufficient for the
purpose of the qualitative studies performed in this paper.

In figure 1, we show normalized distributions of signal and background events in the
EVTGEN MC sample before and after detector simulation for three kinematic variables:

2For the resonant modes the following branching ratios for B0 and B± are assumed: BR(B0 → π±`∓ν) =
1.5× 10−4, BR(B0 → ρ±`∓ν) = 2.94× 10−4; BR(B± → π0`±ν) = 0.78× 10−4, BR(B± → η`±ν) = 0.39×
10−4, BR(B± → ρ0`±ν) = 1.58× 10−4, BR(B± → ω`±ν) = 1.19× 10−4, BR(B± → η′`±ν) = 0.23× 10−4.
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Figure 1. EVTGEN hadronic mass distribution MX , energy-momentum difference P+ and lepton
momentum in B-meson rest frame p∗

` before (top) and after detector simulation (bottom). The gray
lines highlight the boundaries of the theoretically background-free regions.

the hadronic invariant mass MX , the energy-momentum difference P+, and the lepton
momentum in the B-meson rest-frame p∗` . The distributions of MX and P+, which are
based on multiple final-state particles and are therefore subject to a cumulative effect from
detector inefficiencies and mistagging, are clearly strongly affected by detector effects. In
the low-MX and low-P+ regions, detector effects cause the charm background to populate
even the theoretically inaccessible phase-space regions MX < mD and P+ < m2

D/mB. The
lepton momentum, on the other hand, can be determined quite precisely and detector effects
have only a marginal effect.3 These plots make clear that to achieve an efficient separation
of signal and background after detector effects, kinematic cuts on their own are insufficient.
We will list a full set of distinguishing features of the signal used in our ML analysis in
section 3.1.

2.3 EVTGEN vs. SHERPA

While EVTGEN and SHERPA follow the same general principle in modelling resonant contri-
butions, they differ in the treatment of the non-resonant modes. In this section we highlight
the effects of these modelling choices on distributions of the signal and background.

In figure 2, we compare distributions for the B → Xc`ν background. In addition to the
kinematic features MX and P+ we also show the number of charged kaons Nkaons in the
event. Given that inclusive semileptonic decays into charm are nearly saturated by a small

3This would also be the case in a more realistic simulation, as long as the four-momentum of the tag-side
B meson, which determines the boost to the signal B-meson rest frame, is well reconstructed.
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Figure 2. High-level features of B → Xc`ν events generated with EVTGEN and SHERPA.
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Figure 3. Upper panel: comparison of EVTGEN and SHERPA high-level features for B → Xu`ν

signal events. Lower panel: cumulative sum of the differential distributions MX , P+ and p∗
` in

EVTGEN and SHERPA, compared to BLNP prediction.

number of resonant contributions, it is not surprising that the EVTGEN and SHERPA results
show a close agreement. Minor differences, for instance the number of kaons, are caused by
small discrepancies in the assumed branching ratios for high-mass Xc resonances as well as
by the different hadronization modelling in PYTHIA8 and SHERPA.

The analogous distributions for the B → Xu`ν signal are shown in the upper panel
of figure 3. There are clear differences between the EVTGEN and SHERPA distributions
of kinematic features such as the MX distribution, which are caused by the different
treatment of the non-resonant modes. In EVTGEN, the built-in hybrid model describes
the non-resonant decay modes at leading order in the heavy-quark expansion using the
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DeFazio-Neubert (DFN) model [38], including a non-perturbative shape function to describe
the Fermi motion of the b quark inside the B meson. The non-resonant contribution is
modelled such that the MX distribution for the sum of the resonant and non-resonant
contributions matches the distribution predicted by the DFN model. This is achieved
through a bin-by-bin reweighting of the non-resonant modes.

In SHERPA the non-resonant signal decay modes are modelled by parton showering
and hadronizing the leading-order partonic decay. Non-perturbative shape-function effects
characterising the low-MX region are not taken into account, and no reweighting of the
events is performed to match state-of-the-art theory calculations.

Comparing these two different approaches for the signal modelling in figure 3, we find
that, on the one hand, the EVTGEN results have a non-physical bump in the 1.5GeV region
of theMX distribution, which is an artefact of the bin-by-bin reweighting to match the DFN
results. The SHERPA distributions do not share this characteristic, since the non-resonant
events are instead obtained by excluding resonant events from the parton shower. On the
other hand, the current implementation of the SHERPA parton shower model also produces
a smaller proportion of the non-resonant signal contribution and generates fewer events in
the high-MX and -P+ regions compared to EVTGEN, which is precisely the region where the
inclusive QCD predictions should be reliable. We further highlight this in the lower panel of
figure 3, where we compare the state-of-the-art OPE results from the BLNP approach [25]
with EVTGEN and SHERPA results at the level of cumulative distributions. Overall, the
agreement of the EVTGEN-generated distributions with the BLNP predictions is stronger,
which is not surprising since the underlying inclusive is the OPE-based DFN result.

Clearly, the B → Xu`ν modelling in SHERPA needs a more sophisticated matching of
the non-resonant, parton shower contributions with (shape-function) OPE results before
being used in |Vub| extractions by experiments. For this reason, we use EVTGEN in the
following section when studying the performance of ML-based classifiers, in spite of its own
deficiencies in the low and intermediate invariant mass regions. However, for the purposes
of the paper, the present situation allows us to study an interesting question: how do ML
approaches to |Vub| extractions perform when the training and testing data are substantially
different? This is the subject of section 4.

