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A horizontal–vertical anisotropy in spatial short-term memory
Daniel T. Smith

Department of Psychology, Durham University, Durham, UK

ABSTRACT
Visual perception and saccadic eye-movements are more precise when directed at isoeccentric
locations along the horizontal compared to vertical meridian. This effect is known as horizontal-
vertical anisotropy (HVA). Given that the eye-movement system plays an important role in
spatial short-term memory (STM) it was hypothesized that spatial STM would also show a
horizontal-vertical anisotropy. Consistent with this hypothesis an online experiment revealed a
significant HVA in spatial STM (Experiment 1). This effect persisted even when eye-movements
were precluded by using very short display durations (Experiment 2). However, there was no
HVA in a colour span or orientation change detection task. It is argued that the HVA in spatial
STM may result from greater imprecision in the representation of spatial locations along the
vertical meridian relative to the horizontal meridian in the spatial maps underpinning spatial
STM, a bilateral field advantage, or some combination of these mechanisms.
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Visual perception is not homogenous across the
visual field. One notable example of this inhomogen-
eity is the horizontal–vertical anisotropy (HVA), which
refers to the observation that visual perception of
stimuli at isoeccentric locations is better along the
horizontal meridian than the vertical meridian
(Pointer & Hess, 1989). This perceptual HVA can be
observed in many dimensions, including letter
identification (Mackeben, 1999), orientation discrimi-
nation at eccentricities of 10 degrees or greater
(Barbot et al., 2021; Rovamo et al., 1982), spatial fre-
quency discrimination (Carrasco et al., 2001), contrast
sensitivity (Abrams et al., 2012; Baldwin et al., 2012;
Pointer & Hess, 1989; Rijsdijk et al., 1980), spatial
crowding (Greenwood et al., 2017; Petrov & Meleshke-
vich, 2011) and spatial localization (Greenwood et al.,
2017). The perceptual HVA cannot be explained in
terms of anisotropic allocation of attention (Carrasco
et al., 2001) and has instead been attributed to low-
level physiological differences in the visual system
such as reduced densities of ganglion cells and
sparser cone density with increasing eccentricity
along the vertical compared to the horizontal mid-
lines (Carrasco et al., 2001).

A similar HVA exists in the oculomotor system, such
that saccades with amplitudes of 5 degrees or more
executed along the horizontal plane have shorter
latencies, higher peak velocities and better accuracy
compared to saccades directed to isoeccentric
locations along the vertical plane (Bhidayasiri et al.,
2001; Greenwood et al., 2017; Irving & Lillakas,
2019). Bonnett et al. (2013) argued that these effects
become more pronounced with increasing age,
although not all studies have been able to replicate
this effect (Irving & Lillakas, 2019). Vertical saccades
are also more vulnerable to distractor interference,
displaying larger curvature effects than saccades
along the horizontal plane (Laidlaw & Kingstone,
2010; Van der Stigchel & Theeuwes, 2008; Walker
et al., 2006) and visual scanning is more efficient
along the horizontal axis than the vertical axis, such
that saccades are larger and fixations durations
shorter (Phillips & Edelman, 2008).

The cause of the oculomotor HVA is not clear. One
possibility is that it derives from the perceptual HVA,
such that visual inputs from more superior and
inferior locations along the vertical meridian generate
weaker activation in the salience maps that drive eye-
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movements than isoeccentric locations along the
horizontal meridian (Greenwood et al., 2017; Irving
& Lillakas, 2019). Alternatively, they may reflect
some neuroanatomical constraints on the oculomotor
system. The horizontal and vertical components of
saccades are generated by separate structures in the
brainstem (respectively the parapontine reticular for-
mation, PPRF, and the rostral interstitial nucleus of the
MLF, RIMLF) and the distribution of burst neurons is
more sparse in the RIMLF than the PPRF (Büttner-
Ennever, 2008). Saccade metrics such as peak velocity
and amplitude are derived from the activity of these
burst neurons, so these structural differences are a
plausible source of the HVA in eye-movements
(Irving & Lillakas, 2019). A third possibility proposed
by Foulsham and colleagues (Foulsham et al., 2008)
is that the asymmetry is functional, arising due to
the greater utility of horizontal compared to vertical
saccades in visual exploration.

