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1  |  INTRODUC TION

A major aim of evolutionary quantitative genetics is to measure and 
understand heritable genetic variation, and to explain the mainte-
nance of that variation in the face of natural and sexual selection 
and genetic drift (Walsh & Lynch, 2018). One way that research-
ers have tried to answer these questions is by conducting long- 
term ecological studies of natural populations (Charmantier et al., 
2014; Kruuk et al., 2008). There are now several studies, mostly of 
vertebrates, where individual life- histories of entire cohorts have 
been collected for several decades, spanning 10s of generations 

of the focal organism (Clutton- Brock & Sheldon, 2010). Typically, 
the pedigree of the population has been determined, allowing re-
searchers to use either (i) quantitative genetics (Kruuk, 2004) and/
or (ii) gene mapping approaches (Slate et al., 2010) to study how se-
lection and evolution have shaped diversity. Both approaches have 
led to genuine breakthroughs in our understanding of how genetic 
variation and selection have combined to shape biodiversity, but 
they also both have limitations (especially when applied to natural 
populations). Proponents of both approaches are aware of these 
limitations, and they are actively seeking solutions (Charmantier 
et al., 2014).
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Abstract
Genomic prediction, the technique whereby an individual's genetic component of their 
phenotype is estimated from its genome, has revolutionised animal and plant breed-
ing and medical genetics. However, despite being first introduced nearly two decades 
ago, it has hardly been adopted by the evolutionary genetics community studying wild 
organisms. Here, genomic prediction is performed on eight traits in a wild population 
of Soay sheep. The population has been the focus of a >30 year evolutionary ecology 
study and there is already considerable understanding of the genetic architecture of 
the focal Mendelian and quantitative traits. We show that the accuracy of genomic 
prediction is high for all traits, but especially those with loci of large effect segregat-
ing. Five different methods are compared, and the two methods that can accommo-
date zero- effect and large- effect loci in the same model tend to perform best. If the 
accuracy of genomic prediction is similar in other wild populations, then there is a real 
opportunity for pedigree- free molecular quantitative genetics research to be enabled 
in many more wild populations; currently the literature is dominated by studies that 
have required decades of field data collection to generate sufficiently deep pedigrees. 
Finally, some of the potential applications of genomic prediction in wild populations 
are discussed.
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The most obvious limitations of a quantitative genetics approach 
are that (i) the loci explaining trait variation cannot be identified, and 
(ii) several generations of data have to be collected before pedigree- 
based analyses are possible. Genomic solutions to understanding 
heritable genetic variation also suffer from problems. Whether con-
ducting pedigree- based linkage mapping or a pedigree- free genome- 
wide association study (GWAS) it is hard to find quantitative trait 
loci (QTL) that reach strict genome- wide statistical significance, and 
in linkage mapping the effect sizes of reported QTL are almost cer-
tainly substantially overestimated (Slate, 2013; Slate et al., 2010). 
GWAS studies of wild populations have had some notable suc-
cesses, although usually only when large effect loci are segregat-
ing (Comeault et al., 2014; Johnston et al., 2011). Because linkage 
mapping or GWAS studies require very high statistical significance 
thresholds (p < 1 × 10−7 is not uncommon) to distinguish true posi-
tives from false ones, they are biased towards detecting causal loci 
of large effect. If a trait is polygenic then much of the genetic vari-
ation will remain unmapped. The most (in)famous example of this is 
human height, where in a sample size of ~one- quarter of a million 
people, 697 genomewide significant loci only explained 16% of the 
heritability (Wood et al., 2014). Studies of natural populations typ-
ically involve sample sizes of hundreds, or at most, a few thousand 
individuals, and therefore statistical power to detect loci of medium- 
small effect is low; for an excellent example see Kardos et al., (2016). 
The problem may be exacerbated if phenotypes are hard to measure 
in the field or if environmental heterogeneity is a further source of 
phenotypic variation. Put simply, even in the longest- running studies 
in the wild, the power to detect most causal genes is very low. This 
makes it impossible to describe trait architectures or to understand 
the relationship between genotypes and phenotypes. How then, can 
evolutionary quantitative geneticists use genomics tools to under-
stand and predict the genetic architecture and microevolution of 
their focal traits?

One possible solution to the low power/high polygenicity prob-
lem is to switch focus away from the hunt for individual significant 
loci, and instead try to understand the genetic component of pheno-
typic variation by using information from all of the typed SNPs. Two 
conceptually different approaches can be taken. The first involves 
running an “animal model” with the genetic relationship matrix esti-
mated from markers rather than a pedigree. It was recognised sev-
eral decades ago, before the necessary genotyping technology was 
available, that allele- sharing at markers could be used to estimate 
relatedness between pairs of individuals, and that relatedness coef-
ficients could then be regressed on phenotypic similarity to predict 
heritabilities (Ritland, 1996; Ritland & Ritland, 1996). As genotyp-
ing technology improved, methods using marker- based relatedness 
became more tractable. In fact, marker- based approaches are po-
tentially more accurate than pedigree- based methods because the 
realised relatedness between individuals rather than the expected 
relatedness can be estimated e.g. (Hayes et al., 2009; Visscher 
et al., 2006). Using a genomic relationship matrix (GRM) estimated 
from marker data, it is possible to estimate quantitative genetic pa-
rameters in a mixed model best linear unbiased predictor (BLUP) 

framework (VanRaden, 2008); that is, to perform genomic best 
linear unbiased prediction (GBLUP). GBLUP has been used to esti-
mate trait heritabilities in natural populations (Bérénos et al., 2014; 
Robinson et al., 2013; Santure et al., 2013; Silva et al., 2017), humans 
(Yang et al., 2010) and agriculturally important organisms (VanRaden 
et al., 2009). An extension of the model, where the GRM is estimated 
from a subset of markers, has been used to partition genetic variance 
into specific parts of the genome, e.g. in chromosome- partitioning 
(Visscher et al., 2007) or regional heritability mapping (Nagamine 
et al., 2012) studies.

In addition to providing estimates of parameters such as a trait's 
heritability, individual breeding values can also be estimated from 
GBLUP models. For a historical background and accessible summary 
of these developments see Hill (2014). An assumption of GBLUP is 
that the distribution of all of the marker effects are sampled from a 
single normal distribution; in other words, all markers explain some 
of the variation and the trait is highly polygenic. Of course, this as-
sumption is unrealistic— many quantitative traits are highly polygenic, 
but not all of the markers will contribute to phenotypic variation. 
Furthermore, traits with nonpolygenic architectures are frequently 
of interest to breeders, medical geneticists and evolutionary ge-
neticists studying natural populations. A potential improvement on 
GBLUP methods then, is to use methods that can accommodate dif-
ferent genetic architectures. This is achievable with a second major 
approach, whereby marker effects are estimated, and can come 
from more than one (not necessarily normal) distribution. The ap-
proach was first described almost 20 years ago (Meuwissen et al., 
2001), and has since revolutionised animal and plant breeding (de 
los Campos et al., 2013). The concept is deceptively simple. Usually 
two steps are involved. In a first stage, marker effects are estimated, 
usually by Bayesian MCMC methods, in a “training population” of 
individuals with known phenotypes that are typed at many markers. 
Next, another panel of individuals with unknown phenotypes (the 
“validation” or “test” population) is genotyped at the same markers, 
and their genomic estimated breeding values (GEBVs) are predicted 
from their genotypes and the previously estimated effect sizes of 
each marker. The approach works, provided that the markers are in 
sufficiently strong linkage disequilibrium (LD) with the unknown loci 
that cause trait variation. If marker density is sufficiently high that 
adjacent markers are in LD with one another, then they should also 
be in LD with unknown causal loci. All of the approaches for esti-
mating genomic breeding values from phenotypes and marker data 
have collectively become known as genomic prediction (and their 
application in breeding programs, as genomic selection). In medi-
cal genetics a similar approach, termed the polygenic risk score, is 
frequently used to predict phenotypes or disease risk (Wray et al., 
2013). The main distinction between genomic prediction and poly-
genic risk scores is that the latter usually only uses SNPs that surpass 
a certain (usually quite stringent) significance threshold in a GWAS, 
rather than all available SNPs (Khera et al., 2018). This is only possi-
ble because studies of humans often involve hundreds of thousands 
of subjects, and therefore there is power to detect multiple causal 
variants of small effect. In wild populations that is unrealistic, so this 
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manuscript focuses on genomic prediction rather than polygenic risk 
scores.

Meuwissen et al. (2001) described two Bayesian genomic pre-
diction models, Bayes A and Bayes B. In Bayes A, the marker effects 
are all nonzero, but are drawn from a scaled- inverse χ2 distribution, 
allowing some markers to have large effects. In Bayes B, there are 
two distributions of marker effects, with a proportion of markers 
assumed to have zero effect and the remainder with effects drawn 
from a scaled- inverse χ2 distribution. Following the development 
of Bayes A and Bayes B, further refinements, such as the marker 
effects coming from different types of distribution, have been 
made (Gianola, 2013; Habier et al., 2013). Methods that are flexi-
ble enough to capture different genetic architectures are potentially 
the most useful (Daetwyler et al., 2013). For example, methods that 
model marker effects as a mixture of different distributions can ac-
commodate large and small effect loci (Erbe et al., 2012; Zhou et al., 
2013). However, the main principle of using a training population to 
estimate marker effects, which are then used to predict phenotypes 
in a genotyped test population is common to all of these methods.