3 BDTs vs. deep neural networks

In this section we give a systematic analysis of signal vs. background event classification
using BDTs and deep neural networks. We use Bayesian neural networks (BNNs), which
have been argued to deliver stable results and avoid overfitting [39]. The details of the
architecture for the BDTs and NNs used in our study can be found in appendix B, along
with a breakdown of data used in the training and testing procedure. We describe the input
features to the ML algorithms in section 3.1, metrics used in evaluating their performance
in section 3.2, and then move on to the results in section 3.3. Throughout this section we
use EVTGEN to generate the training and testing samples.
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3.1 Input features

The features used in our multivariate analysis break into two sets. One is based on physical
high-level features such as invariant masses and the number of final-state particles of a
specific type, e.g. the number of kaons or slow pions, and the other is based on low-level
features, i.e. single particle properties. In particular, the low and high-level features are:

• low level

pBtag , QBtag , pi, IDi, Qi i ∈ top 10 most energetic particles. (3.1)

• high level

q2, MX , P+, p∗` , N`, NK± , NK0 , Nhadron, M2
miss, Qtot,

Nπ0
slow

, Nπ±slow
, M2

miss, D∗(π0
slow), M2

miss, D∗(π±slow).
(3.2)

The low-level features include, first off, the four-momentum pBtag and charge QBtag of the
tagged B meson. In addition, we pick out the 10 most energetic (as measured in the
lab frame) detected final-state particles, label them with an index i = 1, . . . 10, and use
as features the lab frame four-momenta pi, the charge Qi and the identity IDi of these
particles. Events with less than 10 detected final-state particles have the corresponding
particle features filled in with zeros.

The high-level features are defined as follows. The four-momentum transfer squared is
q2 = (pB − pX)2. N` denotes the number of leptons, which can only be greater than one
if the secondary leptons have momenta smaller than 1GeV. Since the B → Xu`ν signal
is very unlikely to contain secondary leptons, this feature can be used to suppress the
background, see the left panel of figure 4. NK± and NK0 denote the number of charged and
neutral kaons, respectively, where neutral kaons K0

S are reconstructed from charged pions
with an invariant mass in the range mπ+π− ∈ [0.490, 0.505]GeV. Kaons are frequently
produced in D-meson decays and their presence hence indicates a B → Xc`ν background
event, see the central panel of figure 4. The number of final-state particles resulting from
the hadron decay Nhadron is typically larger for hadrons with a higher mass such as the
background D mesons. The missing mass squared M2

miss, defined as the square of the
missing momentum pmiss = psig − pX − p`, where psig = pΥ(4S) − pBtag is the reconstructed
momentum of the signal-side hadron, would always be compatible with zero without detector
effects. For background events, which as discussed above have a higher final-state particle
multiplicity, the probability of misidentifying a final-state particle is higher resulting in
positive values of the missing mass squared, see the right panel of figure 4. The total
charge Qtot of all particles in the event, on both the signal and the tag side, is also subject
to detector effects. It will only be non-zero for events where charged particles have been
missed, which happens more often for the background events due to their larger final-state
particle multiplicity. Slow pions, i.e. pions with momentum |pπ| < 220MeV, can originate
from D∗ → Dπ transitions and hence appear more often for the B → Xc`ν background.
We therefore include the number of neutral and charged slow pions, Nπ0

slow
and Nπ±slow

, in
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Figure 4. High-level features of the EVTGEN sample. Number of leptons N` (left), number of
kaons Nkaons (middle) and missing mass squared M2

miss (right). Notice the logarithmic scale for
some of the distributions.

our high-level feature set. To test the compatibility of the slow pion with a D∗ → Dπ

transition, we further define M2
miss, D∗ = (psig − pD∗ − p`)2, where pD∗ = (ED∗ , ~pD∗) with

ED∗ = mD∗
mD∗−mD

Eπ and ~pD∗ = ~pπ

√
E2
D∗−m

2
D∗

|~pπ | . In this we have explicitly assumed that the
slow pion direction is strongly correlated with the D∗ direction. The quantity M2

miss, D∗ will
more likely be peaked at zero for true D∗ → Dπ transitions. Distributions in the high-level
input features not shown in figure 4 are displayed in appendix C in figure 12.

We have chosen this set of high-level features to mimic the feature selection in the
BDT analyses performed by Belle in refs. [5, 7]. Some differences with respect to the sets
used in those papers arise, because we do not have access to all experimental features in
our simplified detector simulation, for instance features related to the quality of the signal
reconstruction.

3.2 Metrics

Before we compare the performance of different ML approaches and input feature set-ups,
let us briefly introduce some notation for the ML output and review metrics used to quantify
performance.

Our binary classifiers take as input the multidimensional features of an event, and
return a classifier output which is a single number, ζ ∈ [0, 1]. Events with classifier output
ζ ∼ 1 are likely to be signal while events with ζ ∼ 0 are likely to be background. We define
our signal (fiducial) region through a cut on the classifier output. All events with ζ > ζcut
are classified as signal events. Events which are correctly classified as signal events are
denoted true positive (TP) events, while background events which are incorrectly classified
as signal events are denoted false positive (FP) events.

Standard performance metrics in ML are the receiver operating characteristic (ROC)
curve, i.e. the true positive rate (TPR, signal acceptance) as a function of the false positive
rate (FPR, background acceptance), and the corresponding area-under-curve (AUC), the
integral of the ROC curve. It is also customary to plot the inverse of the FPR as a function
of the TPR. A quantity which is often used as a metric in particle physics is the statistical
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significance σ, defined as
σ = TP√

TP + FP
= S√

S +B
, (3.3)

where in the second equation we have used S and B to denote the number of signal and
background events in the signal region to bring the expression into a more familiar form.
To remove the dependence on the data sample size from the significance, we make use of
the significance improvement σ̂, i.e. the significance normalized to its value at the baseline
selection

σ̂ = σ

σbaseline
(3.4)

A significance improvement greater than one signals a performance increase. Plotting the
significance improvement as a functions of the true positive rate defines the significance
improvement characteristic (SIC) curve [40].

3.3 BDT and BNN performance on different levels of input features

We first contrast the performance of the BDT and BNN on signal vs. background classifica-
tion using different levels of input features. We consider three scenarios:

(i) using only the low-level features in eq. (3.1)

(ii) using only the high-level features in eq. (3.2)

(iii) using a combination of these low- and high-level features.

The ROC and SIC curves for the BDT and BNN analyses using these input feature scenarios
are shown in figure 5.

As expected, the BDT performs well on high-level input features, the most used features
being the number of kaons, number of leptons, the hadronic invariant mass MX , hadron
multiplicity and the missing mass squared M2

miss. However, it performs poorly when trained
only with low-level features, indicating that it cannot use them to construct additional
non-linear features such as invariant masses. Using a combination of low- and high-level
features slightly improves the BDT performance compared to high-level only. We have
explicitly checked that this performance increase results almost entirely from adding the
particle energies. The particle three-momenta, on the other hand, do not seem to contain
additional usable information for the BDT.