The existence of a HVA in the visual and oculomo-
tor systems may have implications for cognitive pro-
cesses that are known to be tightly coupled with
the oculomotor system such as spatial attention
(Awh et al., 2006; Casteau & Smith, 2019; Smith
et al., 2021; Smith & Schenk, 2012) and visuo-spatial
short-term memory (Ikkai & Curtis, 2011; Lawrence
et al., 2004; Pearson et al., 2014; Pearson & Sahraie,
2003; Peterson et al., 2019; Postle et al., 2006; Smith
& Archibald, 2020; van Ede et al., 2019), see also
Heuer et al. (2020); Olivers and Roelfsema (2020) for
recent reviews. Indeed, there is some evidence that
the HVA is preserved in visual short-term memory.
For example, Montaser-Kouhsari and Carrasco (2009)
asked five participants to perform a match to
sample task in which participants memorized a cen-
trally presented standard (7 c/d gabor), then judged
whether a briefly presented stimuli appearing 6
degrees into the periphery along the horizontal or
vertical midlines were of a higher or lower spatial fre-
quency. Performance was significantly better when
test stimuli were presented along the horizonal com-
pared to vertical meridians. The authors attribute this
effect to decreased precision in encoding of the test
stimulus that appeared on the vertical meridian.

In contrast to visual short-term memory, no studies
have examined the extent to which the HVA is pre-
served in spatial short-term memory (STM). Given
the key role the oculomotor system plays in visuo-
spatial STM it seems reasonable to predict that

anisotropies in the oculomotor system might
produce a HVA in spatial STM. This prediction was
tested in two experiments. Experiment 1 measured
spatial memory using a variant of the Corsi blocks
task previously used to measure spatial STM along
the horizontal and vertical meridians in patients
with Progressive Supranuclear Palsy (Smith et al.,
2021; Smith & Archibald, 2020). Visual STM was
measured with a task that required participants to
recall sequences of colours presented along the hori-
zontal and vertical meridians. In Experiment 2 a full
report change detection task was used to assess
memory capacity (k). In the spatial memory condition
one of the stimuli changed location, in the visual
memory condition one of the stimuli changed orien-
tation. It was predicted that visuospatial STM span
(Experiment 1) and visuospatial STM capacity (Exper-
iment 2) would be significantly shorter for the verti-
cally aligned stimuli compared to the horizontally
aligned stimuli.

Experiment 1

Methods

Participants
196 participants were recruited through the Dept of
Psychology Participant pool and social media, of
whom 106 completed the spatial memory task (8
male, 97 female and 1 non-binary; median age 20
years) and 90 completed the colour memory task
(24 males, 63 females, 2 did not state a gender, 1
non-binary; median age 21.01 years). People who
took part via the participant pool were awarded
pool credit. No compensation was offered to other
participants. All participants gave informed consent
via an online consent form. The study was approved
by Durham University Dept. of Psychology Research
Ethics Committee (PSYCH-2021-04-08T13:13:08-
dps1ds).

Stimuli and apparatus
Participants completed the experiment on their own
personal computer or laptop. Experimental stimuli
were generated using PsychoPy3 (Peirce et al., 2019)
and data were collected online using Pavlovia. As
the size of stimuli varied depending on the specifica-
tions of participant’s computers and their distance
from the screen, dimensions are provided in pixels.

2 D. T. SMITH



The fixation point was as white cross (20 × 20) pre-
sented at the centre of the screen. In both tasks, the
memory array comprised 10 white discs (40 × 40)
aligned along either the horizontal or vertical
midline, such that 5 discs fell in each hemifield. The
centres of adjacent discs were separated by 80
pixels. In the spatial task, the to-be-remembered
locations were indicated by the appearance of a
blue disc (40 × 40). In the colour memory task, the
memory items were 40 × 40 coloured discs. The
colours were drawn from the following HTML colour
set: Crimson, OrangeRed, Orange, Gold, Yellow, Yel-
lowGreen, Green, CadetBlue, Blue, Magenta, Purple,
MediumVioletRed.

Procedure
Spatial Task: Trials began with the appearance of the
fixation point for 1000 ms, followed by the onset of
the memory array. After 1000 ms the sequence of
memory items began, starting with 2 items. Each
item in the sequence appeared for 500 ms and
there was 1000 ms between items. 500 ms after the
final item had been presented the array was
replaced with a fixation cross for 1000 ms. The
array then re-appeared and the participant was
required to click on the correct sequence of locations
using the mouse (see Figure 1(a)) Participants were
given feedback on whether they had got the
sequence correct.

