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A B S T R A C T   

This paper examines the interdependence between green bonds and financial markets in the time-frequency 
domain by utilizing the multivariate wavelet approach and dynamic connectedness through combining 
Ensemble Empirical Mode Decomposition (EEMD) with Diebold and Yilmaz (2012) spillover framework. The 
findings of wavelet multiple correlations indicate that the benefits of diversification opportunities are more 
evident in the short run. The evidence of wavelet multiple cross-correlations reveals that green bonds and 
financial markets are highly integrated in the long run. The results of the static connectedness framework explain 
that the direction and magnitude of spillover behave differently across markets. The world stock market is the net 
spillover transmitter, while the corporate bond market is the net spillover receiver among the selected markets. 
The green bond market is receiving more but transmitted less volatility in the present study. The evidence on 
dynamic connectedness measured by the rolling window approach shows that the interconnection between green 
bonds and financial markets is volatile over time. These pieces of evidence provide implications to global in
vestors having a strong position in the green bonds market in terms of risk management and portfolio decisions.   

1. Introduction 

The importance of portfolio diversification rises during crisis times. 
The optimal risk-return trade-offs require a complete understanding of 
the different securities' dynamic comovement and connectedness in a 
portfolio. In such a context, recent empirical studies advocate the in
clusion of new asset classes in the investment portfolio, such as energy 
indices (Asl et al., 2021; Elsayed et al., 2020; Kang et al., 2015; among 
others), cryptocurrencies (Damianov and Elsayed, 2020; Garcia-Jorcano 
and Benito, 2020; Mroua et al., 2020; among others), precious metal 
(Rehman and Vo, 2021; Hernandez et al., 2018; among others), Islamic 
indexes (Alkhazali and Zoubi, 2020; Kenourgios et al., 2016; Yarovaya 
et al., 2021; among others) and green bonds (Pham, 2021; Reboredo and 
Ugolini, 2020; Nguyen et al., 2020; Reboredo, 2018; among others). 

Green bonds have emerged as a new financial tool to face social, 
environmental, and portfolio risk mitigation challenges. The global 
green bond and green loan issuance reached USD 257.7bn in 2019. The 
USA, China, and France accounted together for 44% of global issuance in 
2019. The green bond issuance is estimated to reach USD 500 bn in 2021 
(Climate Bond Initiative).1 In recent years, the green bond markets have 
attracted substantial interest for sustainable development, resulting 
from pressure for companies to reduce their environmental impact and 
increase impact investment. Green bonds are generally considered as 
social and ecological tools to meet global green investment needs for 
sustainable development. According to Ehlers and Packer (2017), green 
bonds are vital to satisfy both issuers' and investors' expectations to 
achieve the funding needs of environmentally friendly projects. 

Given that green investments are crucial in alleviating climate 
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change risk and providing a means to achieve risk mitigation, examining 
the comovement between green bonds and financial markets during 
different market conditions is essential. Therefore, understanding the 
comovement between the green bond and financial markets is crucial for 
international investors. Furthermore, it would emphasize the diversifi
cation benefits of allocating green bonds to a portfolio and demon
strating how the price oscillations may impact green bond prices in the 
financial markets (Reboredo, 2018). 

Recent studies on green bonds investigate the connectedness and 
comovement between the green bond and (i) green equity markets 
(Pham, 2021); (ii) corporate and treasury bond, stock, and energy 
commodity markets (Reboredo, 2018); (iii) economic and financial 
uncertainty (Pham and Nguyen, 2021); (iv) Oil price shocks and 
geopolitical risks (Lee et al., 2021), (v) black bonds (Broadstock and 
Cheng, 2019). However, only a few recent studies examine the effects of 
the COVID-19 pandemic on green bonds markets. For example, Naeem 
et al. (2021) study the efficiency of green bonds pre-and during the 
COVID-19 pandemic. Yi et al. (2021) investigated the connection be
tween green and black bonds during the coronavirus. Taghizadeh- 
Hesary et al. (2021) examine the risks and returns of green bonds during 
the COVID-19 period for Asia and the Pacific region. This study is 
motivated by the lack of empirical research on the dynamics of green 
bonds during the COVID-19 pandemic and the ongoing debate about the 
impact of green investments on portfolio risk diversification during 
crisis times. Investors may see green bond issuance as a tool that allows 
companies to obtain capital with environmental, social, and impact in
vestment objectives. Therefore, the dynamic of green bond returns can 
be different from other financial assets. 

Against this backdrop, the main objective of this study is to investi
gate information spillovers and interdependence between green bonds 
and financial markets in the time-frequency domain by utilizing the 
multivariate wavelet approach, and dynamic connectedness ap
proaches. This study addresses the following unanswered questions: 
Does interdependence exist between green bonds and financial markets 
before and during COVID-19 pandemic periods? Does the dynamic 
connectedness between green bonds and financial markets change 
across time? Is there a short-run or long-run time-frequency relationship 
between green bond returns and financial market returns? Finally, do 
green bonds and global financial markets co-move in the same way 
during COVID-19? 

This study contributes to the existing knowledge in three different 
ways. First, we examine the interdependence between green bonds and 
other financial markets (treasury and corporate bond markets, stock 
markets, traditional energy, and clean energy markets) before and 
during the COVID-19 pandemic. Second, we examine the time- 
frequency relationship between green bonds and financial markets 
using wavelet coherency. This methodology allows us to explore the co- 
movement and lead-lag connection for the frequency components of the 
green bond returns at various frequencies and exact moments in time. 
Specifically, the multivariate wavelet approach will give a clearer 
indication about the type of overall correlation that exists within the 
multivariate set at different timescales. The proposed Wavelet Multiple 
Correlation (WMC) and Wavelet Multiple Cross-Correlation (WMCC) 
consist in one single set of multiscale correlations which are not only 
easier to handle and interpret but also may provide a better insight of the 
overall statistical relationship about the multivariate set under scrutiny. 
In addition, the WMC and its companion WMCC not only offer a more 
useful way to establish the overall multiple relationships but also, they 
have important advantages over the usual wavelet methods that use 
simple correlations and cross-correlations between all possible pairs of 

variables (Fernández-Macho, 2012, 2018). These methods also over
come the limitation of standard wavelet correlation analysis, which 
usually needs to calculate, and compare a large number of wavelet 
correlation and cross-correlation graphs (Fernández-Macho, 2012). 
Furthermore, the Diebold and Yilmaz (2012) connectedness approach 
measures the total connectedness and pairwise risk transmission be
tween asset returns. Practitioners and researchers widely use Diebold 
and Yilmaz's (2012) spillover framework because it provides both static 
and dynamic methods of time-series connectedness analysis. Third, the 
sample period of this study includes some significant events such as the 
2014–16 oil price decline, the announcement of COVID-19 as a global 
epidemic on March 12 by the World Health Organization, and the oil 
price crash on April 20, 2020. Therefore, the sample period can lead to 
different time-frequency comovement between the green bond and the 
financial markets. 

This study shows that the lead/lag relationship between green bonds 
and financial markets has equal forces and is independent of the time 
scale. We find a weak cross-correlation between green bond returns and 
financial market returns in the short investment horizon. Therefore, the 
benefits of diversification opportunities become more significant in the 
short run. Empirical findings from the dynamic returns spillover 
connectedness show that clean green energy plays a dominant role in 
transmitting volatility while the role of green bonds is negligible. 
Finally, the interdependence between green bonds and financial markets 
is volatile over time. The highest connectedness is observed in the first 
quarter of 2020 due to the COVID-19 pandemic. 

The rest of this paper is organized as follows. Section 2 exposes the 
related literature. Section 3 discusses the empirical methods. Section 4 
defines the data and some preliminary results. Section 5 discusses the 
empirical results. Finally, Section 6 concludes the paper. 

