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In this Letter, we present the first multiparticle solutions to Einstein’s field equations in the presence of
matter. These solutions are iteratively obtained via the perturbiner method, which can circumvent gravity’s
infinite number of vertices with the definition of a multiparticle expansion for the inverse spacetime metric as
well. Our construction provides a simple layout for the computation of tree level field theory amplitudes inD
spacetime dimensions involving any number of gravitons and matter fields, with or without supersymmetry.
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Overview.—Gravity is still in many ways the least
understood of the fundamental forces of nature, arguably
at the macroscopic but definitely at the microscopic level.
The former is splendidly described by the general theory of
relativity, while the latter is hopefully made tangible by the
long sought theory of quantum gravity.
As a first approximation, the Einstein-Hilbert action can

be seen as a common denominator in this range of scales. It
yields as classical equations of motion Einstein’s field
equations and offers a natural path for a (quantum) field
theory of gravitons, the messengers of gravity.
From this field theory perspective, gravity contains an

infinite number of vertices and is, in fact, nonrenormaliz-
able. Even at tree level, the computation of graviton
scattering amplitudes quickly becomes impractical using
standard Feynman diagrams (e.g., [1]).
Modern scattering-amplitude techniques have overcome

this problem. Among them the Britto-Cachazo-Feng-Witten
(BCFW) recursion [2–4] and the double copy [5–8] are most
successful. At their core, they are connected by a simple fact:
cubic vertices are enough to describe any tree level graviton
amplitude. In BCFW, we see this via on-shell recursions. In
the double copy, graviton amplitudes are recast as two copies
of gluon amplitudes with a special trivalent configuration
using the color-kinematic duality [9]. Indeed, pure graviton
amplitudes have been shown to be recursively described by a
cubic actionwith auxiliary fields that is classically equivalent
to the Einstein-Hilbert action [10]. This strictification has
been formally demonstrated in [11] using L∞ algebras.

Our Universe, on the other hand, is not pure gravity. Our
interest resides in the study of interactions between
gravitons and matter particles. In this case, results using
BCFW recursions (e.g., [12,13]), double copy (e.g., [14]),
or other diagrammatic techniques ([15]) are considerably
scarce, subject to different subtleties and limitations that
have so far eluded a more systematic and practical output.
At the dawn of gravitational waves detection and black hole
observation, any advance in the understanding and formu-
lation of the scattering of gravitons by matter is very
welcome. This Letter is a step in this direction.
To our avail, the tree level information of a given field

theory can be elegantly extracted from its classical equations
ofmotion [16]. This ideawas further explored in [17,18] and
later streamlined by the perturbiner method [19–21]. As it
turns out, there is an inspired multiparticle ansatz for the
solution of classical equations of motion that can be used to
define an off-shell recursion for tree level amplitudes in
terms of Berends-Giele currents [22]. This method recently
regained interest [23–25] and has been since explored in
different contexts [26–30]. Rather surprisingly, perturbiner
methods have never been fully applied to gravity, except for
the very early analysis of the self-dual case in [20] and a
simplified version for conformal supergravity amplitudes in
[31]. Naively, a proper recursive solution cannot be defined
in a theory with an infinite number of vertices. As we will
show, however, there is away around this obstacle in gravity.
In thiswork,we propose a series ofmultiparticle solutions

to Einstein’s field equations based on the perturbiner
method. These solutions encompass a broad class of
interesting cases and can be applied to any two-derivative
matter field theory coupled to gravity. We can then define n-
point tree level scattering amplitudes between gravitons and
matter particles using a similar prescription to the super
Yang-Mills case [22]. In this prescription, diffeomorphism
invariance is manifest, with a clear decoupling of pure gauge
states. In addition, the analysis of the soft limit behavior at
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leading order is surprisingly transparent. First, we discuss
pure gravity with a subsequent coupling to bosonic matter.
We then recast the Einstein-Hilbert action in terms of the
vielbein and the spin connection in order to introduce the
coupling to fermionic matter and, consequently, supersym-
metry. Our results are agnostic to the number of spacetime
dimensions and can be easily automated. Whether or not
there is an underlyingworldsheet description, they provide a
compact and efficient computation of the scattering of
gravitons and matter at tree level.
Field equations and gravitons.—Einstein’s field equa-

