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Quantitative analysis of phase transitions in two-dimensional XY models using persistent homology
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We use persistent homology and persistence images as an observable of three variants of the two-dimensional
XY model to identify and study their phase transitions. We examine models with the classical XY action, a
topological lattice action, and an action with an additional nematic term. In particular, we introduce a way of
computing the persistent homology of lattice spin model configurations and, by considering the fluctuations in
the output of logistic regression and k-nearest neighbor models trained on persistence images, we develop a
methodology to extract estimates of the critical temperature and the critical exponent of the correlation length.
We put particular emphasis on finite-size scaling behavior and producing estimates with quantifiable error. For
each model we successfully identify its phase transition(s) and are able to get an accurate determination of the
critical temperatures and critical exponents of the correlation length.
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I. INTRODUCTION

An emerging body of work is exploring the use of machine
learning and other data analysis methods to detect and classify
phase transitions in statistical physics systems (see, among
others, Refs. [1–14]). One of the motivations of this approach
is to develop methodologies which require minimal a priori
knowledge about the systems in question. The hope then is
that these data-centric methods will be able to offer new
insights into those models at the forefront of physics which
seem to defy analytical methods [15]. Much of the work in
this area makes use of neural network models which, while
unparalleled in machine learning tasks, are generally hard to
interpret. But recently, among other geometric and topolog-
ical approaches [16–19], there has been an interest in using
persistent homology, a tool from the new field of topological
data analysis (TDA), to produce interpretable features which
are inherently sensitive to topological objects. These can then
be compared in their own right, or fed into a machine learning
model [20–25].

There are at least two paradigms for using persistent
homology to study phase transitions of a given statistical
physics model. The first can be called persistent homology
in configuration/data space, where the topology of the high-
dimensional space of model configurations is probed from
samples. This approach is based on the topology hypothesis
for the origin of phase transitions [26,27] and is the approach
used in [25]. The idea here is that a thermodynamic phase
transition necessarily coincides with a change in the topology
of the energy level set, although such a change does not turn
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out to be a sufficient condition [28]. In the present work,
however, we shall make use of a more recent paradigm, in-
vestigated also in [20–24], which we call persistent homology
as an observable. Given a sampled configuration of a model,
we construct a sequence of geometric complexes based on that
configuration. This sequence of topological spaces is known
as a filtration. Applying persistent homology to the filtration
yields a collection of points called a persistence diagram,
which represents this configuration. We can think of this
process as a means to reduce the degrees of freedom of the
model and produce nonlinear summaries of configurations.
Statistics of these persistence diagrams are then analyzed as
the system undergoes a phase transition. Previous works have
focused on identifying the different phases in various models
in a mostly qualitative manner. While Ref. [24] makes some
steps towards obtaining quantitative measurements of the mul-
tiscale structure of the Ising model at criticality, a framework
for using persistent homology observables to make rigorous
numerical estimates of critical temperatures and exponents
with quantified error has not yet been explored in the literature
to the best of our knowledge.

While the existing works on the persistent homology as
an observable paradigm share the same underlying idea,
the approaches seen so far have differed significantly, both
in how filtrations have been constructed and in how the
resulting persistence diagrams have been analyzed. Tran,
Chen, and Hasegawa investigated phase transitions in the
two-dimensional (2D) XY model, one-dimensional (1D)
transverse-field Ising, and 1D Bose-Hubbard models [22].
They computed the Vietoris-Rips persistence of point clouds
of lattice sites with interpoint distances given by a linear
combination of the Euclidean distance in the lattice and the
difference in the spins. They show that clustering configura-
tions based on the persistence Fisher kernel [29], persistence
entropy, and second moment of persistence of the H1 diagrams
identifies the different phases. They demonstrate that increas-
ing the lattice size produces sharper estimates of the critical
temperature. This approach is extended to the XXZ model
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on a pyrochlore lattice by Olsthoorn, Hellsvik, and Balatsky,
approximately separating the six different phases of the model
[23].

Cole, Loges, and Shiu apply a different methodology to the
previous works. Looking at the 2D Ising, square-ice, XY , and
fully frustrated XY models, they introduce general construc-
tions of filtrations for configurations of discrete-valued and
circle-valued spin models [24]. In particular, configurations
of circle-valued models are given a sublevel set filtration of
the map f : � → (−π, π ] which assigns each site i ∈ � in
the lattice a parametrization of its spin f (i) ∈ (−π, π ]. This
filtration yields cubical subcomplexes of the lattice. They
make use of persistence images [30] to vectorize persistence
diagrams, allowing the application of a logistic regression
model to separate the phases. They relate some quantitative
aspects of the persistence diagrams to the estimation of critical
exponents in the case of the Ising model. For discrete models
they construct α-complexes on subsets of the lattice sites with
the same spin. This is similar to the approach used by Hirakida
et al. [21], who look at the effective Polyakov line model.