2. Literature review 

The emerging literature on green bonds focuses primarily on com
pany performance. Ehlers and Packer (2017) compared the credit 
spreads of green and conventional bonds. They found that green bonds 
are priced at a premium on average relative to conventional bonds, 
while their performance has been similar to other bonds. Baulkaran 
(2019) analyzes the shareholder wealth effects of green bond issuance 
by publicly traded corporations. The sample includes 54 firms that issue 
corporate green bonds and have at least 250 trading days returns data 
before and ten days after the announcement. Empirical results show that 
the cumulative abnormal returns are positive and statistically significant 
and the firm risk (beta and total risk) declines following green bond 
issuance. Russo et al. (2021) explore the determinants of green bond 
issuance using a sample of 306 corporate green bonds issued by 85 
companies between 2013 and 2016. The empirical results show that 
project-specific characteristics have a positive impact on green bond 
performance. Also, the label “Pure Green” contributes to determining 
the green bond performance. Tang and Zhang (2020) find no evidence of 
a significant premium for green bonds, using green bond issuance by 
firms in 28 countries during 2007–2017. The empirical results suggest 
that the firm's issuance of green bonds is beneficial to its existing 
shareholders. 

In the last few years, international investors have increased interest 
in including green financial instruments in their portfolios. Pham (2016) 
examines the volatility connectedness of the conventional and green 
bond market using daily data from April 2010 to April 2015. Empirical 
results demonstrate the existence of volatility clustering in these mar
kets. Thus, a shock in the conventional bond market tends to spill over 
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into the green bond market. Reboredo (2018) investigates the depen
dence structure using static and dynamic copula functions between the 
green bond market and related financial markets (the corporate and 
treasury fixed-income markets, the stock and energy commodity mar
kets). He finds that the green bond market and corporate and treasury 
fixed-income markets are strongly dependent on average and at the tails 
of their joint distribution, indicating that green bonds have no diversi
fication benefits for investors' fixed-income markets. However, green 
bond comovement with stock and energy commodity markets is weak, 
suggesting that green bonds have sizeable diversification benefits for 
investors in the stock and energy markets. 

On the other hand, Broadstock and Cheng (2019) explore the de
terminants of correlation shapes between green and black bond markets. 
They use daily data from November 28, 2008, to July 31, 2018, and 
combine the dynamic conditional correlations with the dynamic model 
averaging methods. They find that the connection between green and 
black bonds is sensitive to macroeconomic factors. Reboredo and Ugo
lini (2020) examine the connectedness between the green bond and 
other financial markets using a structural VAR model identified through 
heteroskedasticity. They find that green bond is under significant in
fluences from the fixed-income markets. Also, green bonds are weakly 
connected with the stock, energy, and corporate bond markets, implying 
that green bonds have substantial diversification benefits. In a similar 
vein, Pham (2021) investigates the frequency connectedness and cross- 
quantile dependence between the green bond and green stock markets 
from August 2014 to August 2020. Empirical findings show that the 
dependency between the green bond and green stock during normal 
market conditions is relatively weak. Alternatively, green bonds and 
green stocks are more connected during turmoil market movements. 
Kocaarslan (2021) analyzes the economic foundation behind the in
teractions between green bonds, conventional bonds, stocks, and energy 
commodities. The author finds an increase in the US dollar value en
hances the dynamic conditional correlation between green and con
ventional bond markets. The green and the conventional bonds are seen 
as similar in risk-return behavior, especially during crisis times. In 
addition, appreciation of the US dollar reduces the dynamic conditional 
correlation of green bonds with energy commodities and stock markets. 
Le et al. (2021) investigates the time and frequency domain connect
edness and spillover effects among fintech, green bonds, and crypto
currencies. Using the DY (2012) approach, they find that volatility 
shocks transmitted from green bonds to other markets and vice versa are 
shallow than the other assets. The gold, oil, and green bonds are valu
able as good hedgers compared to fintech and common equities. 

Pham and Nguyen (2021) examine the impact of stock return vola
tility and economic policy uncertainty oil volatility on the dynamic 
green bond returns using data from October 2014 to November 2020. 
Using Markov switching dynamic regression and connectedness 
network, empirical results demonstrate time-varying dependence be
tween green bonds and economic uncertainty in the volatile regime. 
However, the green bonds are weakly connected with economic un
certainty in tranquil periods with low uncertainty. Lee et al. (2021) 
examine the causal relation among green bonds, oil price shocks, and 
geopolitical risks in the context of the United States over 2013–2019. 
Using Granger causality in quantile, empirical results show bi- 
directional and asymmetric causality from oil price to the green bonds 
and unidirectional causality from variation in geopolitical risk to the 
green bond. Gao et al. (2021) investigate risk-spillover network 
connectedness among main financial markets and China's green bond. 
Using data from April 8, 2015, to April 8, 2020, the authors find 

significant spillovers between the green bond market, stock market, and 
commodities market. Finally, Gu et al. (2021) study the impact of public 
environmental concern on corporate green investments from the 
perspective of chief executive officer (CEO) turnover. The empirical 
findings show that the public's environmental concern pressure raises 
the CEO turnover probability in heavy polluting businesses. 

The more recent literature has focused on the impact of the COVID- 
19 pandemic on green bond markets. Yi et al. (2021) study the effect of 
COVID-19 on China's green bond market. Using event study and green 
bond data for China over the period from August 27, 2019, to June 1, 
2020, they find that the outbreak of COVID-19 has significant impacts 
on the volatility of the green bond market and increases the cumulative 
abnormal returns of the green bonds significantly. Naeem et al. (2021) 
investigate the comparative efficiency of green and conventional bond 
markets before and during the COVID-19 pandemic by applying asym
metric multifractal analysis. They find that multifractality in green and 
conventional bond markets is different for upward and downward 
trends. The multifractality tends to be more pronounced during drop
ping market trends for the conventional and green bond markets. In 
addition, the multifractality in the traditional market of bonds is lower 
than in the green bond market. Arif et al. (2021) studied green bonds' 
hedging and safe-haven properties for conventional equity, fixed in
come, commodity, and forex investments during the pandemic. They 
find that the green bond index could be a diversifier asset for medium- 
and long-term equity investors. In addition, it can serve as a hedging and 
safe haven tool for currency and commodity investments. Taghizadeh- 
Hesary et al. (2021) investigate the risk and return of green bonds 
focusing on Asia and the Pacific region during the COVID-19 pandemic 
and using data composed of 1174 observations divided into Asia and 
Pacific, Europe, and North America regions. Empirical findings show 
that green bonds issued in Asia and the Pacific have higher returns and 
risks than green bonds issued in the European or North American region. 

Given the previous studies suggest that international investors utilize 
the green bond market to achieve risk mitigation, an empirical exami
nation of the green bond return dynamics before and during the 
pandemic warrants investigation. Thus, this study contributes to the 
existing literature by studying the time-frequency relationship between 
green bond returns and global financial market returns before and 
during the COVID-19 pandemic. 

3. Empirical methods 

In this section, three main methodologies are discussed: (i) Wavelet 
Analysis, which describes the time-frequency properties of the under
lying series. The conventional methodology generally focuses on time 
domain to assess the dynamics of connectedness among variables, the 
frequency domain is increasing its importance as investors have heter
ogenous interests in investment time horizons. Indeed, some investors 
prefer to make short-term investments (hours, days) while the others 
focus on medium or long-term investments (from several weeks to 
monthly and yearly investment). Wavelet analysis is an innovative 
approach that considers multi-dimension analysis. Particularly, the 
comovement between variables is assessed at different frequencies and 
over time, therefore, providing better insights about the relationship. 
Additionally, the ability to successfully handle non-stationary time se
ries is another benefit of wavelet analysis. (ii) Ensemble Empirical Mode 
Decomposition (EEMD) method is able to convert the non-linear and 
non-stationary asset data into a combination of simple modes with 
specific economic meaning, which can be applied for the analysis of 
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stationary time-series. As a self-adaptive multiscale decomposition 
technique, empirical mode decomposition can decompose the asset 
returns into different components accurately (iii) Diebold and Yilmaz 
(DY) connectedness approach is employed to measure the total 
connectedness and pairwise connectedness between asset returns. The 
DY method used in this study have significant advantages over the 
traditional linear and Granger causality test often used in prior studies 
when timescales under study are stationary. DY (2012) suggests a uni
fied framework for measuring the spill over and dependencies. This 
method allows one to track the spill overs at all levels, from pairwise to 
system wide, in a coherent, mutually consistent way even though their 
insights are restricted to only the time domain. Moreover, detecting 
which clean energy stock return is connected with other asset classes 
and uncertainties, as well as quantifying the strengths of these connec
tions, aids us in building a network spillover. The DY-Spillover network 
approach helps to identify the degree of interconnectedness and iden
tifies the spillover network channels, which can be largely attributed to 
the investigated variables. Finally, the application of wavelet method
ology describes the evidence of a co-movement between the global green 
bond market and treasury, corporate bond, stock, energy, and clean 
energy markets at various time-frequency scale. DY-Spillover network 
approach explains the dynamic connectedness between green bonds and 
financial markets that vary across time and provide information about 
the potential benefits of green bonds during crisis periods. 