tions without cosmological constant can be cast as

Rμν −
1

2
gμνR ¼ κTμν: ð1Þ

The right-hand side is the matter energy-momentum tensor
Tμν multiplied by the gravitational constant κ. On the left-
hand side, gμν denotes the spacetimemetric (with inverse gμν),
R ¼ gμνRμν is the scalar curvature, andRμν is theRicci tensor.
As usual, Rμν ≡ Rρ

μρν, where Rσ
μνρ is the Riemann tensor,

Rσ
μνρ ¼ ∂νΓσ

μρ − ∂ρΓσ
μν þ Γσ

νλΓλ
μρ − Γσ

ρλΓλ
μν; ð2Þ

and Γσ
μν ¼ gρσΓμνρ is the Christoffel symbol, with

Γμνρ ¼
1

2
ð∂μgνρ þ ∂νgμρ − ∂ρgμνÞ: ð3Þ

The field equations [Eq. (1)] are covariant under general
coordinate transformations (δxμ ¼ λμ), with the metric trans-
forming as

δgμν ¼ gμρ∂νλ
ρ þ gνρ∂μλ

ρ þ λρ∂ρgμν: ð4Þ
In the absence of matter, Eq. (1) reduces to

Rμν ¼ 0; ð5Þ
which can be used to analyze linearized solutions around a
given background, i.e., the gravitons. These single-particle
solutions around flat space (with metric ημν) are given by

gμνðxÞ ¼ ημν þ hμνeik·x; ð6Þ
with k · x ¼ kμxμ. The graviton polarization hμν satisfies
ηνρkρhμν ¼ ημνhμν ¼ 0. There is also a residual gauge trans-
formation of the form δhμν ¼ kμλν þ kνλμ, with k · λ ¼ 0.
Multiparticle solutions and recursions.—We can now

look at the multiparticle solutions of the graviton field
gμνðxÞ, satisfying Eq. (5). Consider

gμνðxÞ ¼ ημν þ
X
P

HPμνeikP·x; ð7Þ

whereHPμν represents themultiparticle currents. ThewordP
denotes a sequence of ordered letters,P ¼ p1…pn, wherepi
is a single-particle label, with kP ≡ kp1

þ � � � þ kpn
.

In order to find the solutions for HPμν, we have also to
work with gμνðxÞ satisfying gμρgρν ¼ δμν . For the expansion

gμνðxÞ ¼ ημν −
X
P

IμνP eikP·x; ð8Þ

the inverse identity implies that the currents IμνP are con-
strained to be

IμνP ¼ ημρηνσHPρσ − ηνσ
X

P¼Q∪R
IμρQ HRρσ; ð9Þ

where the sum goes over all deshuffles of P into ordered
words Q, R (see, e.g., [28]). Although not explicitly,
IμνP ¼ IνμP and this can be recursively demonstrated order
by order in the subdeshuffles.
Multiparticle currents with one-letter words are simply

associated to their single-particle equivalents (polariza-
tions): Hpμν ¼ hpμν and Iμνp ¼ ημρηνσhpρσ.
To every x-dependent object, we will associate a multi-

particle expansion. For example, the Christoffel symbol can
be expressed as Γμνρ ¼

P
P ΓPμνρeikP·x, with

ΓPμνρ ≡ i
2
ðkPμHPνρ þ kPνHPμρ − kPρHPμνÞ: ð10Þ

The parameter of general coordinate transformations may
also be cast as a multiparticle expansion as

