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Abstract
We explore the properties of three-atom complexes of alkali-metal diatomic molecules with
alkali-metal atoms, which may be formed in ultracold collisions. We estimate the densities of
vibrational states at the energy of atom–diatom collisions, and find values ranging from 2.2 to
350 K−1. However, this density does not account for electronic near-degeneracy or electron and
nuclear spins. We consider the fine and hyperfine structure expected for such complexes. The
Fermi contact interaction between electron and nuclear spins can cause spin exchange between
atomic and molecular spins. It can drive inelastic collisions, with resonances of three distinct types,
each with a characteristic width and peak height in the inelastic rate coefficient. Some of these
resonances are broad enough to overlap and produce a background loss rate that is approximately
proportional to the number of outgoing inelastic channels. Spin exchange can increase the density
of states from which laser-induced loss may occur.

1. Introduction

Ultracold polar molecules have many potential applications, ranging from precision measurement [1–11],
quantum simulation [12–17] and quantum information processing [18–24] to state-resolved chemistry
[25–30]. A few molecules such as SrF [31–34], YO [35], CaF [36–38], YbF [39] and SrOH [40] have nearly
closed vibronic transitions suitable for laser cooling. In addition, a variety of polar alkali-metal diatomic
molecules have been produced by association of pairs of ultracold atoms, usually by magnetoassociation,
followed by coherent optical transfer to the ground rovibronic state. The molecules produced in this way
include KRb [41, 42], Cs2 [43, 44], Rb2 [45], RbCs [46, 47], NaK [48–50], NaRb [51], NaLi [52] and
NaCs [53].

All the alkali-metal diatomic molecules produced so far have been found to undergo collisional loss in
optical traps [27, 42, 46, 48, 51, 54], even in cases where there is no energetically allowed two-body reaction.
In most systems the loss rate coefficients approach the predictions of a ‘universal loss’ model [55, 56] in
which every molecular pair that reaches short range is lost from the trap. For RbCs, however, detailed loss
measurements that include temperature dependence [54] have been used to determine the parameters of a
non-universal model [57] in which there is partial reflection at short range.

Mayle et al [58, 59] proposed that the observed trap loss is due to ‘sticky collisions’, in which an initial
bimolecular collision forms a long-lived complex that survives long enough to collide with a third molecule.
They estimated the densities of states ρ for the four-atom complexes at the energy of the colliding
molecules, and used arguments based on random-matrix theory (RMT) to estimate the resulting mean
lifetime τ of the complex. For (KRb)2 they obtained ρ > 3000 μK−1 and τ > 150 ms. In subsequent work,
Christianen et al [60] obtained improved estimates of ρ, taking fuller account of angular momentum
constraints and using a more accurate representation of the potential energy surface. The corresponding
lifetimes, τ = 6 μs for (NaK)2, are too short for most complexes to collide with a third molecule at the
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experimental densities. Christianen et al [61] proposed that the complexes are instead excited by the
trapping laser, and showed that this can occur fast enough to account for the observed trap loss. This
proposal is supported by experiments on collisions of RbCs [62, 63] and 40KRb [64], though recent
experiments on Na40K [65] and on Na39K and Na87Rb [66] suggest that the complexes have longer lifetimes
than predicted in the absence of the trapping laser.

In parallel with the work on molecule-molecule collisions, experiments have been carried out on
atom–molecule collisions. The systems studied experimentally include 40K87Rb with 40K and 87Rb [27, 67],
87RbCs with 87Rb and Cs [63], Na39K with Na and 39K [42, 68] and Na40K with 40K [50, 69]. For each
molecule, reaction is energetically allowed in a collision with the lighter atom but forbidden in a collision
with the heavier one. Fast collisional loss has been observed in all cases where the reaction is energetically
allowed.

For non-reactive atom–molecule systems, the picture is more complicated. Experiments have been
carried out on a number of systems including 40K87Rb with 87Rb [27, 67], 87RbCs with Cs [63], Na39K with
39K [42, 68] and Na40K with 40K [50]. For the last of these, Yang et al [50] observed narrow Feshbach
resonances as a function of magnetic field; these resonances have been assigned as due to long-range states
of triatomic complexes [69]. A wide variety of behaviour has been observed, ranging from near-universal
loss to very slow loss, and no consistent picture is yet available. Recently, Nichols et al [67] directly probed
complexes in collisions of 40K87Rb with 87Rb; they measured lifetimes of 0.4 ms in the absence of the
trapping laser, 5 orders of magnitude larger than theoretical predictions [60].

The purpose of the present paper is to explore the properties of the collision complexes that can be
formed in collisions between alkali-metal diatomic molecules and atoms. The structure of the paper is as
follows. In section 2, we consider the angular momenta that are present in alkali-metal triatomic systems,
and basic aspects of the coupling between them. In section 3, we consider the relationship between densities
of states, lifetimes of complexes, and loss rates, including threshold effects. In section 4, we estimate the
densities of vibrational states for short-range three-atom complexes near the atom–diatom collision
threshold. In section 5 we consider the electronic structure of the complexes and the effect of orbital
near-degeneracy. In section 6, we present a model for the Fermi contact interaction between electron and
nuclear spins, and show that it can drive spin exchange between atomic and molecular spins. In section 7,
we consider the effect of spin exchange in atom-molecule collisions. We show that it can cause Feshbach
resonances of three distinct types, each of which produces peaks in the loss rate coefficient with
characteristic widths and peak heights. Some of these resonances are broad enough to overlap and produce
a background loss rate that is approximately proportional to the number of outgoing inelastic channels.
Finally, section 8 presents perspectives and conclusions of the work.

