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In the nearly seven decades since the publication of
Alan Turing’s work on morphogenesis, enormous
progress has been made in understanding both
the mathematical and biological aspects of his
proposed reaction–diffusion theory. Some of these
developments were nascent in Turing’s paper, and
others have been due to new insights from modern
mathematical techniques, advances in numerical
simulations and extensive biological experiments.
Despite such progress, there are still important gaps
between theory and experiment, with many examples
of biological patterning where the underlying
mechanisms are still unclear. Here, we review
modern developments in the mathematical theory
pioneered by Turing, showing how his approach has
been generalized to a range of settings beyond the
classical two-species reaction–diffusion framework,
including evolving and complex manifolds, systems
heterogeneous in space and time, and more general
reaction-transport equations. While substantial
progress has been made in understanding these
more complicated models, there are many remaining
challenges that we highlight throughout. We focus
on the mathematical theory, and in particular
linear stability analysis of ‘trivial’ base states. We
emphasize important open questions in developing
this theory further, and discuss obstacles in using
these techniques to understand biological reality.
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This article is part of the theme issue ‘Recent progress and open frontiers in Turing’s theory
of morphogenesis’.

1. Introduction
Alan Turing’s Chemical Basis of Morphogenesis [1] has had profound impacts within mathematics,
physics, chemistry and biology, especially in developmental and ecological settings [2], as
evidenced by the other articles in this theme issue. Nonetheless, the approach taken in his 1952
paper used relatively straightforward mathematical techniques. Turing was aware of how simple
an approach he took to understanding the enormous complexity of biological development,
stating, ‘This model will be a simplification and an idealization, and consequently a falsification.
It is to be hoped that the features retained for discussion are those of greatest importance in
the present state of knowledge.’ We now have a far greater understanding of this biological
complexity empirically, and have made progress in extending Turing’s original models, and their
analysis. This review will focus on these mathematical developments, concentrating on ideas
which naturally generalize those present in Turing’s work, as well as on open problems using
these ideas to elucidate principles of self-organization in developmental biology and beyond.

While Turing’s mathematical ideas about morphogenesis have been heavily extended,
particularly including a much wider class of models and exploring them via numerical
simulation, one of the simplest approaches to analysing reaction-diffusion-like systems is the
one employed by Turing: linear instability analysis of simple base states (which we refer to as
near-equilibrium analysis) [3,4]. In this paper, we will review developments of this aspect of
the theory, suggesting how powerful such a classical approach can be when suitably extended,
but also highlighting fundamental difficulties in studying pattern formation beyond these initial
symmetry-breaking instabilities. We hope to point out fundamental obstacles in extending
this kind of theory to more realistic scenarios of pattern formation, and particularly elucidate
how such an approach could help us identify mechanisms and principles in biological pattern
formation.

Beyond near-equilibrium analysis, an immense effort has been spent in studying far-from-
equilibrium pattern formation in reaction–diffusion and related systems. While we will not
review these approaches in detail, we mention two other articles in this theme issue which
touch on some techniques for going beyond near-equilibrium analysis. In [5], the authors
use a framework called spatial dynamics to obtain a global picture of bifurcations in a wide
class of systems, and suggest how various aspects of these bifurcation diagrams are in some
sense universal. Spatial dynamics and related approaches study solutions of time-independent
reaction–diffusion systems on R by thinking of the spatial variable as ‘time’, and considering the
two-component system as a flow in R

4, where one can then make use of all of the machinery for
such systems, such as numerical continuation [6–8].

Another important approach is the asymptotic study of localized solutions, sometimes referred
to as a shadow-limit of a reaction–diffusion system [9,10]. When one of the diffusion coefficients
is very large, for certain classes of nonlinear reaction kinetics, one can find analytical spike
solutions asymptotically which resemble highly localized solitons. Linear stability analysis of
such solutions involves the study of a nonlocal eigenvalue problem, which has been carried out
analytically and numerically for a range of systems, geometries, boundary conditions and other
extensions [11]. We also refer the interested reader to [12], within this theme issue, for an overview
of this approach in the context of bulk-surface systems.

In contrast to the approaches above, near-equilibrium analysis makes far fewer assumptions
on the transport operator, geometry of the solution domain, and nonlinearities involved, and
so in some sense is a more general kind of approach. There are important limitations to this
technique, not least of which is due to how rich reaction-transport systems can be far from the
equilibrium base state where these techniques are formally valid. Nevertheless, we hope to show
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how powerful this perspective can be in understanding a wide variety of problems in pattern
formation for such systems. We will aim to give a broad review of Turing-type patterning in a
range of contexts, but we will by no means be comprehensive. We will mostly focus on the near-
equilibrium and related approaches to understanding these systems. Still, the choice of topics will
surely be idiosyncratic, and reflect the authors’ personal tastes.

In §2, we provide an overview of the classical linear instability analysis for two-species
reaction–diffusion systems, followed by a generalization of the ideas to the setting of
m-component reaction-transport systems in a general state space. In §3, we show how these ideas
have been applied to the study of pattern formation on manifolds and networks, as well as multi-
domain models which require some further generalization of the basic ideas. In §4, we discuss
reaction–diffusion systems with heterogeneity in space and time, and how linear instability theory
can provide useful insights after suitable generalizations. Following this, in §5, we discuss other
kinds of reaction-transport systems that have been studied, such as those involving chemotaxis
and cross-diffusion, as well as some important thermodynamic considerations. We also discuss
both modelling and mathematical difficulties in going beyond two-species systems. Finally, we
close in §6 with a view towards the future, and in particular outline aspects of the problems
presented which are ripe for further study. Throughout, we hope to give a sense of how far we
have come from Turing’s initial insight, but also how much there is left to do in understanding
these kinds of models, and their relationships to biological reality.

2. Near-equilibrium analysis
Here we review the classical Turing analysis of reaction-diffusion systems, essentially following
the ideas in [4] which have become standard. We then show how, subject to some assumptions,
these ideas readily generalize to reaction-transport systems. By reaction-transport systems, we
mean a generalization of reaction-diffusion systems with the Laplacian replaced by a general
local transport operator, such as convection-diffusion, chemotaxis, or a graph Laplacian.

We first note that the restriction to systems of reaction-diffusion equations is important for
the kind of pattern formation in which we are interested. While some scalar reaction-diffusion
equations can admit non-constant equilibrium solutions, these do not arise as a direct interaction
of nonlinear reactions and diffusion alone, but require other ingredients. Classic results show
that scalar quasi-linear reaction-diffusion equations with homogeneous Neumann boundary
conditions in convex domains do not admit non-constant stable equilibria, even if temporally
forced [13–15]. In fact, such non-existence of patterns has been shown for a large class of
competitive and cooperative systems in convex domains [16]. Bistable equations in non-convex
domains have been shown to exhibit stable non-constant solutions [17], as have bistable equations
with Dirichlet or inhomogeneous boundary conditions [4,18]. Such solutions do not have the
same qualitative features as patterned states in reaction–diffusion systems, or scalar equations
with more general transport operators, which we focus on for the rest of this review.

(a) Linear instability of reaction–diffusion systems
The standard setting for a Turing instability is the two-component system,

∂u
∂t

= ∇ · (Du∇u) + f (u, v),
∂v

∂t
= ∇ · (Dv∇)v + g(u, v), x ∈ Ω , t > 0 (2.1)

where u, v denote morphogen concentrations, Du, Dv > 0 diffusion coefficients, f , g reaction
kinetics, and the domain Ω ⊂ R

n is usually taken to be a compact domain with sufficiently smooth
boundary, such as a line for n = 1 or a disc for n = 2. We note that the ‘morphogens’ in reaction–
diffusion systems can be thought of as molecular species, such as the proteins Nodal & Lefty [19],
or can also correspond to other structures, such as cells in different morphological states, or other
developmentally important factors used for signalling [20]. This is typically augmented with no-
flux or periodic boundary conditions on u and v. The nonlinear kinetics are often polynomials or
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rational functions, as they typically arise from the application of Mass Action kinetics or other
mean-field frameworks. A Turing instability of this system is said to occur when a homogeneous
steady state (e.g. u∗, v∗ such that f (u∗, v∗) = g(u∗, v∗) = 0) is stable in the absence of the diffusion
terms, but can become unstable when these are included. Writing u = (u, v) and u∗ = (u∗, v∗), we
linearize (2.1) by letting u = u∗ + εU for |ε| � 1. Dropping higher-order terms we find,

∂U
∂t

= D∇2U + JU, (2.2)

where D = diag(Du, Dv), and J is the Jacobian of the functions f and g evaluated at the steady state
u∗.

Following [4], we use an ansatz of the form,

U = eλktwk(x)ck, (2.3)

where ck ∈ R
2, and wk are the eigenfunctions of the negative Laplacian with eigenvalue ρk

satisfying,
∇2wk + ρkwk = 0. (2.4)

Throughout we will refer to wk as a mode, with corresponding growth rate λk. With homogeneous
Neumann or periodic boundary conditions, we have that ρ0 = 0 and ρk can be arranged in
a countable increasing sequence with ρk → ∞ as k → ∞. For many other kinds of boundary
conditions (e.g. Dirichlet, Robin), we can still obtain a discrete and increasing sequence of ρk,
though we may have ρ0 	= 0 leading to some subtleties when considering homogeneous base
states and their stability [21]. However, in general homogeneous equilibria will not satisfy these
more general kinds of boundary conditions, so despite a similar spectral problem, the analysis
here would not apply to these cases. For concreteness, we only consider boundary conditions
admitting spatially homogeneous equilibria (see §4a for approaches to linear instability analysis
for spatially heterogeneous base states).

This ansatz allows us to quickly analyse the stability of perturbations which evolve according
to equation (2.2). With this substitution, a solvability condition (derived by requiring nontrivial
values for ck) relates values of λk to the eigenvalues ρk and model parameters via,

det(λkI + ρkD − J) = 0, (2.5)

where I is the identity matrix. This determinant can be evaluated as a quadratic polynomial
determining λk for each distinct value of ρk. Of the two values of λk for each k, we are typically
interested in the one with largest real part.

For homogeneous Neumann or periodic boundary conditions, a Turing instability corresponds
to the situation where 
(λ0) < 0 and 
(λk) > 0 for some k > 0. In this case, the two growth rates
denoted by λ0 correspond exactly to the eigenvalues of J, and so the first requirement says that
J is a stable (Hurwitz) matrix. More generally, analysis of the zeroes of the transport operator is
needed to determine how to think about stability in the absence of diffusion [21], but typically we
require J to be a stable matrix. We consider the value of λk as a function of the spatial eigenvalue
ρk, and refer to this as the dispersion relation.

From this analysis, it can be shown that for two-species systems, the largest growth rate λk will
be real at the parameter space boundary of a Turing bifurcation (so that such a bifurcation does
not indicate an oscillatory instability). Several other facts can readily be established about these
instabilities, such as requiring Du 	= Dv , fu and gv to be of opposite signs, with the positive sign
corresponding to a slower-diffusing activator, and the negative a fast-diffusing inhibitor. This
is a classical example of local-activation long-range-inhibition, which has been implicated in a
range of biological pattern formation scenarios [22]. The Turing space can be defined from this
analysis as the set of parameters which admit this kind of instability. For large domains (i.e. in the
approximation of a continuous spectrum ρk), one can show that such a space is defined by a set
of four inequalities. We refer to ([4], Ch. 2) for a systematic treatment of these classical results.

We remark that the standard ansatz in the stability analysis above is based on the existence
of a complete orthonormal basis of the Laplace operator (including the boundary conditions) in
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L2(Ω). This allows us to replace the study of the partial differential equation (2.2) by a study
of an infinite system of coupled ordinary differential equations, and then exploit orthogonality
to study these modes independently, justifying the ansatz (2.3). There are important aspects to
making this argument rigorous as decomposing the perturbation as a sum of eigenfunctions is
taken in a L2 limit sense, and hence the validity of exchanging the sum and temporal and spatial
partial derivatives has to be shown. This can be done by considering a finite-dimensional Galerkin
approximation, and showing suitable a priori estimates of the solution; we refer to [23] for further
details.

The large time behaviour of the linear problem (2.2) is well captured by the above-mentioned
system of ordinary differential equations, and hence the dispersion relation (2.5), validating the
use of the ansatz in the stability analysis. Alternatively, one can invoke properties of the heat
semigroup and the spectral mapping theorem from the theory of semigroups [24,25] to formalize
this analysis. However, as the system is typically non-normal, there are transient behaviours
that may drive the system away from the region of validity of its linearization, invalidating the
analysis above. It was recently shown that in the classical two-species reaction–diffusion case, the
significance of these transient effects is limited to the edge of Turing space and hence fine tuning
of the parameters may be required to observe it [26]. In conclusion then, we can justify the ansatz
(2.3), and in particular make use of the dispersion relation (2.5) directly to assess the potential for
a system to admit Turing instabilities.

Finally, we briefly discuss what happens beyond the initiation of a Turing instability. In
general, the linear theory shows that specific eigenmodes (those with 
(λk) > 0) will exponentially
grow from the base state, as long as they are excited by the initial perturbation to the spatially
uniform steady state. Beyond this, the theory does not predict what happens asymptotically in
time. In particular, while one can in principle take the kth eigenmode corresponding to the growth
rate with largest real part, it is often the case that the band of unstable modes is large, especially
when Dv/Du � 1. In such cases, these modes will compete with one another, and one cannot say
a priori what wavelength the final pattern might have.

Near the onset of the instability (i.e. for parameters close to the Turing space boundaries),
weakly nonlinear analysis can be used to study the growth, competition, and saturation of
these modes [3,27]. Such amplitude equations allow one to deduce whether the bifurcation is
subcritical or supercritical. In the more well-studied supercritical case, these equations show
the existence of small amplitude branches emerging from the homogeneous equilibrium, similar
to a pitchfork bifurcation in a two-dimensional dynamical system. Generally, these bifurcation
branches persist far from parameter ranges wherein the analysis is formally valid, but they can
undergo subsequent complicated bifurcations in general, limiting the applicability of the analysis
away from the bifurcation boundaries. In the subcritical case, the linear analysis gives essentially
no information on what kinds of patterns may emerge, as any spatially non-uniform equilibrium
solution will not emerge from the homogeneous equilibrium, but exist some distance away from
it. Such patterns can involve more exotic structures, such as pattern formation due to homoclinic
snaking [28], though the analysis of such patterns is beyond even weakly nonlinear theory. Still,
the weakly nonlinear regime can be studied to deduce important qualitative features of the
dynamics, such as determining what kinds of nonlinearities permit spot or stripe patterns in two
spatial dimensions [29]. We refer to [30] for a general application of these kinds of methods to a
large class of equations, including reaction-transport systems. See also [5] in this theme issue for
a discussion of generic features of these far-from-equilibrium bifurcations.

(b) Linear instability of reaction-transport systems
We now demonstrate that the main ingredients of the above analysis can be applied to a more
general reaction-transport system. We replace the spatial domain Ω either by a discrete set (such
as a graph or lattice), or a submanifold of R

n for n ≥ 1. We also replace the Laplacian by a scalar
elliptic operator L which admits only a point spectrum, and assume that the corresponding
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eigenfunctions form a complete orthonormal basis of a suitable function space (typically L2(Ω)).
Finally, we assume that L annihilates functions which are constant over Ω .