λμ ¼ −i
X
P

Λμ
Pe

ikP·x: ð11Þ

This way, the gauge transformation [Eq. (4)] implies that

δHPμν ¼
X

P¼Q∪R
Λρ
QfkQμHRνρ þ kQνHRμρ þ kRρHRμνg

þ kPμΛPν þ kPνΛPμ: ð12Þ
We will choose the gauge ημνΓμνρ ¼ 0. This is simpler

than the de Donder gauge gμνΓρ
μν ¼ 0, because its multi-

particle version does not involve deshuffles, being neatly
expressed as

ημνΓPμνρ ¼ iημν
�
kPμHPνρ −

1

2
kPρHPμν

�
¼ 0: ð13Þ

In this gauge, the multiparticle currents of the Ricci
tensor RPμν are computed to be

RPμν ¼
sP
2
HPμν − i

X
P¼Q∪R

IρσQ ðkPρΓRμνσ − kPνΓRμρσÞ

− ηαβηρσ
X

P¼Q∪R
ðΓQνασΓRμρβ − ΓQρασΓRμνβÞ

þ ηαβ
X

P¼Q∪R∪S
IρσQ ðΓRνρβΓSμασ − ΓRαρβΓSμνσÞ

þ ηαβ
X

P¼Q∪R∪S
IρσQ ðΓRνασΓSμρβ − ΓRρασΓSμνβÞ

−
X

P¼Q∪R∪S∪T
IρσQ IαβR ðΓSνασΓTμρβ − ΓSρασΓTμνβÞ; ð14Þ
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where sP ≡ ημνkPμkPν denotes the generalized Mandelstam
variables. The recursion relation for HPμν is then obtained
using Eq. (5), i.e., RPμν ¼ 0.
Tree level amplitudes.—Motivated by the Berends-Giele

prescription [22], the tree level amplitude for the scattering
of n gravitons is defined as

Mn ≡ κ lim
s2.::n→0

s2.::nh1μνI
μν
2.::n;

¼ κ lim
s2.::n→0

s2.::nh
μν
1 H2.::nμν ð15Þ

on the support of momentum conservation. Whenever
convenient, we will raise or lower spacetime indices using
the flat metric.
By construction, HPμν is symmetric in the exchange of

any two single-particle labels. This symmetry is lifted to the
amplitudeMn, which is also symmetric in the exchange of
any two graviton legs, although only (n − 1) are manifest
through H2.::nμν. The particle in the first leg can be thought
of as an off-shell leg in the multiparticle recursion, then
placed on shell in the definition of the amplitude in Eq. (15)
via momentum conservation and the limit s2.::n → 0.
The amplitude Mn is invariant under the residual

transformations of the graviton polarizations described
after Eq. (6). In order to see this, we can examine the
residual gauge transformations preserving Eq. (13). They
lead to a recursion for the currents ΛPμ in Eq. (11) given by

ΛPμ¼−
kνP
sP

X
P¼Q∪R

Λρ
QðkQμHRνρþkQνHRμρþkRρHRμνÞ: ð16Þ

It is then just an algebraic step to show the invariance ofMn
under Eq. (12) with multiparticle parameters [Eq. (16)].
The three-point amplitude is given by the well-known

result

M3ðh1; h2; h3Þ ¼
κ

4
h1μνh2αβh

3
γδV

μαγVνβδ ð17Þ

in terms of the three-point Yang-Mills vertex

Vμαγ ¼ ðkμ2 − kμ3Þηαγ þ ðkα3 − kα1Þημγ þ ðkγ1 − kγ2Þημα:
The current HPμν effectively describes interactions with

vertices from three to five points, as can be seen from the
number of deshuffles in Eq. (14). The four or higher point
amplitudes will not be explicitly displayed here, as their
size grows rapidly due to the nested deshuffles. We found it
easier to perform most of the cross-checks numerically,
since it is straightforward to implement the recursions for
HPμν computationally.
The soft limit of graviton amplitudes has a universal

behavior [32,33], constituting a natural test for our proposal
in Eq. (15). As it turns out, its soft limit analysis is very
simple at leading order.
We will take h1μν as the soft graviton and parameterize its

momentum as kμ1 ¼ τqμ, with q2 ¼ 0 and parameter τ → 0.