Comparing the approach in [22,23] to that in [24] makes it
clear that there is a significant degree of choice in picking the
filtration used to compute the persistent homology of a given
lattice configuration. We will demonstrate that this choice is
an important factor in determining what information about
phase transitions one can derive from the persistence. In par-
ticular, we investigate an XY model with a nematic interaction
term and find that using two different filtrations is required to
detect and analyze the two different phase transitions under-
gone by the system.

Our main contributions are as follows:
(1) We introduce a class of filtrations on lattice spin sys-

tems which, while general, allow persistent homology to
easily detect topological defects.

(2) Extending the approach of using logistic regression
on persistence images introduced in [24], we investigate the
applicability of finite-size scaling analysis. In particular, we
apply the standard statistical tools of histogram reweighting
and bootstrapping to obtain estimates of the critical temper-
ature and the critical exponent of the correlation length with
quantified error.

(3) Finding inadequacies with using logistic regression for
precise estimates of the critical temperature, we introduce a
nonparametric method using k-nearest-neighbor classification
as a tool to estimate the critical temperature of phase transi-
tions from persistence images. This yields improved results.

(4) We consider a model with both an Ising-type and
Berezinskii-Kosterlitz-Thouless (BKT) transition (the ne-
matic XY model) and find that two different filtrations are
required to capture the two transitions. Each filtration sees one
transition, but neither is able to capture information about both
transitions. We take this as evidence that the technique is not
applicable entirely unsupervised; rather, care must be taken to
design a filtration tuned for the problem.

The rest of the paper is organized as follows. In Sec. II we
give a brief review of the techniques we use, covering per-
sistent homology, supervised classification, finite-size scaling
analysis, histogram reweighting, and bootstrapping. At the
end we detail the steps of the data generation and analysis

pipeline. In Sec. III we look at the three models under con-
sideration. In each case we give a brief review of the model
and its phase transition(s) before discussing the analysis and
results using logistic regression and then k-nearest-neighbors.
In Sec. IV we discuss our findings and identify potential direc-
tions for future work. The Appendixes contain more detailed
reviews of some of the tools we use as well as the argument
demonstrating the stability of the persistence diagrams ob-
tained using our filtrations.

II. METHOD

A. Background on persistent homology and persistence images

Persistent homology is a computational topology tool in-
troduced in its modern form in [31] and popularized in [32]. It
is one of the main tools of the emerging TDA field . We shall
give a brief overview here, but for a more complete review of
persistent homology useful references are [33–36].

Given a topological space, such as a manifold or a simpli-
cial or cubical complex, homology can intuitively be thought
of as an algebraic way of describing the “holes” in the
space. In particular, the spaces we consider will be cubical
complexes. A very brief technical introduction to cubical
complexes and their homology can be found in Appendix A.
But in general terms, given a cubical complex C, its kth
cubical homology Hk (C) is a vector space which has a basis
in 1-1 correspondence with the k-dimensional holes in C.
Moreover, given a map of cubical complexes f :C → C′, we
obtain induced linear maps fk: Hk (C) → Hk (C′). The rank of
fk tells us how many of the holes survived after being mapped
into C′, i.e., how many persisted. Given some data D, the idea
of (cubical) persistence then is to construct a sequence

F1(D) → F2(D) → · · · → FN (D)

of cubical complexes called a filtration using the data. Typ-
ically the Fi(D) are each subcomplexes of the final complex
FN (D); for each cell we specify the index i at which it appears,
and then Fi is the subcomplex consisting of all cells that
have appeared at or before i. The maps Fi(D) → Fi+1(D) are
simply the inclusions.

We then apply homology to obtain a sequence of linear
maps

Hk (F1(D)) → Hk (F2(D)) → · · · → Hk (FN (D)).