2. Angular momentum coupling

There are 6 sources of angular momentum in a triatomic system AB + C formed from a singlet molecule
and an alkali-metal atom: the electron spin S = 1/2, three nuclear spins iA, iB, iC, the diatomic rotation n
and the partial-wave quantum number L for rotation of AB and C about one another.

An atom–diatom system in a single electronic state is governed by a three-dimensional potential energy
surface V(R, r, θ). This is written here in Jacobi coordinates where r is the diatom bond length and R and θ

are the atom–diatom distance and angle. For the alkali-metal systems of interest here, V(R, r, θ) is deep
(of order 50 THz) and provides strong coupling between the vibrational and rotational states of the
diatomic molecule. Nevertheless, it is diagonal in the total spin-free angular momentum N, which is the
resultant of n and L.

An alkali-metal atom C in a 2S state, with electron spin S = 1/2 and nuclear spin iC, is characterized in
zero field by its total spin fC = iC ± 1

2 . The two hyperfine states are separated by the hyperfine splitting
(iC + 1

2 )ζC, of order 1 GHz, where ζC is the scalar hyperfine coupling constant that arises from the Fermi
contact interaction. In a magnetic field, each hyperfine state is split into 2fC + 1 Zeeman states labeled by
mf,C. As will be seen below, the Fermi contact interaction in a triatomic complex can depend strongly on
geometry and provides a coupling that can be off-diagonal in fC and/or mf,C, while conserving the total spin
projection mf,tot = mA + mB + mC + MS.

Our overall picture of the states of the triatomic complex is that the electronic interaction potential
creates a strongly coupled and potentially chaotic manifold of states for each spin combination
(mA, mB, fC, mf,C), which correlates at long range with an atom in state (fC, mf,C) and a molecule in state
(mA, mB). There is a weaker coupling between manifolds of the same mf,tot, due to the Fermi contact
interaction, that may cause inelastic loss when there are suitable open channels.

Both the electronic interaction potential and the Fermi contact interaction conserve the total spin-free
angular momentum N and its projection MN. There are weaker interactions arising from Zeeman,
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spin-rotation, and additional hyperfine interactions, some of which are off-diagonal in N and MN. These
may play a role in sharp Feshbach resonances, but are unlikely to be strong enough to influence background
loss.

Atom–molecule pairs that reach short range may be excited by the trapping laser, producing
laser-induced loss analogous to that observed in molecule–molecule collisions. This is possible both for
direct collisions and for collisions that form long-lived complex; laser-induced loss is not in itself evidence
of complex formation.

3. Resonance widths and lifetimes of collision complexes

A quasibound state is often thought of as characterized by a width Γ and a corresponding lifetime τ = �/Γ.
However, these quantities need careful definition. When a bound state is embedded in a scattering
continuum, it produces a resonance whose width Γ is governed by the matrix elements between the bound
state and the continuum. If the state is well above the threshold of a single open channel, the scattering
phase shift δ(E) follows the Breit–Wigner form,

δ(E) = δbg + arctan

(
Γ

2(E0 − E)

)
, (1)

where δbg is the background phase shift and E0 is the resonance energy. If there are several open channels a,
the S-matrix eigenphase sum [70] follows the form (1) and Γ is a sum of partial widths Γa to the individual
open channels.

When a quasibound state is probed by absorption spectroscopy with a narrow-band laser from a single
initial state, and the continuum itself is dark, the spectrum has a Lorentzian lineshape with width Γ
[71–73]. Conversely, excitation of the entire Lorentzian, by a laser that is broad compared to Γ, produces a
non-stationary state (wavepacket) that decays into the continuum with lifetime τ = �/Γ [74]. Nevertheless,
it is important to realize that, even when a bound state is spread out over a continuum, solutions of the
time-independent Schrödinger equation still exist at each energy. Such solutions represent stationary states
whose densities do not evolve in time. The rate at which a wavepacket can evolve is ultimately limited by its
spread in energy, which can be much smaller than Γ. This is particularly important in ultracold systems,
which may possess a very small energy spread characterized by their temperature. Complexes formed in
ultracold systems may thus exhibit lifetimes limited by the temperature, which may be much longer than
implied by the width of the underlying state.

The width of a Feshbach resonance is energy-dependent when the state lies just above threshold, even if
the underlying couplings are independent of energy. In quantum defect theory (QDT), the partial width for
decay of a resonance to an open channel a is

Γa = Γs
aC−2(Ea), (2)

where Γs
a is the short-range width and C−2(Ea) is a QDT function that depends on the kinetic energy Ea for

channel a [75–78]. For an interaction potential −C6R−6, C−2(Ea) depends on the background scattering
length abg and is a universal function when written in terms of the mean scattering length
ā = (2μC6/�

2)1/4 × 0.477 988 8 . . . [79] and the corresponding energy Ē = �
2/(2 μā2). Examples of

C−2(Ea) are shown for a variety of values of abg/ā in figure 1; it is proportional to E1/2
a at limitingly low

energy and in all cases it approaches 1 when Ea � Ē. Because of this, Γa � Γs
a near threshold.

