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In this Letter, we present the first multiparticle solutions to Einstein’s field equations in the presence of
matter. These solutions are iteratively obtained via the perturbiner method, which can circumvent gravity’s
infinite number of vertices with the definition of a multiparticle expansion for the inverse spacetime metric as
well. Our construction provides a simple layout for the computation of tree level field theory amplitudes in D
spacetime dimensions involving any number of gravitons and matter fields, with or without supersymmetry.
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Overview.—Gravity is still in many ways the least
understood of the fundamental forces of nature, arguably
at the macroscopic but definitely at the microscopic level.
The former is splendidly described by the general theory of
relativity, while the latter is hopefully made tangible by the
long sought theory of quantum gravity.

As a first approximation, the Einstein-Hilbert action can
be seen as a common denominator in this range of scales. It
yields as classical equations of motion Einstein’s field
equations and offers a natural path for a (quantum) field
theory of gravitons, the messengers of gravity.

From this field theory perspective, gravity contains an
infinite number of vertices and is, in fact, nonrenormaliz-
able. Even at tree level, the computation of graviton
scattering amplitudes quickly becomes impractical using
standard Feynman diagrams (e.g., [1]).

Modermn scattering-amplitude techniques have overcome
this problem. Among them the Britto-Cachazo-Feng-Witten
(BCFW) recursion [2—4] and the double copy [5—8] are most
successful. At their core, they are connected by a simple fact:
cubic vertices are enough to describe any tree level graviton
amplitude. In BCFW, we see this via on-shell recursions. In
the double copy, graviton amplitudes are recast as two copies
of gluon amplitudes with a special trivalent configuration
using the color-kinematic duality [9]. Indeed, pure graviton
amplitudes have been shown to be recursively described by a
cubic action with auxiliary fields that is classically equivalent
to the Einstein-Hilbert action [10]. This strictification has
been formally demonstrated in [11] using L, algebras.
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Our Universe, on the other hand, is not pure gravity. Our
interest resides in the study of interactions between
gravitons and matter particles. In this case, results using
BCFW recursions (e.g., [12,13]), double copy (e.g., [14]),
or other diagrammatic techniques ([15]) are considerably
scarce, subject to different subtleties and limitations that
have so far eluded a more systematic and practical output.
At the dawn of gravitational waves detection and black hole
observation, any advance in the understanding and formu-
lation of the scattering of gravitons by matter is very
welcome. This Letter is a step in this direction.

To our avail, the tree level information of a given field
theory can be elegantly extracted from its classical equations
of motion [16]. This idea was further exploredin [17,18] and
later streamlined by the perturbiner method [19-21]. As it
turns out, there is an inspired multiparticle ansatz for the
solution of classical equations of motion that can be used to
define an off-shell recursion for tree level amplitudes in
terms of Berends-Giele currents [22]. This method recently
regained interest [23-25] and has been since explored in
different contexts [26—30]. Rather surprisingly, perturbiner
methods have never been fully applied to gravity, except for
the very early analysis of the self-dual case in [20] and a
simplified version for conformal supergravity amplitudes in
[31]. Naively, a proper recursive solution cannot be defined
in a theory with an infinite number of vertices. As we will
show, however, there is a way around this obstacle in gravity.

In this work, we propose a series of multiparticle solutions
to Einstein’s field equations based on the perturbiner
method. These solutions encompass a broad class of
interesting cases and can be applied to any two-derivative
matter field theory coupled to gravity. We can then define n-
point tree level scattering amplitudes between gravitons and
matter particles using a similar prescription to the super
Yang-Mills case [22]. In this prescription, diffeomorphism
invariance is manifest, with a clear decoupling of pure gauge
states. In addition, the analysis of the soft limit behavior at
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leading order is surprisingly transparent. First, we discuss
pure gravity with a subsequent coupling to bosonic matter.
We then recast the Einstein-Hilbert action in terms of the
vielbein and the spin connection in order to introduce the
coupling to fermionic matter and, consequently, supersym-
metry. Our results are agnostic to the number of spacetime
dimensions and can be easily automated. Whether or not
there is an underlying worldsheet description, they provide a
compact and efficient computation of the scattering of
gravitons and matter at tree level.