We then consider the reaction-transport system for a vector-value function u(x, t) ∈ R
m,

∂u
∂t

= DLu + f(u), (2.6)

where D ∈ R
2m × R

2m is a constant positive-semidefinite transport matrix, and f are again the
nonlinear reaction kinetics. The classical case studied in the previous subsection considers m = 2,
but for spatial operators L of order four and higher, scalar equations (m = 1) are sufficient to
observe pattern-forming instabilities (see §5b). One can proceed as in the classical case above to
study perturbations of a homogeneous base state u∗. The linear reaction-diffusion problem (2.2)
is replaced by an almost identical system with the Laplacian replaced by L, and one can study its
solutions via an ansatz like (2.3), where now the spatial eigenfunctions satisfy,

Lwk + ρkwk = 0. (2.7)

With the generalization of the Jacobian and identity matrices to account for m components, we
obtain a dispersion relation as in (2.5), with the only difference in this case being the values of the
spatial eigenvalues ρk, and in considering a polynomial of degree m for each λk.

While the analysis is nearly identical, there are important new phenomena which can arise
in this general setting, and we will explore these throughout the examples in this paper. We
also note that the boundary conditions for this system can be more complicated than classical
periodic or homogeneous Neumann conditions, and will depend heavily on the physics of the
transport being modelled. While chemotaxis and more general forms of nonlinear diffusion (or
reaction-advection-diffusion) are not modelled by the system (2.6), one can often deduce a similar
dispersion relation to (2.5) by expanding solutions in terms of other orthonormal bases, e.g.
classical Laplace eigenfunctions, though the question of which basis functions to use becomes
more delicate (see §5a for further discussion). Finally, rigorously justifying the ansatz (2.3) can
depend on L and Ω , and we omit further discussion of this here.

3. Structured domains
We now discuss reaction-transport systems on spatial domains Ω which are not simple subsets
of Euclidean spaces. In particular, we focus on manifolds, networks, and multi-domain models.
The first two can be thought of as examples of the generalized linear instability analysis given
in §2b (at least in the case of undirected networks), whereas the latter will involve less obvious
generalizations of the classical theory.

(a) Curved manifolds
The study of reaction-transport systems on curved manifolds goes back to Turing’s paper
[1], where he employed spherical harmonics to discuss a hypothetical mechanism behind
gastrulation. In fact, much of Turing’s paper uses spherical symmetry as a major discussion point
for why symmetry breaking instabilities must play a role in development.

Hunding pursued this symmetry breaking question in the context of reaction-diffusion
systems defined inside spheres and prolate ellipsoids [31,32], though the curvature of the domain
here was restricted to its boundary. Varea et al. studied a reaction–diffusion system on the surface
of a sphere numerically, finding striking symmetries in the emergent patterns [33]. Chaplain et al.
developed a numerical method to study a reaction–diffusion system on the surface of the sphere
[34] using an expansion of the solution in terms of spherical harmonics. They postulated that
such pattern-forming systems may play a role in determining how tumour spheroids grow and
develop.

To model diffusion on surfaces and curved domains beyond simple curvilinear examples, one
can introduce some machinery from differential geometry. The classical model of Fickian diffusion
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(a) (b) (c)

Figure 1. Plots of the activator u from simulations of the Schnakenberg reaction–diffusion system on the surface of a prolate
ellipsoid of semi-minor radii L, and semi-major radius 3L. The kinetics are given by f = 0.01 − u + u2v, g= 1.7 − u2v,
with diffusion coefficients of Du = 1 and Dv = 30. Simulations were carried out in Comsol using 20 460 triangular boundary
elements. Initial data were taken as the homogeneous base state u∗ = 1.71, v∗ = 0.58138 with normally distributed noise
with variance 10−1 added at each finite element, and these were evolved until t = 104. The colour scale is fixed such that
the dark red region is a maximum with u= 3.5, and the dark blue region is a minimum with u= 0.5. (a) L= 1, (b) L= 2,
(c) L= 20. (Online version in colour.)

can be extended to a general compact orientable Riemannian manifold (for instance, a smooth
two-dimensional surface) by replacing the Laplacian with the Laplace–Beltrami operator, which
can be written in coordinates on the manifold in terms of a metric tensor. This exactly recovers
the Laplacian on the surface of spheres, cylinders and other curvilinear coordinate systems, but
allows for models to be posed on more general surfaces and domains, particularly ones where
a single global coordinate system may not be possible. The book by Frankel [35], for example,
provides a general introduction to calculus on manifolds, including transport equations posed on
them.

Plaza et al. studied reaction-diffusion systems on a variety of one- and two-dimensional
manifolds [36], and discussed some general aspects of these models (including the role of
growth in such systems, which we defer to §3b). They noted that the Laplace–Beltrami operator
on such a manifold has essentially the same properties as the Euclidean Laplacian with
periodic or Neumann boundary conditions, and hence deduced exactly the dispersion relation
(2.5). A further generalization involves including tangential divergence operators representing
advection alongside diffusion modelled by the Laplace–Beltrami operator. Krause et al. studied
reaction-advection-diffusion systems on the surface of a sphere, involving both Laplace–Beltrami
and tangential divergence operators [37], finding that advection on such a closed manifold
could give rise to spatio-temporal oscillations of pattern creation and destruction. Another recent
application of these kinds of systems is the study of reaction-advection-diffusion models of
vegetation and rainfall on curved terrains [38,39].

While the basic instability analysis is unchanged for Laplace–Beltrami operators compared
with the standard Laplacian, curvature can influence mode selection as well as the structure of
patterned states. As the relative domain size increases (or, as diffusion parameters are decreased),
the structure of observed patterns becomes similar to those on large Euclidean domains, due to
the relative size of curvature compared to the scale of the localized patterns. See figure 1 for an
example on a prolate ellipsoid. For L = 1 and 2, we see a single localized spot form which deforms
around the manifold, whereas for L = 20, many smaller spots form across the surface with little
apparent sensitivity due to the curvature. Such finite-size effects of curvature may play important
roles in cellular and developmental settings where only a few localized elements emerge, such
as in cell polarization. However, beyond predicting when we might expect to see such finite size
effects, linear analysis does not appear to have been successfully exploited to date in describing
how localized patterns are deformed by curvature. Single-mode patterns may play crucial roles
in certain models of cell polarization, where many results have already implicated geometry as
important in these processes; see §3c. More thoroughly exploring such situations is one important
direction for future work.

While the linear stability analysis of homogeneous equilibria for reaction-diffusion systems
on curved manifolds is a mild extension of the analysis on one-dimensional domains, many
of the tools for analysing pattern formation away from the homogeneous steady state do not
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have straightforward extensions to manifolds. As an example, a particular spatial eigenvalue on
the sphere will, in general, have many distinct eigenfunctions, often referred to as degenerate
due to their multiplicity. This makes predicting pattern structure from the fastest growing mode
impossible, and complicates the analysis used to understand mode competition and pattern
stability. See [40,41] for details and examples of how this degeneracy in the eigenspace of the
Laplace–Beltrami operator complicates such analysis. Beyond degeneracy issues, there are many
open questions about the influence of curvature and manifold geometry more generally on the
emergence and stability of far-from-equilibrium patterns, especially in the case of structures
which are not highly localized, such as stripes.

(b) Reaction–diffusion systems on networks
Turing’s paper also analysed the case of a ring of discrete cells coupled by diffusion, with
reactions confined to the nodes. Recent chemical experiments have suggested that such a system
of discrete cells can give rise to the patterns predicted [42]. Othmer and Scriven extended Turing’s
ideas about discrete cells to reaction–diffusion systems on general graphs, with a particular
emphasis on lattices and regular graphs in [43]. Such discrete lattice models have also been
used to conceptualize non-diffusible morphogens within cells, in comparison to those which
can diffuse elsewhere [44]. More recently, the authors in [45–48] and others have considered
these discrete reaction–diffusion systems on a variety of complex network architectures, and used
several numerical and analytical techniques to determine the role of topology in the emergence
and structure of inhomogeneous steady states analogous to localized patterns in the continuous
case.

Given an undirected weighted graph (that is, with n nodes or vertices v and � edges e), we can
use the adjacency matrix Aij to describe a diffusion process between these nodes. We consider m
species at each node vi given by ui. At each node i, the species interact locally via the kinetics
f(ui) and diffuse to neighbouring nodes. The reaction-transport system (2.6) on a graph then
looks like,

dui

dt
=

n∑

j=1

AijD(uj − ui) + f(ui) =
n∑

j=1

LijDuj + f(ui), (3.1)

where L is the graph Laplacian. As this is a system of nm equations, one could directly construct a
Jacobian from the linearization about an equilibrium of the kinetics and compute the eigenvalues.
Alternatively, eigenvectors of the graph Laplacian (given by (2.7)) can be used to directly deduce
the same dispersion relation given by (2.5) in the analysis of a homogeneous steady state (i.e.
where u∗

i = u∗
j for all i, j = 1 . . . , n).

In this case, there will be finitely many eigenvalues and eigenvectors, and so in some sense
the analysis is simpler than in the spatially continuous case. In general, however, networks can
have much more irregular topologies than spatially continuous domains, and understanding
what features of the topology play a role in diffusion-driven instabilities is a major theme of
current research [49–51]. A common approach in these analyses is to study how structure in the
network topology influences the spectrum of L, which can then immediately impact whether
or not a system admits a Turing instability via the dispersion relation (2.5). Multistability of
the reaction kinetics can also play a role in forming patterns, as there is no longer a simple
criterion, such as convexity, which prevents such states from coexisting in the presence of
diffusion [52].

Another difficulty in the setting of networks is that of visualizing Turing patterns. One example
of an illuminating visualization is that found in fig. 2 of [53], which we have reproduced in
figure 2. We note that the usual periodicity found in Turing patterns (e.g. as in figure 1c) is
absent, as the network lacks the same isotropy as the spatially continuous models. We remark
that the oscillatory solutions in figure 2b,d arise due to complex conjugate pairs of eigenvalues
with 
(λk) > 0, and we will discuss such dynamics in more detail in §5b.
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Figure 2. Examples of temporally oscillating solutions (a,c) and stationary Turing patterns (b,d) in networks (a,b) and in the
respective continuous media with periodic boundary conditions (c,d), corresponding to numerical solutions of a networked
predator-prey model. In (a,b), mean oscillation amplitudes for all network nodes are displayed on the left, and time evolution
diagrams on the right. For continuous media, instantaneous concentration profiles are shown in (c,d) on a periodic domain.
Reproduced with no changes from [53] under a CC BY 3.0 License (https://creativecommons.org/licenses/by/3.0/). (Online
version in colour.)

An important point is that for an undirected graph, the graph Laplacian L will be real and
symmetric, and hence normal. Directed networks, on the other hand, give rise to a much more
complicated analysis. In general, the spatial eigenvalues ρk will no longer be purely real, and
existence of a basis of eigenvectors is no longer guaranteed. Nevertheless, such systems are being
explored as a plausible mechanism for pattern formation in discrete networks that may have
fewer of the restrictions (e.g. differential diffusion) compared to the classical case [54].

(c) Multi-domain models
There have been recent efforts to study pattern formation in domains with multiple distinct
regions. Examples of such systems include proteins which can both diffuse within a cell and
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bind to a membrane [12], bacterial pattern formation on inert substrates [55,56], and epithelial-
mesenchymal signalling [57,58].

Broadly, we can consider multi-domain systems as being modelled in three distinct ways:
instantaneously coupled models, bulk-surface models and stratified (or layered) models. The
first are models where the components are assumed to occupy the same spatial domain (or the
reactions occur in thin regions where a homogenization approximation is appropriate) [59–62].
Such models are essentially reaction–diffusion systems that have more components with linear
coupling between subsystems, and are amenable to block-matrix analysis in the study of Turing
instabilities [63]. A second class of model considers bulk-surface coupling, where the surface is
sufficiently thin such that transverse (normal to the boundary) concentration gradients can be
neglected in the surface model, but transverse gradients in the bulk can be significant. Such
settings have been explored extensively, and are particularly suitable for models of proteins
diffusing in the cytoplasm and binding on the cell membrane [64–71]. These models have a
variety of applications, but of particular note we mention cell polarization in mitosis and other
contexts, where a single mode becoming unstable is sufficient to break symmetry [72,73]. We refer
especially to [12] in this theme issue, as a review of these systems.

Turing-type analysis has been considered in bulk-surface systems, primarily in the case of disc
and spherical geometries [67,74]. In these cases, subject to a compatibility condition required for
the existence of a spatially homogeneous steady state, one can make use of polar coordinates
and an ansatz analogous to (2.3) with radial and angular coordinates separated in order to study
the stability of homogeneous equilibria. One obtains a solvability condition similar in spirit to
the dispersion relation (2.5), though with additional complexity due to the coupling. The key
feature which allows for such an approach is that the problem is entirely separable into radial
and angular coordinates using the usual Laplace eigenfunctions. Beyond spherical geometries,
we are unaware of the use of analytical techniques to extend this basic ansatz, though in principle
any geometry amenable to a separable polar coordinate system (e.g. parabolic or elliptical polar
coordinates) would allow for a similar approach.

Finally, we consider models of stratified media, with two or more separated spatial domains
with interfaces and suitable coupling boundary conditions. See figure 3 for a diagram comparing
these two modelling frameworks. Such models can sometimes be reduced to bulk-surface models
given appropriate distinguished limits and scaling assumptions (for example, in [75], the authors
reduce two-dimensional spatially continuous regions to one-dimensional boundaries assuming
thinness of these regions). Krause et al. [56] analyse a model of a two-layered stratified system in
two spatial dimensions, primarily focusing on the case of a standard two-component system in
the surface coupled to an inert layer which only allows for diffusion. This was motivated by an
experimental framework of bacteria placed on top of agar (for use in synthetic pattern formation),
and the study investigated the impact of this inert bulk on the pattern-forming potential of the
surface reaction–diffusion system. Unlike in the analysis described above for radially symmetric
bulk-surface systems, one can not expand perturbations in terms of classical eigenfunctions, as
these will not in general satisfy the coupling condition. Rather, an ansatz of the form (2.3) is used,
but with an unknown eigenfunction in the direction normal to the coupling interface. Solutions for
these eigenfunctions are then found by treating the growth rates λk as a parameter. This analysis
leads to a dispersion relation involving transcendental functions of matrices, which can then be
analysed numerically and in terms of various asymptotic limits. While the dispersion relation
successfully predicted pattern forming instabilities in the full system, it was far more difficult to
understand (in terms of how terms in the model influenced pattern formation) than the classical
polynomial dispersion relation (2.5), and even challenging to solve numerically for the growth
rates λk.