Using the ranks of these maps we can track the birth of new
holes, their persistence through the filtration, and their deaths.
We summarize this information as a multiset called a per-
sistence diagram PHk (F (D)) ⊂ {(a, b) ∈ R2 | a � b} which
contains a pair (b, d ) every time a hole is born in Fb(D) and
dies in Fd (D). We say that a feature is born at b and dies at d
and that its persistence is d − b. This can also be represented
as a barcode (a multiset of intervals [b, d )). There are a few
ways to define distances between persistence diagrams, but
those which are most commonly used are the bottleneck and
Wasserstein distances. For many typical choices of filtration a
small change in the input data D leads to only a small change
in the persistence diagram PHK (F (D)) as measured by these
distances. This property of persistent homology is known as
stability and makes persistence a useful tool for dealing with
real-world, noisy data.
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In the persistent homology in configuration space
paradigm, D is the entire collection of sampled configurations,
and we obtain a single persistence diagram. However, when
we use persistent homology as an observable, D is a single
configuration of the model we are studying. We therefore
obtain a persistence diagram for each sampled configuration,
and we can consider statistics computed from these diagrams.
Unfortunately persistence diagrams in their raw form as multi-
sets do not lend themselves to computing the typical statistics
of interest such as means and variances. While there has been
work developing notions of these quantities as Frechét means
and variances [37], we shall instead prefer to work with a
vector representation of the diagrams known as persistence
images [30] which preserve stability.

Let ga,b:R2 → R denote a 2D Gaussian of standard devia-
tion σ centered at (a, b):

ga,b(x, y) = 1

2πσ 2
exp

[
− (x − a)2 + (y − b)2

2σ 2

]
.

Given a persistence diagram PHk = {(bi, di )}i∈I , its per-
sistence surface is the function ρk : R2 → R obtained by
translating each point (b, d ) ∈ PHk into birth-persistence co-
ordinates (b, d − b), then placing Gaussians with variance σ 2

on them, weighted by the persistence of the point:

ρk (x, y) =
∑

(b,d )∈PHk

(d − b) gb,d−b(x, y).

The persistence image PIk is obtained by discretizing a rect-
angular region of the domain of ρk into a collection of nI ×
nI pixels pi and integrating ρk within each:

PIi
k =

∫∫
pi

ρk (x, y) dx dy.

In this way we obtain a (nI )2-dimensional vector representing
our persistence diagram. See Fig. 1 for an example. So long
as we choose the same σ and discretization for each diagram,
we can compute averages and variances componentwise. As
observed in [38], if we are sampling data from some distribu-
tion and the expected persistence diagram has a density with
respect to the Lebesgue measure on {(a, b) ∈ R2 | a � b},
then the average of the persistence images can be thought of
as an estimator for this density, multiplied by an additional
weighting equal to the persistence. Besides emphasizing high-
persistence points, the linear weighting by the persistence
ensures the stability of the persistence image. Finally we note
that, as discussed in [30], machine learning models trained on
persistence images are generally insensitive to the resolution
and variance parameters nI and σ . Therefore in this work, we
shall fix the parameters with a resolution of 30 × 30 and σ

equal to 10% of a pixel. However, as a check we also per-
formed one of the later experiments with a 15 × 15 resolution,
finding no significant change in the results or estimated errors.

B. Filtrations

In this work we will be working with finite 2D lattices with
a circle valued spin at each lattice site. To apply persistent
homology we must choose how to define a filtration for a
given configuration θ = {θi}, where θi represents the spins
as angles. Our idea is to filter the square tiling of the plane

FIG. 1. An illustration of how the persistence image is ob-
tained from a persistence diagram (a). It is first transformed into
birth-persistence coordinates (b), then the persistence surface (c) is
computed before discretization, yielding the persistence image (d).

corresponding to the lattice � according to the differences
in neighboring spins. For each cell in this cubical complex,
we will specify a time at which it appears, and then Ft is
the subcomplex of the plane consisting of all cells that have
appeared by time t . Denote the smallest angle between spins
θi and θ j by di j . This can also be seen as the length of the
shortest arc between θi and θ j on the unit circle. Then taking
the lattice as a 2D cubical complex, we introduce each vertex
i at time 0, each edge 〈i j〉 at time 1

2π
di j , and each plaquette �

at time maxi, j∈� 1
2π

di j . We will call this the angle difference
filtration. We will also introduce another similar filtration to
use with the nematic XY model in Sec. III C. This will instead
use a nematic angle difference dn

i j which denotes the smallest
angle between the spins θi and θ j considered as directionless
rods. We can think of this as the length of the shortest arc
connecting the head of one spin to either the head or tail of the
other spin; that is dn

i j = min(di j, π − di j ). We will call this the
nematic angle difference filtration.