Field equations and gravitons.—FEinstein’s field equa-
tions without cosmological constant can be cast as

1
R/w - Eg;wR = KT/w‘ (1)

The right-hand side is the matter energy-momentum tensor
T,, multiplied by the gravitational constant k. On the left-
hand side, g, denotes the spacetime metric (with inverse g**),
R = ¢"R,, isthescalar curvature, and R,,, is the Ricci tensor.

— RP c :
As usual, R, =Ry, where Ry, is the Riemann tensor,

o __ o o o T4 o T4
Ry, = ayl—‘W, — 3/,FW +1I7,00, — FMFW, (2)

and Iy, = ¢’°T',,, is the Christoffel symbol, with

I =

uvp (aygup + augﬂp - apg/w)' (3)

N[ =

The field equations [Eq. (1)] are covariant under general
coordinate transformations (6x* = A*), with the metric trans-
forming as

5g;w = gppavip + gupaﬂﬂp + /lpapg;w' (4)
In the absence of matter, Eq. (1) reduces to
Rﬂl/ =0, (5)

which can be used to analyze linearized solutions around a
given background, i.e., the gravitons. These single-particle
solutions around flat space (with metric 7,,) are given by

g/w(x) = M + h/weik‘x’ (6)

with k- x = k,x*. The graviton polarization h,, satisfies
n’k,h,, = n""h,, = 0. There is also a residual gauge trans-
formation of the form 6k, = k,4, + k,4,, with k- 1 = 0.

Multiparticle solutions and recursions.—We can now
look at the multiparticle solutions of the graviton field
gu(x), satisfying Eq. (5). Consider

Gu(X) = + Y _Hp e, (7)
P

where H p,, represents the multiparticle currents. The word P
denotes a sequence of ordered letters, P = p;...p,, where p;
is a single-particle label, with kp =k, +---+k, .

In order to find the solutions for Hp,,, we have also to
work with ¢ (x) satisfying ¢*/g,, = &,. For the expansion

gu(x) = =) Tyetr, (8)

P

the inverse identity implies that the currents /%) are con-
strained to be

I;;)v _ TIW,”DO-HP,OO‘ — ;/]W Z IgHRpo', (9)
P=QUR

where the sum goes over all deshuffles of P into ordered
words Q, R (see, e.g., [28]). Although not explicitly,
I%Y =1} and this can be recursively demonstrated order
by order in the subdeshuffles.

Multiparticle currents with one-letter words are simply
associated to their single-particle equivalents (polariza-
tions): H,,, = h,,, and I}y = n*’1*°h,,,,.

To every x-dependent object, we will associate a multi-
particle expansion. For example, the Christoffel symbol can
be expressed as I, = > pp,,,e™, with

i
FP;wp = 5 (kP[lHPD/) + kPl/HPﬂ[) - kP/)HP;w) . (10)

The parameter of general coordinate transformations may
also be cast as a multiparticle expansion as

M= =iy Apeltr, (11)
P
This way, the gauge transformation [Eq. (4)] implies that

5HP;4U = Z A/é{kQﬂHRD/) + kQuHRyp + kR/)HR;w}
P=QUR

+ kPﬂAPD + kaAP/r (12)

We will choose the gauge #**T’,,,, = 0. This is simpler
than the de Donder gauge ¢**T%, = 0, because its multi-
particle version does not involve deshuffles, being neatly
expressed as

. 1
nm/FP;wp = ”7”1/ <kP/,tHPI./p - EkaHP;w> =0. (13)

In this gauge, the multiparticle currents of the Ricci
tensor Rp,, are computed to be