In the soft limit, we can directly identify the dominant
contributions in H23::nμν, for they come from the poles of
the generalized Mandelstam variables with (n − 2)
momenta. For example,

s3.::n ¼ ðτqþ k2Þ2 ¼ 2τðq · k2Þ ð18Þ
is attached to the multiparticle current with (n − 2) par-
ticles, H3.:nρσ. We can then reexamine the recursion of the
(n − 1)-particle currents H23::nμν and readily express it as

s23::nH23::nμν ¼ k2μk2νh
ρσ
2 H3.:nρσ þ symð2; 3;…; nÞ

þOðτ0Þ; ð19Þ
where symð2; 3;…; nÞ takes care of the symmetrization of
the single-particle labels.
In terms of the amplitude, this parameterization leads to

the leading order contribution

lim
τ→0

Mn ¼
1

τ

�Xn
a¼2

kaμh
μν
1 kaν

2ðq · kaÞ
�
Mn−1ðh2;…; hnÞ; ð20Þ

manifesting the universal Weinberg pole. Since diffeo-
morphism invariance is inbuilt in our results, subleading
soft limits should be directly reproduced [34,35].
Matter coupled to gravity.—The matter contributions to

Eq. (1) come from the energy-momentum tensor

Tμν ≡ −2
1ffiffiffiffiffiffi−gp δ

δgμν
Smatter; ð21Þ

where Smatter is the matter action. In terms of a multiparticle
expansion, we have Tμν ¼

P
P T PμνeikP·x, where the form

of the currents T Pμν is particular to the model. In order for
this to make sense, the single-particle solutions of the free
equations of motion associated to the matter action must be
described in terms of plane waves. These are our asymp-
totic states.
The recursion relations for the currentsHPμν are obtained

by plugging the corresponding multiparticle expansions in
Eq. (1). The result is

RPμν ¼
1

2
ημνη

ρσRPρσ þ κT Pμν

þ 1

2

X
P¼Q∪R

ðHQμνη
ρσ − ημνI

ρσ
Q ÞRRρσ

−
1

2

X
P¼Q∪R∪S

HQμνI
ρσ
R RSρσ; ð22Þ

where RPμν is defined in Eq. (14). Naturally, we recover
RPμν ¼ 0 when T Pμν ¼ 0.
The amplitude prescription is the same as in Eq. (15), but

now we are able to describe the scattering of matter bosons
and gravitons.
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Massive scalar: Our first example is the massive scalar
coupled to gravity and otherwise free, with equation of
motion

ðgμν∂μ∂ν −m2Þϕ ¼ gμνΓρ
μν∂ρϕ ð23Þ

and covariantly conserved energy-momentum tensor

Tμν ¼ −∂μϕ∂νϕþ 1

2
gμνðgρσ∂ρϕ∂σϕþm2ϕ2Þ: ð24Þ

Equation (23) leads to the following recursion for the
scalar multiparticle currents ΦP:

ðsP þm2ÞΦP ¼
X

P¼Q∪R
ðIμνQ kRμkRν þ ημνkρRΓQμνρÞΦR

−
X

P¼Q∪R∪S
ημνIρσQ ΦSðΓRμνσkSρ þ ΓRρσνkSμÞ

þ
X

P¼Q∪R∪S∪T
IμνQ IρσR ΓSμνσkTρΦT: ð25Þ

Similarly, Eq. (24) leads to

T Pμν ¼
X

P¼Q∪R

�
kQμkRν þ

1

2
ημν½m2 − ðkQ · kRÞ�

�
ΦQΦR

þ 1

2

X
P¼Q∪R∪S

HQμνΦRΦS½m2 − ðkQ · kRÞ�

þ 1

2

X
P¼Q∪R∪S

ημνI
ρσ
Q kRρkSσΦRΦS

þ 1

2

X
P¼Q∪R∪S∪T

HQμνI
ρσ
R kSρkTσΦSΦT: ð26Þ

These quantities are then used to compute the tree level
scattering of gravitons and massive scalars. For example,
the four-point amplitude with two gravitons (h1, h2) and
two massive scalars (3, 4) is given by