This obstruction to the classical analysis (i.e. eigenfunction expansions leading to polynomials
analogous to (2.5)), arises from inseparability of spatial eigenfunctions due to the coupling. We
conjecture that such an obstruction is generic for stratified models, even in other geometries.
In particular, if we consider the circular and spherical geometries analysed in [67], but extend
the surface outwards (so that we have an annular region coupled to an interior spherical one),
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n · DB — uB = g(uB, uS)

= DB —2 uB + fB (uB)

n · DB —uB = n · DS — uS = g(uB, uS)
∂uB

∂t

= DB —2 uB + fB (uB)
∂uB

∂t

= DS —2 uS + fS (uS)
∂uS

∂t

= DS —2
S uS + fS (uS) – g(uB, uS)

∂uS

∂t

Figure 3. Diagrams of bulk-surface (a) and stratified (b) models. Each system involves a bulk and surface species, uB and uS,
respectively, defined in distinct regionswith their own diffusion coefficients and kinetics. The species’ fluxes are coupled along a
co-dimension-1 interface (a curve in these two-dimensional examples) via a function of both concentrations along the interface,
g. In the bulk-surface case, the kinetics of the surface species are also modified by g. This also explains the notation∇2

S which
is the Laplacian restricted to the surface. (a) Bulk-surface model, (b) stratified model.

we can no longer use the power series ansatz involving classical eigenfunctions, as the radial
and angular eigenfunctions do not decouple. In principle, the more elaborate approach used in
[56] could be employed, though it would be cumbersome in terms of calculations. As far as we
are aware, most multi-domain systems on generic geometries, both bulk-surface and stratified
(bulk-bulk), will not admit analysis by classical series expansions of eigenfunctions, at least
in a way that leads to polynomial dispersion relations. In other words, bulk-surface systems
with boundaries conforming to polar coordinates seem to be a special class of models where
the classical analysis generalizes in a straightforward way. Such a situation is analogous to
the coordinate-separability problems in analytically finding Laplace eigenvalues on polygonal
domains, for which rectangular, elliptical and equilateral triangular domains are the most
prominent examples where simple analytical approaches suffice. Beyond these examples, almost
all polygonal domains (including the hexagon) require numerical study [76].

While some biological systems, such as some types of cells, can be idealized as bulk-surface
systems on spheres (or more generally ellipsoids), we note that such geometries are often
idealizations. Hence, we view these geometric complications to studying bulk-surfacing coupling
to be of interest for investigating more realistic biological systems, such as in the case of cells
which undergo substantial shape changes during migration or mitosis. Mathematically, these
fundamental geometric challenges are interesting, especially in contrast to the generality of linear
instability analysis in other settings (e.g. curved manifolds) where the geometry can entirely
be encoded in the spatial spectrum of the transport operator, ρk. Of course, there may be ways
forward in the analysis of such problems that are simply not apparent from our limited point of
view.

There are other important problems in the case of multi-domain reaction-diffusion models.
In the most general setting of reactions occurring in coupled regions, one typically obtains
a set of consistency conditions for there to exist spatially homogeneous steady states, and in
general such steady states will not exist. Even in the linear analysis of bulk surface models, one
requires compatibility conditions to guarantee the existence of a homogeneous equilibrium [67].
As another example, if the inert region in the model described above in [56] is replaced by a region
with linear degradation (likely a more physical assumption), then these compatibility conditions
cannot be satisfied, so no positive homogeneous steady states would exist. Nevertheless, such a
situation with reactions in multiple regions is likely the most common in biological applications,
for both membrane-bulk and bulk-bulk systems. We remark that this is one situation where the
far-from-equilibrium approaches, particularly those involving asymptotic analysis of the stability
of spike solutions, is capable of handling these aspects better than the near equilibrium approach.
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See [12] and the references therein for examples where substantial progress can be made using
these approaches. Finally, we remark that in some asymptotic limits, these multi-domain models
can be viewed as spatially heterogeneous systems where the kinetics or diffusive fluxes change
throughout the domain. We will discuss such spatially heterogeneous models in the next section.

4. Heterogeneity
Turing instabilities are often understood as a route towards symmetry-breaking of homogeneous
states, and pattern formation is often viewed as the emergence of spatial structure from a uniform
background or initial state. In recent years, however, the basic ideas have been extended to
reaction–diffusion systems in heterogeneous media, and to systems which are forced in time. In
addition to what we discuss below, we also refer to ([77], Ch. 11) for an overview of the literature
on such systems. From the point of view of near-equilibrium analysis, both of these scenarios
require a novel definition of a base state in order to define what one means by an emergent
pattern. Throughout, we will mostly review work which studies models of the form (2.1) where
the diffusion coefficients and/or the reaction kinetics explicitly depend on space x and/or time t.
Heterogeneity can also appear due to inhomogeneous or more complex (e.g. Dirichlet or Robin)
boundary conditions [78–81].

While many of the techniques for the analysis of such systems are recent developments,
Turing himself was aware that such models would be more realistic in many settings, saying
[1] ‘Most of an organism, most of the time, is developing from one pattern into another, rather
than from homogeneity into a pattern. One would like to be able to follow this more general
process mathematically also.’ We also remark that domain growth, as well as spatial and temporal
forcing terms, were crucial in Turing’s later work on Fibonnaci phyllotaxis which he was unable to
complete before his death; see [82] for a thorough discussion. As these notes were largely ignored,
and computation is invaluable in studying such systems, it was some decades before researchers
began looking at the impact of growth and spatial heterogeneity in reaction–diffusion patterns.

(a) Spatially heterogeneous domains
Beyond Turing’s work on phyllotaxis, spatial heterogeneity was also used by Gierer & Meinhardt
in their classical work on pattern formation [83]. Heterogeneity in developmental settings has
been suggested as key for organizing different regions along cell boundaries based on sharp
variations in gene expression [79,84–86]. More recent work has used spatial heterogeneity in
reaction–diffusion models to relate Turing-type pattern formation to other patterning theories,
such as positional information [87–89]. A complete theory of multi-scale patterns is still to be
developed, but these advances help provide plausible explanations for biological patterns with
periodic patterning at multiple scales; see figure 4 for an overview.

Besides pattern formation in development, models of spatially heterogeneous reaction–
diffusion systems have been employed to study collective animal dispersal [91–95], reaction–
diffusion in domains with non-isotropic growth [96,97], as well as spatial invasion modelling
[98,99], and models with differential diffusion leading to spatial inhomogeneity in plant root
initiation [100,101], among other applications. Classical mathematical work on heterogeneous
reaction–diffusion systems can be found in [102], where they study bifurcations of solution
branches as parameters vary. Numerical and asymptotic studies have shown that heterogeneity
can change local instability conditions for pattern formation [103,104], modulate size and
wavelength of patterns [105], and localize (or pin) spike patterns in space [106–108]. There is also
a large literature on reaction–diffusion systems with strongly localized heterogeneities [109,110],
and numerous studies exploring spatially heterogeneous reaction–diffusion systems in chemical
settings [61,111–117]. See [118] in this theme issue for a modern review of chemical approaches to
studying Turing systems.

There has been some work to develop a theory generalizing the classical Turing instability
analysis in §2a to the case of spatially heterogeneous systems. There are challenges in extending
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Figure 4. Different interactions of pattern formation mechanisms in development. (a) is a generic schematic of Turing pattern
formation fromhomogeneity,withdifferentpattern characteristics shown in (b), and, in (c), a biological exampleof adeveloping
mousepaw in thepresenceof altered levels ofHoxgeneaction. Positional information feeding into reaction-diffusion is shown in
(d–e), consistentwithobserved structural characteristics ofmousewhisker placodes in (f ). Finally, successive reaction–diffusion
patterning is shown in (g–h), with the example of Jaguar spots demonstrating large and small-scale pattern formation in (i).
In particular, the schematic in (g) shows a sinusoidal prepattern (left peaks) feeding into a wave mode 3 Turing pattern (right
peaks) with, here for illustrative purposes, the Turing pattern only able to form within the peaks of the prepattern. Thus, each
peak forms a disjoint interval. Mouse paw images from Sheth et al. [90]. Reprinted with permission from AAAS. Mouse whisker
placode image used with permission from Denis Headon. Jaguar picture by Jean Beaufort used under a CC0 Public Domain
license from http://bit.ly/JaguarPicture. Figure reproduced from [88]; used with permission. (Online version in colour.)

the classical analysis, both because of the difficulty of defining and solving a suitable spectral
problem, and of determining the most relevant ‘base’ state to perturb. Several papers have used
particular tools to analyse heterogeneous solutions exploiting special asymptotic assumptions
and specific nonlinear kinetics [119–121], as well as spatially varying diffusion coefficients
of a particular form ([77], Ch. 11). One approach to obtaining general results is the idea of
using Galerkin expansions of standard functions, as discussed in §2a, and then studying a
suitably truncated system (where modes are no longer decoupled due to the heterogeneity).
This idea was used by Dillon et al. [78] to aid a numerical continuation study of inhomogeneous
and mixed boundary conditions. More recently, Kozak et al. [122] employed this approach to
study systems with piecewise constant reaction kinetics, finding that one can broadly use the
intuitive homogeneous Turing conditions away from the discontinuity in the domain (with a
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base state that itself is piecewise homogeneous). Finally we remark that [123], in this theme issue,
provides a significant generalization of this Galerkin approach to a range of systems with spatial
heterogeneity in kinetics, diffusion coefficients, and boundary conditions.

In a similar direction to [122], Krause et al. [88] deduced a set of ‘local’ Turing conditions
with arbitrary spatial heterogeneity in the kinetics, under the assumption that the heterogeneity
is sufficiently smooth and not rapidly varying compared with the diffusive length scales. The
reaction–diffusion system for many models can then be scaled to be of the form,

∂u
∂t

= ε2D
∂2u
∂x2 + f(x, u), (4.1)

where ε � 1, x ∈ [0, 1], and all other parameters are O(1) with respect to ε. For such a system, a
natural base state is the heterogeneous solution to f(x, u∗) = 0. One can then analyse the stability
of such a base state using a WKBJ ansatz for the perturbations, and show that in the limit of
small ε, the stability of the base state u∗ is entirely determined by whether or not the classical
Turing conditions are satisfied locally. While these localization results are consistent with the
results in [122] for discontinuous (piecewise constant) heterogeneity, we remark that to justify
either of these analyses requires a separation of scales between the background heterogeneity,
and the emergent pattern wavelength. Additionally, there are technical obstructions to extending
the ideas of [88] beyond a one-dimensional spatial domain, though we conjecture that such a
localization result should hold on higher-dimensional spatial domains.

This ‘local linear theory’ has also been used to design reaction-diffusion systems which pattern
in specified domains. Employing those results, as well as the stripe and spot selection criteria
from [29], Woolley et al. [124] created a framework to design reaction–diffusion systems to
match a variety of patterning specifications. As an example, in figure 5, we show an image with
three regions satisfying local conditions, and a simulation that uses this image as heterogeneous
spatial forcing in a reaction–diffusion system. The heterogeneity in the light grey and white
regions locally matches spatially homogeneous Turing systems that give rise to stripes and spots,
respectively. In the innermost region, a heterogeneous base state value is stable to perturbations,
and hence the concentration profile follows the complex prepattern closely.

This ‘local’ approach is striking in its ability to capture quite complex patterns, though we
note that it is fundamentally phenomenological, and can only be justified in regimes where
there is a clear separation of spatial scales. While these results are useful in showing that in
such circumstances our intuition from the classical case applies, there are also examples where
this intuition leads one astray. In particular, the presence of even simple spatial heterogeneity
can induce spatio-temporal behaviour, such as changing the stability of patterned states and
thereby inducing periodic movement of spike solutions [105,125,126]. Such behaviour arises from
the instability of stable spike solutions, which is beyond the scope of near-equilibrium analysis
(though we note that linear stability analysis of spike solutions was used in [125] to understand
this behaviour). We anticipate that there is much work to be done in reconciling the simple
local viewpoint with these more dynamic phenomena, particularly in terms of thinking of the
robustness of stationary Turing patterns in heterogeneous environments. One promising avenue
is to more systematically study where separation of spatial and temporal scales can be exploited;
see also [127] for more discussion on this point. Finally, we note that beyond cases of clear
spatial separation, disentangling a patterned state due to diffusion and nonlinearity from one
generated by environmental heterogeneity can be mathematically and philosophically difficult or
intractable. This has potential implications in many areas, such as understanding when spatial
clustering of animals is due to dispersal and species interactions, or environmental heterogeneity
[94,128].

(b) Evolving domains and non-autonomous forcing
As noted above, Turing’s work on phyllotaxis anticipated that many pattern forming systems
develop not on a static domain, but instead on one which is growing, or more generally
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(a) (b)

Figure 5. (a) A black and white image of Alan Turing with three distinct regions. The outer background is white, an inner
background boundary is light grey, and a central complex inner image is shades of dark grey. (b) Values of an activator
concentration from simulations of a reaction–diffusion system using (a) to define a spatial heterogeneity. Figure created
following the algorithm described in fig. 11 of [124]. (Online version in colour.)

deforming. Such systems have been studied intensively over the past 25 years or so, and led to
several novel insights into Turing-type pattern formation. In some sense, the Turing instability can
also be viewed as driven by growth, as it cannot occur for domains which are sufficiently small
[21]. This perspective also helps clarify how a biological system can begin in a homogeneous
state, and, as it grows, a pattern emerges from a Turing instability once a certain critical domain
size is exceeded. Often this first instability can be thought of as polarization, as discussed in §3c.
In all of the work involving growing domains discussed in this section, we will concentrate
on cases where the domain evolution is prescribed a priori, and hence there is no feedback
from the reaction–diffusion dynamics on this evolution (see [129] for a numerical example of
concentration-dependent growth).

Several authors have used this quasi-static way of viewing the influence of growth on reaction–
diffusion patterning [4,130]. Crampin et al. [131] developed a more realistic model of the influence
of domain growth on reaction–diffusion processes by rederiving the governing equations via
conservation of mass. They demonstrated that growth could play a promising role in improving
the robustness of patterned states by reducing the dependence of the pattern on the initial
perturbation [132,133]. Depending on the rate of growth, an exact period-doubling sequence
could be observed, leading to a highly regular pattern essentially independent of the initial
condition; see figure 6. This was later extended to non-uniform growth, which could produce
a variety of pattern insertion events [96]. More recently, it was shown that this frequency-
doubling can depend somewhat sensitively on the kind of growth rates involved, even in a
one-dimensional domain growing uniformly [134]. Chemical experiments have also been carried
out on growing systems using photosensitive reactions [118].