Sp . D
RP;w = ?HP/IU —1 Z I[QG(kaFR;wrr - kPIJFRﬂp(T)
P=QUR

- ’,]aﬁi,lpzf Z (FQuaorRy/Jﬂ - FQpaaFR/wﬂ)
P=QUR

+ Z I ZG(FRvpﬁFSﬂM ~ Lrappl sy0)
P=QURUS

+ ﬂaﬁ Z I ZH(FRD(I(TFS/J/)/)’ - FR/)(mFSﬂu/)’ )
P=QURUS

- Z Igjltlzeﬁ(FSuaJFTypﬁ - FSP(ZGFTﬂllﬂ) ’ (14)
P=QURUSUT
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where sp = #*kp,kp, denotes the generalized Mandelstam
variables. The recursion relation for Hp,, is then obtained
using Eq. (5), i.e., Rp,, = 0.

Tree level amplitudes.—Motivated by the Berends-Giele
prescription [22], the tree level amplitude for the scattering
of n gravitons is defined as

J— . v
M, =k lim s, ,hy, 105 .

$2.n >

=k lim S2...nh/fyH2...nﬂIJ (15)
§2.n7
on the support of momentum conservation. Whenever
convenient, we will raise or lower spacetime indices using
the flat metric.

By construction, Hp,, is symmetric in the exchange of
any two single-particle labels. This symmetry is lifted to the
amplitude M,,, which is also symmetric in the exchange of
any two graviton legs, although only (n — 1) are manifest
through H,_,,,. The particle in the first leg can be thought
of as an off-shell leg in the multiparticle recursion, then
placed on shell in the definition of the amplitude in Eq. (15)
via momentum conservation and the limit s, , — 0.

The amplitude M, is invariant under the residual
transformations of the graviton polarizations described
after Eq. (6). In order to see this, we can examine the
residual gauge transformations preserving Eq. (13). They
lead to a recursion for the currents Ap, in Eq. (11) given by

v
Ap,= _S_P > No(kguHpup+ko,Hpyp+kryHry)- (16)
P p=QuR

It is then just an algebraic step to show the invariance of M,
under Eq. (12) with multiparticle parameters [Eq. (16)].

The three-point amplitude is given by the well-known
result

= S nL R ey (17)

M;(hy, hy, hy) = 3 hwlap

in terms of the three-point Yang-Mills vertex
VIt = (I = )™ 4 (K§ — K™ + (ke = ke ).

The current Hp,, effectively describes interactions with
vertices from three to five points, as can be seen from the
number of deshuffles in Eq. (14). The four or higher point
amplitudes will not be explicitly displayed here, as their
size grows rapidly due to the nested deshuffles. We found it
easier to perform most of the cross-checks numerically,
since it is straightforward to implement the recursions for
Hp,,, computationally.

The soft limit of graviton amplitudes has a universal
behavior [32,33], constituting a natural test for our proposal
in Eq. (15). As it turns out, its soft limit analysis is very
simple at leading order.

We will take h,,, as the soft graviton and parameterize its
momentum as kK = z¢#, with g* = 0 and parameter 7 — 0.

In the soft limit, we can directly identify the dominant
contributions in H3 ,,,, for they come from the poles of

the generalized Mandelstam variables with (n —2)
momenta. For example,
$3.0 = (1 + k2)* = 22(q - ky) (18)

is attached to the multiparticle current with (n —2) par-
ticles, H3_,,,. We can then reexamine the recursion of the
(n — 1)-particle currents H3 ,,, and readily express it as

S23‘.nH23.‘n,ub = kZ/AkahﬁszB.‘npa + Sym(z’ 3? R} fl)
+ O, (19)

where sym(2, 3, ..., n) takes care of the symmetrization of
the single-particle labels.

In terms of the amplitude, this parameterization leads to
the leading order contribution

1 ( SN W

EmM, =~ (S 2w 5 ) vr (oo k), (20
— 2(qk0)> 1( 2 ) ( )

7—0 T

manifesting the universal Weinberg pole. Since diffeo-
morphism invariance is inbuilt in our results, subleading
soft limits should be directly reproduced [34,35].