For molecules with regular patterns of energy levels, such as most low-lying vibrational states, the
widths are unrelated to the spacings between levels and are often much smaller than them. However, Mayle
et al [58, 59] suggested that the vibrational states of an atom–molecule or molecule–molecule collision
complex are chaotic in nature, and may be approximated by RMT. Under these circumstances the mean
short-range width of the states may be written in terms of their mean spacing d [80],

Γ̄s
a =

Ts
ad

2π
, (3)

where Ts
a is a transmission coefficient between 0 and 1 that governs the likelihood of complex formation or

decay for collisions that reach short range in channel a. Neglecting threshold effects, it is related to the
unitarity deficit of the mean S matrix S̄ by Ts

a = 1 − |S̄aa|2 [80].
Mayle et al [58, 59] gave estimates of lifetimes for collision complexes in atom–molecule and

molecule–molecule collisions based on τ̄ = �/Γ̄ and further estimated Γ̄ as d/(2π) to obtain the mean
lifetime as τ̄ = 2π�ρ. Christianen et al [60] obtained better estimates for ρ but used the same procedure to
estimate τ̄ . However, this neglects the reduction of Γ both by threshold effects and by the short-range
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Figure 1. QDT parameter C−2(E) as a function of reduced energy E/Ē for a selection of background scattering lengths abg.

transmission coefficient Ts
a. The actual widths of the resonances are thus likely to be considerably smaller

than the estimates of Mayle et al, and the lifetimes of the complexes, once formed, are likely to be
considerably larger than τ = 2π�ρ. In general, if the temperature T is high enough to average over many
resonances, kBT � d, then τ̄ = 2π�ρ is still the correct mean collisional time delay [81], but only a fraction
of collisions form complexes and those that do have extended lifetimes.

The effects of thresholds and of Ts
a can be combined into a single transmission coefficient Ta, which is

generally not a simple product of the two contributions. In the presence of partial reflection at short range,
Ta can be calculated from a non-universal QDT theory [55, 57]. The formation of complexes, averaged over
many resonances, can be described in the same way as inelastic loss [82] and characterized by a short-range
parameter analogous to the loss parameter y of Idziaszek and Julienne [55], where Ts

a = 4y/(1 + y2) [80].
The collision complex may subsequently decay back to the incoming channel, or be lost by a secondary
process such as collision with a 3rd body, laser excitation, or inelastic decay. If the system behaves
chaotically, the mean width for decay back to the incoming channel is Γ̄inc = Tincd/(2π). In the absence of
other loss processes, this implies a mean lifetime τ̄ = 2π�ρ/Tinc, but only if the thermal energy spread is
large compared to Γ̄inc as described above. Christianen et al [83] recently considered a lossy QDT model of
such resonances. They concluded that if the complexes are lost rapidly once formed and Γ̄s

inc = d/2π, such
that Ts

inc = 1 in equation (3), the loss rate is represented by y = 0.25, as opposed to the y = 1 implicit in the
model of Croft et al [82]. The reasons for this apparent disagreement are not clear at present, but both
methods rely on averaging over a large number of resonances.

The densities of states for atom–molecule collision complexes are much lower than those for
molecule–molecule complexes [60]. In particular, as seen below, the mean spacings between levels are far
larger than both typical thermal energies and laser broadening. It is therefore not appropriate to average
across the resonance widths. Instead, we need to consider how the possible presence of a single resonant
state near threshold can enhance collisional loss. In the following, we consider this in terms of the resonant
profile as the state crosses the incoming threshold, even if its energy relative to threshold is almost fixed. As
shown in the appendix, the rate coefficient for resonant inelastic loss due to a single resonance with no
background loss, at limitingly low collision energy, shows a Lorentzian peak of the form

k2 = kuniv
2

[
1 +

(
1 − abg/ā

)2
] Γs

inc/Γinel

[2(E − Eres)/Γinel]2 + 1
. (4)

Here kuniv
2 = 4π�ā/μ is the universal rate coefficient at zero energy [55]; values of ā and kuniv

2 are given in
table 1. Γs

inc is the short-range partial width for decay to the incoming channel, which may be well
represented by equation (3). Γinel is the sum of the partial widths for secondary loss processes, including
both laser excitation and inelastic decay. The width of the peak is determined by Γinel, which is not subject
to threshold effects in the incoming channel. It is entirely possible for the resonantly enhanced loss rate to
exceed the universal rate, particularly when Γs

inc > Γinel. Such supra-universal rates are observed, for
example, near Feshbach resonances for Na40K with 40K [50].

If Γinel � d, which often occurs when there are many open channels, multiple resonant features may
overlap. When only a few resonances overlap, the separate contributions may be approximately additive.
However, when many resonances overlap, they reach the regime of Ericson fluctuations [80] and the total
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Table 1. Properties of atom + diatom systems: mean scattering length ā and zero-temperature
universal rate constant kuniv

2 , together with densities of short-range states ρ and mean spacings d
calculated from equations (5) and (7).

System ā (Å) Ē/h (MHz) kuniv
2 (cm3 s−1) kBρ(De) (K−1) d/h (MHz)

7Li7Li + 7Li 21 245 3.58 × 10−10 2.2 9480
7Li23Na + 7Li 20.8 205 2.92 × 10−10 3.87 5386
7Li40K + 7Li 23.2 154 3.03 × 10−10 5.92 3520
7Li87Rb + 7Li 24.2 132 2.96 × 10−10 7.31 2852
7Li133Cs + 7Li 25.4 117 3.04 × 10−10 9.36 2225
7Li23Na + 23Na 26 57.3 1.6 × 10−10 4.61 4520
23Na23Na + 23Na 29 39.1 1.51 × 10−10 9.49 2195
23Na40K + 23Na 30.8 31.6 1.46 × 10−10 18.6 1122
23Na87Rb + 23Na 32.5 25.1 1.37 × 10−10 26.7 779
23Na133Cs + 23Na 34.3 21.4 1.37 × 10−10 37.8 551
7Li40K + 40K 36.2 17.8 1.34 × 10−10 8.17 2549
23Na40K + 40K 38 14.3 1.24 × 10−10 20.6 1011
40K40K + 40K 42 10.8 1.26 × 10−10 37.3 559
40K87Rb + 40K 42.9 9.05 1.13 × 10−10 56.6 368
40K133Cs + 40K 45 7.69 1.11 × 10−10 77.9 267
7Li87Rb + 87Rb 45.7 5.36 8.08 × 10−11 14.6 1423
23Na87Rb + 87Rb 47.3 4.66 7.77 × 10−11 41.8 499
40K87Rb + 87Rb 50.1 3.91 7.75 × 10−11 75.5 276
87Rb87Rb + 87Rb 53.4 3.06 7.35 × 10−11 134 155
87Rb133Cs + 87Rb 55 2.68 7.05 × 10−11 200 104
7Li133Cs + 133Cs 55.7 2.39 6.52 × 10−11 26.4 790
23Na133Cs + 133Cs 57 2.17 6.34 × 10−11 76.2 273
40K133Cs + 133Cs 59.6 1.89 6.33 × 10−11 129 161
87Rb133Cs + 133Cs 61.9 1.59 5.96 × 10−11 240 86.7
133Cs133Cs + 133Cs 65.2 1.34 5.88 × 10−11 344 60.5