The accuracy of genomic prediction can be estimated by cor-
relation between GEBV and phenotype, divided by the square root 
of the heritability (Meuwissen et al., 2013). Accuracy depends on a 
number of factors such as the heritability (h2) of the trait (Daetwyler 
et al., 2008; Goddard, 2009; Hayes et al., 2009), the training popu-
lation sample size (Habier et al., 2013; Meuwissen et al., 2001), the 
marker density (Habier et al., 2009; Meuwissen & Goddard, 2010), 
the underlying genetic architecture (i.e., number and effect size of 
loci) of the trait (Daetwyler et al., 2010) and the statistical approach 
used (Crossa et al., 2010; Daetwyler et al., 2013; de los Campos 
et al., 2013; Meuwissen et al., 2001). Empirical investigation of these 
factors on genomic prediction accuracy have been described in the 
animal and plant breeding literature (Hayes, Bowman, et al., 2009; 
Hayes et al., 2010; Heffner et al., 2011; Zhao et al., 2012).

While genomic prediction has become a widely used tool in an-
imal and plant breeding, it remains rare in quantitative evolution-
ary genetics studies of wild populations (but see Bosse et al., 2017; 
Gienapp et al., 2019; McGaugh et al., 2021; Stocks et al., 2019), 
even though there are a number of long- term longitudinal studies 
where suitable phenotypic and genomic data have been collected. 
Therefore, the main motivation of this study was to investigate the 
feasibility and accuracy of genomic prediction in a wild population 
of Soay sheep that has been the focus of a long- tern study since 
1985. Previous genetic studies of Soay sheep (Bérénos et al., 2015; 
Gratten et al., 2007, 2010; Johnston et al., 2011) have demonstrated 
that some phenotypes have a simple Mendelian basis (e.g., coat co-
lour, coat pattern), others are highly polygenic (e.g. adult weight), and 
some are intermediate with many genes of small effect and a small 
number of loci with quite large effect contributing to genetic varia-
tion (e.g., horn length). Thus, a second aim of the study was to assess 
the accuracy of genomic prediction in different types of trait. Finally, 
the third aim of the study was to compare the accuracy of different 
genomic prediction methods (Daetwyler et al., 2013; de los Campos, 
Hickey, et al., 2013; Meuwissen et al., 2013). Thus, we compared five 

different methods: (i) GBLUP, (ii) BayesA & (iii) BayesB -  the models 
first introduced by (Meuwissen et al., 2001), (iv) Bayesian Lasso -  a 
model similar to GBLUP and BayesA in the sense that it assumes all 
SNPs explain some variance and (v) BayesR -  a model that assumes 
SNPs either have zero effect or come from a mixture of >1 Gaussian 
distribution, potentially with some large effect loci.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

The Soay sheep is a primitive feral breed that resides on the St Kilda 
archipelago, off the NW of Scotland. Since 1985, the population on 
the largest island, Hirta (57°48′N, 8°37′W), has been the subject of a 
long- term individual based study (Clutton- Brock et al., 2004). Briefly, 
the majority of the sheep resident in the village Bay area of Hirta are 
ear- tagged and weighed shortly after birth and followed through-
out their lifetime. Ear punches and blood samples suitable for DNA 
analysis are collected at tagging. Every year during August, adult 
sheep and lambs are captured and morphological measurements are 
taken. Winter mortality is monitored, with the peak of mortality oc-
curring at the end of winter/early spring, and ca. 80% of all deceased 
sheep are found. To date, extensive life history data have been col-
lected for over 10,000 sheep. Field work was carried out according 
to UK Home Office procedures and is licensed under the UK Animals 
(Scientific Procedures) Act of 1986 (licence no. PPL60/4211). More 
details of the natural history of the study system can be found else-
where (Clutton- Brock et al., 2004).

2.2  |  Genetic data

Genotyping of the population was performed using the Illumina 
Ovine SNP50 beadchip array, developed by the International Sheep 
Genomics Consortium (ISGC) (Kijas et al., 2012). Genotyping was 
performed at the Wellcome Trust Clinical Research Facility Genetics 
Core (Edinburgh, UK). Details about the genotype calling and qual-
ity control of the data are available elsewhere (Bérénos et al., 2014, 
2015; Johnston et al., 2011, 2016). Briefly, pruning of SNPs and in-
dividuals was performed using plink v 1.9 (Chang et al., 2015). SNPs 
were retained if they had a minor allele frequency of at least 0.01, 
a call rate of at least 0.98 and a Hardy- Weinberg equilibrium test 
p- value >.00001. Individuals were retained if they were typed for 
at least 0.95 of SNPs. Only autosomal SNPs were analysed, as most 
genomic prediction software cannot distinguish between autosomal 
and sex- linked loci; the sheep X chromosome represents ~5% of the 
total genome. Pruning was performed on a per- trait basis to ensure 
consistency of cutoff values between traits. Because SNP pruning 
was performed on a per- trait basis, the proportion of SNPs retained 
after pruning varied slightly between traits (fewest SNPs = 35,885 
for coat colour and coat pattern; most SNPs = 36,437 for horn 
length).
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2.3  |  Phenotypic data

We studied phenotypic data collected for eight different traits: fore-
leg length (n = 1126), hindleg length (n = 1139), weight (n = 1168), 
metacarpal length (n = 890), jaw length (n = 897), horn length 
(normal- horned males only; n = 472), coat colour (n = 4737) and coat 
pattern (n = 4737). An aim of the study was to investigate whether 
comparisons between the alternative genomic prediction methods 
were sensitive to the underlying genetic architecture. Therefore, 
we chose to study traits that had been the focus of previous gene 
mapping studies and were known to have variable architectures 
(summarised in Table 1). Among the body size traits, foreleg length, 
hindleg length, weight and horn length were measured on live ani-
mals, whereas metacarpal length and jaw length were taken from 
cleaned post- mortem skeletal material. Coat colour and coat pat-
tern are independent discrete traits that are recorded at the time 
of capture and remain fixed throughout life (Clutton- Brock et al., 
2004; Gratten et al., 2007, 2010). Further details of how the mor-
phological traits are measured can be found elsewhere (Bérénos 
et al., 2014, 2015; Johnston et al., 2011). Analyses of live- capture 
morphological data were restricted to animals captured in August, 
that were at least 28 months old, to remove most complications of 
growth and give consistency with previous genetic studies of these 
traits (Bérénos et al., 2014, 2015). Male horn length included meas-
urements taken outside of August, as many males are captured and 
measured during the rut in November. Post- mortem measurements 
were likewise restricted to animals who were at least 28 months old 
when they died.

2.4  |  Modelling nongenetic effects

The quantitative traits being investigated are known to vary be-
tween sexes and age classes and are influenced by environmental 
effects (Bérénos et al., 2014). Because some of the software being 
tested does not allow the inclusion of repeated measurements 
or fitting of random effects, it was necessary to fit models with 
nongenetic effects prior to performing the genomic prediction. 
Therefore, mixed effects models were run that adjusted pheno-
types for fixed effects (sex and age of the animal) and non- genetic 
random effects (birth year, capture year and animal identity). 
Traits recorded on live animals had repeated measurements, so 
individual identity was fitted to remove any permanent environ-
mental effect on phenotype. Traits recorded on skeletal material 
were recorded just once per animal. Models were run using the 
lmer function in the R v3.6.0 package lme4 v1.1- 23 (Bates et al., 
2015). The random effect of individual identity was extracted 
from each model and retained as the phenotype to be analysed 
in the genomic prediction models. The two Mendelian traits are 
categorical traits that are fixed throughout lifetime, unaffected by 
environmental conditions and with the same penetrance in each 
sex; therefore no phenotypic adjustments were necessary. Details 
of the model outputs are summarised in Table S1.TA
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    |  6545ASHRAF et Al.

2.5  |  Running genomic prediction models

A major aim of this study was to compare different methods for 
obtaining genomic estimated breeding values (GEBVs). Below we 
briefly discuss these methods, which rely on subtly different as-
sumptions about the distribution of marker effect sizes, and outline 
how each model was run.

2.5.1  |  BayesA

The BayesA method was one of the two models in the first genomic 
prediction paper (Meuwissen et al., 2001). All markers have a nonzero 
effect size, and the distribution of marker effects follows a scaled- 
inverse χ2 distribution. Here, BayesA was implemented in the R pack-
age BGLR v1.0.8 (Perez & de los Campos, 2014). The analyses were 
performed with default parameter settings except the number of it-
erations was set to 120,000 (default = 5,000) with a burnin of 20,000 
(default = 1,000) and a thinning interval of 100 (default = 10).

2.5.2  |  BayesB

The BayesB method of genomic prediction was also introduced in 
Meuwissen et al. (2001). In this model, the assumption that all mark-
ers have a nonzero effect is removed. Instead, the BayesB method 
assumes a mixture of two distributions, such that some markers have 
zero effect and others, following a scaled- inverse χ2 distribution, 
have nonzero effects, with some potentially of large effect. In real-
ity, many loci explain zero genetic variance. BayesB analyses were 
also performed in the BGLR package with default parameter settings 
except the number of iterations, burnin length and thinning interval, 
which were the same values as used in the BayesA analyses.

2.5.3  |  Bayesian Lasso (BayesL)

This method of genomic prediction is similar to BayesA in that all 
SNP effects come from a single distribution. However, BayesL mod-
els marker effects as following a double exponential distribution 
rather than a t distribution. A consequence of using this distribution 
is that, relative to the BayesA method, SNPs with small effect sizes 
are more strongly shrunk and SNPs with larger effect sizes are less 
strongly shrunk (de los Campos et al., 2009). BayesL was also im-
plemented in the R package BGLR, using default parameters except 
the number of iterations, burnin length and thinning interval, which 
were the same values as for the BayesA and BayesB analyses.