The intuition behind these filtrations originally came from
considering the 2D XY model. Regions of the lattice where
spins vary slowly will be introduced in the angle difference
filtration early, while regions containing rapidly varying spins,
such as at the center of vortices, will enter the filtration later.
We should expect then, at least at low temperatures, that each
vortex will be manifested as a hole in the filtered lattice which
is formed early on in the filtration and which gets filled in
only much later: i.e., a persistent H1 class. Figure 2 shows
an example of this. However, we will see that this kind of
filtration can capture other structure such as spin waves or
half-vortices and domain walls when we look at the nematic
XY model. Moreover, compared to the point cloud filtrations
used in [22,23] this class of filtrations has the computational

024121-3



SALE, GIANSIRACUSA, AND LUCINI PHYSICAL REVIEW E 105, 024121 (2022)

FIG. 2. An illustration of the angle difference filtration for a configuration of the XY model with an antivortex. The filtration parameter
increases from left to right, and the state of the filtration is shown at six different stages. On the left-hand side only those neighboring spins
which do not differ too much are connected by edges and plaquettes. As we move towards the right, more and more edges are introduced
between more disparate spins. Note the correspondence between the bars and the holes in the filtration. For example, the longest bar corresponds
to the hole around the antivortex in the center of the configuration. This hole is formed early as the spins far from the center vary slowly but
survives until the central plaquette is added to the filtration.

benefit that edges are introduced only between neighboring
lattice sites and only elementary cubes up to dimension 2 are
included, greatly speeding up the computation of persistent
homology. In this case the filtrations consist of subcomplexes
of the plane and so contain cubes of dimension at most 2 any-
way. But note that for models on higher dimensional lattices,
including cubes of higher dimension in the filtration would not
have any effect on H1 which is the only homological degree
we use in our analysis. As discussed in Appendix B, the
persistence diagrams obtained using these filtrations are stable
with respect to small perturbations to the spins, in contrast to
the sublevel set filtration used in [24].

C. Logistic regression

Following the approach introduced in [24], we will train
a logistic regression model to map the persistence images
obtained from configurations onto phases. Recall that logis-
tic regression is a generalized linear model which models a
binary dependent variable y(x) ∈ {0, 1}. For input x ∈ RN , a
logistic regression model is parameterized by a weight vector
w = (w1, . . . ,wN )T ∈ RN and intercept b ∈ R. Its output is a
logistic function

pw,b(x) = 1

1 + exT w+b
∈ (0, 1),

which can be interpreted as the probability that y(x) = 1, with
1 − p(x) giving the probability that y(x) = 0. Given training
data {(xi, yi )}, the weights w and intercept b are learnt by
minimizing a cross-entropy loss function

J (w, b) = −
∑

i

{yi log(pw,b(xi ))+(1 − yi ) log[1 − pw,b(xi )]}

+ 1

C
(wT w + b2).

The first term penalizes misclassifications with the penalty
increasing as the confidence in the incorrect classification
increases. The second term implements �2 regularization, re-
ducing overfitting by preventing the weights from becoming
too large, where C is a hyperparameter controlling the amount
of regularization.

In our case, x will be a persistence image, y(x) = 0 will
indicate the low-temperature phase, and y(x) = 1 will indicate
the high-temperature phase. As in [24] we will train the model
using data drawn in the low- and high-temperature phases.
However, since we are interested in making a precise estimate
of the critical temperature, we will use data closer to the criti-
cal region. After successful training, the weights will indicate
features in the persistence image characteristic of each phase.
Weights w j < 0 will indicate features of the low-temperature
phase, and weights w j > 0 will indicate features of the high-
temperature phase. In the intermediate range of temperatures
where there is no training data, the logistic regression model
will output an estimated classification OLR ∈ {0, 1} depending
on whether p is less than or greater than 0.5. Notice that
we clamp the output to 0 or 1 rather than using the direct
output of the logistic function. We find that this leads to better
finite-size scaling behavior later. We may then treat 〈OLR〉 as
a phase indicator, if not a true (dis)order parameter. In this
work we shall be interested in the distribution OLR at different
temperatures and different lattice sizes.

We note that training the logistic regression model directly
on raw configurations is ineffective due to the highly nonlinear
nature of the system.

D. k-nearest-neighbor classification

We will also make use of k-nearest-neighbor (k-NN) clas-
sification to map persistence images onto phases. This is a

024121-4



QUANTITATIVE ANALYSIS OF PHASE TRANSITIONS IN … PHYSICAL REVIEW E 105, 024121 (2022)

nonparametric model which models a categorical dependent
variable y(x) ∈ N, where x ∈ RN . The behavior of the model
is determined by the training data {(xi, yi )} and a choice of
the hyperparameter k ∈ N. Given new input x, it finds the
k indices i1

x, . . . , ik
x which minimize the Euclidean distance

||x − xi||2. It then outputs the most common label among the
yi1

x
, . . . , yik

x
.

As in the case of logistic regression, x will be a per-
sistence image, y(x) = 0 will indicate the low-temperature
phase, and y(x) = 1 will indicate the high-temperature phase.
We will train the model using data drawn in the low- and
high-temperature phases close to the critical region. In the
intermediate range of temperatures where there is no training
data, the k-NN model will output an estimated classification
OkNN ∈ {0, 1}. We may then treat 〈OkNN 〉 as a phase indicator.