loss cannot be represented in this way. This situation has been considered by Christianen et al [83]. Here we
will consider only the case Γinel < d, which is applicable to typical alkali atom + diatom collisions.

4. Densities of states for collision complexes

The densities of states are much lower for three-atom than for four-atom complexes. Christianen et al [60]
have developed a procedure for evaluating the density of states, based on a semiclassical phase-space
integral incorporating angular momentum constraints. They obtain

ρ(E) =
gNJp4

√
2πmAmBmC

h3(mA + mB + mC)

∫ V<E Rr√
μR2 + μABr2

[E − V(R, r, θ)]1/2R2 dR r2 dr sin θ dθ. (5)

Here gNJp is a parity factor that accounts for the absence of a conserved parity in classical phase space, which
is 1 for the systems considered here; mX is the mass of atom X; μAB = mAmB/(mA + mB) is the reduced
mass of the diatomic molecule AB; and μ = (mA + mB)mC/(mA + mB + mC) is the atom–diatom reduced
mass. Christianen et al [60] included a degeneracy factor gABC in this expression to account for equivalent
nuclei, but here we take that into account in considering hyperfine states below. The resulting density of
vibrational states ρ(E) is for a single electronic state and a single value of the spin-free total angular
momentum N and its projection MN.1 It also neglects fine and hyperfine structure.

Equation (5) can be integrated numerically if a full interaction potential V(R, r, θ) is available. However,
if we make some approximations we can obtain analytic expressions. We wish to estimate the density of
states that are strongly enough coupled to form a chaotic bath. Such states exist principally at short range.
We therefore fix the first term in the integrand to its value at the equilibrium geometry, R = Re and r = re.
We also approximate the potential to be isotropic and harmonic around the minimum,

V(R, r, θ) =
1

2
kr(r − re)2 +

1

2
kR(R − Re)2. (6)

1 We adopt the usual spectroscopic notation for a molecule with spin, retaining J for the angular momentum including electron spin
and F for the angular momentum including electron and nuclear spins. We retain upper-case letters for quantum numbers of the
triatomic system, and use lower-case letters for quantum numbers that refer to individual colliding species.
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The integral can now be evaluated analytically, giving

∫
[E − V(R, r, θ)]1/2R2 dR r2 dr sin θ dθ =

8π2E3/2

3
√

krkR
. (7)

Here the energy is relative to the potential minimum, and for the present purpose we evaluate ρ at E = De,
the energy of the separated atom and diatomic molecule with respect to the energy of the triatomic
minimum. We therefore conclude that the density of short-range states around the atom–diatom threshold
is likely to scale approximately as

mAmBmC

(mA + mB + mC)

Rere√
μR2

e + μABr2
e

D3/2
e√

krkR
. (8)

The equilibrium geometries and binding energies De for all the alkali-metal three-atom systems
containing 2 or 3 identical atoms have been obtained from electronic structure calculations [84]. For each
system, we estimate the force constant kR for the atom–diatom vibrations assuming a Lennard-Jones
potential in R. This gives kR = 72De/R2

e , where De is the binding energy of the trimer with respect to the
atom + diatom threshold and Re = (C6/De)1/6; for XY + X systems we use C6 coefficients from [85] and
for X + X2 systems we use twice the C6 coefficient for X + X [86]. The force constant kr is taken to be the
same as that determined for the free diatomic molecule XY from electronic spectroscopy [87–114]. The
resulting densities of short-range states ρ and mean level spacings d for the systems considered here are
given in table 1. We have selected one representative isotope of each element, and the small variations due
to isotopic substitution can be calculated from equation (8) if needed. The values range from 60.5 MHz for
Cs2 + Cs to 9.48 GHz for Li2 + Li. Most of the differences come from the atomic and reduced masses,
which vary by up to a factor of 20 between systems. The value obtained by this method for K2 + Rb is
within 25% of that obtained by Christianen et al [60] by evaluating equation (5) using a different model
potential.

5. Orbital near-degeneracy

To understand the chemical bonding in the collision complexes, it is useful first to consider the
homonuclear alkali-metal triatomic molecules [115]. At a geometry corresponding to an equilateral triangle
(point group D3h), these systems are orbitally degenerate, with a single electron in an orbital of symmetry
e
′
. The resulting state has symmetry 2E, so is subject to a Jahn–Teller distortion; the actual equilibrium

geometry is an obtuse isosceles triangle (point group C2v). At this geometry the ground state has 2B2

symmetry, but there is a low-lying excited state of 2A1 symmetry. At lower-symmetry geometries the two
states are mixed. The two resulting surfaces intersect along seams of conical intersections that include one at
equilateral geometries. The three equivalent potential minima on the lower surface are connected by
low-energy pathways through scalene and acute isosceles geometries; motion along these pathways gives rise
to the phenomenon known as pseudorotation, with characteristic energy-level patterns.