2.5.4  |  GBLUP

This method assumes that marker effects are drawn from a normal 
distribution. Rather than estimate the effect of each SNP, GBLUP 

utilises the genomic relationship matrix (GRM) which is estimated 
from the proportion of alleles that are identical- by- state (IBS) be-
tween every pair of individuals. Here, the GRM was calculated 
from all typed markers. Genomic best linear unbiased predictions 
(GBLUPs) of breeding values are obtained by examining the covari-
ance between phenotypic similarity and pairwise relatedness. GRMs 
have previously been used to estimate the heritability of traits in the 
Soay sheep population (Bérénos et al., 2014, 2015), but not to obtain 
GEBVs. As with the BayesA, BayesB and BayesL analyses, BGLR was 
used to obtain genomic EBVs.

2.5.5  |  BayesR

BayesR models SNP effects as a mixture of >1 normal distribution 
and an additional component of zero variance (Erbe et al., 2012). 
We implemented the method within the BayesR v1 software pack-
age (Moser et al., 2015) and used the default priors of four mixture 
components with variances of 0, 0.0001, 0.001 and 0.01 of the 
phenotypic variance. Dirichlet priors for the number of pseudo- 
observations (SNPs) in each distribution were set to 1, 1, 1 and 
5. Priors for the genetic and residual variances were chosen as 
a scaled inverse- chi squared distribution with scaling parameter 
estimated from previous pedigree- based animal models (see ref-
erences in Table 1) and degrees of freedom set to 10. Note that 
the default parameters give very similar values for genomic es-
timated breeding values, but we find that some samples of the 
MCMC chain return zero or very low estimates of additive genetic 
and residual variance under the default settings (see Table S2). As 
with all analyses run in BGLR, the BayesR analyses were run for a 
total of 120,000 iterations with a burnin of 20,000 and a thinning 
interval of 100.

Because BayesR reports the genetic variance explained by each 
SNP, SNP effect sizes can be aggregated (e.g., across the genome, 
across individual chromosomes) to describe the genetic architecture 
of the trait. Detailed descriptions of the trait architectures are not 
the main goal of this work, but we do report them in the Supporting 
Information. This is partially motivated by the knowledge that many 
of our focal traits already have well- described architectures (Table 1) 
and so it is useful to examine whether BayesR is assigning amounts 
of variance to loci that are consistent with genome wide associa-
tion studies. We also compare descriptions of trait architectures 
between BayesR models using the default parameters and models 
using priors informed by previous quantitative genetic studies of 
those traits (Table S2).

2.6  |  Assessing prediction accuracy and bias

Genomic prediction accuracy was assessed by cross- validation; 
each data set was randomly split into a training population contain-
ing 95%, 50% or 10% of individuals and a test population contain-
ing the remaining 5%, 50% or 90% of individuals. Twenty replicates 
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6546  |    ASHRAF et Al.

were generated for every combination of trait, model and training 
population size (8 traits × 5 methods × 3 training sizes × 20 repli-
cates = 2400 models). For the six continuous traits, prediction ac-
curacy was estimated as the correlation between the GEBV and an 
individual's phenotype, divided by the square root of the heritability 
(i.e., rGEBV,y/h, where h2 is the heritability and y is the phenotype). 
We also report the correlation between the GEBV and phenotype, 
without dividing by the square root of the heritability (Table S3). 
Accuracy was averaged across the 20 replicates. The phenotypes 
were the values preadjusted for age, sex, year of birth and year of 
death using the same models as described in the section on Modelling 
non- genetic effects. Because the phenotypes were adjusted for ran-
dom and fixed effects, the heritability of each trait was estimated 
from the adjusted phenotypes. These estimates of heritability will 
be greater than previously published estimates, because nongenetic 
sources of variation have already been removed, but they are more 
appropriate for measuring the observed and expected accuracy of 
the GEBVs. Trait heritabilities were estimated using Animal mod-
els run in the R package mcmcglmm v2.29 (Hadfield, 2010). In these 
models the additive genetic variance was estimated from a relation-
ship matrix determined by the population pedigree; the pedigree 
was constructed from a combination of behavioural observations 
and genotype data from 315 SNPs. Pedigree construction methods 
are described elsewhere (Bérénos et al., 2014). MCMCglmm models 
were run for 120,000 iterations with a burnin of 20,000 and sam-
pling every 100th iteration. In addition to recording the correlation 
between GEBVs and phenotypes, a linear regression was performed 
to estimate the slope between the two variables. A slope of 1 is in-
dicative of there being no bias in GEBVs (Meuwissen et al., 2001; 
Moser et al., 2015). Slopes greater than one would suggest that 
between- individual differences in GEBVs underestimate the differ-
ence in phenotypic values.

For the two categorical traits (coat colour/pattern), accuracy 
was determined by measuring the area under the curve (AUC) in a 
receiver operating characteristic (ROC) curve. ROC curves are well 
established tools for assessing how well genetic markers predict cat-
egorical traits such as disease presence/absence (Wray et al., 2010). 
ROC curve analysis were performed with the R package proc v1.16.2 
(Robin et al., 2011).

2.7  |  Comparisons between observed and 
expected accuracy

It is possible to predict the accuracy of genomic prediction if infor-
mation about the effective population size, genome size, recombina-
tion rate, trait heritability, and the genomic architecture are available 
(Daetwyler et al., 2010; Goddard et al., 2010). Here we used equa-
tion 2 of Daetwyler et al. (2010):

where rgĝ is the correlation between the true breeding value g and the 
GEBV ĝ. rgĝ is equivalent to the rGEBV,y/h, the measure of accuracy we 
use in this paper (Meuwissen et al., 2013). Np is the number of individ-
uals in the training set, h2 is the trait heritability and NQTL is the number 
of independent loci contributing to the trait. The other parameter, Me, 
is the estimate for the number of independent chromosomal segments, 
given by Me = 2NeL/log(4NeL) where Ne is the effective population size 
and L is the genome linkage map length, measured in Morgans. The 
length of the Soay sheep genome is 33.04 Morgans (Johnston et al., 
2016), and the effective population size is around 194 –  see the supple-
mentary material of (Kijas et al., 2012) -  giving an Me of 1263. We used 
the pedigree- estimated heritabilities of the traits adjusted for fixed and 
random effects (Table 1). We estimated the number of causal loci as 
3000 (weight and jaw length), 1000 (foreleg, hindleg, metacarpal), 100 
(horn length) or 1 (coat colour and coat pattern). 100 loci may seem like 
a large number of loci for horn length, given one locus explains most 
of the additive genetic variance (Johnston et al., 2011, 2013), but the 
BayesR analysis suggests that the remaining additive genetic variation 
is likely to be determined by many loci (Table S4). Note that while the 
true number of QTL can only be crudely guessed, the predicted accu-
racy is a function of whichever is smaller of NQTL and Me; it is likely that 
for polygenic traits of Soay sheep Me is lower than NQTL, making the 
expected accuracy insensitive to guesses of the true number of QTL.

3  |  RESULTS

3.1  |  Genomic prediction accuracy

The main finding is that genomic prediction in the Soay sheep popula-
tion is accurate regardless of trait architecture or of the method used 
(Figure 1, Table S2), even when training sizes are relatively modest 
(a few hundred individuals). For the continuous traits, accuracy was 
typically high (~0.70) when most of the phenotyped animals were 
included in the training set (Table S2, Figure 1a). Unsurprisingly, the 
accuracy declines when the training size is decreased. The pheno-
types of the two categorical traits were predicted with very high 
accuracy, even when only 10% of animals were used in the training 
data set (Table S2, Figure 1b). As expected, for all traits, the accu-
racy was generally lower when the training set was smaller (Table 
S2, Figure 1).

3.2  |  Genomic prediction bias

If genomic prediction estimates of GEBVs are unbiased, then it is 
expected that regressions of GEBVs on phenotypes should be equal 
to 1.0 (Meuwissen et al., 2001). There was a tendency for regres-
sion coefficients to be a little <1.0, meaning GEBVs overestimated 
between- individual variation, but this was largely driven by the mod-
els with smallest training sizes (Figure 2, Table S4). In the 50% and 
95% training population data sets, there was relatively little bias with 
regression coefficients close to 1.0 for most traits and most models. 
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    |  6547ASHRAF et Al.

F I G U R E  1  Accuracy of genomic prediction for (a) quantitative and (b) Mendelian traits. For quantitative traits, accuracy is measured 
as rGEBV,y/h, the mean correlation between GEBVs and the phenotype, divided by the square root of the heritability. For Mendelian traits, 
accuracy is determined as area under curve from ROC analysis. All plots show the mean and SE obtained from 20 replicates of training sizes 
comprising 95%, 50% or 10% of the available individuals
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Taking an average across 360 analyses (20 replicates × 3 training 
sizes × 6 quantitative traits) BayesL had the mean regression co-
efficient closest to 1.0 (Table S3, top row). However, of all of the 
methods, it had by far the largest standard deviation of regression 
coefficient, and therefore may be the most prone to severe bias. Of 
the remaining methods, BayesR had the mean regression coefficient 
closest to 1.0 and with the lowest standard deviation, although all 
of the other methods performed quite similarly with respect to bias 
(Table S4).

3.3  |  Comparison of models

Among most of the continuous traits, there was little difference 
in the accuracy (Table S2, Figure 1a). This is not surprising as all of 
the models either make an assumption that the trait is polygenic, or 

can explicitly model the trait as polygenic. BayesR and BayesB were 
perhaps marginally more accurate than BayesA, BayesL and GBLUP. 
For horn length, the most oligogenic of the continuous traits, and 
the two single- locus Mendelian traits, coat colour and coat pattern, 
BayesR and BayesB were the most accurate (Table S2, Figure 1b), 
presumably because they allow for the modelling of both zero effect 
and major effect loci. BayesA, was the next best performing model, 
with BayesL and GBLUP being considerably less accurate than all 
others, especially with smaller training populations. Thus, across all 
types of trait architecture, and considering both accuracy and bias, 
BayesR and BayesB appeared to be the most reliable methods of 
those examined here. Previous studies of humans and livestock have 
reached similar conclusions (Erbe et al., 2012; Moser et al., 2015). 
From this point, we mostly focus on results from the BayesR analy-
ses, as that is the most accurate approach, and because it allows a 
detailed investigation of trait genetic architecture.