For the BNN the situation is very different. It performs slightly better when trained
only on low-level features than it does when trained only on high-level features. This
indicates that, as expected, it is able to learn new and efficient discriminating features from
the low-level inputs. Training on a combination of low plus high-level inputs very marginally
improves its performance compared to low-level only (mainly due to the inclusion of MX as a
feature), showing that the BNN has learned the most important high-level features on its own.

The maximum of the SIC curves is reached for a cut on the classifier output of ζcut ≈ 0.97,
which corresponds to a signal acceptance, or true positive rate TPR = TP/(TP + FN), of
approximately 75 %. Explicitly, we find the following values for the maximum significance
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Figure 5. ROC (top) and SIC curves (bottom) for BDT (left) and BNN (right) for different levels
of input features, trained and tested on EVTGEN data with a physical ratio of signal-to-background
events in the test set. The dashed lines in the upper panel are ROC curves for the case of no
separation. As a reference, the gray lines in the bottom panel show the significance improvement from
the three cut-and-count scenarios in eq. (3.7). A: MX < mD, B: MX < 1.5GeV, C: P+ < m2

D/mB .

improvement and the AUC for a BDT or BNN trained and tested on a combination of high
and low-level features from the EVTGEN data:

AUC = 0.981, σ̂ = 5.59 BDT
AUC = 0.986, σ̂ = 5.67 NN .

(3.5)

The AUC and σ̂ for the BNN is only about 2% better than BDT approach. Training on
high-level features only puts the BNN on equal footing with the BDT — in fact, we find
that in that case they reach the exact same significance improvement, which is σ̂ = 5.42.
The very small loss of performance compared to the eq. (3.5) indicates that the high-level
features are well chosen for a discrimination of signal and background, containing (almost)
the full relevant information that the BNN can learn from the low-level features.

It is interesting to contrast the significance improvements using the BDT and BNN
with those obtained from a typical cut-and-count analysis based on the cuts provided in
ref. [6]. With the minimal requirement of having exactly one lepton, a total charge of zero,
a veto on kaons and a low missing mass squared,

N` = 1, Qtot = 0, Nkaons = 0, M2
miss < 0.5GeV2 , (3.6)
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we obtain a significance improvement of σ̂ = 1.9. If in addition to theses cuts we select a
theoretically background-free region, we find4

σ̂(MX < mD) = 3.3, σ̂(MX < 1.5GeV) = 4.4, σ̂(P+ < m2
D/mB) = 4.4 . (3.7)

Comparing the significance values eq. (3.7) with those from the BDT and BNN analysis in
eq. (3.5), we see that the ML approaches clearly outperform the cut-and-count analyses. In
appendix A.4, we study the dependence of these results on the detector simulation.

4 Inclusivity of ML approaches

A main motivation for the application of ML techniques to |Vub| determinations is to widen
the experimentally accessible fiducial region to a level of inclusivity where the theoretically
clean, local OPE is unambiguously applicable. This amounts to two conditions on the
measured Xu final state: first, that it is not subject to severe kinematic cuts (in which case
the shape-function OPE would apply), and second, that it contains a sufficiently broad
sample of exclusive hadronic final states in a given kinematic region (such that quark-gluon
duality applies). A concern in supervised ML approaches is that the classifiers will overuse
either inclusive kinematic properties or IR unsafe hadron-level properties of the final state,
thereby limiting the signal output to a restricted fiducial region which is very sensitive to
MC modelling, regardless of the inclusivity of the input events.

In this section we study the inclusivity of the signal acceptance in ML approaches to
event classification. As the inclusivity depends crucially on the input features used in the
ML classifier, we consider two scenarios:

• NNtight: a NN using as input both the low and high-level features listed in eq. (3.1)
and eq. (3.2), respectively. This is a more sophisticated implementation of the basic
approach of ref. [5], and its classification power was explored in section 3.3.

• NNloose: a NN using as input the high-level features listed in eq. (3.2), but excluding
the kinematic features MX , P+, q

2 and p∗` . This is a proxy for the BDT used in the
recent reanalysis of Belle data [7].

In both cases the classifier threshold is chosen to maximize the significance of the accepted
event set. Obviously NNloose, which intentionally excludes discriminating kinematic features
of the signal and background, will not lead to the same signal purity as NNtight. In our
analysis NNtight reaches a signal-over-background ratio of S/B ∼ 13, while for NNloose
S/B ∼ 0.3 such that the background contribution is still dominant even after event selection
by the BNN. In this latter case it is thus essential to perform a binned one- and two-
dimensional likelihood analyses of the kinematic features of the signal and background after
event selection by the NNloose, as was done in ref. [7]; this procedure can be useful for
NNtight as well, even though the S/B ratio is much higher.

4We consider the cut scenario MX < 1.5GeV in addition to MX < mD to account for the fact that the
background will dominantly populate the region slightly below mD due to detector effects, see figure 1.
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A main focus of our study is how changes of the testing and training data affect the
inclusivity of the ML analyses. Testing and training the BNNs on differently modelled event
sets provides a good test for overtraining and gives insight into how well the classifier might
perform when applied to real-world events, which are not expected to show perfect agreement
with MC data. The existing ML-based Belle analyses [5, 7] estimate uncertainties stemming
from input data modelling by testing on samples produced with different parameter choices
within the EVTGEN framework while fixing the ML configuration. Here we explore the
alternative method of using a fundamentally different MC-event generation framework,
namely SHERPA. In this section we train all BNNs on EVTGEN and then study their
classification properties on both SHERPA and EVTGEN data; in appendix D we show
equivalent results when the BNNs are trained instead on SHERPA data. All MC samples
used in testing the BNNs, whether generated by SHERPA or EVTGEN, contain the same
ratio of signal to background events after detector simulation.

We compare the inclusivity of the two BNN set-ups in two main ways. In section 4.1,
we study the inclusivity in kinematic phase space, and in section 4.2 we focus on inclusivity
in the available hadronic final states. In the latter section we also study sensitivity to
changes of hadronization parameters within the EVTGEN framework.