For heteronuclear three-atom systems X2Y, the situation is more complicated [84]. Some systems have
ground states of 2B2 symmetry with minima at isosceles geometries, while others have ground states of 2A

′

symmetry at scalene geometries (point group Cs). Nevertheless, the principle remains that there are two
electronic states of similar well depth that cross and avoided-cross as a function of nuclear coordinates. The
resulting short-range states are strongly coupled to one another, so the near-degeneracy of the partially
filled orbitals produces almost a doubling in the densities of states from the values of section 4.

6. The Fermi contact interaction

The strongest hyperfine term for both the free atom and the triatomic collision complex is the Fermi
contact interaction. At long range this couples S to iC for the free atom to form fC. At short range, however,
all three nuclei experience significant spin densities and S couples to all of iA, iB and iC to give resultant ftot.
The coupling is of the form ∑

X=A,B,C

ζX(R, θ,φ)̂iX · Ŝ, (9)

where Ŝ and îX are the operators for the electron and nuclear spin angular momenta. The coupling
coefficients ζX are proportional to the product of the corresponding nuclear magnetic moment and the
electron spin density at nucleus X. The spin densities are strongly dependent on geometry; as any one
nucleus is pulled away from the other two, the electron spin localizes on the separating atom, until the full
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hyperfine coupling of the free atom is achieved as R →∞. However, in the strongly interacting region the
spin density is distributed between the three atoms and shifts substantially from one atom to another as the
complex vibrates. The spin density at the nucleus is sensitive only to the spin population in atomic s
orbitals, and is reduced if population is transferred to p orbitals.

There is some controversy over the Fermi contact interactions in alkali-metal triatomics near their
equilibrium geometries. For Na3 [116] and K3 [117], electron-spin resonance (ESR) studies of
matrix-isolated species show that the s-orbital spin densities on the 3 atoms sum to around 0.9 at the
equilibrium geometry of the 2B2 state, with most of the density on the two equivalent atoms. For Li3 [118]
and Na2Li [119] the distribution is similar, but the densities sum to only 0.69 and 0.78, respectively. The Li3

result has been confirmed by a molecular-beam study [120]. These results accord with a physical picture in
which relatively little spin density is located in p orbitals. However, a molecular-beam microwave study on
Na3 [121] suggests that the Fermi contact interactions are much smaller than the ESR spin densities imply,
and this is supported by electronic structure calculations [122]. These details do not affect the basic physics
discussed in the present paper: the important feature is that the spin densities shift substantially between
atoms as a function of wide-amplitude motions.

We have modeled the spin densities using a valence-bond method. This is related to the
London–Eyring–Polanyi–Sato (LEPS) [123–126] approach, which has been widely used for interaction
potentials, including those of the alkali-metal triatomic molecules [127, 128]. In the LEPS approach, the
two doublet surfaces are [123]

V±(RAB, RBC, RAC) = JAB + JBC + JAC ±
[

1

2
(KAB − KBC)2(KBC − KAC)2(KAC − KAB)2

]1/2

, (10)

where RXY is the separation of atoms X and Y, and JXY and KXY are two-atom Coulomb and exchange
integrals. Values of these integrals can be estimated from the potential curves for the corresponding
two-atom systems by writing their singlet and triplet curves as

1,3VXY (RXY ) = JXY ± KXY , (11)

with only the two-body singlet and triplet potentials [87–114] as input.
The London equation (10) [123] gives only the energies of the surfaces. However, Slater’s derivation

[129] of it allows calculation of the corresponding eigenfunctions and spin densities as well. The
eigenfunctions are expressed as linear combinations of Slater determinants. Each determinant represents a
configuration with one electron in the s orbital of each atom; for doublet states with MS =

1
2 , two atoms

have spin projection ms =
1
2 and one has projection − 1

2 . Remarkably, there are some atomic arrangements
near isosceles geometries where one of the three configurations dominates. For such arrangements, the spin
density on the isolated atom is actually dominated by ms = − 1

2 , with the opposite sign to the overall spin.
This is a result that is quite impossible for a spin-restricted Hartree–Fock wavefunction with an unpaired
electron in a single molecular orbital.

In a magnetic field, the Fermi contact interaction can mediate spin exchange between the electron and
nuclear spins (and indirectly among the nuclear spins) while conserving the total spin projection mf,tot.
Each rovibrational state of the triatomic complex will split into Nhf spin sublevels. If the atomic and
molecular states are spin-stretched, mf,tot = ±fmax, where fmax = S + iA + iB + iC, only a single sublevel exists
for each rovibrational state of the complex. However, the number of sublevels increases as |mf,tot| decreases.
Neglecting exchange symmetry, there are Nhf = 4 sublevels for fmax − |mf,tot| = 1; three of these have even
exchange parity and one is odd. For larger deviations the numbers increase, and are easily evaluated, but
depend on the specific values of the spins.

An example of the effect of shifting spin density is shown in figure 2. This shows the Fermi contact
contribution to the hyperfine energy for the reaction 87Rb + 40K87Rb → 87Rb2 +

40K along a selected
reaction path that includes a rearrangement by pseudorotation. It is obtained by diagonalizing the
Fermi-contact Hamiltonian (9) at each geometry, with the coupling coefficients ζX calculated from the
valence-bond model. The resulting hyperfine adiabats are shown for mf,tot = −3/2, which corresponds to
the lowest hyperfine state of the reactants. In this case, fmax − |mf,tot| = 6 and there are Nhf = 32 hyperfine
sublevels. At the center of the diagram, where there is substantial exchange of spin density, the levels are
spread out across an energy range comparable to the atomic hyperfine splitting and their energies depend
strongly on geometry. There are many avoided crossings with a variety of widths, particularly along the
pseudorotation section of the path, that are likely to result in spin exchange.
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Figure 2. Energies of hyperfine adiabats of 87Rb40
2 K with mf,tot = −3/2 in a magnetic field of 200 G, with spin densities taken

from the valence-bond model. Along the coordinate ξ, the system starts from the separated Rb atom and KRb molecule (ξ = 0);
these approach each other with fixed Rb–K–Rb angle, to the absolute minimum (ξ = 1), which is an obtuse isosceles triangle.
The system then pseudorotates along the minimum-energy path to a local minimum at a scalene geometry (ξ = 2), and finally
dissociates by moving the K atom away from Rb2, with fixed Rb–Rb–K bond angle (ξ = 3). The inset shows an expansion of the
adiabats around the midpoint of the pseudorotation, illustrating the presence of close avoided crossings that are likely to result in
spin exchange.