Figure 1. Illustration of the experimental procedure in Experiment 1.
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Colour task: Trials began with the appearance of
the fixation point for 1000 ms, followed by the
onset of the memory array. After 1000 ms the
sequence of memory items began, starting with 2
items. Each item in the sequence appeared for
500 ms and there was 1000 ms between items.
500 ms after the final item had been presented the
array was replaced with a fixation cross for 1000 ms.
A 3 × 4 array of coloured spots appeared and partici-
pants were required to click on the colours in the
sequence they had been presented. Figure 1(b) illus-
trates this procedure.

Participants had to recall 3 sequences for each
span length. If participants got 2 out of 3 sequences
correct the span length was increased by 1 item and
they were presented with 3 more trials. If they got
2/3 incorrect the trial terminated and the next trial
began, starting with a span of 2 items. The
maximum span length was 10 items. Participants
completed 3 horizontal trials and 3 vertical trials. Hori-
zontal and vertical blocks were interleaved, starting
with horizontal.

Results

Data were analysed with a 2 (Orientation) × 2 (Task)
mixed ANOVA. There were significant main effects
of Task (F(1,194) = 130, p < .001, η2p = .4) and Orien-
tation, (F(1,194) = 4.75, p = .03, η2p = .023), and a signifi-
cant Task x Orientation interaction F(1,194) = 6.47, p
= .012, η2p = 0.032, representing a small effect size.
Post-hoc tests indicated a significant difference
between the horizontal and vertical conditions in
the spatial memory task (Mhor = 4.51, SD = 1.14; Mver

= 4.22, SD = 1.27; F = 10.72, p = .001) such that
memory spans along the horizontal axis were signifi-
cantly longer compared to memory spans along the
vertical axis. There was no significant difference
between the horizontal and vertical conditions in
the colour memory task (Mhor = 2.67, SD = .94; Mver

= 2.69, SD = 1.27; F = .07 p = .79). Figure 2 illustrates
these effects.

Discussion

This experiment tested the hypothesis that the HVA in
perception and oculomotor control would be inher-
ited by visuospatial short-term memory. Consistent
with this hypothesis, there was a small but significant

HVA on the Corsi task, such that memory spans were
longer when stimuli were presented along the hori-
zontal axis compared to the vertical axis. However,
no HVA was observed for the colour memory task.

The perceptual HVA is typically measured with the
eyes fixated in the centre of the screen, so as not to
confound the encoding of peripheral stimuli with a
saccadic eye movement that would permit the partici-
pant to foveate the stimulus. However, in the current
task eye-movements were not constrained so partici-
pants may have made eye-movements to fixate the
locations of the memoranda. This would be particu-
larly adaptive for the colour memory task, given that
colour perception rapidly declines with eccentricity
from the fovea. In this case, any effect of a perceptual
HVA on memory would be compensated for by the
fact that the stimuli were foveated. Performance on
the colour memory task was also considerably
worse than that on the spatial memory task. This
may be because the memoranda in the colour task
were much more similar to one another than the
locations in the spatial task. The rationale was to
reduce the probability of verbal encoding, but an
unforeseen consequence appears to have been to
make the colour stimuli more easily confused.

Given these confounds it seems premature to draw
any conclusions about the existence of a HVA for
visual STM. A solution to the issue of eye-movements
is to enforce fixation during the experiment. Although
enforcing fixation in an online environment is not
straightforward, one approach is to use a memory
task in which the memoranda are presented so

Figure 2. Memory spans in for colours and spatial locations pre-
sented along the horizontal and vertical meridians. Error bars
show 95% confidence intervals.
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briefly as to preclude the possibility of participants
fixating the items. The change detection task, which
involves presenting the memoranda for brief
periods (∼150) and establishing memory capacity
(K) rather than memory span (Cowan, 2001) is one
such paradigm. Given that the location of the
change is unknown at the start of the trial, and that
initial eye-movement in displays of multiple, hom-
ogenous objects typically has a latency in the range
of 200–250 ms (Findlay, 1997), the change detection
paradigm offers a reasonable degree of certainty
that participants would be unable to make eye-move-
ments to the memory items, even in an online
environment. A second experiment therefore exam-
ined the HVA for spatial (changes in object location)
and visual (changes in object orientation) short-term
memory. If the difference between the HVA in the
visual and spatial memory tasks is due to differences
in oculomotor strategy during the task, preventing
eye-movements should reduce or eliminate this
difference.