We note that training the classifier directly on raw con-
figurations is not computationally feasible; doing so would
require a vastly larger number of samples to sufficiently fill
out the configuration space, and the computational cost of the
k-NN method would consequently grow too large. The map-
ping from configurations to persistence images concentrates
the distribution near a low-dimensional subspace, and hence
k-NN becomes effective with far fewer samples.

E. Finite-size scaling analysis

A typical approach to extracting the critical temperature
and critical exponents of continuous phase transitions in spin
systems is a finite-size scaling analysis of quantities such as
the magnetic susceptibility

χ (T ) = L2

T

[〈|M|2〉T − |〈M〉|2T
]
,

which diverges at the critical temperature in the ther-
modynamic limit, where M = L−2 ∑

i(cos θi, sin θi ) is the
magnetization vector. On a finite lattice of length L this quan-
tity will remain analytic, instead displaying a pronounced
peak at a pseudocritical temperature somewhere above or
below the true critical temperature Tc. As L → ∞ this peak
grows taller and moves closer towards Tc. For a second-order
phase transition, like that in the Ising model, the way in which
the susceptibility scales close to Tc can be described by the
form

χ (L, t ) = Lγ /ν χ̂ (L1/ν t ), (1)

where χ̂ is a dimensionless function, t = T −Tc
Tc

is the reduced
temperature, and γ and ν are the critical exponents for the
susceptibility and correlation length, respectively. For a BKT
transition, like that in the 2D XY model, it scales approxi-
mately according to

χ (L, t ) ≈ Lγ /ν χ̂ [L exp(−bt−ν )], (2)

where we have ignored some small logarithmic corrections.
By simulating close to the phase transition on different lattice
sizes L we can extract the heights and locations of the different
peaks then fit these to Eq. (1) or Eq. (2) as appropriate to
estimate Tc, γ and ν. Note that the logarithmic corrections we
ignored in the BKT case mean that this method is not typically
used for high-precision studies, where approaches based on
the spin stiffness are more common.

Analogously, we might expect the persistent homology of a
configuration to demonstrate large variations at criticality. We
quantify this by looking at the fluctuations in the output OLR

and OkNN of the trained logistic regression and k-NN models,
measuring the variance

χLR(T ) = 〈
O2

LR

〉
T − 〈OLR〉2

T = 〈OLR 〉T (1 − 〈OLR〉T ). (3)

Note that the second equation follows since OLR takes values
in {0, 1}. This will display a peak, indicating the tempera-
ture at which the model is least certain about which phase
configurations are from, when 〈OLR〉T crosses 0.5. χkNN is
defined similarly. We find evidence that these quantities may
also display finite-size scaling behavior similar to Eqs. (1) and
(2), which we will use to estimate the critical temperature Tc

and the critical exponent of correlation length ν.
We will initially assume that ν is known and estimate the

critical temperature Tc by fitting the peak temperatures Tc(L)
of χLR and χkNN obtained from multiple lattice sizes to the
ansatz

Tc(L) − Tc(∞) ∝ 1

L1/ν
(4)

in the case of a second-order transition, or

Tc(L) − Tc(∞) ∝ 1

log(L)1/ν
(5)

for a BKT transition.
To estimate ν (as well as Tc), we will use a curve collapse

approach, plotting y = χLR or y = χkNN for multiple lattice
sizes simultaneously against x = L1/ν t (second order) or x =
L exp(−bt−ν ) (BKT) and finding values of ν and Tc which
minimize the distance between the curves using the Nelder-
Mead method, as in the procedure described in [39].

F. Statistical analysis

The use of histogram reweighting to extrapolate estimates
of ensemble averages to an interval of temperatures around
the critical temperature [40,41] and the use of bootstrap or
jackknife analysis to obtain error estimates [42] are standard
in quantitative investigations of phase transitions. To provide
a full demonstration of a quantitative analysis based on per-
sistent homology we will make use of both techniques, which
are briefly reviewed in Appendixes C and D.

In particular, we use histogram reweighting to interpolate
the outputs of our models 〈OLR〉T and 〈OkNN 〉T . This allows us
to obtain interpolated values of the variances χLR and χkNN .
Assuming the sampling temperatures are close enough, this
allows us to obtain a better estimate of the height and location
of peaks of each quantity.