7. Inelastic loss mediated by spin exchange

There is a manifold of short-range vibrational states associated with each hyperfine sublevel. Each such
manifold is likely to be chaotic in nature. Spin exchange allows a collision between atoms and molecules in
one pair of states to access bound states in any manifold with the same mf,tot. The density of states is
enhanced to Nhfρ, and all the states can cause Feshbach resonances. However, these states are not necessarily
equivalent, because the Fermi contact interaction that drives spin exchange is weaker than the anisotropic
potential coupling. A given incoming channel couples strongly to one of these manifolds, but it may couple
more weakly to the remaining Nhf − 1 manifolds. This may be quantified with a spin-exchange parameter z,
analogous to the isospin-mixing parameter used for reactions of compound nuclei [130],

z =
4π2H2

ab

d2
, (12)

where Hab is a matrix element of the coupling between states in manifolds a and b. When z � 1, the mean
partial width connecting the incoming channel to states in these other manifolds is zΓ̄a. Conversely, when
z � 1, states in the Nhf different manifolds are fully mixed and all contribute to the effective density of
states that enters into RMT.

A full calculation of the spin-exchange parameter is beyond the scope of this work. It requires not only
the mean level spacing d but also the wavefunctions of the states in the two chaotic manifolds. Such a
calculation is near the limits of current theoretical methods, but may be achievable for lighter atom-diatom
systems within a few years. Here we follow the practice in studies of compound nuclei [130], and treat z as a
phenomenological parameter to be inferred from experimental results.

Spin exchange can also produce inelastic loss if there are channels lower in energy than the incoming
state but with the same mf,tot. We again take 40K87Rb + 87Rb as our example [27, 67]. The lowest state of the
separated atom and molecule is (mK, mRb, fRb, mf,Rb) = (−4, 3/2, 1, 1). Excitation of either nuclear spin of
the molecule individually does not produce any inelastic channels that are accessible by spin exchange, but
the combined excitation to (mK, mRb) = (−3, 1/2) has the same mf,tot as the ground state, so spin exchange
is allowed. However, these two states states are split by only the nuclear Zeeman effect, so the kinetic energy
release is small, equivalent to 15 μK at a representative magnetic field of 200 G. The corresponding QDT
function C−2(E) is typically around 0.1, so decay by this path is partially suppressed by threshold effects. If
the atom is in an excited state, spin exchange is usually energetically allowed. In such cases the kinetic
energy releases are much larger, equivalent to 7 mK at 200 G, such that C−2(E) is close to 1, and loss is not
suppressed by threshold effects.

Even when there are open channels that are energetically accessible, non-resonant spin exchange is likely
to be slow. The avoided crossings in figure 2 occur deep in the potential well. Even for the widest such
crossings, a Landau–Zener treatment estimates inelastic transition probabilities of the order of 10−3 for a

8
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double crossing in Rb + KRb. Significant loss is therefore expected only when there is resonant
enhancement. If z < 1, there are three general cases of resonant inelastic decay, which correspond to
different values of Γs

inc and Γinel in equation (4). In the following, we relate the mean heights of resonant
loss features to the universal rate, modified by the factor [1 + (1 − abg/ā)2] in equation (4), and their mean
widths to Γ̄s

a of equation (3).
The first case is where the resonant state is part of the manifold associated with the incoming channel

and coupled to Nout inelastic channels by spin exchange. We refer to the resulting resonances as
incoming-manifold resonances. The coupling to the incoming channel is characterized by Γ̄s

inc = Γ̄s
a and

that to the inelastic channels by Γ̄inel = zΓ̄s
a. The height of the peak in the loss rate is thus multiplied by a

factor 1/(zNout), but its width is divided by the same factor. When it is appropriate to average over many
such resonances, their total contribution is thus independent of z, but in the atom + molecule case, where
the density of states is too low for averaging to be appropriate, the narrowing decreases the probability of
hitting such a resonance.

The second case is where the resonant state is part of a manifold associated with an open channel other
than the incoming channel. We refer to these as outgoing-manifold resonances. In this case Γ̄s

inc = zΓ̄s
a and

Γ̄inel = Γ̄s
a. The height of the peak in loss rate is thus multiplied by a factor z. However the widths of the

resonances are unaffected by z, so may be comparable to their spacings, according to equation (3). If there
are Nout open channels, each of them will support resonances of this type.

The third case is where the resonant state is part of a manifold associated with a closed channel. We refer
to these as closed-manifold resonances. In this case Γ̄s

inc = zΓ̄s
a and Γ̄inel = zNoutΓ̄

s
a. The height of the peak

in loss rate is thus reduced by a factor Nout from the universal rate, and the width of the peak is multiplied
by a factor zNout.