M4 ¼ 2κ2ðk2 · h1 · h2 · k1Þ −
1

2
κ2s34ðh1 · h2Þ þ 2κ2½ðk3 · h1 · h2 · k4Þ þ ðk4 · h1 · h2 · k3Þ�

þ 4κ2

s34

�
1

2
ðh1 · h2Þ½ðk1 · k3Þðk2 · k4Þ þ ðk1 · k4Þðk2 · k3Þ� þ ðk2 · h1 · k3Þðk4 · h2 · k1Þ þ ðk2 · h1 · k4Þðk3 · h2 · k1Þ

− ðk3 · h1 · k4Þðk1 · h2 · k1Þ − ðk3 · h2 · k4Þðk2 · h1 · k2Þ − ðk2 · h1 · h2 · k3Þðk1 · k4Þ − ðk2 · h1 · h2 · k4Þðk1 · k3Þ

− ðk3 · h1 · h2 · k1Þðk2 · k4Þ − ðk4 · h1 · h2 · k1Þðk2 · k3Þ
�

þ 4κ2

ðs23 þm2Þ ðk4 · h1 · k4Þðk3 · h2 · k3Þ þ
4κ2

ðs24 þm2Þ ðk3 · h1 · k3Þðk4 · h2 · k4Þ; ð27Þ

matching known results in the literature, e.g., [36,37].
Yang-Mills theory: Here we provide the ingredients for

computing the scattering of gravitons and gauge vectors.
The energy-momentum tensor of SYM is given by

Tμν ¼
2

g2YM
Tr
�
gρσFμρFνσ −

1

8
gμνgλρgδσFλδFρσ

�
; ð28Þ

where gYM is the coupling constant, Fμν ¼ ∂μAν − ∂νAμ −
i½Aμ; Aν� is the field strength, and the trace Tr is taken over a
given non-Abelian group or just Uð1Þ for Maxwell’s
theory. The equations of motion of the gauge field can
be cast as

gνρDνFμρ ¼ gνρ½Aν; Fμρ�; ð29Þ
where Dμ denotes the curved space covariant derivative

DνFμρ ¼ ∂νFμρ − Γσ
νμFαρ − Γσ

νρFμα: ð30Þ
It is then straightforward to plug the multiparticle

expansion Aμ ¼
P

P APμeikP·x back in Eq. (29) and obtain
a recursive definition for the currents APμ. The covariant

gauge gμνDμAν ¼ 0 seems to be the simplest choice in
this case.
These Einstein-Yang-Mills amplitudes can then be com-

pared with other results in the literature obtained through
different techniques, e.g., [38–41].
Fermions and supersymmetry.—In order to consider

fermions, we turn the local Lorentz group into a gauge
symmetry. The spacetime metric gμν is mapped to the
(local) flat metric ηab using the vielbein eaμ (with inverse e

μ
a)

such that gμν ¼ ηabeaμebν . The gauge field of the Lorentz
symmetry is the spin connection ωab

μ , and the “flattened”
Riemann tensor Rab

μν ≡ ηacebσe
ρ
cRσ

ρμν can be seen as its field
strength, given by

Rab
μν ≡ ∂μω

ab
ν þ ηcdω

ac
μ ωdb

ν − ðμ ↔ νÞ; ð31Þ

with scalar curvature R ¼ eμaeνbR
ab
μν .

Spinor couplings to the curved background are imple-
mented by replacing spacetime derivatives by their
Lorentz-covariant version. Given a spinor ψ, its covariant
derivative is defined as
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Dμψ ¼ ∂μψ þ 1

4
ωab
μ Γabψ ; ð32Þ

where Γab ¼ 1
2
½Γa;Γb� and Γa denote the usual gamma

matrices satisfying fΓa;Γbg ¼ 2ηab.
Next, we rewrite Einstein’s field equations in terms of the

vielbein and, independently, the spin connection. This is
known as the Palatini variation. In the presence of matter,
they take the form