F I G U R E  2  Boxplots showing the mean and distribution of regression coefficients when GEBVs were regressed on phenotypes for the 
six continuous traits. Each boxplot summarises 20 replicates per trait/training size/method combination
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    |  6549ASHRAF et Al.

3.4  |  Comparison between default and informed 
priors for BayesR models

GEBVs estimated from BayesR models running the default param-
eters and BayesR models using priors informed by previous mo-
lecular genetic studies were almost identical; for all eight traits the 
correlation in GEBVs between the two models was >0.996 (Table 
S5). Genetic architectures were similar between the two models, al-
though there was a tendency for the heritability to be a little greater 
when using the model that used informed priors (Table S5). For one 
trait, horn length, the default model tended to have a large autocor-
relation between estimates of VA from consecutive samples of the 
MCMC and it also frequently estimated there to be no additive ge-
netic variance for the trait (almost 10% of MCMC samples), despite 
the trait having a high heritability.

3.5  |  Comparisons between observed and 
expected accuracy

Overall, for all three training population sizes (95%, 50% and 10%), 
there was a good fit between the observed and expected accuracy 
of genomic prediction (Figure 3); for the leg length and weight traits, 
the observed accuracy was a little higher than expected.

3.6  |  Description of trait architectures by BayesR

Although a description of trait architectures was not a primary 
objective of this work, BayesR provides estimates of many param-
eters of interest, including the trait heritability and the number 
and effect sizes of SNPs contributing to phenotypic variation. The 
trait architectures are summarised in the Supporting Information. 
Because most of the traits considered here have been the focus 

of previous studies, it is possible to compare the BayesR outputs 
with other approaches such as GWAS and chromosome partition-
ing analyses. Trait architectures of the eight traits are summarised 
in Table S5, chromosome partitioning plots are presented in Figure 
S1, and Manhattan plots of posterior inclusion probabilities of each 
SNP having a nonzero effect size are presented in Figure S2. Broadly, 
the genetic architectures described by BayesR are consistent with 
those reported previously. Estimates of trait heritability were similar 
to estimates made using pedigrees (for comparisons see Table 1 and 
Table S5), with the six continuous traits all having BayesR estimated 
heritabilities between 0.39 and 0.64. Coat colour and coat pattern 
had lower heritabilities, despite both being determined by a single 
locus; this is expected as both TYRP1 (coat colour) and ASIP (coat 
pattern) have one allele that is completely dominant to the other, so 
some nonadditive (dominance) genetic variance at the causal loci is 
well documented (Gratten et al., 2007, 2010).

BayesR returns an estimate of the number of SNPs that explain 
the phenotypic variation. We urge caution against taking these esti-
mates as definitive (and note that the 95% confidence intervals span 
a ~10- fold range for most traits; Table S5). Any estimate is certain to 
be imprecise because full genome sequences have not been used, 
the sample size make it hard to distinguish between zero effect and 
small effect loci, and distinguishing between multiple tightly linked 
causal SNPs and one causal SNP is very difficult without doing func-
tional genomics. However, the estimated number of SNPs was great-
est for the traits that were thought to be highly polygenic (weight, 
jaw length), and was least for the Mendelian (coat colour and coat 
pattern) and major locus (horn length) quantitative traits. The es-
timated number of causal SNPs was intermediate for those quanti-
tative traits where moderate effect size QTL had been discovered 
in previous GWAS studies. Thus, within- population, between- trait 
comparisons in the number of SNPs may give an indication of which 
traits are relatively more/less polygenic, provided the same set of 
markers is used for each trait.

F I G U R E  3  Observed and predicted 
accuracy of BayesR genomic prediction in 
Soay sheep
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6550  |    ASHRAF et Al.

Chromosome partitioning plots (Figure S1) were broadly consis-
tent with previous work using chromosome- wide relatedness matri-
ces (figure 1 of Bérénos et al., 2015). However, in that study, two traits 
(adult weight and jaw length) had significant correlations between 
chromosome length and the proportion of variation explained by the 
chromosome, but in this study neither trait showed a significant rela-
tionship. Nonetheless, the chromosomes that tended to explain the 
most variation in the earlier study, also explained the most variation 
here. An exception was for jaw length, where Chromosome 20 ex-
plained more than 30% of the additive genetic variance here, but did 
not in the earlier study. However, no SNP on Chromosome 20 had a 
posterior inclusion probability >0.5 (Figure S2b), so there is no com-
pelling evidence of a major locus QTL on that chromosome. Instead, 
posterior inclusion probabilities plots indicate at least two regions of 
chromosome 20 contribute to jaw length variation (Figure S2b).

The two Mendelian traits, coat colour and coat pattern, are char-
acterised by one allele being dominant to the other (at Tyrp1 that 
dark allele is dominant to the light allele and at ASIP the wild allele 
is dominant to the self allele). Despite neither causal SNP being in-
cluded on the ovine SNP chip, the distribution of GEBVs for both 
traits was trimodal (Figure S3), indicating that the linked SNPs suc-
cessfully distinguished between the three possible genotypes (het-
erozygotes and the alternative homozygotes). In other words, it was 
possible to distinguish between phenotypically identical animals 
that are either heterozygous or homozygous for the dominant allele.

4  |  DISCUSSION

Attempts to use genomic prediction in an ecological context re-
main very rare compared to its application in breeding or medicine, 
although some examples are now described (Bosse et al., 2017; 
Gienapp et al., 2019; McGaugh et al., 2021; Stocks et al., 2019). As 
far as we are aware this is the first genomic prediction study in a 
wild population that considers either multiple traits with different 
genetic architectures or different genomic prediction methods. 
Comparisons between studies are not straightforward because 
accuracy depends on both biological (e.g. genome size, effective 
population size, heritability) and technical (e.g. marker density, train-
ing population size) factors (Daetwyler et al., 2008, 2010; de los 
Campos, Vazquez, et al., 2013; Goddard, 2009), which inevitably will 
vary between studies. Certainly, the accuracy reported here is com-
parable to situations in plant and animal breeding where genomic 
selection is routinely used for trait improvement (Hayes, Bowman, 
et al., 2009; Lin et al., 2014) and is probably greater than has been 
observed for morphological traits in commercial sheep populations 
(Auvray et al., 2014; Brito et al., 2017). Therefore, the prospects for 
genomic prediction in this population are promising.

The relatively high accuracy of genomic prediction in Soay sheep 
is perhaps not especially surprising, as the values are mostly close 
to, or marginally greater, than expectations. If the effective popula-
tion size had been overestimated, the predicted accuracy may have 

been underestimated, compared to if the correct Ne had been used. 
However, overestimating Ne would be expected to affect the pre-
dicted accuracy of all traits, not just a subset of them. It is notable 
that previous GWAS studies (Bérénos et al., 2015) of the three leg 
traits identified QTL of reasonably large effect (up to 15% of the 
additive genetic variance), despite the traits being reasonably poly-
genic. These findings are supported by the BayesR analyses of ge-
netic architecture (see Table S5). The accuracy of jaw length GEBVs 
were a little lower than for the other traits, although not much 
lower than predicted (Figure 3). Jaw length is highly polygenic and, 
unlike the leg length traits, no QTL have previously been identified 
in GWAS studies (Bérénos et al., 2015). In general, the traits with 
larger effect size loci had the greatest accuracy (see Supporting 
Information Part 4, Figure S4, Table S6), so perhaps the greater than 
expected accuracy of leg length but not jaw length is attributable, at 
least in part, to these relatively large effect loci.

The accuracy of genomic prediction is sensitive to the size of 
the training population. Unsurprisingly, the lowest accuracy was ob-
tained for the traits with fewest records (horn length, jaw length, 
metacarpal length), when using training sets comprising just 10% 
of the animals. It is perhaps remarkable that the accuracy of horn 
length genomic prediction was as large as it was (0.22) when just 47 
(10% of the total) animals were used in the training set. When 448 
animals (95% of the total) were used in the training set, the accuracy 
was as high as 0.89. Thus, in populations with reasonably high linkage 
disequilibrium between SNPs, relatively modest increases in sam-
ple sizes can facilitate successful genomic prediction. The accuracy 
of genomic prediction is also sensitive to the accuracy with which 
the phenotype is measured. Improvements are likely if nongenetic 
sources of variation can be adjusted for, or if those effects can be 
included directly in the models. Here, we preadjusted phenotypes 
after accounting for sex, age, birth year and capture year. The accu-
racy of the phenotypic measurement can potentially be improved if 
repeated measurements are available. Some of our traits had mul-
tiple measurements per individual (weight, foreleg length, hindleg 
length), while others were only recorded once (e.g., jaw length and 
metacarpal length). Here, there was no obvious difference in the ac-
curacy of GEBVs of traits that were measured repeatedly and GEBVs 
of traits that were measured once, although that may be because 
the repeat measures traits were recorded on live animals (which are 
harder to measure accurately) and the single measure traits were 
recorded on immobile material (bones).