Matter coupled to gravity.—The matter contributions to
Eq. (1) come from the energy-momentum tensor

1 o
22— Smatter s
V=969"

where S,.er 1S the matter action. In terms of a multiparticle
expansion, we have T, = > p 7 p,,’***, where the form
of the currents 7 p,, is particular to the model. In order for
this to make sense, the single-particle solutions of the free
equations of motion associated to the matter action must be
described in terms of plane waves. These are our asymp-
totic states.

The recursion relations for the currents H p,,, are obtained
by plugging the corresponding multiparticle expansions in
Eq. (1). The result is

w =

(1)

1
RPﬂD = E”}wﬂpaRP/)o’ + KTP/U/

1
+ 2 Z (Houn" = ”ﬂvlg)Rva
P=OUR

1 -
Y Z HQ/wIII)? RSpa’ (22)
P=QURUS

where Rp,, is defined in Eq. (14). Naturally, we recover
Rpuw =0 when 7p,, = 0.

The amplitude prescription is the same as in Eq. (15), but
now we are able to describe the scattering of matter bosons
and gravitons.
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Massive scalar: Our first example is the massive scalar
coupled to gravity and otherwise free, with equation of
motion

(g’waﬂau - m2)¢ = gﬂyrzbap¢

and covariantly conserved energy-momentum tensor

(23)

1
T;w = _ay¢8y¢ =+ Egﬂb(gogap¢aa¢ + m2¢2)' (24)

Equation (23) leads to the following recursion for the
scalar multiparticle currents ®p:

(sp+m?)Pp = Z (I krykgy + 1 KR 0, PR

P=QUR

- > G s(Trueks, + Trpnks,)
P=QURUS

+ Z IMQI/I/])QJFSMvakTpcDT' (25)
P=QURUSUT

Similarly, Eq. (24) leads to

1
TP;w = z {kQﬂle/ +§’7/w[m2 - (kQ : kR)]}(DQq)R
P=QUR

1
+ EP,Z H g, @r®@g[m* — (kg - kg)]
—QURUS

Z nm/lgykR/) kSO'(I)R(I)S
P=QURUS

+

| =

1
oY Houl¥ksykr,@s®r.
P=QURUSUT

(26)

These quantities are then used to compute the tree level
scattering of gravitons and massive scalars. For example,
the four-point amplitude with two gravitons (h;, h,) and
two massive scalars (3, 4) is given by

1
My =23 (ky - by - hy - ky) —§K2S34(h1 “hy) + 2 [(ky - hy - hy - ky) + (kg - by - by - k3)]

42

$34

+— {%(hl hy)[(ky - k3) (ko - ky) + (Ky - ky) (ko - ka)] + (ko - hy - k3) (kg ho - ky) + (ko -y - k) (ks - By - k)

— (k3 -y - ky)(ky by - ky) = (k3 - by - ky) (ko - By - ky) — (ko - By - g - ks) (Ky - ky) = (ko - By - By - kg ) (K - k)

gy By ) (ks ) = (kg - -hz-ko(kz-/@}

4i? 452
+7(s ) (kg hy - ky) (ks - hy - ks) +
23

matching known results in the literature, e.g., [36,37].
Yang-Mills theory: Here we provide the ingredients for

computing the scattering of gravitons and gauge vectors.
The energy-momentum tensor of Syy; is given by

2 1
T;w = ﬁ’rr <gp6prFua - ggyuglﬂgéﬂFMF/)o‘> ’ (28)
where gyy is the coupling constant, F,, = 9,A, — 0,A, —
i[A,. A,] is the field strength, and the trace Tr is taken over a
given non-Abelian group or just U(1) for Maxwell’s
theory. The equations of motion of the gauge field can
be cast as

gDpDvap = gbp[AwFﬂp]’

where D, denotes the curved space covariant derivative

(29)

D,F,,=0,F,,-T},F,, — T}, F

vpl pa-

(30)

It is then straightforward to plug the multiparticle
expansion A, = 3 p Apﬂeikp"‘ back in Eq. (29) and obtain
a recursive definition for the currents Ap,. The covariant

m(kz “hyks)(ky - hy - ky),

(27)

|
gauge ¢*D,A, =0 seems to be the simplest choice in
this case.