Ra
μ ¼ κTa

μ þ
1

2
eaμR; ð33Þ

ωab
μ ¼ κWab

μ þ 1

2
eν½að∂μe

b�
ν − Γμνρeρb�Þ; ð34Þ

where Ra
μ ≡ eνbR

ab
μν , ½ab� ¼ ab − ba, and Γμνρ is the zero-

torsion Christoffel symbols in Eq. (3). The matter tensors
are defined as

Ta
μ ≡ e

δ

δeμa
Smatter; ð35Þ

Wab
μ ≡ ePab;cd

μν
δ

δωcd
ν
Smatter; ð36Þ

with e ¼ det eμa, and

Pab;cd
μν ≡ ηd½a

�
eb�ν ecμ þ

1

2
ηb�cgμν þ

2

ðD − 2Þ e
b�
μ ecν

�
: ð37Þ

From here onward, the perturbiner method goes as usual.
We define the multiparticle expansion for the vielbein and
its inverse analogously to the metric expansions in Eqs. (7)
and (8):

eaμ ¼ δaμ þ
X
P

Ea
Pμe

ikP·x; ð38Þ

eμa ¼ δμa −
X
P

Fb
Pνe

ikP·x: ð39Þ

The mixed Kronecker deltas δaμ and δμa indicate that the
vielbeins are expanded around flat space. The inverse
relations eaμeνa ¼ δνμ and eaμeνb ¼ δab constrain Fμ

Pa to satisfy

Fμ
Pa ¼ δνaδ

μ
bE

b
Pν − δνa

X
P¼Q∪R

Eb
QνF

μ
Rb;

¼ δνaδ
μ
bE

b
Pν − δμb

X
P¼Q∪R

Eb
QνF

ν
Ra: ð40Þ

The proof of equivalence between the first and second lines
follows the same logic of IμνP ¼ IνμP after Eq. (9).
We can then use general coordinate transformations and

local Lorentz symmetry to fix a convenient gauge. We
found the simplest one to be

�
ημνηab −

1

2
δμaδνb

�
∂μebν ¼ 0; ð41aÞ

δμaeμb − δμbeμa ¼ 0: ð41bÞ
The first equation is a truncated version of Eq. (13),

while the second is known as the symmetric gauge. In terms
of the multiparticle currents, this gauge has a simple
realization and does not involve deshuffles. The single-
particle polarizations eapμ satisfy kμpeapμ ¼ δμaeapμ ¼ 0, with
residual gauge symmetry

δepμa ¼ δνaðkpμλpν þ kpνλpμÞ ð42Þ

and kp · λp ¼ 0.
With these choices, the recursion forEa

Pμ can bewritten as

sPEa
Pμ ¼ κ

�
δbaδ

ν
μ þ

1

ð2 −DÞ δ
a
μδ

ν
b

�
T b

Pν − iκδνbðkPμWab
Pν − kPνWab

PμÞ

þ 1

2
δνb

X
P¼Q∪R

½kPνFρa
Q ðkRμEb

Rρ − kRρEb
RμÞ − kPμF

ρa
Q ðkRνEb

Rρ − kRρEb
RνÞ − ða ↔ bÞ�

þ
X

P¼Q∪R
½iFν

QbðkRμΩab
Rν − kRνΩab

RμÞ − ηcdδ
ν
bðΩac

QμΩdb
Rν − Ωac

QνΩdb
RμÞ þ

κ

ð2 −DÞ ðE
a
Qμδ

ν
b − δaμFν

QbÞT b
Rν�

þ 1

2
δνb

X
P¼Q∪R

½ηρaησbðkPμEc
Qν − kPνEc

QμÞ − ðkPμδcν − kPνδcμÞðFρa
Q ησb − Fρb

Q ησaÞ�ðkRσERρc − kRρERσcÞ

þ 1

2
δνb

X
P¼Q∪R∪S

½ðkPμδcν − kPνδcμÞFρa
Q Fσb

R − ðkPμEc
Qν − kPνEc

QμÞðFρa
R ησb − Fρb

R ησaÞ�ðkSσESρc − kSρESσcÞ

þ
X

P¼Q∪R∪S

�
ηcdFν

QbðΩac
RμΩdb

Sν −Ωac
RνΩdb

SμÞ −
κ

ð2 −DÞE
a
QμF

ν
RbT

b
Sν

�

þ 1

2
δνb

X
P¼Q∪R∪S∪T

ðkPμEc
Qν − kPνEc

QμÞFρa
R Fσb

S ðkTσETρc − kTρETσcÞ; ð43Þ
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where we have used the multiparticle currents of Ta
μ, Wab