In terms of near-equilibrium theory of such systems, much effort has been focused on
isotropically growing domains, especially in one dimension. Such growth leads to a system in
the Lagrangian frame which involves a time-dependent scaling of the diffusion coefficient, and
an extra (non-autonomous) term due to dilution, but otherwise the system retains the same
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Figure 6. A period-doubling cascade in an exponentially growing reaction–diffusion system. Figure reproduced from [131];
used with permission.

structure of a reaction–diffusion problem. For exponential isotropic growth, the dilution term
in fact becomes constant, so that homogeneous steady states on a static domain can be used to
find homogeneous steady states in such a growing domain with the kinetics modified by this
constant term. Under the further assumption that this growth is sufficiently slow, Madzvamuse
et al. [135] showed that one can obtain small but significant corrections to the classical Turing
conditions, in some sense justifying quasi-static approximations mentioned above. While these
analytical results were only small modifications of the classical conditions (valid for slow growth),
they are significant in showing how growth can modify a system’s ability to undergo Turing-type
instabilities, relaxing some of the restrictions on pattern forming systems. Hetzer & Madzvamuse
[136] considered a type of abstract quasi-asymptotic approach to stability in time-dependent
domains. Klika & Gaffney [137] relaxed some of the assumptions in the previous studies through
the use of Lyapunov stability, demonstrating important aspects of history-dependence in these
non-autonomous systems. It was also shown that for some special kinds of growth functions,
arbitrarily high wavenumbers could become unstable in finite time, indicating a breakdown of
the continuum hypothesis.

Van Gorder et al. [138] developed a comparison-principle to determine the time-dependent
linear stability of a spatially homogeneous, but possibly evolving, base state on time-dependent
manifolds. An important assumption made was that the growth was locally dilational, or in other
words, uniform in orthogonal directions at any point of the manifold. The base state chosen
satisfies the non-autonomous system obtained when one drops the diffusion term from the
reaction–diffusion system, and hence physically corresponds to the steady-state concentration
profiles under the effect of dilution due to growth. The resulting linear analysis then determined
whether a perturbation at any point in time would lead to growth of a spatial mode, and this could
be used to deduce a set of time-dependent inequalities generalizing the classical conditions for
Turing instability. These inequalities were used to create time-dependent dispersion plots which,
within the restrictions of a linear theory, agreed well with numerical simulations on a variety
of manifolds. Several important aspects of these results were impacted by the dynamics of the
homogeneous base state, which evolved independently from the reaction–diffusion system. In
particular, the base state satisfies a coupled system of nonlinear ordinary differential equations,
and depending on the form of the growth function, this can admit multistability, hysteresis, and
various kinds of bifurcations which were reflected in simulations of the full system, and often
inhibited pattern formation when they occurred.
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Beyond linear instability analysis, a number of authors have also considered weakly nonlinear
analyses of growing reaction–diffusion systems [139], and Swift–Hohenberg equations (a related
pattern-forming model) on time-dependent domains [140,141]. Many open questions still remain
in understanding such problems on time-varying domains, such as those raised in [142]. Beyond
isotropic and dilational growth, non-uniform growth has been explored numerically in one-
dimensional domains [96] and on manifolds [97]. These studies showed a variety of impacts that
non-uniform growth can have, particularly including complicated effects of hysteresis and mode
selection depending on exactly how the domain evolved. In general, such growth is much more
difficult to investigate via analytical methods, as even if one could sensibly define a base state,
one can no longer separate spatial and temporal terms from the governing equations.

Besides time-dependent domains, substantial work has also been carried out for reaction–
diffusion systems with time-dependent forcing. Timm and Okubo [143] use a weakly nonlinear
analysis to show that for a particular predator–prey system, time-varying diffusivities negatively
impact the ability of the system to support diffusion-driven (Turing) patterns. Gourley et al.
[144] found similar results for small-amplitude periodic fluctuations of the diffusion coefficients.
Recently, several authors have studied the Turing instability of a time-dependent base state arising
from a limit cycle of the reaction system [145,146]. These approaches generalize more classical
work on Benjamin-Feir instabilities (sometimes termed ‘modulational instability’) of time-
periodic waves studied in the Complex Ginzburg–Landau equation [147,148]. Following from
these ideas, Van Gorder [149] further developed the approach presented in [138], generalizing
both Turing and Benjamin-Feir-type instabilities to a large class of non-autonomous reaction–
diffusion systems incorporating time-dependent kinetics, diffusion coefficients and base states.
This analysis was recently applied to time-varying networks [150].

While the approach above provides a general framework for linear instability analysis of
non-autonomous reaction–diffusion systems, there remain open questions. Firstly, while there
is literature on understanding far-from-equilibrium phenomena (i.e. the evolution and stability
of large amplitude patterns, beyond where linear analysis is valid), time dependence makes
many of the traditional tools used either more difficult to use, or inapplicable altogether. There
are also important problems in the use of such non-autonomous systems to model a variety of
physical problems. Time-dependent models introduce additional timescales, and make solution
behaviours much more sensitive to initial conditions and other details which are often neglected
in autonomous systems. Finally, all of the analytical work to date on growing domains has
only considered the case of prescribed growth, and moving beyond prescribed growth has only
been considered in numerical studies [129,151–154]. Many developmental systems will involve
feedback between morphogen signalling and growth [155], and we are unaware of any attempts
to analytically study such interactions in the reaction–diffusion literature. We note in particular
how difficult it is to capture concentration-dependent growth in terms of modelling assumptions,
before even considering things like linear instability analysis etc. Nonetheless, these issues have
been studied in mechanical models where domains are intrinsically coupled to the dynamics
under study [156].

5. More general systems
Here, we briefly sketch a few other generalizations of classical reaction–diffusion theory, namely
generalized transport and models of three or more species.

(a) Generalized transport models
The framework given by equation (2.6) admits a few direct examples which go beyond Fickian
diffusion. One example would be equations involving higher-order spatial operators, such as the
Swift–Hohenberg equation [3,157], and the Cahn–Hilliard equation [158,159]. Such higher-order
operators often capture nonlocal interactions, and arise in several biological applications [160,161]
(also see [162], Ch. 11). These models can exhibit much more complicated dispersion relations,
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allowing for pattern formation in scalar systems (where one can often use variational approaches
and other powerful tools to understand global aspects of the patterning process).

Systems of reaction-advection-diffusion equations are another example of generalized
transport, accounting for advection of morphogens by a variety of physical and biological
mechanisms. Such systems exhibit a variety of new phenomena not present in two-component
reaction–diffusion systems, such as patterns which are advected by the flow [163], modification
of phases between activator and inhibitor [164], and pattern formation due to differential-flow
without the need for differential diffusion [165]. Such systems can admit both stationary and
travelling waves [166]. Reaction-advection-diffusion systems are examples of equation (2.6) only
in the case when the ratio of advection to diffusion is the same between each species, as
otherwise the system cannot be written or analysed via a scalar operator L. Even when this is
possible, and the system can be studied via the spectrum of L, the spectrum will typically be
more complicated due to the loss of self-adjointness of L, which allows complex eigenvalues
and a loss of spectral discreteness in general (depending on the boundary conditions used)
[21]. Reaction-advection-diffusion systems have been studied outside of this regime (that is,
when the systems cannot be written using a scalar operator L), though there is limited analysis
possible from the perspective of linear instability. This is due to the fact that the theory of
matrix operators, particularly when they are not self-adjoint, is not nearly as well-developed
as that of the scalar Sturm–Liouville theory; see §3 of [163] for further discussion of these
issues.

Other transport models beyond the form of equation (2.6) include those with nonlinear
diffusion [167,168], chemotaxis and related directed-motion models ([4], Ch. 5), [128,169–171], and
cross-diffusion systems [172–175]. We also mention hyperbolic extensions of reaction–diffusion
systems, developed to account for the finite speed of propagation of real particles [77,176], though
we remark that Turing-type instabilities in such systems typically exhibit nearly identical patterns
in the same parameter regimes as their purely parabolic counterparts. However, these hyperbolic
systems also admit oscillatory instabilities (sometimes called Turing–Wave instabilities) where a
complex conjugate pair of growth rates λk crosses the imaginary axis as a parameter passes the
instability threshold. Such instabilities lead to spatially and temporally oscillating waves, and are
not possible in two-species reaction–diffusion systems.

The framework of non-equilibrium thermodynamics offers a unifying point of view on
several of these pattern forming models, where Fickian diffusion, nonlinear diffusion, Stefan–
Maxwell diffusion, chemotaxis or cross-diffusion are all particular manifestations of the same
mechanism—the gradient of the chemical potential being a driving force of transport processes
[177–180]. From this point of view, these models differ only in the degree of coupling among
such forces, analogous to the prescription of constitutive relationships in continuum mechanics.
While many of these extensions to the classical Fickian model of diffusion can be derived using
formalisms of non-equilibrium thermodynamics, there are important open questions regarding
the appropriate model for many transport phenomena involved in pattern formation [181,182].

As in reaction–diffusion models, these systems exhibit diffusion-driven instabilities, as well
as a range of other spatio-temporal dynamics. The usual approach for analysing such systems
near a homogeneous steady state employs an ansatz like (2.3) involving the eigenfunctions
of the Laplacian, and determining solvability conditions analogous to the dispersion relation
(2.5). One major difference between transport models of these more general forms and standard
reaction–diffusion systems is that new routes to spatio-temporal instabilities appear, which are
not present in two-species reaction–diffusion systems. In particular, the Turing instability for a
two-component reaction–diffusion system will always undergo a purely spatial instability (i.e.
the largest growth rate, λk, will be real), whereas many models involving nonlinear diffusion
admit complex instability boundaries in their parameter spaces. This allows for a wider class of
symmetry-breaking phenomena, and in particular Turing-wave type instabilities where spatial
modes oscillate in time as their amplitudes increase. Weakly nonlinear analysis of these more
general systems is also more difficult, though progress has been made in understanding a fairly
wide class of systems; see [30] and the references therein.
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(b) Beyond two-species
The vast majority of the work cited above considers the case of two-components, which is
the simplest system that exhibits diffusion-driven instability in the class of reaction–diffusion
systems. Although the linear stability analysis described in §2a applies to m-component systems,
determining parameter ranges corresponding to instability quickly increases in complexity with
the number of components, and there are new possibilities for more complicated behaviours
(such as Turing–Wave bifurcations for m ≥ 3). Some results regarding these general systems
were derived by Satnoianu et al. [183]. Of particular importance is the requirement that some
subsystem be unstable in the absence of diffusion (i.e. an activator subsystem), generalizing the
notion of activator-inhibitor interactions. A variety of recent approaches have analysed these
m-component systems from the perspective of reaction networks, in order to determine motifs
that permit pattern formation [184,185], and to explore questions of robustness in larger networks
[186]. Given that the general theoretical problem is difficult to analyse, it is important to work
with experimentalists on specific systems [124,187,188].

There are important caveats linked to the study of n-species systems in developmental biology.
Economu et al. [189] point to a key observation that large portions of the genome and proteome
are devoted to regulation. Hence, the minimal working examples of self-organization should be
expanded as they most likely do not capture the complexity of larger systems. For instance, see
[190] where a given (two-species) network can exhibit strikingly different behaviour than the
same network only expanded by a single species. There are cases where more species can be
valuable or unavoidable, such as in reducing the need for a substantial differential diffusion
between species required for pattern formation [191]. Given that the notion of a morphogen
can be difficult to operationalize (i.e. ascribe to a specific class of functional structures), there
are crucial questions regarding what specifically is meant by this term in a given situation.
It has been suggested in the developmental context that a reasonable level of description is
the use of a specific signalling pathway as a morphogen, rather than including the complexity
of a more detailed level [187,189]. This is an ongoing debate, and we anticipate a substantial
opportunity here for mathematical ideas to help elucidate the right level of abstraction to employ
in understanding developmental systems.

Another important contemporary development, also related to circumventing the need for
large differential diffusion, is the study of models involving non-diffusible components within a
reaction–diffusion system [44,190,192]. Such non-diffusible species often represent membrane-
bound proteins or other immobile substrates, and allow for pattern formation even in the
case of equal diffusion coefficients among the diffusible species [193]. In some sense, this is
still a kind of differential transport, and can be shown in some cases to be exactly captured
by a reaction–diffusion system with different diffusion coefficients [194]. Importantly, there
are also requirements that the non-diffusible subsystem be stable when uncoupled from the
diffusible species, in order to prevent the excitation of arbitrarily high wavenumbers, and hence
a breakdown of the continuum approximation [190,194].

Multistability of patterns, even in simple two-component reaction-diffusion systems, can be
common, especially in higher spatial dimensions [195]. Such complexity results purely from
spatial interactions, even in systems which are monostable in the absence of diffusion. While
there is important work being done in chemical reaction network theory on monostable systems
(of particular note, we refer to the global attractor conjecture [196]) it is not at all clear that
biochemical signalling networks in development will have this property of monostability. The
interaction of Turing-type bifurcation branches with multiple homogeneous equilibria is under-
explored, and there are more avenues for such multistability to exist generically when considering
larger systems.

6. Outlook
The review presented here covers a range of different models building on Turing’s ideas of
pattern formation in chemical and biological systems. Much of this research directly extends
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ideas that were nascent in Turing’s analysis, and still there are many questions implicit in Turing’s
analysis which remain unanswered. While Turing-type pattern formation is now well-established
with a vast literature, it is also rich in biological and mathematical discoveries yet to be made.
We discussed a number of advances related to geometry, heterogeneity, and reaction-transport
systems above, closing each subsection with a list of key challenges yet to be solved. However,
there are further directions for exploration we have not yet discussed. We end this review
highlighting a few of these.

A difficulty alluded to above is both the identification of morphogens, and the specification
of morphogen kinetics. In chemical models of Turing systems, we often have a strong indication
that the chemical kinetics can be captured by specific nonlinear functions [118]. However, such
certainty is much harder to obtain in biological systems, especially due to the difficulty in
operationalizing the abstract notion of morphogen. Even in the two-component case, reaction
kinetics can be designed to match a wide range of observed patterns [124]. Of course, such
phenomenology gives little indication that the underlying mechanism is that of a reaction–
diffusion process, and there is important work to be done in carefully testing different competing
modelling hypotheses in pattern formation.

There are also important uncertainties in comparing predictions from chemical theories from
those from other kinds of models, such as mechanical models of pattern formation. Many
of these frameworks have similar analysis, and give rise to similar principles, such as short-
range activation and long-range inhibition [22]. One important aspect of differentiating between
these competing theories is to specify precisely what their assumptions and predictions are,
and compare these with experiments; see [127] in this theme issue for a discussion along
these lines. Another way of rethinking these issues is to focus on conceptually separating
problems in developmental biology (e.g. how we explain an observation) from their solutions
in terms of models or particular mechanistic hypotheses [197]. One can then see which kinds
of developmental phenomena are explained by different mechanistic hypotheses, and use this to
distinguish further experimental work which can help determine between competing hypotheses.

For brevity, we have omitted many topics related to pattern formation and reaction–diffusion
systems, but we will now briefly mention two of these. Reaction–diffusion models of the form
(2.1) are local in time, implying that reaction rates instantaneously change in proportion to the
concentrations. However, these morphogens are often, though not always, signalling molecules
which must be produced via gene transcription, leading to delays between uptake of a signal
and the up- or downregulation of the resultant product. Such time delays have been studied in
the past few decades [129,198–202], broadly with the conclusion that they may lead to oscillatory
behaviours, rather than the formation of stationary patterns (though see [203] for a case where
delay can enhance the stability of spikes). Such results plausibly call into question the standard
use of reaction–diffusion frameworks for the fastest cellular self-organization processes, where
oscillations are not typically observed, though we caution that there is more work to be done both
biologically and mathematically in testing these hypotheses. On the mathematical side, all of the
studies to date have only considered simple models of fixed time delay, though in reality one
should anticipate some distribution of time delays in noisy cellular environments.