These Einstein-Yang-Mills amplitudes can then be com-
pared with other results in the literature obtained through
different techniques, e.g., [38—41].

Fermions and supersymmetry.—In order to consider
fermions, we turn the local Lorentz group into a gauge
symmetry. The spacetime metric g,, is mapped to the
(local) flat metric 77, using the vielbein e (with inverse eh)
such that g,, = nabe;ef. The gauge field of the Lorentz
symmetry is the spin connection @?, and the “flattened”
Riemann tensor R, = n*ebelRS

o can be seen as its field
strength, given by

ab — ab ac ,,db
R;u/ = aywv + Nea®Wy @y~ — (

pev), ()
with scalar curvature R = e’,ﬁe’;Rﬁf.

Spinor couplings to the curved background are imple-
mented by replacing spacetime derivatives by their
Lorentz-covariant version. Given a spinor v, its covariant
derivative is defined as
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D,y = 0,y + %wﬁbrabw, (32)
where T, =1[,.T,] and T, denote the usual gamma
matrices satisfying {T',, Ty} = 217,

Next, we rewrite Einstein’s field equations in terms of the
vielbein and, independently, the spin connection. This is
known as the Palatini variation. In the presence of matter,
they take the form

a 1 a
R} = kT, +2€MR (33)
1
Wil = kWi + 2 el(@,0) ~ Ty ), (34)
where RY = e/ R4P, [ab] = ab — ba, and T, is the zero-

torsion Chnstoffel symbols in Eq. (3). The matter tensors
are defined as

o
TZ =e 5_/4Smatter7 (35)

Wb = ePyp ! — 0 S (36)

Sw cd matter»

with e = detel, and

ab.ed — dla( ,bl ¢ 1 blc 2 bl ¢
P’uy =}’I[ <el,€ﬂ—|—§r]]g’w—|—meﬂey>. (37)

From here onward, the perturbiner method goes as usual.
We define the multiparticle expansion for the vielbein and

its inverse analogously to the metric expansions in Eqs. (7)
and (8):

el =8+ > Egehr, (38)
P

spEp, = K(éZ(sZ + 2-D)

2 P=QUR

+ D [iFy (ke — kp Q) = nead (5, Q7 —

P=0QUR

ey =84 — > Fhehrs. (39)
P

The mixed Kronecker deltas 5;’ and &, indicate that the
vielbeins are expanded around flat space. The inverse
relations efel, = &, and eje}, = &} constrain Fl,, to satisfy

Fiy = 840,ED, =84 Y Eb,Fh,.
P=QUR
= 525?;E}I;u - 5;; Z Eb UFI;?a' (40)
P=QUR

The proof of equivalence between the first and second lines
follows the same logic of Iy = I after Eq. (9).

We can then use general coordmate transformations and
local Lorentz symmetry to fix a convenient gauge. We
found the simplest one to be

1
<17””i1ab - 55’35’5) 8ﬂely’ =0, (41a)

Saey, — 0pe,q = 0. (41b)

The first equation is a truncated version of Eq. (13),
while the second is known as the symmetric gauge. In terms
of the multiparticle currents, this gauge has a simple

realization and does not involve deshuffles. The single-

particle polarizations e}, satisfy Ky ebu Eﬁezﬂ = 0, with
residual gauge symmetry
€ pua = Sa(Kpudpy + kpydpy,) (42)

and kj, - 4, =
With these choices, the recursion for Ef, can be written as

55‘%) Tl;’y - ZK&I; (kPMW?g - ka %Z)

1 a a
585 > [kp Fly (ke By — kpyER,) — kp Fly (kp, ES, — kg, Eb,) — (a <> b))

Q%) + (EQu8; = 8iF0p) T i)

2D)

c na_ s b sa
kPu5 )(F/ b - F/Q n )](erfER/)c - kR/)ERnc)

na_ g, ob &
- kPDECQy)(Fg? n b F/ a)](kSﬁES/)L - kS/)ESO'L)