3.1. Wavelet multi-scale analysis 

Conventional time-domain methods such as correlation coefficient 
and cointegration analysis did not provide time-frequency data prop
erties and failed to provide a complete picture of market integration. In 
other words, conventional models capture the relationship between 
variables mainly in two investment periodicities, short and long terms. 
At the same time, the behavior of stock markets is heterogeneous and 
varies across time-scale. In contrast, the wavelet technique has the 
inherent ability to decompose the particular time series into various 
time-frequency scales. Moreover, the decomposition and localization 
property of wavelets make it a more useful method to handle the het
erogeneous behavior of stock markets. Hence, the application of 
Wavelet Multiple Correlation (WMC) and Wavelet Multiple Cross- 
Correlation (WMCC) with Maximal Overlap Discrete Wavelet Trans
form (MODWT) across various time-scale is the proper perspective to 
capture the heterogeneous nature of sample markets. 

3.1.1. Wavelet multiple correlation (WMC) and wavelet multiple cross- 
correlation (WMCC) methods 

We present the multivariate case using Fernández-Macho's (2012) 
methodology based on the wavelet-based pairwise correlation. Let the 
multivariate data generating process (DGP) of a random variable Yt =

{y1t, y2t, . . …, ynt}and its corresponding scale ϕjcan be presented as Wjt 
= {w1jt,w2jt, .……,wnjt}. Wavelet coefficients are derived by using the 
application of MODWT to each Yit. MODWT transformation of a given 
data series into wavelet coefficients provides a multiresolution analysis 
without making strong assumptions about DGP. 

The WMC signified by the symbol λY(ϕj)and described by Fernández- 
Macho (2012). A subsequent procedure based on DGP is used to ob
tained WMC. Given each wavelet scale ϕj, the linear combination wijt, i 
= 1, 2, . ……, n is used to estimate the maximum value of the square root 
of the coefficient of determination. The coefficient of determination 
(Ri

2) with a dependent variable Xi and a set of predictors {Xk,k ∕= i}is 
expressed as Ri

2 = 1 − 1/ρii, ρii is the i-th diagonal component of the 
inverse of correlation matrix P. Hence, WMC can be computed as 

λY
(
ϕj
)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

max diag P− 1
j

√

(1) 

Where Pj is the correlation matrix of Wjt. The estimated coefficient of 
Ri

2which is computed from the regression of dependent variable Xi and a 
set of predictors {Xk,k ∕= i} have the same value as the square correlation 
for the observed realizations of Xiand its fitted realization X̂j. Therefore, 
WMC again can be expressed as: 

λY
(
ϕj
)
= corr

(
wijt, ŵijt

)
=

cov
(
wijt, ŵijt

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var
(
wijt

)
var

(
ŵijt

)√ (2) 

Form Eq. (2), var(wijt) and cov
(
wijt, ŵijt

)
are computed as: 

var
(
wijt

)
= δ2

j =
1
Tj

∑T − 1

t=j− 1
w2

ijt (2.1)  

cov
(
wijt, ŵijt

)
= γj =

1
Tj

∑T− 1

t=j− 1
wijt,wijt (2.2) 

Where wij maximizes the coefficient of determination and 
ŵijprovides the consistent fitted values. WMCC is calculated from (2) by 
simply adding the lag term θ in between the observed and fitted esti
mates for the selected criterion variable and expressed the outcome as: 

λY,θ
(
ϕj
)
= corr

(
wijt, ŵijt+θ

)
=

cov
(
wijt, ŵijt+θ

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var
(
wijt

)
var

(
ŵijt+θ

)√ (3) 

Where all parameters can be explained as above. 

3.2. Ensemble empirical mode decomposition (EEMD) method 

EEMD method is based on the empirical mode decomposition (EMD) 
method presented by Huang et al. (1998) and extended by Wu and 
Huang (2009). This method is widely used in finance and energy (Yu 
et al., 2010; He et al., 2016; Ji et al., 2014). The EEMD method over
comes the model mixing problem of the EMD method by adding white 
noise series into the original time series. Under this method, asset 
returns are decomposed into uncorrelated time-scale components to 
analyze asset prices' internal behavior on a different time scale. 

The asset returns series z(t)is the sum of intrinsic mode function 
(IMF) and error term: 

z(t) =
∑n

i=1
fi(t)+ υn(t) (4) 

Where fi(t)denotes the ith IMF, υn(t) represents the error term, and n 
is the number of IMFs. 

The IMF and error terms for the asset return series are computed by 
utilizing the following four steps:  

1. A white noise term is added to the original asset price returns z(t)to 
obtain the new return series Z(t). Standard error between the new 
return series Z(t)and the original return series Z(t)is computed by 
using the following formula of Wu and Huang (2009): 

εn =
μ̅
̅̅̅
N

√ (5) 

Where μ is the amplitude of the new return series, and N is the 
number of ensamples. 
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2. A cubic function is used to generate the upper envelope mmax(t) and 
the lower envelopemmin(t)of Z(t). The average of two fitted envelope 
lines γ(t)is computed as follows: 

γ(t) =
|mmax(t) + mmin(t) |

2
(6)    

3. The following formula is used to remove the effect of γ(t) from new 
return seriesz(t) 

η1(t) = z(t) − γ(t) (7) 

There is necessary to repeat the above data generating process until 
the obtained average curve is zero. Thus, the return series ηk(t)obtained 
by the process k is computed as follows: 

ηk(t) = η(k− 1)(t) − η1(t) (8) 

The result of each shifting process must be IMF. The value of 
restricted standard deviation (SD) is used to examine the shifting pro
cess, which is defined as: 

SD =
∑T

k=1

⃒
⃒η(k− 1)(t) − ηk(t) |

2

η2
(k− 1)(t)

(9) 

Where t is the time period of the new series, and the value of SD 
generally lies between 0.2 and 0.3.  

4. There is no need to repeat this process when the formula mentioned 
above is satisfied. Thus, f1(t) = ηk(t)is the first series of IMF. Then, the 
following formula is used to subtract the first IMF from the new data 
series: ϒ1(t) = Z(t) − f1(t). This entire process is repeated until the 
remaining series value is less than the predetermined value of the 
substantial consequence. At the same time, the number of IMFs 
extracted from asset return series is generally less than log2T, where 
T is the length of asset return series. 

3.3. Diebold and Yilmaz (DY) connectedness approach 

The dynamic connectedness method in a comprehensive framework 
is initially proposed by Diebold and Yilmaz (hereafter DY, 2009, 2012). 
Practitioners and researchers widely use this connectedness approach 
because it provides both static and dynamic methods of time-series 
connectedness analysis. Under this approach, the VAR model is 
employed for static analysis, while the rolling-window VAR approach is 
used for dynamic analysis. It helps us to identify the degree of inter
connectedness and identifies the spillover network channels among 
sample variables. Furthermore, this approach has used generalized 
forecast error variance decomposition (GFEVD) in a VAR framework 
instead of Cholesky factorization. Following DY (2012), a covariance 
stationary VAR(m) model is written as: 

Zt =
∑m

j=1
ϑZt− j + υt (10) 

Where Ztis the n × 1vector of observed variables at time t;ϑis the n ×
n coefficient matrix and υtis the matrix of serially uncorrelated error 
terms. Under this approach, in the presence of covariance stationary 
VAR system, the moving average (MA) representation is formulated as 
Zt =

∑∞
j=0Λjυt− j, where n × n coefficient matrix Λj follows a recursive 

process Λj = ψ1Λj− 1 + ψ2Λj− 2 + . ……… + ψmΛj− m, with Λ0 being the n 
× n identity matrix and Λj = 0for j < 0. 