4.1 Inclusivity in kinematics

We illustrate the salient features of event selection by NNtight and NNloose as a function of
MX , q2, and p∗` in figure 6. The binning of the kinematic variables matches that used in
the fitting procedure of the recent |Vub| extractions in ref. [7]:

MX = [0, 1.5, 1.9, 2.5, 3.1, 4.0]GeV ,
q2 = [0, 2, 4, 6, 8, 10, 12, 14, 26]GeV2 ,

p∗` = 15 equidist. bins in [1, 2.5]GeV & [2.5, 2.7]GeV .
(4.1)

In all cases, the bins are sufficiently wide that the results can be compared with predictions
from the (shape-function) OPE, after correcting for acceptances and detector effects. Each
plot in the figure shows the following three results for the indicated MC event sample:
the detector-level signal distributions and the total number of events (TP+FP) accepted
by the given BNN (upper panels), and the signal acceptance of the BNN (lower panels),
all normalized to the number of detector-level signal events. The left (right) column uses
NNtight (NNloose). The BNNs are trained on EVTGEN data, and then tested on both
EVTGEN and SHERPA data. For NNloose, we also display the background acceptance in
the lower panels, using the scale for the y-axis displayed on the right of the plots. The
background acceptance for NNtight is negligible across phase space and is thus not shown.

The figure highlights an inevitable fact — since NNtight uses kinematic features to
discriminate between the signal and background, its acceptance is kinematics dependent.
The acceptance is higher in the theoretically background-free regions of low MX , high q2,
and high p∗` , and lower in regions where the charm background is large.

It is interesting and important to study the MC-data dependence of the signal acceptance
in these two regions, and connect it to kinematic modelling uncertainties in the MCs.
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Figure 6. Distributions and signal acceptance of SHERPA and EVTGEN Monte Carlo data as
functions of MX , q2, and p∗

` for NNtight (left) and NNloose (right), trained on EVTGEN data. The
distributions in the upper panels of each plot are normalized to the total number of signal events.
For NNloose the dashed lines in the lower panels show the background acceptance, using the scale
for the y-axis displayed on the right. In the lower panels, error bars highlight the MC uncertainty
on the acceptance. The error bars for the background uncertainty, which becomes visible at high p∗

` ,
uses a lighter shade. For bins with very low event numbers, we have used the tabulated uncertainties
from ref. [41].
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Take for example the results as a function of MX in the top left of the figure. In the
0 < MX < 1.5GeV bin, the EVTGEN and SHERPA modelling of the b → u signal differ
dramatically, with far more events in the SHERPA sample, and also a very different shape as
seen in the finely binned distributions shown in figure 3. This is not entirely unreasonable,
as the details of the low-MX distributions depend on the method for matching resonant
and non-resonant modes, and even the integrated distribution over the entire bin depends
on the exact implementation of the shape-function OPE. However, the MC-dependence
of the signal distribution in this theoretically intricate region does not propagate into the
signal acceptance of NNtight, which is essentially MC-independent.

Contrast this with the high-MX region, especially in the bins above 1.9GeV where the
charm background is large. In this case, the marked difference in the shapes of the EVTGEN
and SHERPA signals as a function of MX does lead to noticeably different signal acceptances.
On the other hand, kinematic distributions in the high-MX region where this becomes most
significant are reliably calculable within the local OPE (before detector effects), so the
MC-dependence can be viewed as an improvable deficiency in the current implementation
of SHERPA, which does not perform a matching with first-principle predictions as described
in section 2.3, rather than as an irreducible kinematic modelling uncertainty. One would
therefore expect a reasonable MC uncertainty associated with extrapolating the accepted
events to the full fiducial region, although this deserves careful quantitative study in actual
experimental analyses.

Similar qualitative comments hold for the p∗` and q2 distributions — the signal ac-
ceptances are essentially MC-independent in the highest bins, where kinematic modelling
dependence due to non-perturbative shape-function effects is expected to be significant, but
then start to become MC-dependent in the lower bins, where the local OPE is applicable.
On the other hand, the acceptances are somewhat flatter in these variables than in MX ,
never dropping below 60% in any of the bins.

The exclusion of kinematic input features from NNloose leads to a different qualitative
picture of event acceptance compared to NNtight. The right-hand side of figure 6 shows
that its signal acceptance as a function of MX is considerably flatter, remaining large at
and above the mD resonance, although at the price of rejecting far less background. In
total, NNloose also accepts less of the signal. Whereas NNtight accepts 75% (85%) of the
EVTGEN (SHERPA) signal, the corresponding numbers for NNloose are 61% (53%) at the
value of the threshold classifier which optimizes the significance improvement. For the q2

and p∗` distributions the acceptances of NNloose are only moderately flatter than NNtight,
if at all. The signal acceptances of NNloose are reasonably independent of the MC testing
data across the kinematic phase space. However, unlike NNtight, noticeable differences can
be seen in the lowest MX and highest q2 and p∗` bins, where shape-function effects and
kinematic modelling are expected to be most important. The background acceptance of
NNloose is relatively flat at high MX and low p∗` , but not at low q2. Moreover, in the lowest
MX bins as well as the high-q2 region the background is largely excluded; these regions
correlate with a large missing mass squared.

These observations show that MC-dependence of the acceptances of a given BNN is
subtle — avoiding sensitivity to kinematic modelling by excluding kinematic features is not
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Figure 7. Signal acceptance as a function of MX , p∗
` and q2 for NNtight (solid lines) compared to

NNbinned (dashed lines) defined in eq. (3.2).

always possible. As a further illustration, consider a NN, NNbinned, taking as input the
following features

QBtag , IDi, Qi, [q2]binned, [MX ]binned, [p∗` ]binned, N`, NK± , NK0 ,

Nhadron, M2
miss, Qtot, Nπ0

slow
, Nπ±slow

, M2
miss, D∗(π0

slow), M2
miss, D∗(π±slow).

(4.2)

NNbinned is the same as NNtight, except that particle 4-momenta are excluded,5 and the
high-level kinematic features are defined in the bins

MX = [0, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5]GeV
p∗` = [1, 1.25, 1.5, 1.75, 2, 2.25, 3]GeV
q2 = [0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25]GeV2 .