Another implicit simplification in the modelling frameworks explored here is to consider only
mean-field deterministic models of what are typically very noisy systems. Stochastic modelling
in mathematical biology, and reaction–diffusion systems in particular, has seen substantial
development in the past few decades [204]. Such models have also been applied to study
questions regarding pattern formation, both for intrinsic noise due to small number fluctuations
(analytically and via Gillespie-type algorithms) [205–207], and for external noise, via random
forcing at the level of partial differential equations [208]. While noise has been shown to be
both stabilizing and destabilizing in different contexts, it can play an important role in helping
to address some aspects of the robustness problems alluded to earlier in the deterministic
theory [209]. In particular, stochastically forced systems can explore the space of spatially
patterned states, and in some cases more easily settle in to a specific spatial configuration with
less dependence on their starting conditions compared to deterministic models. Still, there is
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important work to be done in determining the effect of such noise, especially in the more general
settings discussed in this review.

Besides these areas, we have omitted many other topics of relevance to pattern formation in
reaction-diffusion systems. We have not discussed wave phenomena, which are in some sense
dual to pattern formation [210], though such phenomena can also effect patterning, for example
by wave pinning [211]. Except in passing, we have also not discussed some of the rich applications
of the framework of reaction–diffusion equations in spatial ecology, and the fruitful interaction
these fields have had [212]. Lastly, we only considered models that were continuous in space
and time, though there are a range of discrete approaches which are particularly well-motivated
in considering biological cells [213]. Still, we hope that this review gives the reader a sense
of how far we have come from Turing’s 1952 paper, and how much more work there is to
be done.

Turing wrote his paper in ‘the present state of knowledge,’ almost 70 years ago. As evidenced
here, his ideas have gone on to change this state of knowledge, which has progressed iteratively
both mathematically and biologically. We feel it is important to reassess this state, both to
appreciate what has been accomplished, and to plan paths forward in scientific work. As Turing
said (though in a different context) [214], ‘We can only see a short distance ahead, but we can see
plenty there that needs to be done’. We hope this paper has helped guide the reader to some of
these near-term prospects for progress in further developing these ideas.

Data accessibility. This article has no additional data.
Authors’ contributions. All authors contributed to writing and editing the paper.
Competing interests. The authors declare that they have no competing interests.
Funding. V.K. is grateful for support from the European Regional Development Fund-Project ‘Center for
Advanced Applied Science’ (grant no. CZ.02.1.01/0.0/0.0/16_019/0000778).

References
1. Turing AM. 1952 The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72.

(doi:10.1098/rstb.1952.0012)
2. Ball P. 2015 Forging patterns and making waves from biology to geology: a commentary

on Turing (1952) ‘the chemical basis of morphogenesis’. Phil. Trans. R. Soc. B 370, 20140218.
(doi:10.1098/rstb.2014.0218)

3. Cross MC, Hohenberg PC. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65,
851. (doi:10.1103/RevModPhys.65.851)

4. Murray JD 2004 Mathematical Biology. II. Spatial models and biomedical applications.
Interdisciplinary Applied Mathematics. New York, NY: Springer.

5. Al Saadi F, Champneys A. 2021 Unified framework for localized patterns in reaction–
diffusion systems; the Gray–Scott and Gierer–Meinhardt cases. Phil. Trans. R. Soc. A 379,
20200277. (doi:10.1098/rsta.2020.0277)

6. Avitabile D, Desroches M, Knobloch E, Krupa M. 2017 Ducks in space: from nonlinear
absolute instability to noise-sustained structures in a pattern-forming system. Proc. R. Soc.
A 473, 20170018. (doi:10.1098/rspa.2017.0018)

7. Champneys AR, Al Saadi F, Breña-Medina VF, Grieneisen VA, Marée AF, Verschueren
N, Wuyts B. 2021 Bistability, wave pinning and localisation in natural reaction–diffusion
systems. Physica D 416, 132735. (doi:10.1016/j.physd.2020.132735)

8. Yochelis A, Sheintuch M. 2009 Towards nonlinear selection of reaction-diffusion patterns in
presence of advection: a spatial dynamics approach. Phys. Chem. Chem. Phys. 11, 9210–9223.
(doi:10.1039/b903266e)

9. Hale JK, Sakamoto K. 1989 Shadow systems and attractors in reaction-diffusion equations.
Appl. Anal. 32, 287–303. (doi:10.1080/00036818908839855)

10. Iron D, Ward MJ, Wei J. 2001 The stability of spike solutions to the one-dimensional Gierer–
Meinhardt model. Physica D 150, 25–62. (doi:10.1016/S0167-2789(00)00206-2)

11. Wei J, Winter M. 2013 Mathematical aspects of pattern formation in biological systems, vol. 189.
London, UK: Springer Science & Business Media.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1098/rstb.2014.0218
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1098/rsta.2020.0277
http://dx.doi.org/10.1098/rspa.2017.0018
http://dx.doi.org/10.1016/j.physd.2020.132735
http://dx.doi.org/10.1039/b903266e
http://dx.doi.org/10.1080/00036818908839855
http://dx.doi.org/10.1016/S0167-2789(00)00206-2


22

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

12. Gomez D, Iyaniwura S, Paquin-Lefebvre F, Ward MJ. 2021 Pattern forming systems coupling
linear bulk diffusion to dynamically active membranes or cells. Phil. Trans. R. Soc. A 379,
20200276. (doi:10.1098/rsta.2020.0276)

13. Chafee N. 1975 Asymptotic behavior for solutions of a one-dimensional parabolic
equation with homogeneous neumann boundary conditions. J. Differ. Equ. 18, 111–134.
(doi:10.1016/0022-0396(75)90084-4)

14. Hess P. 1987 Spatial homogeneity of stable solutions of some periodic-parabolic
problems with neumann boundary conditions. J. Differ. Equ. 68, 320–331.
(doi:10.1016/0022-0396(87)90173-2)

15. Matano H. 1979 Asymptotic behavior and stability of solutions of semilinear diffusion
equations. Pub. Res. Inst. Math. Sci. 15, 401–454. (doi:10.2977/prims/1195188180)

16. Kishimoto K, Weinberger H. 1985 The spatial homogeneity of stable equilibria
of some reaction-diffusion systems on convex domains. J. Differ. Equ. 58, 15–21.
(doi:10.1016/0022-0396(85)90020-8)

17. Hale JK, Vegas J. 1984 A nonlinear parabolic equation with varying domain. Arch. Ration.
Mech. Anal. 86, 99–123. (doi:10.1007/BF00275730)

18. Murray JD, Sperb RP. 1983 Minimum domains for spatial patterns in a class of reaction
diffusion equations. J. Math. Biol. 18, 169–184. (doi:10.1007/BF00280665)

19. Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. 2012
Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system.
Science 336, 721–724. (doi:10.1126/science.1221920)

20. Kondo S, Miura T. 2010 Reaction-diffusion model as a framework for understanding
biological pattern formation. Science 329, 1616–1620. (doi:10.1126/science.1179047)

21. Klika V, Kozák M, Gaffney EA. 2018 Domain size driven instability: self-organization in
systems with advection. SIAM J. Appl. Math. 78, 2298–2322. (doi:10.1137/17M1138571)

22. Meinhardt H, Gierer A. 2000 Pattern formation by local self-activation and lateral inhibition.
Bioessays 22, 753–760. (doi:10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z)

23. Evans LC. 1998 Partial differential equations. Rhode Island.
24. Engel K-J, Nagel R. 2001 One-parameter semigroups for linear evolution equations, vol. 63.
25. Pazy A. 2012 Semigroups of linear operators and applications to partial differential equations.

New York, NY: Springer Science & Business Media.
26. Klika V. 2017 Significance of non-normality-induced patterns: transient growth versus

asymptotic stability. Chaos 27, 073120. (doi:10.1063/1.4985256)
27. Wollkind DJ, Manoranjan VS, Zhang L. 1994 Weakly nonlinear stability analyses of prototype

reaction-diffusion model equations. Siam Rev. 36, 176–214. (doi:10.1137/1036052)
28. Breña-Medina V, Champneys A. 2014 Subcritical Turing bifurcation and the morphogenesis

of localized patterns. Phys. Rev. E 90, 032923. (doi:10.1103/PhysRevE.90.032923)
29. Ermentrout B. 1991 Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion

equations on the square. Proc. R. Soc. Lond. A 434, 413–417. (doi:10.1098/rspa.1991.0100)
30. Wheeler B and Zumbrun K: Convective Turing bifurcation. (http://arxiv.org/abs/2101.

07239). 2021.
31. Hunding A. 1980 Dissipative structures in reaction–diffusion systems: numerical

determination of bifurcations in the sphere. J. Chem. Phys. 72, 5241–5248. (doi:10.1063/
1.439761)

32. Hunding A. 1983 Bifurcations of nonlinear reaction-diffusion systems in prolate spheroids.
J. Math. Biol. 17, 223–239. (doi:10.1007/BF00305761)

33. Varea C, Aragon J, Barrio R. 1999 Turing patterns on a sphere. Phys. Rev. E 60, 4588.
(doi:10.1103/PhysRevE.60.4588)

34. Chaplain MA, Ganesh M, Graham IG. 2001 Spatio-temporal pattern formation on spherical
surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42,
387–423. (doi:10.1007/s002850000067)

35. Frankel T. 2011 The geometry of physics: an introduction. Cambridge, UK: Cambridge
University Press.

36. Plaza RG, Sanchez-Garduno F, Padilla P, Barrio RA, Maini PK. 2004 The effect
of growth and curvature on pattern formation. J. Dyn. Differ. Equ. 16, 1093–1121.
(doi:10.1007/s10884-004-7834-8)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1098/rsta.2020.0276
http://dx.doi.org/10.1016/0022-0396(75)90084-4
http://dx.doi.org/10.1016/0022-0396(87)90173-2
http://dx.doi.org/10.2977/prims/1195188180
http://dx.doi.org/10.1016/0022-0396(85)90020-8
http://dx.doi.org/10.1007/BF00275730
http://dx.doi.org/10.1007/BF00280665
http://dx.doi.org/10.1126/science.1221920
http://dx.doi.org/10.1126/science.1179047
http://dx.doi.org/10.1137/17M1138571
http://dx.doi.org/10.1002/1521-1878(200008)22:8%3C753::AID-BIES9%3E3.0.CO;2-Z
http://dx.doi.org/10.1063/1.4985256
http://dx.doi.org/10.1137/1036052
http://dx.doi.org/10.1103/PhysRevE.90.032923
http://dx.doi.org/10.1098/rspa.1991.0100
http://arxiv.org/abs/2101.07239
http://arxiv.org/abs/2101.07239
http://dx.doi.org/10.1063/1.439761
http://dx.doi.org/10.1063/1.439761
http://dx.doi.org/10.1007/BF00305761
http://dx.doi.org/10.1103/PhysRevE.60.4588
http://dx.doi.org/10.1007/s002850000067
http://dx.doi.org/10.1007/s10884-004-7834-8


23

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

37. Krause AL, Burton AM, Fadai NT, Van Gorder RA. 2018 Emergent structures in
reaction-advection-diffusion systems on a sphere. Phys. Rev. E 97, 042215. (doi:10.1103/
PhysRevE.97.042215)

38. Gandhi P, Werner L, Iams S, Gowda K, Silber M. 2018 A topographic mechanism for arcing
of dryland vegetation bands. J. R. Soc. Interface 15, 20180508. (doi:10.1098/rsif.2018.0508)

39. Tzou J, Tzou L. 2020 Analysis of spot patterns on a coordinate-invariant model for vegetation
on a curved terrain. SIAM J. Appl. Dyn. Syst. 19, 2500–2529. (doi:10.1137/20M1326271)

40. Callahan T. 2004 Turing patterns with o (3) symmetry. Physica D 188, 65–91.
(doi:10.1016/S0167-2789(03)00286-0)

41. Trinh PH, Ward MJ. 2016 The dynamics of localized spot patterns for reaction-diffusion
systems on the sphere. Nonlinearity 29, 766. (doi:10.1088/0951-7715/29/3/766)

42. Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout GB, Epstein IR, Fraden S. 2014
Testing turing’s theory of morphogenesis in chemical cells. Proc. Natl Acad. Sci. USA 111,
4397–4402. (doi:10.1073/pnas.1322005111)

43. Othmer HG, Scriven L. 1971 Instability and dynamic pattern in cellular networks. J. Theor.
Biol. 32, 507–537. (doi:10.1016/0022-5193(71)90154-8)

44. Rauch EM, Millonas MM. 2004 The role of trans-membrane signal transduction in Turing-
type cellular pattern formation. J. Theor. Biol. 226, 401–407. (doi:10.1016/j.jtbi.2003.09.018)

45. Ide Y, Izuhara H, Machida T. 2016 Turing instability in reaction–diffusion models on complex
networks. Physica A: Stat. Mech. Appl. 457, 331–347. (doi:10.1016/j.physa.2016.03.055)

46. McCullen N, Wagenknecht T. 2016 Pattern formation on networks: from localised activity to
Turing patterns. Sci. Rep. 6, 1–8. (doi:10.1038/srep27397)

47. Nakao H, Mikhailov AS. 2010 Turing patterns in network-organized activator–inhibitor
systems. Nat. Phys. 6, 544. (doi:10.1038/nphys1651)

48. Wolfrum M. 2012 The Turing bifurcation in network systems: collective patterns and single
differentiated nodes. Physica D 241, 1351–1357. (doi:10.1016/j.physd.2012.05.002)

49. Asllani M, Busiello DM, Carletti T, Fanelli D, Planchon G. 2014 Turing patterns in multiplex
networks. Phys. Rev. E 90, 042814. (doi:10.1103/PhysRevE.90.042814)

50. Asllani M, Carletti T, Fanelli D. 2016 Tune the topology to create or destroy patterns. Eur.
Phys. J. B 89, 1–10. (doi:10.1140/epjb/e2016-70248-6)

51. Kouvaris NE, Hata S, Díaz-Guilera A. 2015 Pattern formation in multiplex networks. Sci. Rep.
5, 1–9. (doi:10.1038/srep10840)

52. Kouvaris NE, Sebek M, Mikhailov AS, Kiss IZ. 2016 Self-organized stationary patterns
in networks of bistable chemical reactions. Angewandte Chemie 128, 13 461–13 464.
(doi:10.1002/ange.201607030)

53. Hata S, Nakao H, Mikhailov AS. 2014 Dispersal-induced destabilization of metapopulations
and oscillatory Turing patterns in ecological networks. Sci. Rep. 4, 1–9.