Figure 3 shows two schematic examples of the combined effect of these three types of resonance. For the
purpose of illustration, we choose spin-exchange parameter z = 0.15 and short-range transmission
coefficient Ts

a = 1.0. For each manifold, the bound states are randomly generated from a suitable chaotic
distribution2 [131, 132] with mean spacing d. The horizontal axis represents scanning the energy of the
incoming channel across the pattern of short-range bound states. The upper panel of figure 3 shows an
example with Nhf = 9 and Nout = 4, so that within each interval d there is 1 incoming-manifold resonance,
4 outgoing-manifold resonances, and 4 closed-manifold resonances. It may be seen that the
outgoing-manifold and closed-manifold resonances make similar overall contributions to the inelastic rate,
but the closed-manifold contribution is more structured because the underlying resonances are narrower.
The incoming-manifold resonances give peaks that are high but relatively narrow (with width dependent on
Ts

a), and usually will not overlap. The lower panel of figure 3 shows an example with Nhf = 9 and Nout = 2,
with the resonances in the same locations as before to facilitate comparison. Within each interval d there are
now 1, 2 and 7 incoming-, outgoing- and closed-manifold resonances, respectively. The major differences
are that the peaks for incoming-manifold and closed-manifold resonances are higher and sharper, while the
overall contribution of outgoing-channel resonances is reduced by the smaller Nout. An important feature
that the two examples share is a weakly structured background loss from the outgoing-manifold resonances,
whose mean height is

kbg
2 ≈ zNoutTs

a

4
kuniv

2 , (13)

independent of d.
The loss rates in figure 3 are shown as a function of the mean spacing d. In ultracold scattering, however,

such rates are usually measured as a function of magnetic field, or some other external variable such as
electric field. As a function of magnetic field B, channel thresholds shift with respect to one another by
BΔμ, where Δμ is the difference in magnetic moments. For free alkali-metal atoms at low field,
Δμ/h ≈ 1.4/
(iC + 1

2 ) MHz G−1 for states with mf,C that differ by 1, and is typically between 0.7 MHz G−1 for atoms with
iC = 3

2 (23Na, 39K, 41K, 87Rb) and 0.3 MHz G−1 for iC = 4 (40K). The magnetic moments of triatomic
complexes are more complicated, but will be of similar magnitude. The horizontal axes in figure 3
correspond to 3d and thus cover the equivalent of hundreds or even thousands of Gauss. The general
conclusion is that atom-molecule resonances due to states that belong to the RMT bath are very broad
indeed.

The largest body of experimental results for losses in alkali-metal atom–molecule systems is for Na40K
with 40K. Yang et al [50] measured loss rates as a function of magnetic field for more than 20 combinations
of atomic and molecular states. Their main focus was on narrow Feshbach resonances, but they also

2 We randomly generate matrices of dimension 20 from the Gaussian orthogonal ensemble, and unfold the resulting eigenvalues
analytically using Wigner’s semicircle law.
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Figure 3. Schematic examples of loss due to the three types resonance. Red, green and blue lines show incoming-, outgoing-,
and closed-manifold resonances, respectively; dashed lines show contributions of individual resonances from equation (4) and
solid lines show simple sums neglecting interference effects. The coupling parameters used here are Ts

a = 1.0 and z = 0.15. We
choose Nhf = 9, corresponding to fmax − |mf,tot| = 2 for most alkali-metal trimer systems. The upper panel shows Nout = 4 and
the lower Nout = 2.

measured loss rate coefficients in several windows of magnetic field, including near 90 G and near 102 G,
shown in figures S2 and S3 of their supplemental material. In cases where no resonant features are visible,
the background loss rates generally increase with Nout, reaching values between 0.5 and 1 times the universal
loss rate when Nout is 3 to 5. However, there are also a few state combinations that show unstructured loss at
up to twice the universal rate. For Na40K with 40K, d = 1033 MHz and a typical value of Δμ/h is
0.3 MHz G−1, so even the narrowest resonances in figure 3(b) have widths of order 200 G for z = 0.15.
Both the general increase in background loss rates with Nout and the occasional state combinations with
supra-universal rates are entirely consistent with the behaviour shown in figure 3.

In addition to inelastic loss to lower-lying open channels, there is the possibility of loss due to laser
excitation of complexes by the trapping laser. This is likely to introduce loss from all channels accessible by
spin exchange, with a contribution Γ̄laser to Γ̄inel that depends on the laser intensity but is independent of Γ̄s

a

and hence of the density of states. The effect of this depends on the relative strength of this decay to any
existing inelastic loss. Nichols et al [67] have measured decay equivalent to Γ̄laser/h ≈ 5 MHz for 40KRb +

Rb at typical optical trap intensities, and it seems likely that other alkali-metal atom + molecule systems
will be comparable. This value is substantially smaller than our estimates of Γ̄s

a for any of the systems
considered here. Laser-induced loss is thus likely to have little effect on loss due to any outgoing-manifold
resonances, but it may reduce the height and increase the width of incoming-manifold or closed-manifold
resonances if Γ̄laser � zΓ̄s

a. More importantly, it may induce both incoming-manifold and closed-manifold
resonances even in systems with no open inelastic channels, such as those involving atoms and molecules in
their absolute ground states. However, the likelihood of encountering such a resonance for a particular
incoming state at a single field is approximately (Nhf − 1)Γ̄laser/d, which is usually fairly small.
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8. Conclusions

We have developed the theory of the triatomic complexes that can be formed in ultracold collisions between
alkali-metal diatomic molecules and atoms. We have estimated the densities of vibrational states of the
complexes near the energy of the colliding particles, based on the properties of the diatomic molecules and
the calculated binding energies of the trimers. The resulting densities range from 2.2 to 350 K−1. We have
considered the angular momentum couplings present in the complexes and the resulting fine and hyperfine
structure. The largest such term is the Fermi contact interaction between the electron and nuclear spins. We
have presented a model of this interaction, based on valence-bond theory, and shown that it varies
substantially with the geometry of the complex because the unpaired spin moves between the atoms as the
complex vibrates.