4.1  |  Conclusions and future directions

In this population the accuracy of genomic prediction was compa-
rable to that seen in applied animal and plant breeding programs. In 
part, this is because Soay sheep have a history of isolation on a small 
island and a relatively small effective population size. This means LD 
extends several megabases across much of the genome (Bérénos 
et al., 2014; Feulner et al., 2013), and the number of SNPs (~38K) 
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on a medium density chip is sufficient to tag unknown causal loci. 
Future work will examine whether a higher marker density (400– 
500K SNPs) results in a further improvement in accuracy, although 
we note that in livestock populations, improvements in GEBV ac-
curacy between 50– 60 K SNP chips and whole genome sequences 
are often tiny (Frischknecht et al., 2018; Heidaritabar et al., 2016; 
Veerkamp et al., 2016),. While other study systems used in evo-
lutionary and ecological research may not have LD extending as 
far as it does in Soay sheep, the era of whole- genome sequencing 
hundreds or thousands of individuals is upon us. Therefore, an in-
sufficient marker density will soon become a problem of the past, 
and genomic prediction should be feasible in other populations. 
Excitingly, this means that quantitative genetic studies are no longer 
restricted to wild populations with multigenerational pedigrees. This 
is especially important for long- lived organisms where sampling in-
dividuals across several generations may be a decades- long endeav-
our or for small organisms that are hard to track in the wild such 
as insects. Instead, cross- sectional rather than vertical sampling of 
study populations is possible, which greatly expands the range of 
organisms that could be studied. Genomic methods for describing 
genetic architectures, like the BayesR approach, mean that many 
different aspects of genomic architecture (e.g., a trait's heritability, 
additive genetic variance, and the contribution of individual loci and 
individual chromosomes etc.) can be estimated, even in the absence 
of a pedigree.

Of course, genomic prediction analyses usually seek to estimate 
breeding values (and by extension, phenotypes) which are prop-
erties of the individual rather than of a population (such as, e.g., a 
trait's heritability). There are several obvious areas where GEBVs 
can be used to address long- standing problems in evolutionary ecol-
ogy. First, being able to estimate an individual's breeding value and/
or phenotype before it is expressed means it should be possible to 
predict (and test) how different individuals will respond to a future 
environmental event. A good example of this comes from a ge-
nomic prediction study of ash trees experiencing an outbreak of ash 
dieback, a disease caused by the fungus Hymenoscyphus fraxineus 
(Stocks et al., 2019). Being able to identify which young plants are 
most resistant to dieback could be an essential tool in re- establishing 
populations devastated by disease. Second, GEBVs can be used to 
better understand the “invisible fraction” problem in evolutionary 
biology, highlighted more than three decades ago (Grafen, 1988). 
The invisible fraction refers to the idea that the individuals in a pop-
ulation who reach reproducible age, may not be representative of 
the entire population if mortality up to reproduction is nonrandom 
(Hadfield, 2008; Hemmings & Evans, 2020). Because estimating 
GEBVs in a test population requires only genomic data and no phe-
notypes, it should be possible to compare GEBVs between all of the 
individuals born in a cohort and the subset of them that reach repro-
ductive age. Thus, genomic prediction at a fitness or survival- related 
trait should allow direct testing for, and quantification of, invisible 
fractions.

Perhaps the most obvious application of genomic prediction in 
wild populations will be to explore microevolutionary trends and 

in particular revisit the “evolutionary stasis” problem (Merilä et al., 
2001). This refers to the observation that traits are frequently ob-
served to be heritable and under directional selection, yet they do 
not always evolve in response to that selection in the expected way. 
Detailed descriptions and explanations of the possible explanations 
for stasis are available elsewhere (Kruuk et al., 2001; Merilä, Kruuk, 
& Sheldon, 2001a, b; Merilä et al., 2001). Quantitative genetic ap-
proaches to understand evolutionary stasis have used EBVs derived 
from animal models applied to pedigreed populations (Coltman et al., 
2003; Garant et al., 2004; Wilson et al., 2007), but a number of prob-
lems and biases associated with this approach have been highlighted 
(Hadfield et al., 2010; Postma, 2006). Notably, pedigree- derived pre-
dicted breeding values are more strongly correlated with the pheno-
type than true breeding values are (Postma, 2006). This is especially 
true for individuals without many phenotyped relatives in the ped-
igree. This is problematic for studies looking at microevolutionary 
trends in breeding values, as it means temporal changes in EBVs 
may reflect environmental effects on phenotypes rather than ge-
netic ones. Similarly, in a pedigree- based approach, those individuals 
that lack phenotypic records and have few relatives have EBVs very 
close to the population mean of true breeding values (Hadfield et al., 
2010). In studies that explore temporal trends in breeding values, 
these relatively uninformative individuals may be clustered towards 
either or both ends of a time series. Both problems are largely over-
come with GEBVs generated from a genomic prediction test popula-
tion, because each individual's genome rather than its phenotype or 
number of phenotyped relatives is used to predict its breeding value. 
It has been shown through simulations that genomic prediction is 
a more accurate method for estimating EBVs than pedigree- based 
methods when the focal individual is not closely related to phe-
notyped individuals (Clark et al., 2012). Of course, other problems 
highlighted in discussions of using breeding values to study micro-
evolutionary trends, such as failing to incorporate the uncertainty in 
GEBVs (Hadfield et al., 2010), must still be addressed, but that is rel-
atively straightforward if a Bayesian solution is used. Thus, it seems 
likely that genomic prediction can pave the way for new analyses of 
microevolutionary trends.

In conclusion, this study shows that genomic prediction can re-
liably measure individual breeding values in the Soay sheep popu-
lation, and that high accuracy does not appear to be restricted to 
traits with specific underlying genetic architectures. Approaches 
that can model zero effect, small effect and large effect loci seem to 
be the most consistently reliable. Finally, we anticipate that similar 
studies will soon be possible in many other previously understudied 
organisms, paving the way towards both applied evolutionary quan-
titative genetics research and a re- exploration of some classic, yet 
unresolved, problems.

ACKNOWLEDG EMENTS
We thank the National Trust for Scotland (NTS) for permission to 
carry out fieldwork on St Kilda and to QinetiQ and Eurest for lo-
gistical support. We are grateful to the many volunteers who have 
helped with field data collection on St Kilda over the last three 

 1365294x, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16262 by T
est, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6552  |    ASHRAF et Al.

decades. Genotyping was carried out at the Wellcome Trust Clinical 
Research Facility Genetics Core. This work was funded by a Natural 
Environment Research Council (NERC) grant, (NE/M002896/1) 
awarded to JS and JMP. SNP genotyping was mostly funded by 
a European Research Council (ERC) grant (Wild Evolutionary 
Genomics) awarded to JMP.

AUTHOR CONTRIBUTIONS
Coordination and collection of field data: Jill Pilkington and 
Josephine Pemberton. SNP genotype collection and quality control: 
Camillo Bérénos, Philip Ellis and Susan Johnston. Data analysis: Bilal 
Ashraf, Darren Hunter and Jon Slate. Manuscript writing: Jon Slate, 
Bilal Ashraf with input from all authors.

DATA AVAIL ABILIT Y S TATEMENT
Genotype and phenotype data, along with files showing which in-
dividuals were allocated to training and test populations can be 
found on Dryad with doi: https://doi.org/10.5061/dryad.h44j0 
zpkq.

ORCID
Jon Slate  https://orcid.org/0000-0003-3356-5123 

R E FE R E N C E S
Auvray, B., McEwan, J. C., Newman, S. A., Lee, M., & Dodds, K. G. (2014). 

Genomic prediction of breeding values in the New Zealand sheep 
industry using a 50K SNP chip. Journal of Animal Science, 92(10), 
4375– 4389. https://doi.org/10.2527/jas.2014- 7801

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear 
mixed- effects models using lme4. Journal of Statistical Software, 67, 
1– 48. https://doi.org/10.18637/ jss.v067.i01

Bérénos, C., Ellis, P. A., Pilkington, J. G., Lee, S. H., Gratten, J., & 
Pemberton, J. M. (2015). Heterogeneity of genetic architecture of 
body size traits in a free- living population. Molecular Ecology, 24(8), 
1810– 1830. https://doi.org/10.1111/mec.13146

Bérénos, C., Ellis, P. A., Pilkington, J. G., & Pemberton, J. M. (2014). 
Estimating quantitative genetic parameters in wild popula-
tions: a comparison of pedigree and genomic approaches. 
Molecular Ecology, 23(14), 3434– 3451. https://doi.org/10.1111/
mec.12827

Bosse, M., Spurgin, L. G., Laine, V. N., Cole, E. F., Firth, J. A., Gienapp, P., 
Gosler, A. G., McMahon, K., Poissant, J., Verhagen, I., Groenen, M. 
A. M., van Oers, K., Sheldon, B. C., Visser, M. E., & Slate, J. (2017). 
Recent natural selection causes adaptive evolution of an avian poly-
genic trait. Science, 358(6361), 365– 368. https://doi.org/10.1126/
scien ce.aal3298

Brito, L. F., Clarke, S. M., McEwan, J. C., Miller, S. P., Pickering, N. K., 
Bain, W. E., Dodds, K. G., Sargolzaei, M., & Schenkel, F. S. (2017). 
Prediction of genomic breeding values for growth, carcass and 
meat quality traits in a multi- breed sheep population using a HD 
SNP chip. BMC Genetics, 18(1), 7. https://doi.org/10.1186/s1286 
3- 017- 0476- 8

Chang, C., Chow, C., Tellier, L., Vattikuti, S., Purcell, S., & Lee, J. (2015). 
Second- generation PLINK: rising to the challenge of larger and 
richer datasets. GigaScience, 4(1), 7. https://doi.org/10.1186/s1374 
2- 015- 0047- 8

Charmantier, A., Garant, D., & Kruuk, L. E. B. (2014). Quantitative genetics 
in the wild. Oxford University Press.

Clark, S. A., Hickey, J. M., Daetwyler, H. D., & van der Werf, J. H. (2012). 
The importance of information on relatives for the prediction of ge-
nomic breeding values and the implications for the makeup of ref-
erence data sets in livestock breeding schemes. Genetics Selection 
Evolution, 44, 4. https://doi.org/10.1186/1297- 9686- 44- 4

Clutton- Brock, T., Pemberton, J., Coulson, T., Stevenson, I. R., & MacColl, 
A. D. C. (2004). The sheep of St Kilda. In T. Clutton- Brock, & J. 
Pemberton (Eds.), Soay sheep: Dynamics and selection in an island 
population (p. 383). Cambridge University Press.