(4.3)

This binning matches that used in the construction of the hybrid Monte Carlo implemented
within EVTGEN in ref. [7], and is sufficiently wide that fully inclusive distributions within
these bins are accessible to the (shape-function) OPE. In other words, unlike NNtight, this
set-up is blind to the heavily model-dependent point-by-point distributions of the hybrid
Monte Carlo in the low MX and high p` and q2 region, at least as far as the explicit input
features are concerned.

In figure 7 we compare the acceptances of NNtight and NNbinned as a function of
kinematic variables, using the same binning as in figure 6. Examining the figure shows that
the MC-dependence of the NNbinned acceptances are not reduced compared to NNtight, and
they depend more strongly on the kinematic variables. In particular, when viewed as a
function of MX , NNbinned shows a considerable drop in classification power in the higher
bins, where kinematic modelling uncertainties are expected to be best under control as
long as the hybrid Monte Carlo is matched to OPE predictions. Moreover, the maximal
significance improvement σ̂ drops: when tested on EVTGEN data NNtight has σ̂ = 5.67 while
NNbinned has σ̂ = 5.46. It is thus far from clear that using a set-up such as NNbinned would
lead to a reduced theory uncertainty in |Vub| extractions compared to NNtight, even though
its explicit kinematic input features can be calculated within the (shape-function) OPE.

5The high-level features for NNbinned also differ from NNtight in that P+ is included in the latter case
but not the former. We verified that adding or taking it away from makes a negligible numerical difference.
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Figure 8. Qtot and Nkaons distributions and signal acceptance for NNtight (left) and NNloose (right)
trained on EVTGEN data. For NNloose the dashed lines in the lower panels show the background
acceptance, using the scale for the y-axis displayed on the right. In the lower panels, error bars
highlight the MC uncertainty on the acceptance which for most bins (all bins for the background
acceptance) is too small to be visible in the plots.

4.2 Inclusivity in hadronic final states

We now shift our focus to inclusivity in properties of the final-state Xu system which
appear only after fragmentation into hadrons. Such features are by definition inaccessible
to OPE-based QCD calculations, which rely on a sum over hadronic final states in order for
quark-gluon duality to apply.

In figure 8 we display the same information as in figure 6, but this time as a function
of the number of kaons and total charge in the event. The number of kaons is an explicit
probe of the flavour structure of the final state, whereas the total charge is closely related
to the charged hadron multiplicity (see the discussion after eq. (3.2) above). Comparing the
acceptance of NNtight and NNloose, we find that NNloose effectively vetos both signal and
background events with kaons or a non-zero total charge.6 Therefore, when performing fits
of the kinematic distributions after the NNloose analysis, a good understanding of both the
signal and the charm background after strict cuts on the hadronic final states is required.
NNtight, on the other hand, accepts a large proportion of events with kaons or a non-zero
total charge and is thus more inclusive in (and less dependent on) these hadronization-model
dependent features.

The number of signal events containing kaons in the final state is directly related to
the ss̄-popping probability γs, which determines how often an ss̄-pair is produced in the
decay of the hadronic X system. It is interesting to further investigate the hadronization
modelling sensitivity of the classifiers NNtight and NNloose resulting from their different kaon
acceptances. Since the number of kaons in the background, which is entirely dominated by
resonant contributions, is largely unaffected by changes of γs, we investigate the sensitivity
of the signal acceptance only. We have produced additional EVTGEN test samples with a

6The small contributions of events with Qtot = 2 to the total number of signal events is negligible.
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Figure 9. Sensitivity of the number of TP events to the ss̄-popping probability γs. The number of
TP events at the PYTHIA8 default is chosen as a reference value for each of the considered ML and
cut-and-count approaches, TPref = TP(γs = 0.217). The tight cuts are defined by the cuts listed in
eq. (3.6) plus MX < 1.5GeV.

modified ss̄-popping probability in the range γs ∈ [0.1, 0.4] and apply NNtight and NNloose
to these.7

In figure 9, we display the relative change of the number of TP events as a function of
γs, taking the PYTHIA8 default γs = 0.217 [44] as our reference value. As events containing
kaons are more likely to be classified as background by the BNNs, the number of TP events
decreases with an increasing value of γs. For NNloose, which relies more heavily on the
number of kaons as a features, the decrease of the signal acceptance is stronger.

We contrast the effect of γs on our ML analysis with a simple kaon veto as well as a cut-
based approach defined by the cuts listed in eq. (3.6) plus an additional cut MX < 1.5GeV
(tight cuts). The ML approach NNloose shows the same influence on γs as a kaon veto, as
expected from the signal acceptance shown in figure 8. NNtight, however, is less disturbed by
an increased value of γs than its cut-and-count counterpart as it does not apply a stringent
veto on kaons in signal events. Overall, our findings highlight the ability of ML approaches
to lift the weight from single observables.

4.3 Discussion

The above results show that conclusions on the inclusivity of NNtight and NNloose are based
heavily on how one thinks about the issue. If the focus is on a flat coverage of kinematic
phase space, especially as a function of MX , then NNloose, which does not include kinematic
features, would be preferable. If on the other hand one wishes to be more inclusive in
the sum over exclusive hadronic final states on which quark-gluon duality is based, then
NNtight, which accepts more events overall due to its increased discriminating power, is
more attractive.

An important thing to keep in mind when considering |Vub| extractions is that in both
cases MC modelling is used to extrapolate the signal from the fiducial region singled out

7The tested γs range is chosen to reflect the relatively large uncertainty on γs. The TASSO [42] and
JADE [43] collaborations have experimentally determined the ss̄-popping probability at center-of-mass
energies of 12GeV and 27GeV to be γs = 0.35 ± 0.05 and γs = 0.27 ± 0.06, respectively. The default
PYTHIA8 setting, resulting from a global tune of multiple fragmentation parameters, is γs = 0.217 [44].
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by the NN to the partial inclusive branching fractions with a baseline kinematic cut of
p∗` > 1.0GeV (with no restrictions on the hadronic decomposition of the Xu final state).
For NNtight this extrapolation is mainly sensitive to the shape of the signal distribution
at relatively high MX , which can reliably be calculated in the local OPE. For NNloose it
is mainly sensitive to non-perturbative phenomena such as the flavour decomposition and
multiplicity of the hadronic final state across all kinematics. Given that the extrapolations
are sensitive to different effects, it may be wise to pursue both approaches in real-life |Vub|
extractions.