We estimate the sampling error in the training data and the
sampling error in the data in the critical region independently.
We do this by performing two bootstrap procedures: the first
by resampling the training data, and the second by resampling
the data in the critical region. In both cases we resample the
data from each temperature individually. The two bootstrap
procedures yield approximate sampling distributions of the
quantity we are measuring, which we then turn into an error
by combining the standard deviations treating the distributions
as independent.
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G. Analysis pipeline

Combining the previous sections we arrive at the procedure
for our analysis of each model at each lattice size.

(1) We sample the model on the given lattice size using
the Wolff cluster algorithm [43] at a range of temperatures
spanning the phase transition(s). We perform 50 000 Wolff
cluster flips to properly thermalize the model, and 100 cluster
flips between samples to ensure that the autocorrelation is
negligible.

(2) For each sample, we compute persistence images with
30 × 30 resolution and σ equal to 10% of a pixel.

(3) We use persistence images from the low- and high-
temperature phases to train the logistic regression and k-NN
models.

(4) Using the trained classification models, we assign a
predicted phase to each sample from the critical region.

(5) Close to the peaks in the variances χLR and χkNN

of the classifier we apply multiple histogram reweighting to
obtain an interpolated curve and a more precise estimate of
the location of the peak.

Once we have the interpolated variance curve and peak
temperature for each of the lattice sizes, we estimate Tc and ν

by fitting the peak temperatures to the appropriate finite-size
scaling ansatz [Eqs. (4) and (5)] and optimizing the data col-
lapse of the variance curves. For each lattice size we perform
two bootstraps: first by resampling the training samples, and
second by resampling the samples in the critical region. In
each case we resample 500 times, obtaining bootstrap distri-
butions for the estimates of Tc and ν. We estimate the error
in these quantities by taking the square root of the sum of the
variances of the two bootstrap distributions.

III. ANALYSIS

We analyze three different variants of the 2D XY model;
each undergoes a Berezinskii-Kosterlitz-Thouless (BKT)
phase transition. One of the variants also exhibits a second-
order transition in the Ising universality class, and it presents
an interesting challenge to classify both transitions. For each
model, we considered square lattices with periodic boundary
conditions and linear sizes L = 30, 40, 50, 60, 70, 80, 100,
120, 140.

A. XY model

The 2D XY model is defined on an L × L square lattice �

by assigning an angle θi ∈ S1 to each lattice site i ∈ �. The
energy of a given configuration of spins θ = {θi}i∈� is given
by the Hamiltonian

H (θ) = −J
∑
〈i j〉

cos(θi − θ j ),

where 〈i j〉 ranges over neighboring lattice sites and J is a cou-
pling parameter we shall set equal to 1. At low temperatures
spins tend to align with their neighbors but collectively twist
in spin waves preventing true long-range order. Moreover a
small number of vortices and antivortices, where spins twist
round the full circle, may be found in bound pairs. As the
temperature increases, the model undergoes a BKT transition
driven by the unbinding of these vortex-antivortex pairs, so
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FIG. 3. The average H1 persistence images in birth-persistence
coordinates at different temperatures for the XY model with L = 30.

that at high temperatures lone (anti)vortices proliferate. The
critical temperature is approximately T = 0.8929 [44], and
the critical exponent of correlation length is ν = 1

2 .
Using the angle difference filtration described in Sec. II B

we obtain average persistence images as shown in Fig. 3. At
low temperatures we see that most points in the persistence
diagrams are concentrated in the lower left corner. These
come from the presence of spin waves: spins tend to differ
more with those in the opposite corner of a plaquette than
with their immediate neighbors, producing a short-lived cycle.
As the temperature increases we observe that the spin-wave
cycles persist longer and longer. At around T = 0.8, 0.95,
close to the critical point, we begin to see points close to
the downwards diagonal persistence = 0.5 − birth, or equiv-
alently death = 0.5. These represent (anti)vortices: they are
born reasonably early, as spins far away from the center vary
slowly, but die much later due to the large difference in spins at
the vortex core. In fact, we can check that the sum of the com-
ponents of the persistence image lying on the diagonal and the
two immediate subdiagonals correlates well with the absolute
vorticity (the total count of vortices and antivortices) of the
configurations. For example, computing the Pearson correla-
tion coefficient on 2000 configurations at T = 1.0 for L =
140 yields a correlation coefficient of r = 0.70, p < 0.001. At
high temperatures we see this concentration of cycles on the
diagonal increase and shift rightwards, indicating a disordered
phase with many vortices.