Experiment 2

Methods

Participants
163 participants were recruited through the Dept of
Psychology Participant pool and social media, of
whom 75 completed the Spatial memory task (10
male, 65 female; median age 20 years) and 88 com-
pleted the Orientation memory task (24 males, 63
females, 2 did not state a gender, 1 non-binary;
median age 21.01 years). People who took part via
the participant pool were awarded pool credit. No
compensation was offered to other participants. All
participants gave informed consent via an online
consent form. The study was approved by Durham
University Dept. of Psychology Research Ethics Com-
mittee (PSYCH-2021-04-08T13:13:08-dps1ds).

Stimuli and apparatus
Participants completed the experiment on their own
personal computer or laptop. Experimental stimuli
were generated using PsychoPy3 (Peirce et al., 2019)
and data were collected online using Pavlovia. As
the size of stimuli varied depending on the specifica-
tions of participant’s computers and their distance
from the screen, dimensions are provided in pixels.

The fixation point was as white cross (20 × 20) pre-
sented at the centre of the screen. In both tasks the
memory array comprised 8 white objects aligned
along either the horizontal or vertical midline, such
that 4 fell in each hemifield. In the spatial memory
task the stimuli were white discs (15 × 15) that
appeared 40, 120, 200 and 200 pixels from fixation
along the horizontal or vertical meridian, with a
random jitter of −30 to +30 pixels applied to the X
and Y position. The target was a change in position
of one of the objects, which moved its position by
60 pixels in the direction orthogonal to the axis
along which the stimuli were presented, such that it
crossed the meridian In the orientation memory task
the items were 9 × 25 pixel lozenges that appeared
40, 120, 200 and 200 pixels from fixation along the
horizontal or vertical meridian. No jitter was applied
to these objects. Their orientations were drawn from
8 possible orientations (0, 40°, 80°, 120°, 160°, 200°,
240°, 280° degrees). The target was an orientation
change of 80°.

Procedure
The orientation of the memory array was randomized
across trials. Trials began with the appearance of a
fixation point for 1000 ms. This was replaced by the
stimulus array for 150 ms. There was then a 1000 m
blank during which the fixation cross was presented.
The stimulus array then re-appeared. On 50% of
trials one of the objects had changed. In the spatial
task, there was a 50% chance of one the objects
having. In the Orientation condition, there was a
50% chance of one the objects having moved its
orientation by 80°. The change was equally likely to
occur at all item positions. The array remained on
the screen until the participant made a response by
pressing “C” to indicate a change or “N” for no-
change. There was 1 block of 32 practice trials and
six blocks of 32 experimental trials. Participants
were given feedback on their performance during
the practice trials but not the experimental trials.
Each participant completed 46 change trials and 46
no-change trials on each axis (Figure 3).

Results

Memory capacity was calculated for the horizontal
and vertical conditions of the spatial and orientation
task using Pashlers’ K (Kp = Number of Items* (Hit
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Rate − False Alarm Rate) / (1 – False Alarm Rate)). In
line with a preregistered analysis plan (OSF Registries
| A Horizontal Vertical Anisotropy in Visuospatial
Short-Term Memory, Study 1), participants were
excluded from the analysis where K < 1 for either
the horizontal or vertical condition. This resulted in
the exclusion of 10 participants from the spatial con-
dition and 41 participants from the orientation
condition.

The remaining data were analysed with a 2 (Orien-
tation) × 2 (Task) mixed ANOVA. There were signifi-
cant main effects of Task (F(1,110) = 122, p < .001, η2p
= .53) and Orientation, (F(1,110) = 6.2, p = .014, η2p
= .053), and a significant Task × Orientation inter-
action F(1,110) = 5.05, p = .027, η2p = .042, representing
a small effect size. Analysis of simple main effects indi-
cated a significant difference between the horizontal
and vertical conditions in the spatial memory task
(Mhor = 4.97, SD = 1.38; Mver = 4.47, SD = 1.53; F =
14.23, p = .001) such that memory spans along the
horizontal axis were significantly longer compared
to memory spans along the vertical axis. There was
no significant difference between the horizontal and
vertical conditions in the orientation memory task
(Mhor = 2.38, SD = .87; Mver = 2.36, SD = .877; F = .02 p
= .88). Figure 4 illustrates these effects.