It is worth mentioning that the signal acceptance of the kinematics independent
“background suppression” BDT used in the recent analysis of ref. [7] is significantly smaller
than that found using NNloose and our in-house detector simulation, so that the extrapolation
from the accepted fiducial region to fully inclusive partial branching fractions with kinematic
cuts is correspondingly larger. By the same token, we expect that the acceptance of NNtight
in the high-MX region would be considerably lower in the full experimental environment,
again requiring a larger extrapolation than seen in our simplified set-up.

5 Conclusions

We have performed a systematic study on the use of ML techniques in inclusive |Vub|
determinations. While our analysis is based on a simplified set-up using an in-house
detector simulation and seeking only to separate the B → Xu`ν signal from the B → Xc`ν

background, it has revealed several important qualitative points.
First, in section 3, we showed that using a deep neural network trained on low-level

single-particle features leads to a small performance increase with respect to a BDT analysis
based on high-level features of the type used in the Belle analysis [5]. While upgrading such
analyses to modern ML standards is certainly worthwhile, the modest performance increase
produced by the more sophisticated ML architecture implies that the high-level features
used in current BDTs are well-chosen — the most important aspects of discriminating
the b→ u signal from the b→ c background can be understood with physicist-engineered
observables.

Second, in section 4 we studied the inclusivity of the fiducial region selected by cuts on
the classifier output of two types of neural networks: NNtight, based on input features of
both kinematic and hadron-level features of the final states, such as the one just described
and used in ref. [5], and NNloose, which excludes the kinematic properties and is similar
to the BDT used in the recent analysis in ref. [7]. While the signal acceptance of NNloose
is fairly flat across the kinematic phase space, it effectively makes hard cuts in hadronic
properties of the event such as the number of kaons and the total charge. On the other
hand, NNtight is significantly more inclusive in the hadronic decomposition of the final state
and also in general, but tends to give less weight to kinematic regions where there is a large
overlap with the b→ c background. Both of these issues deserve careful consideration when
assessing systematic theory uncertainties related to MC extrapolation from the fiducial
regions to partial branching fractions that are calculable within the (shape-function) OPE
in QCD.
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Finally, as the Belle II measurements become systematics dominated, it will be important
to pay close attention to the sensitivity of supervised ML approaches to the MC data on
which they are trained. We have investigated the influence of a modified ss̄-popping
probability on the signal acceptance using EVTGEN data. A ML approach based on
kinematic information, such as NNtight, is generally less biased by changes of global event
parameters. Furthermore, in section 2 we showed results from the multipurpose MC event
generator SHERPA in addition to those from EVTGEN, which has been the exclusive MC
tool for all previous |Vub| analyses, and in section 4 we discussed features appearing when
the BNNs were trained and tested on event sets produced by different MCs. While SHERPA
needs optimisation in matching with OPE-based theory predictions before it can be used
in experimental analyses, investigating the stability of ML approaches against MCs whose
modelling is based on different theory assumptions can provide a powerful stress-test on
MC uncertainties, beyond the current practice of exploring modifications within EVTGEN.

Acknowledgments

We thank Florian Bernlochner, Tim Gershon, Frank Krauss, Michel Luchmann and Marcello
Rotondo for useful discussions. A.B. gratefully acknowledges support from the Alexander-
von-Humboldt foundation as a Feodor Lynen Fellow. KW.K. is supported by the UK
Science and Technology Facilities Council (STFC) under grant ST/P001246/1. B.P. is
grateful to the Weizmann Institute of Science for its kind hospitality and support through
the SRITP and the Benoziyo Endowment Fund for the Advancement of Science.

A Detector simulation

Theoretically, the signal and background processes are well separated by the through
kinematic boundaries at MX = mD, P+ = m2

D/mB and p∗` = (m2
B −m2

D)/(2mB). However,
detector effects lead to large contributions from the B → Xc`ν background to the B → Xu`ν

signal region, and it is necessary to include them in order to mimic the challenges of the
experimental environment.

In the following, we describe our in-house detector simulation meant to capture the main
features of a more complete one. We list the assumed parameters for detector resolution in
section A.1 and for detector efficiencies and mistagging probabilities in section A.2. Most
of these values are based on the description of the BaBar detector in ref. [45], from the
BaBar analysis of the inclusive determination of |Vub| paper [6] and the corresponding PhD
thesis on the same subject [46]. We compare the resulting distributions after our detector
simulation to those shown in the recent reanalysis of Belle events in ref. [7]. We highlight
that the beam energies in Belle (3.5GeV and 8.0GeV) are slightly different from the values
we used in our MC event generation (4.0GeV and 7.0GeV), see section 2. We therefore
expect deviations of the lab-frame momenta on the level of . 10 %.

A.1 Detector resolution

We assume perfect reconstruction of the direction of each detected particle and we only
smear the energy (momemtum) for photons (charged particles).
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The energy resolution of photons is parametrized by [46]

σEγ
Eγ

= 2.32 %
E

1/4
γ

⊕ 1.85 %, Eγ in GeV. (A.1)

For the resolution of charged particles, we use the pT resolution of the Drift Chamber
(DCH) which is the main tracking device for charged particles with pT ≥ 120MeV [46].

σpT
pT

= 0.45 %⊕ 0.13 % pT , pT in GeV. (A.2)

We apply this formula on all charged particles, also those with pT < 120MeV.

A.2 Efficiencies and mistagging

For charged particles/tracks, the overall reconstruction efficiency is 98 % for momenta
p ≥ 200MeV (DCH) [46].