μ ,
and ωab

μ , respectively T a
Pμ, W

ab
Pμ, and Ωab

Pμ.
The n-point tree level amplitudes are defined as

Mn ≡ κ lim
s2.::n→0

s2.::ne
μ
1aE

a
2.::nμ: ð44Þ

Similar to Eq. (15), the invariance of this amplitude under
the residual gauge transformations [Eq. (42)] has a straight-
forward demonstration in the gauge [Eq. (41)].
Now that we are able to consistently account for

fermionic degrees of freedom in the multiparticle solutions,
it is just a small step to consider supersymmetric field
theories, in particular supergravity.
Final remarks.—In this Letter, we have found multi-

particle solutions to Einstein’s field equations, with a
compact recursive definition for graviton multiparticle
currents in D-dimensional Minkowski space. These cur-
rents can then be used to compute any tree level scattering
between gravitons and matter particles, with or without
supersymmetry.
The key insight is the recursive definition of the inverse

metric gμν in Eqs. (8) and (9), with an analogous expression
for the inverse vielbein eμa in Eqs. (39) and (40). Effectively,
this recursion works as a truncation of the gravity action. It
is yet another way of seeing that the infinite number of
graviton vertices, though required by diffeomorphism
invariance, play no role at the tree level dynamics.
The practical appeal of our formulas is that they can be

easily computerized. For pure gravity amplitudes, this
might not present an advantage over current methods, in
particular the double copy construction using color-kin-
ematics duality [7,8] and BCFWon-shell recursion [42,43].
Nevertheless, for the mixed scattering of gravitons and
matter particles, the ingredients presented here constitute a
versatile tool for computing tree level amplitudes in a broad
class of theories. Our results do not require an underlying
worldsheet theory (a “stringy” origin) and can be applied to
more general field configurations. We believe our solutions
can become a robust standard for such amplitudes, with a
reliable framework to be used to test both (1) the extension
of current methods and (2) possible new techniques for tree
level scattering.
Toward a more efficient algorithm implementation, the

recursions we presented can be recast in a “color-stripped”
form. The name is inherited from the Yang-Mills per-
turbiner, where such a construction is more natural due to
the color structure. For the graviton, a color-stripped
perturbiner is not limited by the ordered words in the
multiparticle expansion. In this case, the word splitting
needed to recursively define the currents is greatly sim-
plified (see, e.g., [28]). For example, the color-dressed
deshuffle P ¼ Q ∪ R of a n-letter word leads to (2n − 2)
pairs of ordered words. This is to be compared with mere
(n − 1) pairs of the deconcatenation P ¼ QR in the color-
stripped form. We just have to be careful to properly

symmetrize the final amplitudes with respect to the graviton
legs, but this is computationally much less costly.
A more immediate extension of our results would be to

consider multiparticle expansions in curved space. While
this cannot be efficiently developed in general back-
grounds, we found that the perturbiner extension to (anti)
de Sitter spaces leads to an intuitive recursive definition of
Witten diagrams [44] for different matter fields. This is
being explored in an ongoing project [45].
Finally, a quick comment on loop computations. The

perturbiner method seems to be intrinsically classical: it
consists of solving equations of motion. However, recent
results using homotopy algebras in quantum field theory
[46] have uncovered that loop-level scattering amplitudes
can also be recursively computed. The natural question
then is this: Can we reformulate these recursions as
solutions of some quantum equation of motion?
Although this speculation looks a bit farfetched, based
on very preliminary investigations we think the answer
might be affirmative.
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