DY (2012) used the GFEVD framework developed by Koop et al. 
(1996) and Pesaran and Shin (1998) to eliminate the influence of VAR 
ordering on the variance decomposition. Following this framework, H- 
step ahead GFEVD is written as: 

π̃l
ij,t(H) =

∑H− 1

t=1
ϑ2,l

ij,t

∑n

j=1

∑H− 1

t=1
ϑ2,l

ij,t

(11) 

With 
∑n

j=1π̃n
ij,t(H) = 1 and 

∑n
ij=1π̃n

ij,t(H) = n. ϑij, t
l represents general

ized impulse response functions and π̃l
ij,t(H) shows generalized forecast 

error variance decomposition. 
Based on GFEVD, the total connectedness index that represents the 

interdependence of variables is formulated as: 

Cl
t(H) =

∑n

ij=1,i∕=j
π̃n

ij,t(H)

∑n

ij=1
π̃n

ij,t(H)

*100 (12) 

Total directional connectedness to asset i from all other assets j is 
defined as: 

Cl
i←jt(H) =

∑n

j=1,i∕=j
π̃n

ij,t(H)

∑n

j=1
π̃n

ij,t(H)

*100 (13) 

Similarly, total directional connectedness from asset i to all other 
assets j is computed as: 

Cl
i→jt(H) =

∑n

j=1,i∕=j
π̃n

ji,t(H)

∑n

j=1
π̃n

ji,t(H)

*100 (14) 

Net total directional connectedness, which is the difference between 
total directional connectedness ‘To’ others and ‘From’ others, is defined 
as 

Cl
it = Cl

i→jt(H) − Cl
i←jt(H) (15) 

Finally, net total directional connectedness is a breakdown to 
compute net pairwise directional connectedness, which is given as: 

Cij(J) =
(

π̃ji,t(J) − π̃ij,t(J)
N

)

*100 (16) 

Net total directional connectedness examines the influence of asset i 
on asset j or vice versa. Finally, DY (2012) assumes the variance 
decomposition matrix as the adjacency matrix of a weighted directed 
network to describe the network analysis of all market connectedness. 

4. Data and descriptive analysis 

In the present study, we examine the dependence structure and dy
namic connectedness of the green bond market with other financial 
markets comprised of (i) treasury and corporate bond markets (ii) stock 
markets (iii) energy and clean energy markets. It is stated that the 
financial instruments traded in those markets are considered to be 
portfolio complements/substitutes of green bonds (Reboredo, 2018; 
Reboredo and Ugolini, 2020). Four types of global green bond indices, 
such as the S&P Dow Jones Green Bond Index; Bloomberg Barclays 
Green Bond Index; Solactive Green Bond Index, and the Bank of America 
Merrill Lynch Green Bond Index, have been developed to measure the 
financial performance of green bonds market. All of these indices have 
their methodology and criteria for including bonds in their index 
methodology. However, all these indices have a similar structure and 
show the highest degree of correlation nearer to one. We use Bloomberg 
Barclays Green Bond Index to represent the global green bond market for 
the present analysis. This index includes corporate, government-related, 
and securitized bonds, categorized as green by MSCI ESG Research and 
fixed-rate coupons. Its value is rebalanced every month and calculated in 

A.H. Elsayed et al.                                                                                                                                                                                                                              



Energy Economics 107 (2022) 105842

6

USD. 
The variables used to represent the above-enlisted financial markets 

are as follows: Bloomberg Barclays Global Treasury Index describes the 
treasury market. This benchmark measures the global investment-grade 
debt of developed and developing asset markets issued in 24 local cur
rencies. Bloomberg Barclays Global Corporate Index is used to represent 
the corporate bond market. This index includes global corporate bonds 
from developed and developing market issuers within the industrial, 
utility, and financial sectors. Similarly, the MSCI world stock price index 
has used a proxy for the stock market. This index covers 85% of the free 
float-adjusted market capitalization of 23 developed countries' financial 
markets. MSCI World Energy Price Index is used to represent the global 
energy market. The index is composed of more than 1400 stocks listed 
on exchanges in 23 developed market countries. Finally, WilderHill's 
clean energy price index is used to signify the clean energy market. The 
index tracks the clean energy sector, especially the business sector, that 
may get substantial benefits from societal transition toward clean energy 
usage, zero carbon emission from renewables, and conversation. 

Furthermore, four additional series: CBOE volatility index (VIX); 
world financial stress index (FSI); Twitter Economic Uncertainty index 
(TEU), and economic activity (business condition) index, are used to 
measure financial uncertainty, financial stress, and economic uncer
tainty respectively. The data on daily observations for the period 30/9/ 
2014 to 30/6/2020 is collected from various sources.2 Green bond, 
financial markets, and VIX data have been collected from DataStream, 
whereas FSI is sourced from the Office of Financial Research (OFR). 
Finally, the Twitter Economic Uncertainty index (TEU) is collected from 
the economic policy uncertainty website, while the economic activity 
(business condition) index is obtained from Aruoba et al. (2009). The 
sample period covers significant events such as decline in oil prices for 
the year 2014–16; commodity price shocks caused by the transition of 
China's economy in 2015; the US shale-energy revolution 2015–16; 
outbreak of the COVID-19 pandemic in 2020 and the oil price crash on 
April 20, 2020. 

Fig. 1 shows the time-series plots of the green bond index and 
financial market indices along with auxiliary variables over the sample 
period. Green bonds, treasury, corporate bonds, and stock markets 
indices show similar fluctuations over the entire period. However, from 
these plots, two structural breaks are discernible. One structural break is 
observed in the mid of 2018, and the other structural break is shown at 
the start of 2020. The reason for the first structural break is that the 
green bond was issued at a premium, and other financial assets were 
dived due to excess liquidity. The second structural break arises due to 
the outbreak of the COVID-19 pandemic, which creates uncertainty in 
financial markets. The conventional energy and clean energy index plots 
show a similar trend of evolution over the study period. Similarly, the 
plots of uncertainty indices show a structural break in 2020 except TEU 
index, which confirms the structural break in 2016, arising from the 
European debt crisis and the US shale-energy revolution. The plots of 
return series presented in Fig. 2 show that the average returns of all 
markets are close to zero and share a similar feature of high volatility at 
the start of 2020 due to the COVID-19 pandemic. 

Table 1 illustrates the descriptive analysis of the daily return series. 
The statistics explain that the average return series is positive except for 
the world energy index, and TEU exhibits the highest mean value. Clean 
energy returns are riskier than conventional energy returns, as implied 
by the highest value of standard deviation. Green bond and financial 
markets returns are skewed to the left as indicated by the significant 
negative values of the skewness except for positively skewed uncertainty 

returns. As observed for kurtosis, all return series exhibit leptokurtic 
distribution. Test statistics of Jarque and Bera normality tests reject the 
null hypothesis of the normality at a 1% significance level, indicating 
that returns series do not follow the normal distribution. The stationarity 
of all returns series is checked by applying Augmented Dickey-Fuller 
(ADF), Phillips-Perron (PP), Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS), and Zivot Andrew (ZA) tests. The calculated values of the pa
rameters remain higher than the critical values across all the tests except 
ZA, suggesting that each return series is non-stationary at a level. In 
contrast, the ZA test result indicates that return series are stationary at 
the level. Moreover, thetest statistics of L-B and ARCH-LM tests clearly 
show that all return series are suffering from the problem of autocor
relation and heteroscedasticity. 

Subsequently, the pairwise correlation is tested between return series 
and illustrated in Fig. 3. The highest correlation is observed between 
treasury and green bonds, 0.84, followed by treasury and corporate 
bonds, 0.82. Similarly, the magnitude of the correlation is least between 
world stock and VIX, − 0.68, followed by clean energy and VIX, − 0.59. 
The robustness of the results is tested by using three different correlation 
methods, viz.; Pearson correlation analysis, Spearman correlation 
analysis, and Kendall correlation analysis. Broadly, the inferences are 
the same. In Fig. 4, we see that the correlation ranges from − 0.49 to 0.65 
(Pearson), − 0.53 to 0.65 (Spearman), and − 0.39 to 0.53 (Kendall). 
Finally, both parametric and non-parametric correlations with network 
plotting are used, and robust results are obtained. These results are 
presented in Fig. 5. 

Note: The red line shows a negative correlation, while the green line 
shows a positive correlation. 