Clutton- Brock, T., & Sheldon, B. C. (2010). Individuals and populations: 
the role of long- term, individual- based studies of animals in ecology 
and evolutionary biology. Trends in Ecology & Evolution, 25(10), 562– 
573. https://doi.org/10.1016/j.tree.2010.08.002

Coltman, D. W., O'Donoghue, P., Jorgenson, J. T., Hogg, J. T., Strobeck, 
C., & Festa- Bianchet, M. (2003). Undesirable evolutionary conse-
quences of trophy hunting. Nature, 426(6967), 655– 658. https://
doi.org/10.1038/natur e02177

Comeault, A. A., Soria- Carrasco, V., Gompert, Z., Farkas, T. E., Buerkle, 
C. A., Parchman, T. L., & Nosil, P. (2014). Genome- wide association 
mapping of phenotypic traits subject to a range of intensities of 
natural selection in Timema cristinae. American Naturalist, 183(5), 
711– 727. https://doi.org/10.1086/675497

Crossa, J., Campos, G. D. L., Pérez, P., Gianola, D., Burgueño, J., Araus, 
J. L., Makumbi, D., Singh, R. P., Dreisigacker, S., Yan, J., Arief, V., 
Banziger, M., & Braun, H.- J. (2010). Prediction of genetic values of 
quantitative traits in plant breeding using pedigree and molecular 
markers. Genetics, 186(2), 713– 724. https://doi.org/10.1534/genet 
ics.110.118521

Daetwyler, H. D., Calus, M. P. L., Pong- Wong, R., de los Campos, G., & 
Hickey, J. M. (2013). Genomic prediction in animals and plants: sim-
ulation of data, validation, reporting, and benchmarking. Genetics, 
193(2), 347– 365. https://doi.org/10.1534/genet ics.112.147983

Daetwyler, H. D., Pong- Wong, R., Villanueva, B., & Woolliams, J. A. (2010). 
The impact of genetic architecture on genome- wide evaluation 
methods. Genetics, 185(3), 1021– 1031. https://doi.org/10.1534/
genet ics.110.116855

Daetwyler, H. D., Villanueva, B., & Woolliams, J. A. (2008). Accuracy 
of predicting the genetic risk of disease using a genome- wide ap-
proach. PLoS One, 3(10), e3395. https://doi.org/10.1371/journ 
al.pone.0003395

de los Campos, G., Hickey, J. M., Pong- Wong, R., Daetwyler, H. D., & 
Calus, M. P. L. (2013). Whole- genome regression and prediction 
methods applied to plant and animal breeding. Genetics, 193(2), 
327– 345. https://doi.org/10.1534/genet ics.112.143313

de los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, 
E., Weigel, K., & Cotes, J. M. (2009). Predicting quantitative traits 
with regression models for dense molecular markers and pedi-
gree. Genetics, 182(1), 375– 385. https://doi.org/10.1534/genet 
ics.109.101501

de los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., & 
Sorensen, D. (2013). Prediction of complex human traits using 
the genomic best linear unbiased predictor. Plos Genetics, 9(7), 
e1003608. https://doi.org/10.1371/journ al.pgen.1003608

Erbe, M., Hayes, B. J., Matukumalli, L. K., Goswami, S., Bowman, P. J., 
Reich, C. M., Mason, B. A., & Goddard, M. E. (2012). Improving 
accuracy of genomic predictions within and between dairy cattle 
breeds with imputed high- density single nucleotide polymorphism 
panels. Journal of Dairy Science, 95(7), 4114– 4129. https://doi.
org/10.3168/jds.2011- 5019

Feulner, P. G. D., Gratten, J., Kijas, J. W., Visscher, P. M., Pemberton, J. M., 
& Slate, J. (2013). Introgression and the fate of domesticated genes 
in a wild mammal population. Molecular Ecology, 22(16), 4210– 4221. 
https://doi.org/10.1111/mec.12378

Frischknecht, M., Meuwissen, T. H. E., Bapst, B., Seefried, F. R., Flury, 
C., Garrick, D., Signer- Hasler, H., Stricker, C., Bieber, A., Fries, R., 

 1365294x, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16262 by T
est, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5061/dryad.h44j0zpkq
https://doi.org/10.5061/dryad.h44j0zpkq
https://orcid.org/0000-0003-3356-5123
https://orcid.org/0000-0003-3356-5123
https://doi.org/10.2527/jas.2014-7801
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/mec.13146
https://doi.org/10.1111/mec.12827
https://doi.org/10.1111/mec.12827
https://doi.org/10.1126/science.aal3298
https://doi.org/10.1126/science.aal3298
https://doi.org/10.1186/s12863-017-0476-8
https://doi.org/10.1186/s12863-017-0476-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/1297-9686-44-4
https://doi.org/10.1016/j.tree.2010.08.002
https://doi.org/10.1038/nature02177
https://doi.org/10.1038/nature02177
https://doi.org/10.1086/675497
https://doi.org/10.1534/genetics.110.118521
https://doi.org/10.1534/genetics.110.118521
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1534/genetics.110.116855
https://doi.org/10.1534/genetics.110.116855
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1534/genetics.112.143313
https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1371/journal.pgen.1003608
https://doi.org/10.3168/jds.2011-5019
https://doi.org/10.3168/jds.2011-5019
https://doi.org/10.1111/mec.12378


    |  6553ASHRAF et Al.

Russ, I., Sölkner, J., Bagnato, A., & Gredler- Grandl, B. (2018). Short 
communication: Genomic prediction using imputed whole- genome 
sequence variants in Brown Swiss Cattle. Journal of Dairy Science, 
101(2), 1292– 1296. https://doi.org/10.3168/jds.2017- 12890

Garant, D., Kruuk, L. E. B., McCleery, R. H., & Sheldon, B. C. (2004). 
Evolution in a changing environment: A case study with great tit 
fledging mass. American Naturalist, 164(5), E115– E129. https://doi.
org/10.1086/424764

Gianola, D. (2013). Priors in whole- genome regression: the Bayesian al-
phabet returns. Genetics, 194(3), 573– 596. https://doi.org/10.1534/
genet ics.113.151753

Gienapp, P., Calus, M. P. L., Laine, V. N., & Visser, M. E. (2019). Genomic 
selection on breeding time in a wild bird population. Evolution 
Letters, 3(2), 142– 151. https://doi.org/10.1002/evl3.103

Goddard, M. (2009). Genomic selection: prediction of accuracy and max-
imisation of long term response. Genetica, 136(2), 245– 257. https://
doi.org/10.1007/s1070 9- 008- 9308- 0

Goddard, M. E., Hayes, B. J., & Meuwissen, T. H. E. (2010). Genomic se-
lection in livestock populations. Genetics Research, 92(5– 6), 413– 
421. https://doi.org/10.1017/s0016 67231 0000613

Grafen, A. (1988). On the uses of data on lifetime reproductive success. 
In T. Clutton- Brock (Ed.), Reproductive success. Studies of individual 
variation in contrasting mating systems (pp. 454– 471). University of 
Chicago Press.

Gratten, J., Beraldi, D., Lowder, B. V., McRae, A. F., Visscher, P. M., 
Pemberton, J. M., & Slate, J. (2007). Compelling evidence that a sin-
gle nucleotide substitution in TYRP1 is responsible for coat- colour 
polymorphism in a free- living population of Soay sheep. Proceedings 
of the Royal Society B- Biological Sciences, 274(1610), 619– 626

Gratten, J., Pilkington, J. G., Brown, E. A., Beraldi, D., Pemberton, J. M., 
& Slate, J. (2010). The genetic basis of recessive self- colour pat-
tern in a wild sheep population. Heredity, 104, 206– 214. https://doi.
org/10.1038/hdy.2009.105

Habier, D., Fernando, R. L., & Dekkers, J. C. M. (2009). Genomic selec-
tion using low- density marker panels. Genetics, 182(1), 343– 353. 
https://doi.org/10.1534/genet ics.108.100289

Habier, D., Fernando, R. L., & Garrick, D. J. (2013). Genomic BLUP 
Decoded: A look into the black box of genomic prediction. Genetics, 
194(3), 597– 607. https://doi.org/10.1534/genet ics.113.152207

Hadfield, J. D. (2008). Estimating evolutionary parameters when vi-
ability selection is operating. Proceedings of the Royal Society B- 
Biological Sciences, 275(1635), 723– 734. https://doi.org/10.1098/
rspb.2007.1013

Hadfield, J. D. (2010). MCMC methods for multi- response general-
ized linear mixed models: The MCMCglmm R package. Journal of 
Statistical Software, 33(2), 1– 22. https://doi.org/10.18637/ jss.v033.
i02

Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C., & Kruuk, L. E. 
B. (2010). The misuse of BLUP in ecology and evolution. American 
Naturalist, 175(1), 116– 125. https://doi.org/10.1086/648604

Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). 
Invited review: Genomic selection in dairy cattle: Progress and 
challenges. Journal of Dairy Science, 92(2), 433– 443. https://doi.
org/10.3168/jds.2008- 1646

Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J., & Goddard, 
M. E. (2010). Genetic architecture of complex traits and accuracy 
of genomic prediction: coat colour, milk- fat percentage, and type 
in holstein cattle as contrasting model traits. Plos Genetics, 6(9), 
e1001139. https://doi.org/10.1371/journ al.pgen.1001139

Hayes, B. J., Visscher, P. M., & Goddard, M. E. (2009). Increased accu-
racy of artificial selection by using the realized relationship matrix. 
Genetics Research, 91(1), 47– 60. https://doi.org/10.1017/s0016 
67230 8009981