54. Muolo R, Asllani M, Fanelli D, Maini PK, Carletti T. 2019 Patterns of non-normality in
networked systems. J. Theor. Biol. 480, 81–91. (doi:10.1016/j.jtbi.2019.07.004)

55. Grant PK, Dalchau N, Brown JR, Federici F, Rudge TJ, Yordanov B, Patange O, Phillips A,
Haseloff J. 2016 Orthogonal intercellular signaling for programmed spatial behavior. Mol.
Syst. Biol. 12, 849. (doi:10.15252/msb.20156590)

56. Krause AL, Klika V, Halatek J, Grant PK, Woolley TE, Dalchau N, Gaffney EA. 2020 Turing
patterning in stratified domains. Bull. Math. Biol. 82, 136. (doi:10.1007/s11538-020-00809-9)

57. Cruywagen GC, Murray JD. 1992 On a tissue interaction model for skin pattern formation.
J. Nonlinear Sci. 2, 217–240. (doi:10.1007/BF02429856)

58. Shaw LJ, Murray JD. 1990 Analysis of a model for complex skin patterns. SIAM J. Appl. Math.
50, 628–648. (doi:10.1137/0150037)

59. Epstein IR, Berenstein IB, Dolnik M, Vanag VK, Yang L, Zhabotinsky AM. 2007 Coupled
and forced patterns in reaction–diffusion systems. Phil. Trans. R. Soc. A 366, 397–408.
(doi:10.1098/rsta.2007.2097)

60. Fujita H, Kawaguchi M. 2013 Pattern formation by two-layer Turing system with
complementary synthesis. J. Theor. Biol. 322, 33–45. (doi:10.1016/j.jtbi.2013.01.008)

61. Yang L, Dolnik M, Zhabotinsky AM, Epstein IR. 2002 Spatial resonances and superposition
patterns in a reaction-diffusion model with interacting Turing modes. Phys. Rev. Lett. 88,
208303. (doi:10.1103/PhysRevLett.88.208303)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1103/PhysRevE.97.042215
http://dx.doi.org/10.1103/PhysRevE.97.042215
http://dx.doi.org/10.1098/rsif.2018.0508
http://dx.doi.org/10.1137/20M1326271
http://dx.doi.org/10.1016/S0167-2789(03)00286-0
http://dx.doi.org/10.1088/0951-7715/29/3/766
http://dx.doi.org/10.1073/pnas.1322005111
http://dx.doi.org/10.1016/0022-5193(71)90154-8
http://dx.doi.org/10.1016/j.jtbi.2003.09.018
http://dx.doi.org/10.1016/j.physa.2016.03.055
http://dx.doi.org/10.1038/srep27397
http://dx.doi.org/10.1038/nphys1651
http://dx.doi.org/10.1016/j.physd.2012.05.002
http://dx.doi.org/10.1103/PhysRevE.90.042814
http://dx.doi.org/10.1140/epjb/e2016-70248-6
http://dx.doi.org/10.1038/srep10840
http://dx.doi.org/10.1002/ange.201607030
http://dx.doi.org/10.1016/j.jtbi.2019.07.004
http://dx.doi.org/10.15252/msb.20156590
http://dx.doi.org/10.1007/s11538-020-00809-9
http://dx.doi.org/10.1007/BF02429856
http://dx.doi.org/10.1137/0150037
http://dx.doi.org/10.1098/rsta.2007.2097
http://dx.doi.org/10.1016/j.jtbi.2013.01.008
http://dx.doi.org/10.1103/PhysRevLett.88.208303


24

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

62. Yang L, Epstein IR. 2003 Oscillatory Turing patterns in reaction-diffusion systems with two
coupled layers. Phys. Rev. Lett. 90, 178303. (doi:10.1103/PhysRevLett.90.178303)

63. Catllá AJ, McNamara A, Topaz CM. 2012 Instabilities and patterns in coupled reaction-
diffusion layers. Phys. Rev. E 85, 026215. (doi:10.1103/PhysRevE.85.026215)

64. Cusseddu D, Edelstein-Keshet L, Mackenzie JA, Portet S, Madzvamuse A. 2018
A coupled bulk-surface model for cell polarisation. J. Theor. Biol. 481, 119–135.
(doi:10.1016/j.jtbi.2018.09.008)

65. Frey E, Halatek J, Kretschmer S, Schwille P. 2018 Protein pattern formation. In Physics of
Biological Membranes (eds P Bassereau, P Sens), pp. 229–260. Cham: Springer International
Publishing.

66. Halatek J, Brauns F, Frey E. 2018 Self-organization principles of intracellular pattern
formation. Phil. Trans. R. Soc. B 373, 20170107. (doi:10.1098/rstb.2017.0107)

67. Madzvamuse A, Chung AH, Venkataraman C. 2015 Stability analysis and simulations
of coupled bulk-surface reaction–diffusion systems. Proc. R. Soc. A 471, 20140546.
(doi:10.1098/rspa.2014.0546)

68. Paquin-Lefebvre F, Nagata W, Ward MJ. 2019 Pattern formation and oscillatory dynamics in
a two-dimensional coupled bulk-surface reaction-diffusion system. SIAM J. Appl. Dyn. Syst.
18, 1334–1390. (doi:10.1137/18M1213737)

69. Paquin-Lefebvre F, Xu B, DiPietro KL, Lindsay AE, Jilkine A. 2020 Pattern formation
in a coupled membrane-bulk reaction-diffusion model for intracellular polarization and
oscillations. J. Theor. Biol. 497, 110242. (doi:10.1016/j.jtbi.2020.110242)

70. Rätz A, Röger M. 2014 Symmetry breaking in a bulk–surface reaction–diffusion model for
signalling networks. Nonlinearity 27, 1805. (doi:10.1088/0951-7715/27/8/1805)

71. Spill F, Andasari V, Mak M, Kamm RD, Zaman MH. 2016 Effects of 3d
geometries on cellular gradient sensing and polarization. Phys. Biol. 13, 036008.
(doi:10.1088/1478-3975/13/3/036008)

72. Brauns F, Pawlik G, Halatek J, Kerssemakers J, Frey E, Dekker C. 2020 Bulk-surface coupling
reconciles Min-protein pattern formation in vitro and in vivo. bioRxiv, page 2020.03.01.971952.

73. Wu F, Halatek J, Reiter M, Kingma E, Frey E, Dekker C. 2016 Multistability and
dynamic transitions of intracellular Min protein patterns. Mol. Syst. Biol. 12, 873.
(doi:10.15252/msb.20156724)

74. Levine H, Rappel W-J. 2005 Membrane-bound Turing patterns. Phys. Rev. E 72, 061912.
(doi:10.1103/PhysRevE.72.061912)

75. Fussell EF, Krause AL, Van Gorder RA. 2019 Hybrid approach to modeling spatial dynamics
of systems with generalist predators. J. Theor. Biol. 462, 26–47. (doi:10.1016/j.jtbi.2018.10.054)

76. Colbrook MJ, Fokas AS. 2018 Computing eigenvalues and eigenfunctions of the laplacian for
convex polygons. Appl. Numer. Math. 126, 1–17. (doi:10.1016/j.apnum.2017.12.001)

77. Mendez V, Fedotov S, Horsthemke W. 2010 Reaction-transport systems: mesoscopic foundations,
fronts, and spatial instabilities. London, UK: Springer Science & Business Media.

78. Dillon R, Maini P, Othmer H. 1994 Pattern formation in generalized Turing systems. J. Math.
Biol. 32, 345–393. (doi:10.1007/BF00160165)

79. Krause AL, Klika V, Maini PK, Headon D, Gaffney EA. 2021 Isolating patterns in open
reaction-diffusion systems. Bull. Math. Biol. 83, 1–35. (doi:10.1007/s11538-021-00913-4)

80. Maini P, Myerscough M. 1997 Boundary-driven instability. Appl. Math. Lett. 10, 1–4.
(doi:10.1016/S0893-9659(96)00101-2)

81. Tzou J, Bayliss A, Matkowsky B, Volpert V. 2011 Stationary and slowly moving
localised pulses in a singularly perturbed brusselator model. Eur. J. Appl. Math. 22, 423.
(doi:10.1017/S0956792511000179)

82. Swinton J. 2004 Watching the daisies grow: Turing and Fibonacci phyllotaxis. In Alan Turing:
life and legacy of a great thinker, pp. 477–498. New York, NY: Springer.

83. Gierer A, Meinhardt H. 1972 A theory of biological pattern formation. Kybernetik 12, 30–39.
(doi:10.1007/BF00289234)

84. Irvine KD, Rauskolb C. 2001 Boundaries in development: formation and function. Annu. Rev.
Cell Dev. Biol. 17, 189–214. (doi:10.1146/annurev.cellbio.17.1.189)

85. Meinhardt H. 1983 A boundary model for pattern formation in vertebrate limbs. Development
76, 115–137. (doi:10.1242/dev.76.1.115)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1103/PhysRevLett.90.178303
http://dx.doi.org/10.1103/PhysRevE.85.026215
http://dx.doi.org/10.1016/j.jtbi.2018.09.008
http://dx.doi.org/10.1098/rstb.2017.0107
http://dx.doi.org/10.1098/rspa.2014.0546
http://dx.doi.org/10.1137/18M1213737
http://dx.doi.org/10.1016/j.jtbi.2020.110242
http://dx.doi.org/10.1088/0951-7715/27/8/1805
http://dx.doi.org/10.1088/1478-3975/13/3/036008
http://dx.doi.org/10.15252/msb.20156724
http://dx.doi.org/10.1103/PhysRevE.72.061912
http://dx.doi.org/10.1016/j.jtbi.2018.10.054
http://dx.doi.org/10.1016/j.apnum.2017.12.001
http://dx.doi.org/10.1007/BF00160165
http://dx.doi.org/10.1007/s11538-021-00913-4
http://dx.doi.org/10.1016/S0893-9659(96)00101-2
http://dx.doi.org/10.1017/S0956792511000179
http://dx.doi.org/10.1007/BF00289234
http://dx.doi.org/10.1146/annurev.cellbio.17.1.189
http://dx.doi.org/10.1242/dev.76.1.115


25

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

86. Meinhardt H. 1983 Cell determination boundaries as organizing regions for secondary
embryonic fields. Dev. Biol. 96, 375–385. (doi:10.1016/0012-1606(83)90175-6)

87. Green JBA, Sharpe J. 2015 Positional information and reaction-diffusion: two big ideas in
developmental biology combine. Development 142, 1203–1211. (doi:10.1242/dev.114991)

88. Krause AL, Klika V, Woolley TE, Gaffney EA. 2020 From one pattern into another: analysis
of Turing patterns in heterogeneous domains via WKBJ. J. R. Soc. Interface 17, 20190621.
(doi:10.1098/rsif.2019.0621)

89. Wolpert L. 1971 Positional information and pattern formation. Curr. Top. Dev. Biol. 6, 183–224.
(doi:10.1016/S0070-2153(08)60641-9)

90. Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA.
2012 Hox genes regulate digit patterning by controlling the wavelength of a Turing-type
mechanism. Science 338, 1476–1480. (doi:10.1126/science.1226804)

91. Bassett A, Krause AL, Van Gorder RA. 2017 Continuous dispersal in a model of
predator–prey-subsidy population dynamics. Ecol. Modell 354, 115–122. (doi:10.1016/
j.ecolmodel.2017.02.017)

92. Clobert J, Le Galliard J-F, Cote J, Meylan S, Massot M. 2009 Informed dispersal, heterogeneity
in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol.
Lett. 12, 197–209. (doi:10.1111/j.1461-0248.2008.01267.x)

93. Cobbold CA, Lutscher F, Sherratt JA. 2015 Diffusion-driven instabilities and emerging spatial
patterns in patchy landscapes. Ecol. Complex. 24, 69–81. (doi:10.1016/j.ecocom.2015.10.001)

94. Kurowski L, Krause AL, Mizuguchi H, Grindrod P, Van Gorder RA. 2017 Two-species
migration and clustering in two-dimensional domains. Bull. Math. Biol. 79, 2302–2333.
(doi:10.1007/s11538-017-0331-0)

95. Pickett STA, Cadenasso ML. 1995 Landscape ecology: spatial heterogeneity in ecological
systems. Science 269, 331–334. (doi:10.1126/science.269.5222.331)

96. Crampin EJ, Hackborn WW, Maini PK. 2002 Pattern formation in reaction-diffusion models
with nonuniform domain growth. Bull. Math. Biol. 64, 747–769. (doi:10.1006/bulm.2002.
0295)

97. Krause AL, Ellis MA, Van Gorder RA. 2019 Influence of curvature, growth, and anisotropy
on the evolution of Turing patterns on growing manifolds. Bull. Math. Biol. 81, 759–799.
(doi:10.1007/s11538-018-0535-y)

98. Belmonte-Beitia J, Woolley TE, Scott JG, Maini PK, Gaffney EA. 2013 Modelling
biological invasions: individual to population scales at interfaces. J. Theor. Biol. 334, 1–12.
(doi:10.1016/j.jtbi.2013.05.033)

99. Sun G-Q, Jusup M, Jin Z, Wang Y, Wang Z. 2016 Pattern transitions in spatial
epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43–73. (doi:10.1016/
j.plrev.2016.08.002)

100. Avitabile D, Breña Medina VF, Ward MJ. 2018 Spot dynamics in a reaction-diffusion model
of plant root hair initiation. SIAM J. Appl. Math. 78, 291–319. (doi:10.1137/17M1120932)

101. Breña Medina VF, Avitabile D, Champneys AR, Ward MJ. 2015 Stripe to spot transition in a
plant root hair initiation model. SIAM J. Appl. Math. 75, 1090–1119. (doi:10.1137/140964527)

102. Auchmuty JFG, Nicolis G. 1975 Bifurcation analysis of nonlinear reaction-diffusion
equations–I. Evolution equations and the steady state solutions. Bull. Math. Biol. 37, 323–365.
(doi:10.1016/S0092-8240(75)80036-X)

103. Benson DL, Sherratt JA, Maini PK. 1993 Diffusion driven instability in an inhomogeneous
domain. Bull. Math. Biol. 55, 365–384. (doi:10.1007/BF02460888)

104. Page KM, Maini PK, Monk NAM. 2003 Pattern formation in spatially heterogeneous Turing
reaction–diffusion models. Physica D 181, 80–101. (doi:10.1016/S0167-2789(03)00068-X)

105. Page KM, Maini PK, Monk NAM. 2005 Complex pattern formation in reaction–
diffusion systems with spatially varying parameters. Physica D 202, 95–115. (doi:10.1016/
j.physd.2005.01.022)

106. Iron D, Ward MJ. 2001 Spike pinning for the Gierer–Meinhardt model. Math. Comput. Simul.
55, 419–431. (doi:10.1016/S0378-4754(00)00303-7)