———E}, F%, Ve

- kT/)ETac)’ (43)

1 .
"‘E(SZ Z (0" (kpuEQ, — kp,Eg,) — (kp,d;
P=QUR
1 A 1
+55 D ((kpub = kp, 85 Fy FP = (kp,E,
P=QURUS
+ Z |:77ch Q%Zggf Q?iig (2 D)
P=QURUS
1
+ Eéll; Z (kPﬂECQu - kaE&M)Ffeang(kTaETpc
P=QURUSUT
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where we have used the multiparticle currents of 77, Wjjb,
and wg?, respectively 7° o Wj‘gz, and Qjﬂ’;.
The n-point tree level amplitudes are defined as

M, = Kszli”rg 52...ne’1laE‘21,_,n,4- (44)
Similar to Eq. (15), the invariance of this amplitude under
the residual gauge transformations [Eq. (42)] has a straight-
forward demonstration in the gauge [Eq. (41)].

Now that we are able to consistently account for
fermionic degrees of freedom in the multiparticle solutions,
it is just a small step to consider supersymmetric field
theories, in particular supergravity.

Final remarks.—In this Letter, we have found multi-
particle solutions to Einstein’s field equations, with a
compact recursive definition for graviton multiparticle
currents in D-dimensional Minkowski space. These cur-
rents can then be used to compute any tree level scattering
between gravitons and matter particles, with or without
supersymmetry.

The key insight is the recursive definition of the inverse
metric ¢ in Egs. (8) and (9), with an analogous expression
for the inverse vielbein ¢/ in Egs. (39) and (40). Effectively,
this recursion works as a truncation of the gravity action. It
is yet another way of seeing that the infinite number of
graviton vertices, though required by diffeomorphism
invariance, play no role at the tree level dynamics.

The practical appeal of our formulas is that they can be
easily computerized. For pure gravity amplitudes, this
might not present an advantage over current methods, in
particular the double copy construction using color-kin-
ematics duality [7,8] and BCFW on-shell recursion [42,43].
Nevertheless, for the mixed scattering of gravitons and
matter particles, the ingredients presented here constitute a
versatile tool for computing tree level amplitudes in a broad
class of theories. Our results do not require an underlying
worldsheet theory (a “stringy” origin) and can be applied to
more general field configurations. We believe our solutions
can become a robust standard for such amplitudes, with a
reliable framework to be used to test both (1) the extension
of current methods and (2) possible new techniques for tree
level scattering.

Toward a more efficient algorithm implementation, the
recursions we presented can be recast in a “color-stripped”
form. The name is inherited from the Yang-Mills per-
turbiner, where such a construction is more natural due to
the color structure. For the graviton, a color-stripped
perturbiner is not limited by the ordered words in the
multiparticle expansion. In this case, the word splitting
needed to recursively define the currents is greatly sim-
plified (see, e.g., [28]). For example, the color-dressed
deshuffle P = Q U R of a n-letter word leads to (2" — 2)
pairs of ordered words. This is to be compared with mere
(n — 1) pairs of the deconcatenation P = QR in the color-
stripped form. We just have to be careful to properly

symmetrize the final amplitudes with respect to the graviton
legs, but this is computationally much less costly.

A more immediate extension of our results would be to
consider multiparticle expansions in curved space. While
this cannot be efficiently developed in general back-
grounds, we found that the perturbiner extension to (anti)
de Sitter spaces leads to an intuitive recursive definition of
Witten diagrams [44] for different matter fields. This is
being explored in an ongoing project [45].

Finally, a quick comment on loop computations. The
perturbiner method seems to be intrinsically classical: it
consists of solving equations of motion. However, recent
results using homotopy algebras in quantum field theory
[46] have uncovered that loop-level scattering amplitudes
can also be recursively computed. The natural question
then is this: Can we reformulate these recursions as
solutions of some quantum equation of motion?
Although this speculation looks a bit farfetched, based
on very preliminary investigations we think the answer
might be affirmative.
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