Heffner, E. L., Jannink, J. L., Iwata, H., Souza, E., & Sorrells, M. E. (2011). 
Genomic selection accuracy for grain quality traits in biparental 

wheat populations. Crop Science, 51(6), 2597– 2606. https://doi.
org/10.2135/crops ci2011.05.0253

Heidaritabar, M., Calus, M. P., Megens, H. J., Vereijken, A., Groenen, 
M. A., & Bastiaansen, J. W. (2016). Accuracy of genomic predic-
tion using imputed whole- genome sequence data in white layers. 
Journal of Animal Breeding and Genetics, 133(3), 167– 179. https://
doi.org/10.1111/jbg.12199

Hemmings, N., & Evans, S. (2020). Unhatched eggs represent the in-
visible fraction in two wild bird populations. Biology Letters, 16(1), 
20190763. https://doi.org/10.1098/rsbl.2019.0763

Hill, W. G. (2014). Applications of population genetics to animal breed-
ing, from wright, fisher and lush to genomic prediction. Genetics, 
196(1), 1– 16. https://doi.org/10.1534/genet ics.112.147850

Johnston, S. E., Bérénos, C., Slate, J., & Pemberton, J. M. (2016). Conserved 
genetic architecture underlying individual recombination rate vari-
ation in a wild population of soay sheep (Ovis aries). Genetics, 203(1), 
583– 598. https://doi.org/10.1534/genet ics.115.185553

Johnston, S. E., Gratten, J., Bérénos, C., Pilkington, J. G., Clutton- Brock, 
T. H., Pemberton, J. M., & Slate, J. (2013). Life history trade- offs at 
a single locus maintain sexually selected genetic variation. Nature, 
502(7469), 93– 95. https://doi.org/10.1038/natur e12489

Johnston, S. E., McEWAN, J. C., Pickering, N. K., Kijas, J. W., Beraldi, 
D., Pilkington, J. G., Pemberton, J. M., & Slate, J. (2011). Genome- 
wide association mapping identifies the genetic basis of discrete 
and quantitative variation in sexual weaponry in a wild sheep 
population. Molecular Ecology, 20(12), 2555– 2566. https://doi.
org/10.1111/j.1365- 294X.2011.05076.x

Kardos, M., Husby, A., McFarlane, S. E., Qvarnstrom, A., & Ellegren, 
H. (2016). Whole- genome resequencing of extreme phe-
notypes in collared flycatchers highlights the difficulty 
of detecting quantitative trait loci in natural populations. 
Molecular Ecology Resources, 16(3), 727– 741. https://doi.
org/10.1111/1755- 0998.12498

Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., 
Natarajan, P., Lander, E. S., Lubitz, S. A., Ellinor, P. T., & Kathiresan, 
S. (2018). Genome- wide polygenic scores for common diseases 
identify individuals with risk equivalent to monogenic mutations. 
Nature Genetics, 50(9), 1219– 1224. https://doi.org/10.1038/s4158 
8- 018- 0183- z

Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San 
Cristobal, M., Servin, B., McCulloch, R., Whan, V., Gietzen, K., Paiva, 
S., Barendse, W., Ciani, E., Raadsma, H., McEwan, J., & Dalrymple, 
B. (2012). Genome- wide analysis of the world's sheep breeds re-
veals high levels of historic mixture and strong recent selection. 
PLoS Biology, 10(2), e1001258. https://doi.org/10.1371/journ 
al.pbio.1001258

Kruuk, L. E. B. (2004). Estimating genetic parameters in natural popula-
tions using the ‘animal model'. Philosophical Transactions of the Royal 
Society of London, Series B, 359, 873– 890. https://doi.org/10.1098/
rstb.2003.1437

Kruuk, L. E. B., Merila, J., & Sheldon, B. C. (2001). Phenotypic selection 
on a heritable size trait revisited. American Naturalist, 158(6), 557– 
571. https://doi.org/10.1086/323585

Kruuk, L. E. B., Slate, J., & Wilson, A. J. (2008). New answers for 
old questions: the evolutionary quantitative genetics of wild 
animal populations. Annual Review of Ecology Evolution and 
Systematics, 39, 525– 548. https://doi.org/10.1146/annur ev.ecols 
ys.39.110707.173542

Lin, Z., Hayes, B. J., & Daetwyler, H. D. (2014). Genomic selection in 
crops, trees and forages: a review. Crop & Pasture Science, 65(11), 
1177– 1191. https://doi.org/10.1071/cp13363

McGaugh, S. E., Lorenz, A. J., & Flagel, L. E. (2021). The utility of genomic 
prediction models in evolutionary genetics. Proceedings of the Royal 
Society B: Biological Sciences, 288(1956), 20210693. https://doi.
org/10.1098/rspb.2021.0693

 1365294x, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16262 by T
est, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.3168/jds.2017-12890
https://doi.org/10.1086/424764
https://doi.org/10.1086/424764
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1002/evl3.103
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1017/s0016672310000613
https://doi.org/10.1038/hdy.2009.105
https://doi.org/10.1038/hdy.2009.105
https://doi.org/10.1534/genetics.108.100289
https://doi.org/10.1534/genetics.113.152207
https://doi.org/10.1098/rspb.2007.1013
https://doi.org/10.1098/rspb.2007.1013
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.1086/648604
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.1371/journal.pgen.1001139
https://doi.org/10.1017/s0016672308009981
https://doi.org/10.1017/s0016672308009981
https://doi.org/10.2135/cropsci2011.05.0253
https://doi.org/10.2135/cropsci2011.05.0253
https://doi.org/10.1111/jbg.12199
https://doi.org/10.1111/jbg.12199
https://doi.org/10.1098/rsbl.2019.0763
https://doi.org/10.1534/genetics.112.147850
https://doi.org/10.1534/genetics.115.185553
https://doi.org/10.1038/nature12489
https://doi.org/10.1111/j.1365-294X.2011.05076.x
https://doi.org/10.1111/j.1365-294X.2011.05076.x
https://doi.org/10.1111/1755-0998.12498
https://doi.org/10.1111/1755-0998.12498
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1371/journal.pbio.1001258
https://doi.org/10.1371/journal.pbio.1001258
https://doi.org/10.1098/rstb.2003.1437
https://doi.org/10.1098/rstb.2003.1437
https://doi.org/10.1086/323585
https://doi.org/10.1146/annurev.ecolsys.39.110707.173542
https://doi.org/10.1146/annurev.ecolsys.39.110707.173542
https://doi.org/10.1071/cp13363
https://doi.org/10.1098/rspb.2021.0693
https://doi.org/10.1098/rspb.2021.0693


6554  |    ASHRAF et Al.

Merilä, J., Kruuk, L. E. B., & Sheldon, B. C. (2001a). Cryptic evolution 
in a wild bird population. Nature, 412(6842), 76– 79. https://doi.
org/10.1038/35083580

Merilä, J., Kruuk, L. E. B., & Sheldon, B. C. (2001b). Natural selection on 
the genetical component of variance in body condition in a wild bird 
population. Journal of Evolutionary Biology, 14(6), 918– 929. https://
doi.org/10.1046/j.1420- 9101.2001.00353.x

Merilä, J., Sheldon, B. C., & Kruuk, L. E. B. (2001). Explaining stasis: mi-
croevolutionary studies in natural populations. Genetica, 112, 199– 
222. https://doi.org/10.1023/A:10133 91806317

Meuwissen, T., & Goddard, M. (2010). Accurate prediction of genetic 
values for complex traits by whole- genome resequencing. Genetics, 
185(2), 623– 631. https://doi.org/10.1534/genet ics.110.116590

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction 
of total genetic value using genome- wide dense marker maps. 
Genetics, 157(4), 1819– 1829. https://doi.org/10.1093/genet 
ics/157.4.1819

Meuwissen, T., Hayes, B., & Goddard, M. (2013). Accelerating improve-
ment of livestock with genomic selection. Annual Review of Animal 
Biosciences, 1(1), 221– 237. https://doi.org/10.1146/annur ev- anima 
l- 03141 2- 103705

Moser, G., Lee, S. H., Hayes, B. J., Goddard, M. E., Wray, N. R., & Visscher, 
P. M. (2015). Simultaneous discovery, estimation and predic-
tion analysis of complex traits using a bayesian mixture model. 
Plos Genetics, 11(4), e1004969. https://doi.org/10.1371/journ 
al.pgen.1004969

Nagamine, Y., Pong- Wong, R., Navarro, P., Vitart, V., Hayward, C., Rudan, 
I., Campbell, H., Wilson, J., Wild, S., Hicks, A. A., Pramstaller, P. P., 
Hastie, N., Wright, A. F., & Haley, C. S. (2012). Localising loci un-
derlying complex trait variation using regional genomic relation-
ship mapping. PLoS One, 7(10), 12. https://doi.org/10.1371/journ 
al.pone.0046501

Perez, P., & de los Campos, G. (2014). Genome- wide regression and pre-
diction with the BGLR statistical package. Genetics, 198(2), 483– 
495. https://doi.org/10.1534/genet ics.114.164442

Postma, E. (2006). Implications of the difference between true and pre-
dicted breeding values for the study of natural selection and micro- 
evolution. Journal of Evolutionary Biology, 19(2), 309– 320. https://
doi.org/10.1111/j.1420- 9101.2005.01007.x

Ritland, K. (1996). Marker- based method for inferences about quantita-
tive inheritance in natural populations. Evolution, 50(3), 1062– 1073. 
https://doi.org/10.2307/2410647

Ritland, K., & Ritland, C. (1996). Inferences about quantitative inheri-
tance based on natural population structure in the yellow monkey-
flower, Mimulus guttatus. Evolution, 50(3), 1074– 1082. https://doi.
org/10.2307/2410648

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., & 
Muller, M. (2011). proc: An open- source package for R and S plus 
to analyze and compare ROC curves. BMC Bioinformatics, 12, 77. 
https://doi.org/10.1186/1471- 2105- 12- 77