1. Logistic regression analysis

We trained logistic regression models on samples drawn
from T = 0.85, 0.86, and 0.87 in the low-temperature phase,
and T = 0.91, 0.92, and 0.93 in the high-temperature phase
with 10 000 samples from each. The regularization hyperpa-
rameter was set to C = 0.001. We evaluated the models with
10 000 samples from each of T = 0.88, 0.89, and 0.90. A plot
of the resulting phase indicators is shown in Fig. 4 and the plot
of the pseudocritical temperatures against log(L)−2 is shown
in Fig. 5. We do not observe any significant lattice-size depen-
dence in the pseudocritical temperatures. They instead seem to
be distributed close to T = 0.89, which is the midpoint of the
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FIG. 4. Plots showing (a) 〈OLR〉 and (b) 〈OkNN 〉 as a function of temperature for each lattice size for the XY model. The shaded regions
indicate the temperatures used for the low- and high-temperature training data. The vertical line shows the location of the expected critical
temperature Tc = 0.8929.

training temperatures. A straight line fit yields an extrapolated
critical temperature of

Tc = 0.8872 ± 0.0009,

well below the expected Tc = 0.8929. The variance curve of
the phase indicator is shown in Fig. 6 and the resulting curve
collapse (Fig. 7) procedure gives

Tc = 0.8824 ± 0.0001,

ν = 0.4968 ± 0.0055,

b = 0.5098 ± 0.0068,

not accounting within one standard deviation for the expected
values of Tc = 0.8929 and ν = 1

2 .
An advantage of using a generalized linear model like

logistic regression, as explored in [24], is that we can easily
match the learned weights against the pixels of the persistence
images. This allows us to interpret how the classifier distin-
guishes phases. The weights of the logistic regression model
trained on the L = 140 XY model data are shown in Fig. 8. We
see that the low-temperature phase is characterized by cycles
which are born early and which tend to have low persistence,
representing spin waves. The high-temperature phase is in-
dicated by cycles with a later birth time and persistence. In

particular, the most important region in identifying the high-
temperature phase is close to birth = 0.1, persistence = 0.4,
which detects (anti)vortex cycles beginning to change behav-
ior and move down the diagonal persistence = 0.5 − birth.

2. k-nearest-neighbor analysis

In the case of the XY model, we found that the k-nearest-
neighbor classification worked best when trained on a broad
range of temperatures. We trained the models on samples
drawn from T = 0.20, 0.25, ..., 0.85 in the low-temperature
phase, and T = 0.95, 1.00, ..., 1.60 in the high-temperature
phase with 2000 samples from each. The neighbor hyper-
parameter was set to k = 30. We evaluated the models with
10 000 samples from each of T = 0.90, 0.905, ..., 0.95. A plot
of the resulting phase indicators is shown in Fig. 4. The plot
of the pseudocritical temperatures against log(L)−2 is shown
in Fig. 5. Here we see an asymptotic convergence towards
a linear dependence between the pseudocritical temperatures
Tc(L) and log(L)−2. Fitting a straight line to the largest three
lattice sizes yields

Tc = 0.8935 ± 0.0043,

much closer to the expected Tc ≈ 0.8929 than the result of
the logistic regression approach. The curve collapse (Fig. 9)

FIG. 5. Estimating the critical temperature for the XY model using (a) logistic regression and (b) k-nearest neighbors. The pseudocritical
temperatures for the different lattice sizes, calculated from finding the peak of χp, are fitted to the ansatz in Eq. (5). For the logistic regression
we use all the lattice sizes in the fit, and for the k-nearest neighbors we use the largest three lattice sizes. The intercept gives the estimate for
Tc(∞). Error bars are estimated by bootstrapping.
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FIG. 6. Plots showing (a) χLR and (b) χkNN as a function of
temperature for the largest three lattice sizes of the XY model. These
are what we use to perform the curve collapse procedure.

procedure gives

Tc = 0.8918 ± 0.0033,

ν = 0.4972 ± 0.0264,

b = 0.5073 ± 0.0137,

very close to the expected values.

FIG. 7. The curve collapse of χLR for the XY model with Tc =
0.8824, ν = 0.4968, and b = 0.5098.
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FIG. 8. The weights of the logistic regression model trained on
the XY model configurations with L = 140.

B. Constrained XY model

What we will refer to as the 2D constrained XY model was
introduced and investigated in [45,46] where it is called an XY
model with a topological lattice action. It is defined similarly
to the classical XY model by assigning an angle θi ∈ S1 to
each lattice site i ∈ � of an L × L square lattice �. However,
the Hamiltonian is defined as

H (θ) =
{

0 if 1
2π

|θi − θ j | � δ for all 〈i, j〉
∞ otherwise.

Therefore all configurations are constrained so that the spins
at neighboring sites cannot differ by more than δ. Since the
partition function does not depend on the thermodynamic
temperature, we consider the parameter δ as taking on this
role instead, and the model undergoes a BKT transition as
δ increases at approximately δ = 0.2825 [46] with ν = 1

2 .
Notice that while δ < 0.25 no (anti)vortices may form.