We assume that mistagging is only relevant for

true π± → fake K±

→ fake e
→ fake µ

true K± → fake π±

→ fake e

Photons. Photons are detected with an efficiency of 96 % for energies above 20MeV.

effγ(Eγ) = 0.96 (Eγ ≥ 0.02), Eγ in GeV (A.3)

Electrons. Electrons need to have a minimum momentum of plab = 500MeV in the lab
frame. Their efficiency is 93 % above this threshold [6].

effe(p) = 0.93 (p ≥ 0.5), p in GeV (A.4)

Muons. Muons need to have a minimum momentum of plab = 500MeV in the lab frame.
Their efficiency is 90 % above this threshold.

effe(p) = 0.9 (p ≥ 0.5), p in GeV (A.5)

Since muons and electrons/hadrons are detected in different detector parts, we assume the
muon fake rate for electrons and hadrons to be negligible.

Kaons. Charged kaons need to have minimum momenta of plab ≥ 300MeV to be identified.
The efficiency is taken from figure 3.5 of ref. [46]. It drops linearly for momenta satisfying
p < 7GeV, at values above this we approximate the efficiency using a quadratic function:

effK±(p) =



0, p < 0.3
− 0.8 p+ 1.23, 0.3 ≤ p < 0.7 p in GeV
0.86− 0.35(p− 1.5)2, 0.7 ≤ p < 1.8
− 0.0225 p+ 0.87, p > 1.8

(A.6)
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We determine possible K0
s candidates based on the invariant mass of opposite-sign pion

pairs. Pairs in the mass range mπ+π− ∈ [0.490, 0.505]GeV are assumed to result from K0
s

decays with a 40 % probability, see figure 3.6 of ref. [46].
We model the misidentification of kaons as electron as

mise|K(p) =


0, p < 0.05
0.004− 0.001 p, 0.05 ≤ p < 4.0 p in GeV
0, p > 4.0

(A.7)

Pions. For the reconstruction efficiency of slow, i.e. low momentum, pions we use the values
given in ref. [47]. The efficiency for pions grows exponentially from 20 % at pT = 50MeV
to 80 % at pT = 70MeV, see also figure 9 of ref. [47]. For pion momenta p ≥ 0.4GeV, we
assume the reconstruction efficiency to drop linearly, compare figure 89 of ref. [45].

effπ(p) =


0, p< 0.05
1−13exp(−86.29p+560.4p2−1601p3+1625p4), 0.05≤ p< 0.4 p in GeV
1−0.015p, p> 0.4

(A.8)

The efficiency for pions to be misidentified as kaons is taken from figure 3.5 of ref. [46].
We approximate the momentum dependence as linear for low momenta and constant for
larger momenta

misK|π(p) =


0, p < 0.05
0.01 p, 0.05 ≤ p < 2.0 p in GeV
0.02, p > 2.0

(A.9)

We assume the efficiency for pions to be misidentified as muons to be 0.5 % below 1GeV
and 1 % above this value (figure 3.4 in ref. [46]). We do not model any angular dependence.

misµ|π(p) =


0, p < 0.5
0.005 p, 0.5 ≤ p < 1.0 p in GeV
0.1, p > 1.0

(A.10)

We model the misidentification of pions as electron as

mise|π(p) = 0.001p (p > 0.5), p in GeV (A.11)

A.3 Validation

To validate our detector simulation, we reproduce figure 14 of ref. [7] in our figure 10. We find
reasonable agreement for the number of charged kaons and the bulk of the M2

miss, D∗(πslow)
distributions. Larger deviations between our detector simulation and the Belle values, for
instance at low M2

miss, D∗(πslow) or with a large number of kaons, appear in statistically
much less relevant regions and less than 2 % (1 %) of all signal (background) events lie at
M2

miss, D∗(πslow) < −20GeV2. Less than 3 % of the background event contain more than
one charged kaon. Since we not include the effect of particles of the tagging side of the
event being assigned to the signal side, we poorly underestimate the negative regime of the
missing mass squared.
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Figure 10. Detector simulation validation plots for signal (left) and background (right) contributions.
We compare the distributions of our MC events after detector simulation (detector sim) with the
MC events produced by the Belle collaboration displayed in figure 14 of ref. [7]. See paragraph
below eq. (3.2) for the feature definitions.
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Figure 11. Top: MX distribution before (left) and after (right) the background suppression BDT
(plot analogous to figure 6 in ref. [7]). Bottom: significance improvement for a NN (left) and BDT
(right) trained on high-level or low-level input features. We compare our standard set-up to training
and testing on a sample with the detector resolution for photons and charged particles broadened
by a factor 10.

A.4 Broader resolution

Some of the input features in our analysis do not fully resemble the experimental input
features. In this appendix, we study the dependence of our findings in section 3.3 on
the detector simulation. As a test case, we broaden the smearing of the charged particle
momenta and photon energies. Increasing the smearing by a factor 10 brings the MX

resolution to a level close to what is seen in experiment. The resulting MX distribution
is shown in the top panel of figure 11. The modified particle resolution will similarly
affect low-level and high-level input features and allows us to study its impact on the
different multivariate analysis set-ups. We re-perform our tight NN and BDT analyses
using training and test data with the increased smearing and show the corresponding
significance improvement of these analyses in the bottom panel of figure 11. Qualitatively,
the comparison of the high-level and low-level data sets has not changed. There are, however,
some quantitative changes of the maximum significance reached. For the NN the ratio of
the maximum significance σ̂(NNlow)/σ̂(NNhigh) changes from 1.03 in the standard set-up to
1.09 when increasing the smearing by a factor ten. For the BDT the ratio of the maximum
significance σ̂(BDThigh)/σ̂(BDTlow) changes from 1.38 in the standard set-up to 1.12 when
increasing the smearing by a factor ten. In both cases the classifiers using high-level input
features are more strongly affected than those using low-level features. We would like to
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emphasise, however, that although broadening the detector resolution by a factor of ten
brings the invariant mass resolution in line with that seen in experimental simulations, it is
not a realistic scenario and therefore these results should be taken with a grain of salt.

B Machine learning analysis set-up

B.1 Training and test sets

To train our classifiers, we create balanced data sets with 10M B → Xu`ν signal events and
10M B → Xc`ν background events. The data preparation process includes the application
of the in-house detector simulation and a standard scaling of the data based on the training
set. Categorical features are one-hot encoded and are not scaled. The training set is shuffled
and 20 % of it is used for cross validation. For testing, we create two test sets with a physical
signal-to-background ratio (1/45). Each test set contains 40K signal and 1.8M background
events after detector simulation, which roughly corresponds to the number of semileptonic
B-decays in a sample of 22.6M BB̄ events.