107. Ward MJ, McInerney D, Houston P, Gavaghan D, Maini P. 2002 The dynamics and
pinning of a spike for a reaction-diffusion system. SIAM J. Appl. Math. 62, 1297–1328.
(doi:10.1137/S0036139900375112)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1016/0012-1606(83)90175-6
http://dx.doi.org/10.1242/dev.114991
http://dx.doi.org/10.1098/rsif.2019.0621
http://dx.doi.org/10.1016/S0070-2153(08)60641-9
http://dx.doi.org/10.1126/science.1226804
http://dx.doi.org/10.1016/j.ecolmodel.2017.02.017
http://dx.doi.org/10.1016/j.ecolmodel.2017.02.017
http://dx.doi.org/10.1111/j.1461-0248.2008.01267.x
http://dx.doi.org/10.1016/j.ecocom.2015.10.001
http://dx.doi.org/10.1007/s11538-017-0331-0
http://dx.doi.org/10.1126/science.269.5222.331
http://dx.doi.org/10.1006/bulm.2002.0295
http://dx.doi.org/10.1006/bulm.2002.0295
http://dx.doi.org/10.1007/s11538-018-0535-y
http://dx.doi.org/10.1016/j.jtbi.2013.05.033
http://dx.doi.org/10.1016/j.plrev.2016.08.002
http://dx.doi.org/10.1016/j.plrev.2016.08.002
http://dx.doi.org/10.1137/17M1120932
http://dx.doi.org/10.1137/140964527
http://dx.doi.org/10.1016/S0092-8240(75)80036-X
http://dx.doi.org/10.1007/BF02460888
http://dx.doi.org/10.1016/S0167-2789(03)00068-X
http://dx.doi.org/10.1016/j.physd.2005.01.022
http://dx.doi.org/10.1016/j.physd.2005.01.022
http://dx.doi.org/10.1016/S0378-4754(00)00303-7
http://dx.doi.org/10.1137/S0036139900375112


26

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

108. Wei J, Winter M, Yang W. 2017 Stable spike clusters for the precursor Gierer–Meinhardt
system in R

2. Calc. Var. Partial Differ. Equ. 56, 142. (doi:10.1007/s00526-017-1233-6)
109. Doelman A, van Heijster P, Shen J. 2018 Pulse dynamics in reaction–diffusion

equations with strong spatially localized impurities. Phil. Trans. R. Soc. A 376, 20170183.
(doi:10.1098/rsta.2017.0183)

110. Yuan X, Teramoto T, Nishiura Y. 2007 Heterogeneity-induced defect bifurcation and
pulse dynamics for a three-component reaction-diffusion system. Phys. Rev. E 75, 036220.
(doi:10.1103/PhysRevE.75.036220)

111. Epstein IR, Showalter K. 1996 Nonlinear chemical dynamics: oscillations, patterns, and
chaos. J. Phys. Chem. 100, 13 132–13 147. (doi:10.1021/jp953547m)

112. Haim L, Hagberg A, Meron E. 2015 Non-monotonic resonance in a spatially forced Lengyel-
Epstein model. Chaos 25, 064307. (doi:10.1063/1.4921768)

113. Lengyel I, Epstein IR. 1991 Modeling of Turing structures in the chlorite–iodide–malonic
acid–starch reaction system. Science 251, 650–652. (doi:10.1126/science.251.4994.650)

114. Míguez DG, Pérez-Villar V, Muñuzuri AP. 2005 Turing instability controlled
by spatiotemporal imposed dynamics. Phys. Rev. E 71, 066217. (doi:10.1103/
PhysRevE.71.066217)

115. Peter R et al. 2005 Stripe-hexagon competition in forced pattern-forming systems with broken
up-down symmetry. Phys. Rev. E 71, 046212. (doi:10.1103/PhysRevE.71.046212)

116. Rüdiger S, Míguez DG, Munuzuri AP, Sagués F, Casademunt J. 2003 Dynamics
of Turing patterns under spatiotemporal forcing. Phys. Rev. Lett. 90, 128301.
(doi:10.1103/PhysRevLett.90.128301)

117. Rüdiger S, Nicola EM, Casademunt J, Kramer L. 2007 Theory of pattern forming
systems under traveling-wave forcing. Phys. Rep. 447, 73–111. (doi:10.1016/j.physrep.2007.
02.017)

118. Konow C, Dolnik M, Epstein IR. 2021 Insights from chemical systems into Turing-type
morphogenesis. Phil. Trans. R. Soc. A 379, 20200269. (doi:10.1098/rsta.2020.0269)

119. Dewel G, Borckmans P. 1989 Effects of slow spatial variations on dissipative structures. Phys.
Lett. A 138, 189–192. (doi:10.1016/0375-9601(89)90025-X)

120. Kuske R, Eckhaus W. 1997 Pattern formation in systems with slowly varying geometry. SIAM
J. Appl. Math. 57, 112–152. (doi:10.1137/S0036139994277531)

121. Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S. 2007 A mass conserved
reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108.
(doi:10.1371/journal.pcbi.0030108)

122. Kozák M, Gaffney EA, Klika V. 2019 Pattern formation in reaction-diffusion systems with
piecewise kinetic modulation: an example study of heterogeneous kinetics. Phys. Rev. E 100,
042220. (doi:10.1103/PhysRevE.100.042220)

123. Van Gorder RA. 2021 Pattern formation from spatially heterogeneous reaction–diffusion
systems. Phil. Trans. R. Soc. A 379, 20210001. (doi:10.1098/rsta.2021.0001)

124. Woolley TE, Krause AL, Gaffney EA. 2021 Bespoke Turing systems. Bull. Math. Biol. 83, 1–32.
(doi:10.1007/s11538-021-00870-y)

125. Kolokolnikov T, Wei J. 2018 Pattern formation in a reaction-diffusion system with space-
dependent feed rate. SIAM Rev. 60, 626–645. (doi:10.1137/17M1116027)

126. Krause AL, Klika V, Woolley TE, Gaffney EA. 2018 Heterogeneity induces
spatiotemporal oscillations in reaction-diffusion systems. Phys. Rev. E 97, 052206.
(doi:10.1103/PhysRevE.97.052206)

127. Veerman F, Mercker M, Marciniak-Czochra A. 2021 Beyond Turing: far-from-equilibrium
patterns and mechano-chemical feedback. Phil. Trans. R. Soc. A 379, 20200278.
(doi:10.1098/rsta.2020.0278)

128. Taylor NP, Kim H, Krause AL, Van Gorder RA. 2020 A non-local cross-diffusion model of
population dynamics I: emergent spatial and spatiotemporal patterns. Bull. Math. Biol. 82,
1–40. (doi:10.1007/s11538-020-00786-z)

129. Lee SS, Gaffney E, Baker R. 2011 The dynamics of Turing patterns for morphogen-
regulated growing domains with cellular response delays. Bull. Math. Biol. 73, 2527–2551.
(doi:10.1007/s11538-011-9634-8)

130. Varea C, Aragón J, Barrio R. 1997 Confined Turing patterns in growing systems. Phys. Rev. E
56, 1250. (doi:10.1103/PhysRevE.56.1250)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1007/s00526-017-1233-6
http://dx.doi.org/10.1098/rsta.2017.0183
http://dx.doi.org/10.1103/PhysRevE.75.036220
http://dx.doi.org/10.1021/jp953547m
http://dx.doi.org/10.1063/1.4921768
http://dx.doi.org/10.1126/science.251.4994.650
http://dx.doi.org/10.1103/PhysRevE.71.066217
http://dx.doi.org/10.1103/PhysRevE.71.066217
http://dx.doi.org/10.1103/PhysRevE.71.046212
http://dx.doi.org/10.1103/PhysRevLett.90.128301
http://dx.doi.org/10.1016/j.physrep.2007.02.017
http://dx.doi.org/10.1016/j.physrep.2007.02.017
http://dx.doi.org/10.1098/rsta.2020.0269
http://dx.doi.org/10.1016/0375-9601(89)90025-X
http://dx.doi.org/10.1137/S0036139994277531
http://dx.doi.org/10.1371/journal.pcbi.0030108
http://dx.doi.org/10.1103/PhysRevE.100.042220
http://dx.doi.org/10.1098/rsta.2021.0001
http://dx.doi.org/10.1007/s11538-021-00870-y
http://dx.doi.org/10.1137/17M1116027
http://dx.doi.org/10.1103/PhysRevE.97.052206
http://dx.doi.org/10.1098/rsta.2020.0278
http://dx.doi.org/10.1007/s11538-020-00786-z
http://dx.doi.org/10.1007/s11538-011-9634-8
http://dx.doi.org/10.1103/PhysRevE.56.1250


27

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

131. Crampin EJ, Gaffney EA, Maini PK. 1999 Reaction and diffusion on growing
domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120.
(doi:10.1006/bulm.1999.0131)

132. Baker RE, Gaffney E, Maini P. 2008 Partial differential equations for self-organization
in cellular and developmental biology. Nonlinearity 21, R251. (doi:10.1088/0951-
7715/21/11/R05)

133. Barrass I, Crampin EJ, Maini PK. 2006 Mode transitions in a model reaction–
diffusion system driven by domain growth and noise. Bull. Math. Biol. 68, 981–995.
(doi:10.1007/s11538-006-9106-8)

134. Ueda K-I, Nishiura Y. 2012 A mathematical mechanism for instabilities in stripe formation
on growing domains. Physica D 241, 37–59. (doi:10.1016/j.physd.2011.09.016)

135. Madzvamuse A, Gaffney EA, Maini PK. 2010 Stability analysis of non-autonomous
reaction-diffusion systems: the effects of growing domains. J. Math. Biol. 61, 133–164.
(doi:10.1007/s00285-009-0293-4)

136. Hetzer G, Madzvamuse A, Shen W. 2012 Characterization of Turing diffusion-
driven instability on evolving domains. Discrete Continu. Dyn. Syst.-A 32, 3975.
(doi:10.3934/dcds.2012.32.3975)

137. Klika V, Gaffney EA. 2017 History dependence and the continuum approximation
breakdown: the impact of domain growth on Turing’s instability. Proc. R. Soc. A 473,
20160744. (doi:10.1098/rspa.2016.0744)

138. Van Gorder RA, Klika V, Krause AL. 2021 Turing conditions for pattern forming systems on
evolving manifolds. J. Math. Biol. 82, 1–61. (doi:10.1007/s00285-021-01552-y)

139. Comanici A, Golubitsky M. 2008 Patterns on growing square domains via mode interactions.
Dyn. Syst. 23, 167–206. (doi:10.1080/14689360801945327)

140. Knobloch E, Krechetnikov R. 2014 Stability on time-dependent domains. J. Nonlinear Sci. 24,
493–523. (doi:10.1007/s00332-014-9197-6)

141. Krechetnikov R, Knobloch E. 2017 Stability on time-dependent domains: convective and
dilution effects. Physica D 342, 16–23. (doi:10.1016/j.physd.2016.10.003)

142. Knobloch E, Krechetnikov R. 2015 Problems on time-varying domains:
formulation, dynamics, and challenges. Acta Applicandae Mathematicae 137, 123–157.
(doi:10.1007/s10440-014-9993-x)

143. Timm U, Okubo A. 1992 Diffusion-driven instability in a predator-prey system with time-
varying diffusivities. J. Math. Biol. 30, 307–320. (doi:10.1007/BF00176153)

144. Gourley S, Britton N, Chaplain M, Byrne H. 1996 Mechanisms for stabilisation and
destabilisation of systems of reaction-diffusion equations. J. Math. Biol. 34, 857–877.
(doi:10.1007/BF01834823)

145. Challenger JD, Burioni R, Fanelli D. 2015 Turing-like instabilities from a limit cycle. Phys.
Rev. E 92, 022818. (doi:10.1103/PhysRevE.92.022818)

146. Kuwamura M, Izuhara H. 2017 Diffusion-driven destabilization of spatially homogeneous
limit cycles in reaction-diffusion systems. Chaos 27, 033112. (doi:10.1063/1.4978924)

147. Aranson IS, Kramer L. 2002 The world of the complex Ginzburg-Landau equation. Rev. Mod.
Phys. 74, 99. (doi:10.1103/RevModPhys.74.99)

148. Benjamin TB, Feir JE. 1967 The disintegration of wave trains on deep water part 1. Theory.
J. Fluid Mech. 27, 417–430. (doi:10.1017/S002211206700045X)

149. Van Gorder RA. 2020 Turing and Benjamin–Feir instability mechanisms in non-autonomous
systems. Proc. R. Soc. A 476, 20200003. (doi:10.1098/rspa.2020.0003)

150. Van Gorder RA. 2021 A theory of pattern formation for reaction–diffusion systems on
temporal networks. Proc. R. Soc. A 477, 20200753. (doi:10.1098/rspa.2020.0753)

151. Buttenschön A, Liu Y, Edelstein-Keshet L. 2020 Cell size, mechanical tension, and GTpase
signaling in the single cell. Bull. Math. Biol. 82, 1–33. (doi:10.1007/s11538-019-00680-3)

152. Liu Y, Rens EG, Edelstein-Keshet L. 2021 Spots, stripes, and spiral waves in models for static
and motile cells. J. Math. Biol. 82, 1–38. (doi:10.1007/s00285-021-01560-y)

153. Rens EG, Edelstein-Keshet L. 2021 Cellular tango: how extracellular matrix adhesion
choreographs Rac-Rho signaling and cell movement. (http://arxiv.org/abs/2104.09182).

154. Vanderlei B, Feng JJ, Edelstein-Keshet L. 2011 A computational model of cell polarization
and motility coupling mechanics and biochemistry. Multiscale Model. Simul. 9, 1420–1443.
(doi:10.1137/100815335)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1006/bulm.1999.0131
http://dx.doi.org/10.1088/0951-7715/21/11/R05
http://dx.doi.org/10.1088/0951-7715/21/11/R05
http://dx.doi.org/10.1007/s11538-006-9106-8
http://dx.doi.org/10.1016/j.physd.2011.09.016
http://dx.doi.org/10.1007/s00285-009-0293-4
http://dx.doi.org/10.3934/dcds.2012.32.3975
http://dx.doi.org/10.1098/rspa.2016.0744
http://dx.doi.org/10.1007/s00285-021-01552-y
http://dx.doi.org/10.1080/14689360801945327
http://dx.doi.org/10.1007/s00332-014-9197-6
http://dx.doi.org/10.1016/j.physd.2016.10.003
http://dx.doi.org/10.1007/s10440-014-9993-x
http://dx.doi.org/10.1007/BF00176153
http://dx.doi.org/10.1007/BF01834823
http://dx.doi.org/10.1103/PhysRevE.92.022818
http://dx.doi.org/10.1063/1.4978924
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1098/rspa.2020.0003
http://dx.doi.org/10.1098/rspa.2020.0753
http://dx.doi.org/10.1007/s11538-019-00680-3
http://dx.doi.org/10.1007/s00285-021-01560-y
http://arxiv.org/abs/2104.09182
http://dx.doi.org/10.1137/100815335


28

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

155. Schwank G, Basler K. 2010 Regulation of organ growth by morphogen gradients. Cold Spring
Harbor Perspect. Biol. 2, a001669. (doi:10.1101/cshperspect.a001669)

156. Goriely A. 2017 The mathematics and mechanics of biological growth. New York, NY: Springer.
157. Swift J, Hohenberg PC. 1977 Hydrodynamic fluctuations at the convective instability. Phys.

Rev. A 15, 319. (doi:10.1103/PhysRevA.15.319)
158. Cahn JW, Hilliard JE. 1958 Free energy of a nonuniform system. I. Interfacial free energy.

J. Chem. Phys. 28, 258–267. (doi:10.1063/1.1744102)
159. Kielhöfer H. 1997 Pattern formation of the stationary Cahn-Hilliard model. Proc. R. Soc.