5. Empirical results and discussion 

5.1. Wavelet multi-scale analysis 

5.1.1. Wavelet multiple correlation (WMC) 
Fig. 6 shows the graphical results of WMC for the selected market at 

multiple scales. The visual inspection of Fig. demonstrates that multiple 
correlations (MC) get stronger at lower frequencies (highest wavelet 
scale). MC starts with a level of 0.90 and then converges to its minimum 
value of 0.89 for a wavelet scale of 2 trading days. The fall in the level of 
MC implies that there is the possibility of divergence between the green 
bond and financial market returns at a short time horizon. In other 
words, the diversification opportunities for financial investors become 
high in the short run. Beyond the wavelet scale of 2 trading days, the MC 
level increases and reaches its maximum value of 0.98 at the highest 
scale. Thus, there is a possibility that diversification opportunities of 
green bonds with other financial markets decrease over the long run. In 
other words, hedging benefit of green bonds against the swing of the 
stock market would be higher for short term investors in comparison 
with long term investors. Therefore, these results of diversification 
benefits support the findings of Reboredo (2018), Reboredo and Ugolini 
(2020), and Nguyen et al. (2020). The findings mentioned above become 
clearer from Table 2, which is the rendition of Fig. 6 provides exact 
correlation values at multiple scales. The results enlisted in 
Table demonstrate the lowest value of multiple correlations, 0.903 at the 
highest frequency (lowest scale), 0.956 at a medium frequency (medium 
scale), and 0.982 at the lowest frequency (highest scale). 

5.1.2. Wavelet multiple cross-correlation (WMCC) 
Figs. 7 and 8 display the results of WMCC for green bond and other 

2 Starting date of data series is determined by the availability of green bond 
index series. 
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Fig. 1. Time-series plots of original data series.  
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selected financial markets returns at lags up to 30 trading days across 
various time scales (frequencies). The graphical representation (Fig. 7) 
shows that the cross-correlation becomes more robust as we move from 
highest frequency to lowest frequency. Specifically, there is significant 
evidence of weaker cross-correlation at the highest frequency. The world 
stock and treasury markets showed greater prospects of leading or lag
ging the remaining financial and green bonds markets. Moreover, cross- 
correlation steadily increases from 0.34 to 0.61 as we move from highest 
to medium frequency, corporate bonds having the greater potential to 
lead or lag the remaining markets. There is evidence of significant cross- 
correlation at the lowest frequency across all time lags, with the green 
bonds are potential leaders or followers at this investment horizon. This 
states that any potential shocks that hit the green bond market may in 
turn be transmitted to other financial markets and vice versa for these 
investment horizons. Furthermore, cross-correlation is insignificant at a 
scale of 10 to 20 and a lead of 10 and 30 trading days, thereby offering 
more significant benefits for portfolio diversifications. 

Corroborating with previous literature on the contagion theory, the 
correlation across markets appears to peak as the effect of extreme 
economic events (Benhmad, 2013; Mun and Brooks, 2012; Narayan 
et al., 2014; Silvennoinen and Thorp, 2013; Stevenson, 2016). Mun and 
Brooks (2012) and Öztek and Öcal (2017) stated that this alteration of 
correlation was caused by the heightened volatility in the financial 
market. Since the negative asset returns are normally expected as the 
consequence of the crisis, together with the increasing linkage between 
them justifies the recorded positive relationship across assets. 

Fig. 8 shows that all plots are symmetrical, indicating that the lead/ 
lag relationship between green and financial markets has equal forces 
and is independent of the time scale. An insignificant level of cross- 
correlation is observed at levels 1 and 2, which justifies the weak 
cross-correlation between green bonds and financial markets returns in 
the short investment horizon. This result supports the empirical finding 
of Pham (2021) that shows that the spillover effects between the green 
bond and equity market are short-lived, as the degree of connectedness 
dissipates in the medium- and long-term investment horizons. From an 
economic perspective, this evidence indicates diversification benefits, 
which can be achieved by formulating a portfolio combination of weakly 
correlated assets to obtain optimal risk-adjusted returns (Nguyen et al., 
2020). However, the level of cross-correlation slightly increases as we 
move from levels 3 to 4 and 5 (medium-term investment horizon). 
Finally, the level of cross-correlation reaches its maximum value of unity 
at levels 7 and 8. Thus, selected markets become fully integrated at long- 
term investment horizon and a clear indication of market maturity. This 
result supports the finding of Reboredo (2018), who shows that the 
green bond market and fixed-income markets are strongly dependent, 
both on average and at the tails of their joint distribution. At the time of 
the inception of the green bonds market, its share in the global financial 
market was relatively smaller than in other financial markets. After that, 
the green bonds market appeared to be an emerging market and 
attracted a broader group of investors. As a result, the correlation be
tween green bonds and other conventional assets increases over time 
(Pham, 2016). Therefore, increasing the integration of green bonds with 
other financial markets over time is substantially associated with an 
increasing share of green bonds in the global financial markets since 
2014. Furthermore, the positive correlation between the green bonds 
and other assets can be possibly explained by market maturity. Le et al. 
(2020); Taghizadeh-Hesary and Yoshino (2019) reported that green 
bonds were crucial to achieving sustainable development goals, yet it 
still represented a small share of the financial market. As a newly 
developed financial instrument that had not made mainstream finance, 
it was highly likely to be affected by the general market development. 
Nevertheless, green bonds have undergone massive development, 
becoming the fastest-growing segment of the market, from 2014 on
wards. Total green bond issuance reached an unprecedented record of 
$255 billion in 2019 (Climate Bonds Initiative, 2019). Consequently, the 
alternation in the correlation of green bonds with other markets is Ta
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Fig. 3. Plots of pairwise correlation.  

Fig. 4. Network analysis of pairwise correlation.  

A.H. Elsayed et al.                                                                                                                                                                                                                              



Energy Economics 107 (2022) 105842

11

Fig. 5. Plots of partial contemporaneous correlation and partial directed correlation.  

Fig. 6. Wavelet multiple correlation. 
Note: The dotted lines show the upper and lower bounds at the 5% significance level. 
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Table 2 
WMC between green bonds and financial markets.   

Correlation Lower Upper 

[1,] 0.9026534 0.888427 0.915147 
[2,] 0.8927376 0.870034 0.911663 
[3,] 0.9174106 0.891161 0.937538 
[4,] 0.9559158 0.934104 0.970618 
[5,] 0.9697317 0.945643 0.983237 
[6,] 0.9606996 0.908112 0.983452 
[7,] 0.9815462 0.9282 0.995353  

Fig. 7. Wavelet multiple cross-correlation. 
Notes: The time scale is shown on the vertical axis, while lags are displayed on the horizontal axis. The color bar on the right-hand side of the graph offers the range of 
correlation from the low (dark blue color) to the high (dark red color). The dark lines denote the 95% confidence interval for WMCC. The negative time lags suggest 
that selected market returns lead at a particular scale, and the opposite is true for positive time lags.(For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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suggested. 

5.2. Connectedness analysis 

5.2.1. Static spillover connectedness 
The results of DY static spillover connectedness across green bonds 

and financial markets returns and uncertainty returns are presented in 
Table 3. Empirical results state that the average value of the total 
connectedness of the system is 55.32%, indicating an acceptable level of 
connectedness among 10 variables. This finding is supported by the 
study of Lundgren et al. (2018). The off-diagonal elements of the 10 × 10 
matrix illustrate the directional spillover between two markets. For 
instance, the value 24.13 in row 3, column 2 represents the share of 

spillover transmitted from world energy to world stock. The highest 
spillover is reported from the treasury to green bonds - the share of 
volatility transmitted from the treasury to green bonds is 28.09%. 

Similarly, the value of the lowest spillovers 0.10%, is observed from 
business condition to TEU. The values enlisted in the second row from 
the bottom of Table 3 describe the total directional spillover from each 
market to other markets. The outcomes explain that total directional 
spillover in the “To” column span from 0.33% (TEU) to 11.02% (world 
stock). Thus, the contribution of world stock to other markets is highest, 
and TEU is lowest across the sample variables. The values in the second 
rightmost column of Table 3 illustrate the total directional spillover 
from other markets to each of the 10 markets. The results explain that 
total directional spillover in the “From” column varies from 0.54% to 

Fig. 8. Wavelet multiple cross-correlation.  

Table 3 
Full sample spillover connectedness results.  