Discussion

Experiment 2 explored whether preventing partici-
pants from making eye-movements towards the
spatial location of targets would elicit a HVA in

visual STM. It did not. Similar to Experiment 1,
spatial STM capacity was greater for horizontally
than vertically aligned stimuli, whereas the axis of
presentation made no difference to visual STM
capacity. These results are not consistent with the
idea that the failure to observe a HVA for visual STM
was due to differences in eye-movements.

General discussion

It was hypothesized that visuospatial STM would
exhibit a HVA. This prediction was confirmed for
spatial STM in both experiments. However, neither
experiment found evidence of a HVA in visual STM.
The spatial HVA is consistent with the idea that the
maintenance of spatial position is mediated by

Figure 3. Illustration of the procedure in Experiment 2 in the horizontal condition. The dotted line shows the horizontal meridian and
was not visible during the experiment.

Figure 4. Spatial and visual short-term memory capacity for
horizontally and vertically aligned stimuli. Error bars show
95% confidence intervals.
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activation in the spatial maps that integrate visual and
oculomotor representations into a single, topo-
graphic map of space (Bisley & Goldberg, 2010; Ikkai
& Curtis, 2011; Zelinsky & Bisley, 2015). The spatial pre-
cision of representations in the priority map is likely
influenced by the precision with which spatial
locations are encoded in the visual and oculomotor
system, and it has been shown that spatial coding is
less precise along the vertical axis compared to the
horizontal axis (Greenwood et al., 2017; Irving & Lilla-
kas, 2019). Given the relative loss of spatial precision
for vertical relative to horizontal locations, the obser-
vation that spatial spans are reduced along the verti-
cal compared to horizontal axis may be explained in
terms of a HVA in the perceptual and oculomotor
maps that code spatial position which is inherited
by the priority map. This asymmetry results in less
precise representation of spatial position along the
vertical meridian, and therefore worse memory per-
formance (Lilienthal et al., 2018; Wynn et al., 2019)
compared to the horizontal meridian.

In this context the failure to observe a HVA for
colour or orientation was surprising, especially given
that previous studies have shown that there is a
HVA for orientation discrimination (Barbot et al.,
2021; Rovamo et al., 1982), and perceptual HVAs can
be inherited by VSTM (Montaser-Kouhsari & Carrasco,
2009). It was speculated the null result in Experiment
1 was due to differing eye-movement strategies but
Experiment 2 removed the possibility for different
overt exploration strategies and still found a null
result. It is also possible that the visual STM tasks
were too hard, resulting in a floor effect; memory per-
formance was significantly worse and the exclusion
rate for poor performance was much higher in the
visual STM compared to spatial STM conditions in
both experiments.

An alternative interpretation of the HVA in spatial
STM and null effect in visual STM is that it reflects a
bilateral field advantage. The bilateral field advantage
describes an advantage in attention and working
memory when stimuli are presented across two
hemifields, rather than in a single hemifield (Alvarez
et al., 2012; Alvarez & Cavanagh, 2005; Delvenne,
2005; Umemoto et al., 2010) or along the vertical
midline (Fendrich et al., 1996), which appears to be
specific to spatial, rather than feature representations.
This explanation is consistent with Experiment 1, in
which the condition in which spatial STM span was

higher was also that in which items were distributed
equally in the left and right visual fields. Interestingly,
it has recently been shown that maintenance of
spatial information is more difficult when items
move between left and right hemifields than
between upper and lower hemifields (Strong &
Alvarez, 2020). This “crossover cost” may also have
contributed to the significant spatial HVA observed
in Experiment 2, in which participants had to detect
a target that jumped from one hemifield to another.
However, it should be noted that Umemoto et al.
(2010) demonstrated a bilateral advantage for orien-
tation using a continuous report task, which is not
entirely consistent with the null result for the orien-
tation memory task in Experiment 2.

To summarize, this study provides evidence for a
horizontal–vertical anisotropy in spatial STM which
persisted when exploratory eye-movements during
encoding were prevented. One explanation for this
anisotropy is that it reflects poorer spatial coding of
locations along the vertical relative to horizontal mer-
idians. An alternative but not necessarily mutually
exclusive interpretation is that it reflects a bilateral
field advantage for spatial short-term memory.
Overall these data are consistent with the view that
spatial STM relies on spatial maps that integrate
visual and oculomotor signals into a priority map
that represents the locations of behaviourally relevant
locations.
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