Edinb., Sect. A 127, 1219–1243. (doi:10.1017/S0308210500027037)
160. Cohen DS, Murray JD. 1981 A generalized diffusion model for growth and dispersal in a

population. J. Math. Biol. 12, 237–249. (doi:10.1007/BF00276132)
161. Ochoa FL. 1984 A generalized reaction diffusion model for spatial structure formed by motile

cells. Biosystems 17, 35–50. (doi:10.1016/0303-2647(84)90014-5)
162. Murray JD. 2007 Mathematical biology: I. An introduction. London, UK: Springer Science &

Business Media.
163. Van Gorder RA, Kim H, Krause A. 2019 Diffusive instabilities and spatial patterning from

the coupling of reaction-diffusion processes with Stokes flow in complex domains. J. Fluid
Mech. 877, 759–823. (doi:10.1017/jfm.2019.620)

164. Satnoianu RA, Menzinger M. 2002 A general mechanism for ‘inexact’ phase
differences in reaction–diffusion–advection systems. Phys. Lett. A 304, 149–156.
(doi:10.1016/S0375-9601(02)01387-7)

165. Rovinsky AB, Menzinger M. 1992 Chemical instability induced by a differential flow. Phys.
Rev. Lett. 69, 1193. (doi:10.1103/PhysRevLett.69.1193)

166. Satnoianu RA. 2003 Coexistence of stationary and traveling waves in reaction-diffusion-
advection systems. Phys. Rev. E 68, 032101. (doi:10.1103/PhysRevE.68.032101)

167. Gambino G, Lombardo M, Sammartino M. 2014 Turing instability and pattern formation
for the Lengyel–Epstein system with nonlinear diffusion. Acta Applicandae Mathematicae 132,
283–294. (doi:10.1007/s10440-014-9903-2)

168. Gambino G, Lombardo M, Sammartino M, Sciacca V. 2013 Turing pattern formation in
the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, 042925. (doi:10.1103/
PhysRevE.88.042925)

169. Hillen T, Painter KJ. 2009 A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58,
183–217. (doi:10.1007/s00285-008-0201-3)

170. Horstmann D. 2003 From 1970 until present: the Keller-Segel model in chemotaxis and its
consequences. DMV 105, 103–165.

171. Maini PK, Baker RE, Chuong C-M. 2006 The Turing model comes of molecular age. Science
314, 1397. (doi:10.1126/science.1136396)

172. Fanelli D, Cianci C, Di Patti F. 2013 Turing instabilities in reaction-diffusion systems with
cross diffusion. Eur. Phys. J. B 86, 1–8. (doi:10.1140/epjb/e2013-30649-7)

173. Gambino G, Lombardo MC, Sammartino M. 2012 Turing instability and traveling fronts for
a nonlinear reaction–diffusion system with cross-diffusion. Math. Comput. Simul. 82, 1112–
1132. (doi:10.1016/j.matcom.2011.11.004)

174. Madzvamuse A, Ndakwo HS, Barreira R. 2015 Cross-diffusion-driven instability
for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70, 709–743.
(doi:10.1007/s00285-014-0779-6)

175. Shigesada N, Kawasaki K, Teramoto E. 1979 Spatial segregation of interacting species.
J. Theor. Biol. 79, 83–99. (doi:10.1016/0022-5193(79)90258-3)

176. Zemskov EP, Horsthemke W. 2016 Diffusive instabilities in hyperbolic reaction-diffusion
equations. Phys. Rev. E 93, 032211. (doi:10.1103/PhysRevE.93.032211)

177. De Groot SR, Mazur P. 2013 Non-equilibrium thermodynamics. Amsterdam, Netherlands:
Courier Corporation.

178. Klika V, Grmela M. 2013 Coupling between chemical kinetics and mechanics that
is both nonlinear and compatible with thermodynamics. Phys. Rev. E 87, 012141.
(doi:10.1103/PhysRevE.87.012141)

179. Klika V, Krause AL. 2018 Beyond Onsager-Casimir relations: shared dependence of
phenomenological coefficients on state variables. J. Phys. Chem. Lett. 9, 7021–7025.
(doi:10.1021/acs.jpclett.8b03281)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1101/cshperspect.a001669
http://dx.doi.org/10.1103/PhysRevA.15.319
http://dx.doi.org/10.1063/1.1744102
http://dx.doi.org/10.1017/S0308210500027037
http://dx.doi.org/10.1007/BF00276132
http://dx.doi.org/10.1016/0303-2647(84)90014-5
http://dx.doi.org/10.1017/jfm.2019.620
http://dx.doi.org/10.1016/S0375-9601(02)01387-7
http://dx.doi.org/10.1103/PhysRevLett.69.1193
http://dx.doi.org/10.1103/PhysRevE.68.032101
http://dx.doi.org/10.1007/s10440-014-9903-2
http://dx.doi.org/10.1103/PhysRevE.88.042925
http://dx.doi.org/10.1103/PhysRevE.88.042925
http://dx.doi.org/10.1007/s00285-008-0201-3
http://dx.doi.org/10.1126/science.1136396
http://dx.doi.org/10.1140/epjb/e2013-30649-7
http://dx.doi.org/10.1016/j.matcom.2011.11.004
http://dx.doi.org/10.1007/s00285-014-0779-6
http://dx.doi.org/10.1016/0022-5193(79)90258-3
http://dx.doi.org/10.1103/PhysRevE.93.032211
http://dx.doi.org/10.1103/PhysRevE.87.012141
http://dx.doi.org/10.1021/acs.jpclett.8b03281


29

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

180. Krishna R, Wesselingh J. 1997 The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci.
52, 861–911. (doi:10.1016/S0009-2509(96)00458-7)

181. Esposito M. 2020 Open questions on nonequilibrium thermodynamics of chemical reaction
networks. Commun. Chem. 3, 1–3. (doi:10.1038/s42004-020-00344-7)

182. Falasco G, Rao R, Esposito M. 2018 Information thermodynamics of Turing patterns. Phys.
Rev. Lett. 121, 108301. (doi:10.1103/PhysRevLett.121.108301)

183. Satnoianu RA, Menzinger M, Maini PK. 2000 Turing instabilities in general systems. J. Math.
Biol. 41, 493–512. (doi:10.1007/s002850000056)

184. Diego X, Marcon L, Müller P, Sharpe J. 2018 Key features of Turing systems are determined
purely by network topology. Phys. Rev. X 8, 021071.

185. Marcon L, Diego X, Sharpe J, Müller P. 2016 High-throughput mathematical analysis
identifies Turing networks for patterning with equally diffusing signals. eLife 5, e14022.
(doi:10.7554/eLife.14022)

186. Scholes NS, Schnoerr D, Isalan M, Stumpf MP. 2019 A comprehensive network
atlas reveals that Turing patterns are common but not robust. Cell Syst. 9, 243–257.
(doi:10.1016/j.cels.2019.07.007)

187. Glover JD et al. 2017 Hierarchical patterning modes orchestrate hair follicle morphogenesis.
PLoS Biol. 15, e2002117. (doi:10.1371/journal.pbio.2002117)

188. Painter K, Hunt G, Wells K, Johansson J, Headon D. 2012 Towards an integrated
experimental–theoretical approach for assessing the mechanistic basis of hair and feather
morphogenesis. Interface Focus 2, 433–450. (doi:10.1098/rsfs.2011.0122)

189. Economou AD, Monk NA, Green JB. 2020 Perturbation analysis of a multi-morphogen
Turing reaction-diffusion stripe patterning system reveals key regulatory interactions.
Development 147, dev190553. (doi:10.1242/dev.190553)

190. Klika V, Baker RE, Headon D, Gaffney EA. 2012 The influence of receptor-mediated
interactions on reaction-diffusion mechanisms of cellular self-organisation. Bull. Math. Biol.
74, 935–957. (doi:10.1007/s11538-011-9699-4)

191. Haas PA, Goldstein RE. 2021 Turing’s diffusive threshold in random reaction-diffusion
systems. Phys. Rev. Lett. 126, 238101. (doi:10.1103/PhysRevLett.126.238101)

192. Marciniak-Czochra A, Karch G, Suzuki K. 2017 Instability of Turing patterns in reaction-
diffusion-ODE systems. J. Math. Biol. 74, 583–618. (doi:10.1007/s00285-016-1035-z)

193. Lengyel I, Epstein IR. 1992 A chemical approach to designing Turing patterns in
reaction-diffusion systems. Proc. Natl Acad. Sci. USA 89, 3977–3979. (doi:10.1073/pnas.89.9.
3977)

194. Korvasová K, Gaffney E, Maini P, Ferreira M, Klika V. 2015 Investigating the Turing
conditions for diffusion-driven instability in the presence of a binding immobile substrate.
J. Theor. Biol. 367, 286–295. (doi:10.1016/j.jtbi.2014.11.024)

195. Borckmans P, Dewel G, De Wit A, Walgraef D. 1995 Turing bifurcations and pattern selection.
In Chemical waves and patterns, pp. 323–363. New York, NY: Springer.

196. Anderson DF. 2011 A proof of the global attractor conjecture in the single linkage class case.
SIAM J. Appl. Math. 71, 1487–1508. (doi:10.1137/11082631X)

197. Sharpe J. 2019 Wolpert’s french flag: what’s the problem? Development 146, dev185967.
(doi:10.1242/dev.185967)

198. Fadai NT, Ward MJ, Wei J. 2017 Delayed reaction kinetics and the stability of spikes in the
Gierer–Meinhardt model. SIAM J. Appl. Math. 77, 664–696. (doi:10.1137/16M1063460)

199. Gaffney E, Lee SS. 2015 The sensitivity of Turing self-organization to biological
feedback delays: 2d models of fish pigmentation. Math. Med. Biol. 32, 57–79.
(doi:10.1093/imammb/dqt017)

200. Gaffney E, Monk N. 2006 Gene expression time delays and Turing pattern formation systems.
Bull. Math. Biol. 68, 99–130. (doi:10.1007/s11538-006-9066-z)

201. Jiang W, Wang H, Cao X. 2019 Turing instability and Turing–Hopf bifurcation in diffusive
schnakenberg systems with gene expression time delay. J. Dyn. Differ. Equ. 31, 2223–2247.
(doi:10.1007/s10884-018-9702-y)

202. Yi F, Gaffney EA, Seirin-Lee S. 2017 The bifurcation analysis of Turing pattern formation
induced by delay and diffusion in the schnakenberg system. Discrete Continu. Dyn. Syst. B
22, 647. (doi:10.3934/dcdsb.2017031)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1016/S0009-2509(96)00458-7
http://dx.doi.org/10.1038/s42004-020-00344-7
http://dx.doi.org/10.1103/PhysRevLett.121.108301
http://dx.doi.org/10.1007/s002850000056
http://dx.doi.org/10.7554/eLife.14022
http://dx.doi.org/10.1016/j.cels.2019.07.007
http://dx.doi.org/10.1371/journal.pbio.2002117
http://dx.doi.org/10.1098/rsfs.2011.0122
http://dx.doi.org/10.1242/dev.190553
http://dx.doi.org/10.1007/s11538-011-9699-4
http://dx.doi.org/10.1103/PhysRevLett.126.238101
http://dx.doi.org/10.1007/s00285-016-1035-z
http://dx.doi.org/10.1073/pnas.89.9.3977
http://dx.doi.org/10.1073/pnas.89.9.3977
http://dx.doi.org/10.1016/j.jtbi.2014.11.024
http://dx.doi.org/10.1137/11082631X
http://dx.doi.org/10.1242/dev.185967
http://dx.doi.org/10.1137/16M1063460
http://dx.doi.org/10.1093/imammb/dqt017
http://dx.doi.org/10.1007/s11538-006-9066-z
http://dx.doi.org/10.1007/s10884-018-9702-y
http://dx.doi.org/10.3934/dcdsb.2017031


30

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200268

...............................................................

203. Fadai NT, Ward MJ, Wei J. 2018 A time-delay in the activator kinetics enhances the stability
of a spike solution to the Gierer-Meinhardt model. Discrete Continu. Dyn. Syst. B 23, 1431.
(doi:10.3934/dcdsb.2018158)

204. Erban R, Chapman SJ. 2019 Stochastic modelling of reaction–diffusion processes, vol. 60.
Cambridge, UK: Cambridge University Press.

205. Schumacher LJ, Woolley TE, Baker RE. 2013 Noise-induced temporal dynamics in Turing
systems. Phys. Rev. E 87, 042719. (doi:10.1103/PhysRevE.87.042719)

206. Woolley TE, Baker RE, Gaffney EA, Maini PK. 2011 Stochastic reaction and diffusion on
growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E
84, 046216. (doi:10.1103/PhysRevE.84.046216)

207. Woolley TE, Baker RE, Gaffney EA, Maini PK, Seirin-Lee S. 2012 Effects of intrinsic
stochasticity on delayed reaction-diffusion patterning systems. Phys. Rev. E 85, 051914.
(doi:10.1103/PhysRevE.85.051914)

208. Adamer MF, Harrington HA, Gaffney EA, Woolley TE. 2020 Coloured noise
from stochastic inflows in reaction–diffusion systems. Bull. Math. Biol. 82, 1–28.
(doi:10.1007/s11538-020-00719-w)

209. Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS. 2012 Turing’s model for
biological pattern formation and the robustness problem. Interface Focus 2, 487–496.
(doi:10.1098/rsfs.2011.0113)

210. Grindrod P. 1991 Patterns and waves: the theory and applications of reaction-diffusion equations.
Oxford, UK: Oxford University Press.

211. Mori Y, Jilkine A, Edelstein-Keshet L. 2008 Wave-pinning and cell polarity from a bistable
reaction-diffusion system. Biophys. J. 94, 3684–3697. (doi:10.1529/biophysj.107.120824)

212. Cantrell RS, Cosner C. 2004 Spatial ecology via reaction-diffusion equations. Chichester, UK: John
Wiley & Sons.

213. Deutsch A, Dormann S. 2005 Cellular automaton modeling of biological pattern formation.
New York, NY: Springer.

214. Turing AM. 1950 Computing machinery and intelligence. Mind 59, 433. (doi:10.1093/
mind/LIX.236.433)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.3934/dcdsb.2018158
http://dx.doi.org/10.1103/PhysRevE.87.042719
http://dx.doi.org/10.1103/PhysRevE.84.046216
http://dx.doi.org/10.1103/PhysRevE.85.051914
http://dx.doi.org/10.1007/s11538-020-00719-w
http://dx.doi.org/10.1098/rsfs.2011.0113
http://dx.doi.org/10.1529/biophysj.107.120824
http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1093/mind/LIX.236.433

	Introduction
	Near-equilibrium analysis
	Linear instability of reaction--diffusion systems
	Linear instability of reaction-transport systems

	Structured domains
	Curved manifolds
	Reaction--diffusion systems on networks
	Multi-domain models

	Heterogeneity
	Spatially heterogeneous domains
	Evolving domains and non-autonomous forcing

	More general systems
	Generalized transport models
	Beyond two-species

	Outlook
	References