Returns World 
Stock 

World 
Energy 

Clean 
Energy 

Green 
Bond 

Treasury Corporat 
Bond 

Business 
Conditions 

VIX World 
FSI 

TEU FROM Net 

World Stock 32.97 21.10 20.77 1.04 2.54 0.76 1.77 17.52 1.11 0.43 6.70 4.319 
World Energy 24.13 37.41 19.31 1.27 2.54 0.56 2.23 11.39 0.79 0.38 6.26 2.378 
Clean Energy 23.40 18.94 36.70 1.00 2.16 0.67 1.84 14.34 0.64 0.32 6.33 2.088 
Green Bond 2.31 2.45 2.09 36.78 26.99 25.72 1.30 1.31 0.77 0.27 6.32 − 0.389 
Treasury 3.12 2.48 2.18 28.09 37.38 23.08 1.06 1.45 0.81 0.35 6.26 0.048 
Corporate Bond 3.97 4.98 4.33 23.95 20.68 35.29 2.50 2.25 1.76 0.29 6.47 − 1.069 
Business 

Conditions 
3.12 5.22 1.20 0.73 1.27 1.28 83.30 1.40 2.38 0.10 1.67 − 0.197 

VIX 22.98 12.47 16.69 1.05 1.90 0.92 0.35 42.96 0.19 0.51 5.70 1.198 
World FSI 25.88 17.98 16.73 1.75 4.63 0.80 3.60 18.55 9.40 0.68 9.06 − 8.167 
TEU 1.32 0.75 0.88 0.45 0.39 0.24 0.07 0.83 0.49 94.58 0.54 − 0.209 
TO 11.02 8.64 8.42 5.93 6.31 5.40 1.47 6.90 0.89 0.33 55.32   
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9.06% for TEU and world FSI. This implies that TEU is the most affected 
by the shocks from other markets while World stock is the least affected 
by the shocks from other markets. 

The rightmost column provides the results of net directional spill
over, and the positive value of the net spillover indicates that a partic
ular market is a spillover contributor. That is, it transmits net volatility 
to other markets. On the other hand, the negative value of net spillover 
implies that a specific market is a net receiver. That is, it receives shocks 
from other markets. The results show that world stock, world energy, 
clean energy, treasury, and VIX are net contributors of shocks, while 
green bonds, corporate bonds, business condition, world FSI, and TEU 
are the net receiver of shocks. In other words, world energy markets, 
clean energy markets, treasury markets, and stock markets play a 
leading role in global financial markets. In contrast, the green bonds 
market and corporate bonds market is most affected by other markets' 
shocks. Our empirical evidence is consistent with the finding of Rebor
edo and Ugolini (2020) and supports the fact that the green bond market 
is still a small market, closely mirrors the evolution of the treasury 
market, is impacted by the evolution of the USD and exhibits a low 
degree of integration with other financial markets. As a result, the green 
bond market is a net price-spillover receiver with a weak capacity to 
transmit price spillover effects. 

Subsequently, the net pairwise directional spillover across 10 vari
ables using a network plot is estimated (see Fig. 9). The direction of 
arrows explains net directional spillover between variables. From the 
network plot, world stock is the leading net spillover transmitter, and its 
highest transmission is to green bonds, treasury, corporate bonds, world 
energy, clean energy, and world FSI. A corporate bond is the highest net 
spillover receiver and receiving shocks from all selected markets except 
green bond, where its role is net spillover transmitter. Similarly, green 
bonds transmitting shocks to the treasury, TEU and world FSI while 

receiving shocks from remaining markets. 

5.2.2. Static multiscale spillover connectedness 
To further clarify the connectedness results, we examine the multi

scale spillover connectedness at different levels of IMFs, and the results 
are presented in Table 4. The average value of the total connectedness is 
less than 50% in the first three levels of the IMF: 49% at IMF1, 41% at 
IMF2 and 47% at IMF3. However, at higher levels of IMF, the average 
value of the total connectedness increases to more than 50%. For 
instance, the average value of total connectedness is 70% at IMF4, 62% 
at IMF5, 88% at IMF6, 75% at IMF7. Moreover, the net spillover results 
illustrate that world stock is a net transmitter of volatility at IMF1, IMF2, 
IMF6, and IMF 7 while at IMF3, IMF4, and IMF5, the net receiver of 
volatility. World energy and green energy are net transmitters of vola
tility at IMF1 to IMF5, and at remaining IMFs, both are the net receiver 
of volatility. A green bond is the net receiver of volatility at IMF1 and 
IMF3 to IMF6 and the net transmitter of volatility at IMF2 and IMF7. 
However, at IMF2, green bond and financial markets are all net trans
mitters of volatility, and at IMF6, all markets are the net receiver of 
volatility except world stock and corporate bonds. 

In the next step, we have analyzed the net pairwise directional 
spillovers through network plots, as presented in Fig. 10. World stock is 
the net transmitter of volatility at IMF1 and IMF6; green bond is the net 
transmitter at IMF4 and IMF5; treasury and TEU are net receivers of 
volatility at IMF6. Moreover, the green bond is the net receiver of world 
energy and green energy volatility at IMF1, IMF2, IMF4, and IMF5 while 
net transmitter from remaining IMFs. Corporate bonds are the net 
receiver of volatility from all financial markets except green bonds at 
IMF1 to IMF5. TEU, World FSI, and VIX are the net receiver of volatility 
at IMF1, IMF3, IMF4, and IMF6. 

Last but not least, at IMF1, world stock is playing a dominant role by 
transmitting volatility to all selected markets, followed by world energy 
that sending volatility to all financial markets except world stock. 
Similarly, the green bond is highly affected by the shocks from other 
financial markets, followed by the corporate bond receiving shocks from 
all financial markets except the green bond. All financial markets are the 
major cause of increasing economic uncertainty, financial stress, and 
financial uncertainty. At IMF2, a corporate bond is the highest receiver 
of volatility, followed by world energy, a net receiver from world stock, 
green energy, green bond, and treasury. In contrast, treasury is the 
highest transmitter of volatility, followed by green energy, net trans
mitter to world energy, green bond, and corporate bond. At IMF3, Green 
energy is the highest transmitter of volatility while the green bond is the 
least transmitter of volatility; at IMF4 green bond is the highest receiver 
of volatility while green energy is the least receiver of volatility, at IMF5, 
world stock is most affected by the shocks while green energy is the least 
affected by the shocks, at IMF6, world stock is the highest transmitter of 
shocks while treasury is the highest receiver of shocks, at IMF7, all 
financial market play their equal role in transmitting and receiving 
shocks. From this discussion, it becomes clear that green energy plays a 
significant role in transmitting volatility, while green bonds are most 
affected by the shocks from other markets at all IMFs. 

5.3. Dynamic connectedness analysis 

5.3.1. Dynamic returns spillover connectedness 
A major drawback of static spillover analysis is that the link between 

 WORLD.STOCK

 WORLD.ENERGY

 CLEAN.ENERGY Green.Bond

 Treasury

 Corporate.Bond

 Business.conditions

 VIX  World.FSI

 TEU

Fig. 9. Network plot of net pairwise directional spillover.  
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Table 4 
Multiscale spillover connectedness results.   

World 
Stock 

World 
Energy 

Clean 
Energy 

Green 
Bond 

Treasury Corporate 
Bond 

Business 
conditions 

VIX World 
FSI 

TEU FROM NET 

IMF1             
World Stock 39.62 23.47 19.53 0.27 1.15 0.15 2.25 11.17 2.31 0.08 6.04 4.404 
World Energy 25.16 46.25 17.44 0.56 1.05 0.24 2.99 5.45 0.71 0.16 5.38 2.343 
Clean Energy 22.75 18.49 44.33 0.36 1.03 0.25 3.03 8.64 0.95 0.16 5.57 1.359 
Green Bond 0.53 1.05 0.72 42.2 28.84 25.34 0.71 0.45 0.15 0.02 5.78 − 0.244 
Treasury 1.88 2.26 1.52 25.57 44.03 22.45 0.58 0.67 0.97 0.06 5.6 0.916 
Corporate Bond 0.73 1 0.92 24.99 25.25 44.92 0.35 1.02 0.78 0.04 5.51 − 0.153 
Business 
conditions 

3.21 2.03 1.21 0.72 1.23 2.6 87.04 0.26 1.59 0.12 1.3 0.064 

VIX 21.78 10.62 14.51 1.17 1.81 1.32 0.22 47.8 0.69 0.06 5.22 − 1.297 
World FSI 27.62 17.6 12.91 1.32 4.5 0.95 3.34 11.31 20.21 0.23 7.98 − 7.106 
TEU 0.76 0.66 0.51 0.39 0.27 0.24 0.13 0.25 0.58 96.21 0.38 − 0.286 
TO 10.44 7.72 6.93 5.54 6.51 5.35 1.36 3.92 0.87 0.09 48.74  