B.2 Bayesian neural network

Our Bayesian NN is implemented with Tensorflow [48], TensorFlow-Probability [49]
and Keras [50] with a total of 5 layers. The number of nodes of the input layer is the
number of input features. There are 3 hidden DenseFlipout layers [51], each of them
containing 256 nodes using the Kullback-Leibler (KL) divergence function as the kernel
divergence function. The KL divergence function is defined as

KL[q(ω), p(ω|C)] =
∫
dω q(ω) log q(ω)

p(ω|C) , (B.1)

where p(ω|C) is the posterior probability distribution given classifier C and q(ω) is the
approximation created through the classifier [52]. We use a sigmoid activation function for
all hidden layers. The first two hidden layers are followed by a batch normalisation layer
which scales the weights and biases to have mean = 0 and standard deviation = 1. This
helps avoid the vanishing gradient problem with sigmoid functions. The output layer only
has 1 node with a sigmoid activation function, the posterior function for the kernel and bias
are both assumed to be mean field normal distributions. The kernel divergence function for
the output layer is also the KL divergence function.

We use binary cross-entropy as our loss function and apply the Adam [53] optimizer.
The KL divergence is automatically added to the loss during training. Early stopping and
model checkpoints are in place to monitor the validation loss of each epoch. The model
weights from the best performing epoch are saved out and loaded back in before inference.
We summarise the BNN architecture in table 1.
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Bayesian neural network (BNN)

Input layer number of features nodes
1st hidden DenseFlipout layer 256 nodes, Sigmoid activation

batch normalisation
2nd hidden DenseFlipout layer 256 nodes, Sigmoid activation

batch normalisation
3rd hidden DenseFlipout layer 256 nodes, Sigmoid activation
Output layer 1 node, Sigmoid activation
Kernel posterior function mean field normal distribution
Bias posterior function mean field normal distribution
Kernel divergence function KL divergence function

Loss function binary cross-entropy
Optimizer Adam
learning rate 0.1 for first 10 epochs

then decreasing with e−0.1 each epoch

Table 1. Neural network architecture.

Boosted decision tree (BDT)

Classifier XGBoost
Max depth 10
Learning rate 0.4
Number of estimators 300
Gamma 1
Subsample 0.9
Colsample_bytree 0.7
Loss function logloss

Table 2. Boosted decision tree architecture.

B.3 Boosted decision tree

The BDT is implemented with XGBoost [54]. We allow for a maximum depth of 10 as
higher depth did not improve performance. The learning rate is fixed at 0.4. The number
of estimators is set to 300 with early stopping in place. The gamma factor is fixed at 1.
The subsample ratio of the training instance is 0.9 and subsample ratio of columns when
constructing each tree is set to be 0.7 to reduce the risk of overfitting. The BDT set-up is
summarized in table 2.

In training the algorithms, the hyperparameters displayed in table 1 and 2 were
predetermined with minimal optimization through HyperOpt [55].
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C Plots of the high-level input features
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Figure 12. Comparison of high-level features for B → Xu`ν signal and B → Xc`ν background
events.

D Training with SHERPA

In section 4 we studied the performance of NNtight and NNloose when trained on EVTGEN
data and then tested on both SHERPA and EVTGEN data. Here we give results when instead
SHERPA data is used to train the NNs.

We begin by showing in figure 13 the signal acceptances of NNtight (upper row) and
NNloose (bottom row), finely binned in the variable MX . As in figure 6, the plots also
show the signal and total number of accepted events (TP+FP), normalized to the number
detector-level signal events, in addition to the background acceptances for NNloose using
the y-axis shown on the right of the lower panels. The plots in the left-hand side of the
figure are trained on EVTGEN data, while those on the right are trained on SHERPA data.
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Figure 13. MX distributions and signal acceptance for NNtight (top) and NNloose (bottom) trained
on EVTGEN (left) and SHERPA (right) data. For NNloose the dashed lines in the lower panel show
the background acceptance using the scale for the y-axis on the right. The distributions in the upper
panels of each plot are normalized to the total number of signal events. A broader binning has been
chosen to show the acceptance at MX > 2GeV, where event statistics are low.

The figure shows that the signal acceptances for NNtight are fairly independent of the
training and testing data up until about MX ∼ 1.5GeV, even though finely-binned signal
modelling from the two MCs is vastly different. For MX > 1.5GeV, on the other hand,
the acceptances depend crucially on the which MC is used in the training. The reason is
that the SHERPA signal drops quickly to zero beyond this point, and is already negligible at
the D-meson resonance at MX = 1.9GeV. Consequently, as seen in the top-right plot, a
SHERPA-trained NNtight tends to reject the higher-MX region of the EVTGEN signal, as it
has not seen signal events in that region during the training.

This artificial separation of signal and background in SHERPA is an unphysical effect that
can be remedied by a matching with OPE-based results, which give a model-independent
description of fully inclusive rates in the higher-MX region. We note further that the
signal acceptance of NNloose is fairly flat as a function MX , whether trained on EVTGEN or
SHERPA data, and in particular even the SHERPA-trained version accepts EVTGEN signal
events across the entire region. In this case, however, the unphysical behaviour of the signal
modelling would inevitably show up in a poor fit quality in the second stage of the analysis.
For these reasons we have not considered SHERPA-trained NNs in the body of the text.
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Figure 14. As in figure 6, but using SHERPA instead of EVTGEN data for training the BNNs.

Still, for completeness, we show in figures 14 and 15 the SHERPA-trained versions
of figures 6 and 8. The most prominent feature is the expected reduction in the signal
acceptance of EVTGEN data by NNtight in the regions of high-MX and low q2 and p∗` in
figure 14 compared to the EVTGEN-trained version in figure 6, as well as a higher acceptance
of the SHERPA signal overall, regardless of the NN.
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Figure 15. As in figure 8, but using SHERPA instead of EVTGEN data for training the BNNs.
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