Robinson, M. R., Santure, A. W., DeCauwer, I., Sheldon, B. C., & Slate, J. 
(2013). Partitioning of genetic variation across the genome using 
multimarker methods in a wild bird population. Molecular Ecology, 
22, 3963– 3980. https://doi.org/10.1111/mec.12375

Santure, A. W., De Cauwer, I., Robinson, M. R., Poissant, J., Sheldon, B. 
C., & Slate, J. (2013). Genomic dissection of variation in clutch size 
and egg mass in a wild great tit (Parus major) population. Molecular 
Ecology, 22(15), 3949– 3962. https://doi.org/10.1111/mec.12376

Silva, C. N. S., McFarlane, S. E., Hagen, I. J., Rönnegård, L., Billing, A. M., 
Kvalnes, T., Kemppainen, P., Rønning, B., Ringsby, T. H., Sæther, 
B.- E., Qvarnström, A., Ellegren, H., Jensen, H., & Husby, A. (2017). 
Insights into the genetic architecture of morphological traits in 
two passerine bird species. Heredity, 119(3), 197– 205. https://doi.
org/10.1038/hdy.2017.29

Slate, J. (2013). From Beavis to beak color: a simulation study to examine 
how much QTL mapping can reveal about the genetic architecture 

of quantitative traits. Evolution, 67(5), 1251– 1262. https://doi.
org/10.1111/evo.12060

Slate, J., Santure, A. W., Feulner, P. G. D., Brown, E. A., Ball, A. D., 
Johnston, S. E., & Gratten, J. (2010). Genome mapping in intensively 
studied wild vertebrate populations. Trends in Genetics, 26(6), 275– 
284. https://doi.org/10.1016/j.tig.2010.03.005

Stocks, J. J., Metheringham, C. L., Plumb, W. J., Lee, S. J., Kelly, L. J., 
Nichols, R. A., & Buggs, R. J. A. (2019). Genomic basis of European 
ash tree resistance to ash dieback fungus. Nature Ecology & Evolution, 
3(12), 1686– 1696. https://doi.org/10.1038/s4155 9- 019- 1036- 6

VanRaden, P. M. (2008). Efficient methods to compute genomic pre-
dictions. Journal of Dairy Science, 91(11), 4414– 4423. https://doi.
org/10.3168/jds.2007- 0980

VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., 
Schnabel, R. D., Taylor, J. F., & Schenkel, F. S. (2009). Invited review: 
reliability of genomic predictions for North American Holstein bulls. 
Journal of Dairy Science, 92(1), 16– 24. https://doi.org/10.3168/
jds.2008- 1514

Veerkamp, R. F., Bouwman, A. C., Schrooten, C., & Calus, M. P. (2016). 
Genomic prediction using preselected DNA variants from a GWAS 
with whole- genome sequence data in Holstein- Friesian cattle. 
Genetics Selection Evolution, 48(1), 95. https://doi.org/10.1186/
s1271 1- 016- 0274- 1

Visscher, P. M., Macgregor, S., Benyamin, B., Zhu, G. U., Gordon, S., 
Medland, S., Hill, W. G., Hottenga, J.- J., Willemsen, G., Boomsma, 
D. I., Liu, Y.- Z., Deng, H.- W., Montgomery, G. W., & Martin, N. G. 
(2007). Genome partitioning of genetic variation for height from 
11,214 sibling pairs. American Journal of Human Genetics, 81(5), 
1104– 1110. https://doi.org/10.1086/522934

Visscher, P. M., Medland, S. E., Ferreira, M. A. R., Morley, K. I., Zhu, 
G. U., Cornes, B. K., Montgomery, G. W., & Martin, N. G. (2006). 
Assumption- free estimation of heritability from genome- wide 
identity- by- descent sharing between full siblings. Plos Genetics, 
2(3), 316– 325. https://doi.org/10.1371/journ al.pgen.0020041

Walsh, B., & Lynch, M. (2018). Evolution and selection of quantitative traits. 
Oxford University Press.

Wilson, A. J., Pemberton, J. M., Pilkington, J. G., Clutton- Brock, T. H., 
Coltman, D. W., & Kruuk, L. E. B. (2007). Quantitative genetics of 
growth and cryptic evolution of body size in an island population. 
Evolutionary Ecology, 21(3), 337– 356. https://doi.org/10.1007/
s1068 2- 006- 9106- z

Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., 
Chu, A. Y., Estrada, K., Luan, J., Kutalik, Z., Amin, N., Buchkovich, M. 
L., Croteau- Chonka, D. C., Day, F. R., Duan, Y., Fall, T., Fehrmann, 
R., Ferreira, T., Jackson, A. U., … Frayling, T. M. (2014). Defining the 
role of common variation in the genomic and biological architecture 
of adult human height. Nature Genetics, 46(11), 1173– 1186. https://
doi.org/10.1038/ng.3097.

Wray, N. R., Yang, J., Goddard, M. E., & Visscher, P. M. (2010). The ge-
netic interpretation of area under the ROC curve in genomic pro-
filing. Plos Genetics, 6(2), e1000864. https://doi.org/10.1371/journ 
al.pgen.1000864

Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E., & Visscher, 
P. M. (2013). Pitfalls of predicting complex traits from SNPs. 
Nature Reviews Genetics, 14(7), 507– 515. https://doi.org/10.1038/
nrg3457

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, 
D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. 
W., Goddard, M. E., & Visscher, P. M. (2010). Common SNPs ex-
plain a large proportion of the heritability for human height. Nature 
Genetics, 42(7), 565– 569. https://doi.org/10.1038/ng.608

Zhao, Y., Gowda, M., Liu, W., Würschum, T., Maurer, H. P., Longin, F. 
H., Ranc, N., & Reif, J. C. (2012). Accuracy of genomic selection 
in European maize elite breeding populations. Theoretical and 
Applied Genetics, 124(4), 769– 776. https://doi.org/10.1007/s0012 
2- 011- 1745- y

 1365294x, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16262 by T
est, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/35083580
https://doi.org/10.1038/35083580
https://doi.org/10.1046/j.1420-9101.2001.00353.x
https://doi.org/10.1046/j.1420-9101.2001.00353.x
https://doi.org/10.1023/A:1013391806317
https://doi.org/10.1534/genetics.110.116590
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1146/annurev-animal-031412-103705
https://doi.org/10.1146/annurev-animal-031412-103705
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.1371/journal.pone.0046501
https://doi.org/10.1371/journal.pone.0046501
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1111/j.1420-9101.2005.01007.x
https://doi.org/10.1111/j.1420-9101.2005.01007.x
https://doi.org/10.2307/2410647
https://doi.org/10.2307/2410648
https://doi.org/10.2307/2410648
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1111/mec.12375
https://doi.org/10.1111/mec.12376
https://doi.org/10.1038/hdy.2017.29
https://doi.org/10.1038/hdy.2017.29
https://doi.org/10.1111/evo.12060
https://doi.org/10.1111/evo.12060
https://doi.org/10.1016/j.tig.2010.03.005
https://doi.org/10.1038/s41559-019-1036-6
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2008-1514
https://doi.org/10.3168/jds.2008-1514
https://doi.org/10.1186/s12711-016-0274-1
https://doi.org/10.1186/s12711-016-0274-1
https://doi.org/10.1086/522934
https://doi.org/10.1371/journal.pgen.0020041
https://doi.org/10.1007/s10682-006-9106-z
https://doi.org/10.1007/s10682-006-9106-z
https://doi.org/10.1038/ng.3097
https://doi.org/10.1038/ng.3097
https://doi.org/10.1371/journal.pgen.1000864
https://doi.org/10.1371/journal.pgen.1000864
https://doi.org/10.1038/nrg3457
https://doi.org/10.1038/nrg3457
https://doi.org/10.1038/ng.608
https://doi.org/10.1007/s00122-011-1745-y
https://doi.org/10.1007/s00122-011-1745-y


    |  6555ASHRAF et Al.

Zhou, X., Carbonetto, P., & Stephens, M. (2013). Polygenic Modeling 
With Bayesian Sparse Linear Mixed Models. Plos Genetics, 9(2), 
e1003264. https://doi.org/10.1371/journ al.pgen.1003264

SUPPORTING INFORMATION
Additional supporting information may be found in the online ver-
sion of the article at the publisher’s website.

How to cite this article: Ashraf, B., Hunter, D. C., Bérénos, C., 
Ellis, P. A., Johnston, S. E., Pilkington, J. G., Pemberton, J. M., & 
Slate, J. (2022). Genomic prediction in the wild: A case study in 
Soay sheep. Molecular Ecology, 31, 6541– 6555. https://doi.
org/10.1111/mec.16262

 1365294x, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16262 by T
est, W

iley O
nline L

ibrary on [17/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1371/journal.pgen.1003264
https://doi.org/10.1111/mec.16262
https://doi.org/10.1111/mec.16262

	Genomic prediction in the wild: A case study in Soay sheep
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Study population
	2.2|Genetic data
	2.3|Phenotypic data
	2.4|Modelling nongenetic effects
	2.5|Running genomic prediction models
	2.5.1|BayesA
	2.5.2|BayesB
	2.5.3|Bayesian Lasso (BayesL)
	2.5.4|GBLUP
	2.5.5|BayesR

	2.6|Assessing prediction accuracy and bias
	2.7|Comparisons between observed and expected accuracy

	3|RESULTS
	3.1|Genomic prediction accuracy
	3.2|Genomic prediction bias
	3.3|Comparison of models
	3.4|Comparison between default and informed priors for BayesR models
	3.5|Comparisons between observed and expected accuracy
	3.6|Description of trait architectures by BayesR

	4|DISCUSSION
	4.1|Conclusions and future directions

	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	REFERENCES