IMF2             
World Stock 45.56 15.64 17.9 1.27 2.2 1.08 2.66 11.04 2.07 0.59 5.44 1.270 
World Energy 16.06 52.77 13.06 2.24 2.4 1.47 4.36 5.38 1.47 0.79 4.72 0.694 
Clean Energy 12.71 12.86 58.84 1.5 2.66 1.01 2.72 5.05 1.19 1.47 4.12 2.103 
Green Bond 0.48 0.99 0.7 50.49 23.49 20.46 1.04 0.68 1.11 0.58 4.95 0.056 
Treasury 0.87 1.49 2.37 23.13 54.14 14.75 1.06 0.69 0.96 0.54 4.59 0.687 
Corporat Bond 1.19 4.01 2.95 14.23 14 55.8 2.31 2.7 2.23 0.56 4.42 0.085 
Business 
conditions 

2.5 1.67 3.06 4.27 1.99 2.99 76.66 1.66 4.98 0.22 2.33 − 0.587 

VIX 13.09 7.14 10.74 0.49 0.97 1.55 0.24 63.25 1.05 1.48 3.67 0.475 
World FSI 19.71 9.52 11.01 2.59 4.6 1.21 2.66 13.47 32.54 2.69 6.75 − 5.195 
TEU 0.53 0.86 0.4 0.36 0.42 0.54 0.41 0.83 0.44 95.19 0.48 0.411 
TO 6.71 5.42 6.22 5.01 5.27 4.51 1.75 4.15 1.55 0.89 41.48  

IMF3             
World Stock 43.83 7.87 13.03 1.59 3.33 1.01 6.95 9.4 11.21 1.79 5.62 − 0.513 
World Energy 7.72 42.29 14.5 1.66 1.56 2.53 15.16 5.22 8.19 1.15 5.77 0.133 
Clean Energy 5.36 12.09 56.51 4.41 5.34 1.6 5.49 1.99 5.77 1.44 4.35 3.626 
Green Bond 2.65 4.44 2.86 40.72 22.02 23.23 1.93 0.55 1.38 0.24 5.93 − 0.854 
Treasury 5.15 3.32 2.65 15.88 48.63 19.21 0.92 1.02 2.58 0.63 5.14 0.544 
Corporat Bond 2.97 4.19 6.31 15.05 15.62 51.37 2.36 1.17 0.65 0.33 4.86 0.583 
Business 
conditions 

2.17 9.48 15.23 3.42 0.81 2.23 65.84 0.11 0.57 0.14 3.42 0.574 

VIX 11.1 4.44 5.22 0.86 2.59 1.44 1.81 69.23 2.13 1.17 3.08 0.562 
World FSI 10.19 9.19 15.66 3.58 4.36 2.53 4.81 15.95 32.21 1.53 6.78 − 3.384 
TEU 3.73 4.02 4.29 4.29 1.19 0.68 0.47 0.99 1.46 78.87 2.11 − 1.271 
TO 5.1 5.9 7.98 5.07 5.68 5.45 3.99 3.64 3.39 0.84 47.05  
IMF4             
World Stock 11.94 27.82 34.67 0.77 3.87 4.76 10.46 1.89 2.12 1.69 8.81 − 2.080 
World Energy 9.88 28.91 33.2 1.03 3.7 5.25 11.07 1.79 3.34 1.82 7.11 7.833 
Clean Energy 9.98 28.08 35.85 0.89 3.86 4.22 11.46 1.67 2.04 1.93 6.41 12.77 
Green Bond 3.12 5.4 10.82 36.87 13.05 19.03 7.5 1.07 1.99 1.15 6.31 − 3.465 
Treasury 9.89 17.7 22.09 6.3 15.8 9.07 11.99 1.2 3.35 2.61 8.42 − 4.408 
Corporat Bond 4.22 7.86 15.03 14.36 6.31 18.2 29.96 1.11 2.25 0.69 8.18 − 2.475 
Business 
conditions 

1.56 3.09 0.52 0.63 0.21 4.48 84.66 0.81 2.79 1.25 1.53 9.205 

VIX 10.78 23.84 32.07 1.12 2.45 2.22 9.72 11.61 3.21 2.97 8.84 − 7.251 
World FSI 10.82 27.03 32.54 0.79 3.59 5.45 10.67 2.86 4.2 2.05 9.58 − 6.672 
TEU 7.01 8.61 10.38 2.57 3.06 2.57 4.55 3.47 7.97 49.82 5.02 − 3.403 
TO 6.73 14.94 19.13 2.85 4.01 5.7 10.74 1.59 2.91 1.62 70.21  

IMF5             
World Stock 12.04 32.31 10.01 3.99 4.1 4.48 11.37 9.19 12.1 0.39 8.8 − 4.122 
World Energy 3.29 44.04 8.41 6.98 6.8 1.62 14.58 5.54 7.58 1.16 5.6 4.311 
Clean Energy 9.25 6.86 47.91 1.23 2.85 3.21 2.51 11.34 12.59 2.24 5.21 2.500 
Green Bond 1.61 9.7 10.51 25.16 5.76 16.92 13.9 1.69 8.03 6.73 7.48 − 3.264 
Treasury 2.86 5.09 15.71 6.36 27.85 20.45 8.38 0.71 3.38 9.23 7.22 − 3.062 
Corporat Bond 1.2 8.86 7.65 6.31 4.42 23.63 35.34 0.88 4.69 7.03 7.64 − 1.345 
Business 
conditions 

2.99 0.54 8.53 11.14 0.06 1.66 62.41 0.48 10.99 1.2 3.76 6.201 

VIX 11.18 10.64 10.96 0.98 4.06 4.9 3.1 44.56 8.5 1.12 5.54 − 0.891 
World FSI 8.7 23.55 4.88 2.1 5.23 7.96 8.07 13.32 25.66 0.53 7.43 − 0.435 
TEU 5.66 1.53 0.45 3.1 8.24 1.73 2.35 3.38 2.13 71.44 2.86 0.107 
TO 4.67 9.91 7.71 4.22 4.15 6.29 9.96 4.65 7 2.96 61.53  

IMF6             
World Stock 17.21 13.78 3.67 6.32 1.72 9.3 14.18 13.9 16.26 3.66 8.28 16.377 
World Energy 29.15 0.21 8.15 6.93 0.03 19.67 26.55 3.65 3.51 2.15 9.98 − 7.316 
Clean Energy 27.27 0.82 16.18 6.69 0.46 19.06 19.44 4.89 2.87 2.33 8.38 − 2.697 
Green Bond 19.76 2.27 6.01 9.78 1.35 23.62 31.23 2.91 1.66 1.44 9.02 − 3.355 
Treasury 29.81 0.19 7.43 3.73 1.89 23.63 24.7 4.24 2.57 1.81 9.81 − 9.158 
Corporat Bond 31.42 0.8 9.08 8.45 0.51 14.32 26.11 2.83 4.85 1.62 8.57 7.104 

25.26 0.1 5.3 4.93 0.07 16.43 41.19 3.43 2.05 1.25 5.88 15.99 

(continued on next page) 

A.H. Elsayed et al.                                                                                                                                                                                                                              



Energy Economics 107 (2022) 105842

16

variables remains constant over time. The volatility jumps caused by 
economic and financial events are ignored in the static spillover index. 
Fig. 11 plots the total returns spillover estimated by rolling window 
analysis. It is evident from Fig. 11 that the total spillover index is time- 
varying and ranges from 62% to 90%. The fluctuations in the index 
value remain smooth throughout the sample period except in the third 
quarter of 2016 and the first quarter of 2020. The 2016 fluctuations 
might be the reason for the US-shale energy revolution and the increase 
in commodity demand in China. COVID-19 pandemic is the major cause 
of 2020 fluctuations that negatively impact global stock markets. The 
evidence supports the findings of Yi et al. (2021) and Taghizadeh-Hesary 
et al. (2021) that COVID-19 significantly affect the investment in green 
bond market. 