Our overall picture is that each pair of atomic and molecular spin states is associated with a manifold of
vibrational states of the triatomic complex. Each such manifold is likely to be chaotic in nature. The Fermi
contact interaction can couple these manifolds, and can thus drive spin exchange between spins on the
atom and the molecule. The degree of coupling between manifolds is characterized by a spin-exchange
parameter z, which depends on the ratio between off-diagonal matrix elements of the Fermi contact
interaction and the mean spacing between vibrational levels, d. This parameter may be substantial in the
alkali-metal triatomic complexes.

We have developed the theory of resonant low-energy scattering in the presence of several chaotic
manifolds that are weakly coupled to one another. We find that there can be Feshbach resonances of three
distinct types, which we term incoming-, outgoing- and closed-manifold resonances. Each type of
resonance can cause peaks in the rate coefficient for inelastic scattering with characteristic peak heights and
widths that depend on z and the number of outgoing inelastic channels. For atom–diatom systems, the
resonances due to states in the chaotic bath are very broad compared to the spread of kinetic energies at
ultracold temperatures, so it is not appropriate to average over their widths in ultracold atom–diatom
collisions. Instead, the scattering properties at a specific collision threshold depend on its energy with
respect to the essentially random pattern of individual bath states. Nevertheless, the resonances due to
outgoing-manifold resonances are broad enough that they may overlap to produce a background loss for
most incoming states, particularly when there are several outgoing inelastic channels that are accessible
from the incoming state by spin exchange.

Resonances due to states in the chaotic bath are different from those arising from near-threshold states
of triatomic complexes, as observed in Na40K + 40K [69]. Such states spend most of their time in the
long-range tail of the interaction potential; they are relatively weakly coupled to one another and to the
incoming and outgoing scattering states, so they can produce much narrower resonances than the states
considered here. They do not form part of the chaotic bath of states, so there is no reason to expect their
widths to be related to their spacings.

Atom–diatom complexes have much lower densities of states than diatom–diatom complexes.
Nevertheless, some features of the theory developed here may apply in the diatom–diatom case. In
particular, the densities of states in diatom-diatom complexes [60] can be 4 orders of magnitude larger than
those obtained here for atom–diatom complexes. Since the mixing between manifolds is governed by the
ratio of couplings to level spacings, much smaller couplings are sufficient to cause mixing in the
diatom–diatom case. Even very small interactions such as the nuclear electric quadrupole coupling [133]
might be large enough.
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Appendix A. Scattering length and loss rate across a decayed resonance

Hutson [134] has described the behaviour of a Feshbach resonance close to threshold in the presence of
inelastic decay. The general expression for an S-matrix element in the vicinity of a resonance is

Sab(E) = Sbg,ab −
igagb

E − Eres + iΓ/2
. (A.1)

Here, Eres is the resonance energy, ga is in general complex and characterizes the partial width Γa = |g2
a |, and

Γ =
∑

a Γa is the total width. We are interested in the diagonal S-matrix element in the incoming channel,
Sinc; we take the collision energy E − Einc to be small, such that we can approximate the background
S-matrix element to be Sbg,inc = 1; the more general case |Sbg,inc| = 1 gives the same results for inelastic loss
due to resonances, but we choose this specific value for simplicity. With this choice, the product g2

inc must be
real and non-negative and can be replaced by Γinc, the partial width to the incoming channel. This gives

Sinc = 1 − iΓinc

(E − Eres) + iΓ/2
. (A.2)

The total width is Γ = Γinc + Γinel, where Γinel characterizes the decay to all loss channels, whether inelastic,
reactive, or light-induced. The partial width in the incoming channel is narrowed by threshold effects,
Γinc = Γs

incC−2(E − Einc), as described by equation (2).
The QDT function C−2(Ekin) can be calculated explicitly from either numerical or analytic solutions

[135] with an appropriate asymptotic potential. Its leading term for an asymptotic potential −C6/R6 is
[77, 78, 136]

C−2(Ekin) = kā
[

1 +
(
1 − abg/ā

)2
]

, (A.3)

where k =
√

2 μEkin/� is the wavevector and abg is the background (non-resonant) scattering length.
We could now directly calculate inelastic cross sections and rate coefficients from equation (A.2), but it

is convenient first to consider the complex scattering length. This is defined as [134]

a(k) = α− iβ

=
1

ik

1 − Sinc

1 + Sinc
(A.4)

and the two-body loss rate coefficient is

k2 =
4π�β

μ(1 + k2|a|2 + 2kβ)
. (A.5)

This becomes constant and proportional to β at low energy; the universal rate at zero energy, kuniv
2

corresponds to β = ā [55]. Substituting equation (A.2) into equation (A.4) and using equation (A.3) gives

a = ā
[

1 +
(
1 − abg/ā

)2
] Γs

inc/Γinel

2(E − Eres)/Γinel + i
, (A.6)

and so

β = ā
[

1 +
(
1 − abg/ā

)2
] Γs

inc/Γinel

[2(E − Eres)/Γinel]2 + 1
. (A.7)

This can be converted to a rate through equation (A.5). We make the simplifying assumption that k|a| � 1,
such that the denominator in equation (A.5) reduces to just μ, and write the result in terms of
kuniv

2 = 4π�ā/μ. This gives

k2 = kuniv
2

[
1 +

(
1 − abg/ā

)2
] Γs

inc/Γinel

[2(E − Eres)/Γinel]2 + 1
. (A.8)

which is equation (4). This is a Lorentzian peak with width determined only by Γinel, and a peak height that
reaches at least the universal rate if Γs

inc � Γinel.
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