The graphical illustration of the net returns spillover index for each 
considered variable is presented in Appendix 1. The close inspection of 
plots shows that clean energy, VIX, and world stock markets remain net 
transmitters of volatility throughout the sample period except in early 
2020, where its strength of transmission decreases. Corporate bonds are 
the net transmitter of volatility from the first quarter of 2017 to the last 
quarter of 2019 but become a net receiver in the remaining sample 
period. Green bonds and treasury remain net transmitters for most of the 
sample period, while corporate bonds and world energy are net re
ceivers. Business conditions, TEU, and world FSI appear to be net re
ceivers for the whole sample period. 

5.3.2. Dynamic multiscale returns spillover connectedness at different IMFs 
Fig. 12 shows the graphs of multiscale connectedness and describes 

that for the first IMF, the range of spillover is 50% to 90%, and for the 
second IMF, the range is 59% to 90%. However, at IMF3, the range 
varies from 70% to 90%, and at IMF 4 and 5, the range mostly lies be
tween 87% to 92%. At IMF6, the range exceeds 94%, and at IMF, it 
exceeds 92%. Our findings support the general argument that the total 
spillover index increases with higher IMF. 

The graphs of multiscale net connectedness are displayed in Ap
pendix 2. The results explain that at IMF1, world stock is the net 
transmitter until the first quarter of 2020; afterward, it either becomes a 
net receiver or net transmitter. At IMF2, world stock is the net 

transmitter of volatility from the first quarter of 2016 to the mast quarter 
of 2019 and becomes the net receiver in the remaining periods. From 
IMF3 to IMF7, it appears to be either a net receiver or transmitter 
throughout the sample period. At IMF1 to 7, all the remaining variables 
are a weak transmitter of volatility for most of the sample period. 

6. Conclusion 

This paper examines the dependence structure and dynamic 
connectedness between green bonds and financial markets by incorpo
rating several global uncertainty indices using daily data from 30/9/ 
2014 to 30/6/2020. Financial markets comprise three different markets 
(i) treasury and corporate bond markets (ii) stock markets (iii) energy 
and clean energy markets, while uncertainty indices cover financial 
uncertainty, financial stress, and economic uncertainty. The association 
between variables in the time-frequency domain is studied by applying a 
multivariate wavelet approach, whereas dynamic connectedness is 
examined by combining the Ensemble Empirical Mode Decomposition 
(EEMD) model with the Diebold Yilmaz volatility spillover approach. 
Following results are observed with the application of these approaches: 

First, Wavelet Multiple Correlation (WMC) results reveal the signif
icant change in the pattern of multiple correlations with the increase in 
time scale. As a result, the deviation between green bond and financial 
markets returns tends to decrease from short-run to long-run time in
tervals. Therefore, the benefits of diversification opportunities become 
more significant in the short run. 

Second, Wavelet Multiple Cross-Correlation (WMCC) findings imply 
significant cross-correlation at the lowest frequency across all time lags. 
The cross-correlation level reaches its maximum unity value at 7 and 8 
levels. Thus, selected markets become fully integrated at a long-term 
investment horizon, which indicates market maturity. 

Third, the static connectedness framework results explain that world 
stock is the least affected by the shocks from other markets while the 
Twitter Economic Uncertainty index (TEU) is the most affected by the 
shocks from other markets. The results of net directional spillover show 
that world stock is the leading spillover transmitter while corporate 
bond is the main spillover receiver among the selected markets. The 

Table 4 (continued )  

World 
Stock 

World 
Energy 

Clean 
Energy 

Green 
Bond 

Treasury Corporate 
Bond 

Business 
conditions 

VIX World 
FSI 

TEU FROM NET 

Business 
conditions 
VIX 32.76 1.85 6.95 6.67 0.64 12.45 26.43 4.68 5.04 2.52 9.53 − 4.704 
World FSI 22.23 6.69 3.6 7.49 1.65 11.83 23.43 8.21 10.1 4.77 8.99 − 4.860 
TEU 28.9 0.14 6.67 5.46 0.09 20.73 26.66 4.22 2.49 4.64 9.54 − 7.381 
TO 24.66 2.66 5.68 5.67 0.65 15.67 21.87 4.83 4.13 2.15 87.98  

IMF7             
World Stock 20.22 11.48 8.07 7.39 4.03 11.50 4.40 13.03 17.88 2.00 7.98 1.721 
World Energy 11.52 16.36 8.83 10.06 6.94 8.57 1.98 10.13 16.04 9.56 8.36 − 1.465 
Clean Energy 6.83 11.05 14.06 12.84 2.30 6.81 2.09 9.76 7.90 26.38 8.59 0.669 
Green Bond 3.36 8.78 0.61 24.42 26.58 14.37 2.91 2.36 14.17 2.44 7.56 0.020 
Treasury 4.66 7.50 0.33 21.15 34.53 15.53 0.58 1.07 13.85 0.80 6.55 − 0.376 
Corporat Bond 11.87 5.11 12.94 11.09 5.64 17.43 4.33 13.68 5.84 12.08 8.26 − 6.088 
Business 
conditions 

10.51 25.21 9.65 1.20 4.35 5.63 15.79 10.13 15.70 1.83 8.42 − 0.425 

VIX 11.44 15.47 20.81 2.00 2.36 1.14 1.38 22.8 12.28 10.32 7.72 2.430 
World FSI 15.99 12.00 8.161 9.50 5.26 12.23 4.74 12.04 17.73 2.26 8.23 3.306 
TEU 5.69 4.27 1.88 7.02 8.21 2.94 0.91 0.74 2.92 65.4 3.46 4.022 
TO 8.191 10.07 7.13 8.23 6.57 7.88 2.33 7.29 10.66 6.77 75.13   
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IMF1 IMF2

IMF3                                                                                  IMF4

IMF5                                                                      IMF6                          
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Fig. 10. Network plots of multiscale net pairwise directional spillover.  
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green bond market is transmitting less but receiving more volatility from 
other markets. The findings of the multiscale connectedness approach 
indicate a more complex volatility spillover network. Green energy plays 
a dominant role in transmitting volatility, while the role of the green 
bond is negligible at all IMFs. Most of the evidence confirms that world 
stock has different spillover effects on the remaining markets reruns. 

Fourth, the evidence on dynamic connectedness demonstrates that 
the interdependence between green and financial markets is volatile 
over time. The highest connectedness is observed in the first quarter of 
2020 due to the COVID-19 pandemic. Furthermore, world stock is the 
net transmitter of volatility for most sample period. In contrast, corpo
rate bonds and world energy are the net receivers of volatility for most of 
the study period. 

Our empirical findings have policy implications in terms of portfolio 
diversification and management. Empirical results on dynamic 
connectedness between green bond and financial markets provide new 
insights in terms of portfolio design for green investors around the word. 
Due to the low integration of green bonds with stock and energy mar
kets, green bonds provide shelter to the price oscillations in these 

Fig. 11. Dynamic total spillover connectedness.  

Fig. 12. Multiscale dynamic total spillover connectedness.  
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markets. It is thereby advised to combine green bonds and these markets 
in portfolios setting to obtain the diversification benefits. Additionally, 
the diversification benefit of green bonds is shown at all investment 
horizons, yet we notice the decreased hedging property of green bonds 
in the long run. In other words, the allocation across green bonds, stocks, 
and energy market would give more benefit to active investors (who 
actively trade in the short-term) as opposed to passive investors (who 
normally invest in the long-term). These empirical findings also have 
some policy implications for green bond issuers. As green bonds are a 
sound financial device for investors, issuers can use this financial vehicle 
to expand and diversify their investor base and enhance their corporate 
social responsibility, even though green bond emissions involve higher 

costs due to green certification. Finally, the growth of the green bond 
market is impressive recently, but it needs to be accelerated. Hence, it is 
imperative to promote policies supporting the development of the green 
bonds market. 

Future research can explore the impact of technology development 
and crypto-assets markets on the dynamics of green bonds returns in the 
short and long term run during the COVID-19 pandemic. In addition, 
global behaviours and perceptions could be introduced (as discussed in 
Gozgor, 2021) as well as vaccine-related news to explore dynamics 
connectedness of global green bond markets during the COVID-19 
pandemic.  

Appendix 1 

NET Spillover: DY

Appendix 2 

NET Spillover: DY-IMF1 
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NET Spillover: DY-IMF2

NET Spillover: DY-IMF3 
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NET Spillover: DY-IMF4

NET Spillover: DY-IMF5 
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NET Spillover: DY-IMF6

NET Spillover: DY-IMF7 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2022.105842. 
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