Using the angle difference filtration described in Sec. II B
we obtain average persistence images as shown in Fig. 10. We

FIG. 9. The curve collapse of χkNN for the XY model with Tc =
0.8918, ν = 0.4972, and b = 0.5073.
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FIG. 10. The average H1 persistence image in birth-persistence
coordinates at different deltas for the constrained XY model with
L = 30.

immediately see a resemblance with the persistence images
obtained for the XY model in Fig. 3 except that we see a
cutoff effect at birth = δ, since by this point all neighboring
lattice sites must have been connected in the filtration. For
this model we must adjust our methodology slightly since
histogram reweighting is not possible. Instead we will sample
deltas more densely, then to extract the maximums of χLR and
χkNN we will fit a parabola to the three highest points.

1. Logistic regression analysis

We trained logistic regression models on samples drawn
from δ = 0.27, 0.272, ..., 0.28 in the low delta phase, and
δ = 0.286, 0.288, ..., 0.296 in the high delta phase with 4000
samples from each. The regularization hyperparameter was
set to C = 0.001. We evaluated the models with 4000 sam-
ples from each of δ = 0.27, 0.271, ..., 0.296. A plot of the
resulting phase indicators is shown in Fig. 11. The plot of
the pseudocritical deltas against log(L)−2 is shown in Fig. 12.
We do not observe any significant lattice-size dependence in
the pseudocritical deltas. They instead seem to be distributed
close to δ = 0.283 which is the midpoint of the training deltas.

The curve collapse (Fig. 13) procedure gives

δc = 0.2843 ± 0.0013,

ν = 0.4999 ± 0.0189,

b = 0.3009 ± 0.0041,

which is not likely to account for the expected value of δc =
0.2825 but does support ν = 1

2 .
The weights of the logistic regression model trained for

L = 140 are shown in Fig. 14. We observe a similarity to the
weights learnt for the XY model in Fig. 8 although in this case
it appears to be more difficult to delineate which regions of the
persistence images indicate the two phases.

2. k-nearest-neighbor analysis

We trained the k-nearest-neighbor models on samples
drawn from δ = 0.27, 0.272, ..., 0.28 in the low delta phase,
and δ = 0.286, 0.288, ..., 0.296 in the high delta phase with
4000 samples from each. The neighbor hyperparameter was
set to k = 30. We evaluated the models with 4000 samples
from each of δ = 0.27, 0.271, ..., 0.296. A plot of the resulting
phase indicators is shown in Fig. 11. The plot of the pseudo-
critical deltas against log(L)−2 is shown in Fig. 12. Here we
see an asymptotic convergence towards a linear dependence
between the pseudocritical deltas δc(L) and log(L)−2. Fitting
a straight line to the largest three lattice sizes yields

δc = 0.2821 ± 0.0014.

The curve collapse (Fig. 15) procedure gives

δc = 0.2818 ± 0.0017,

ν = 0.5003 ± 0.0206,

b = 0.5022 ± 0.0048,

very close to the expected values.

C. Nematic XY model

There are a variety of generalized XY models with nematic
interactions. We will consider the model with Hamiltonian

H (θ) = −
∑
〈i j〉

{ cos(θi − θ j ) + (1 − ) cos[2(θi − θ j )]},

FIG. 11. Plots showing (a) 〈OLR〉 and (b) 〈OkNN 〉 as a function of delta for each lattice size for the constrained XY model. The shaded
regions indicate the deltas used for the low and high delta training data. The vertical line shows the location of the expected critical delta
δc = 0.2825. Note that for the k-NN plot the training regions extend farther away than what is shown.
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FIG. 12. Estimating the critical delta for the constrained XY model using (a) logistic regression and (b) k-nearest neighbors. The
pseudocritical deltas for the different lattice sizes, calculated from finding the peak of χp, are fitted to the ansatz in Eq. (5). For the logistic
regression we use all the lattice sizes in the fit, and for the k-nearest neighbors we use the largest three lattice sizes. The intercept gives the
estimate for δc(∞). Error bars are estimated by bootstrapping.

where we will fix  = 0.15. The first term is the usual
XY interaction, but the second term is a nematic interaction
which remains invariant when any individual spin is rotated
180 degrees. We can imagine this as an interaction between
the spins considered as headless rods: spins which are parallel
contribute less energy, even if they point in opposite direc-
tions. The T - phase diagram of this model is explored in
[47–49], and we see that at our chosen  = 0.15, it undergoes
two phase transitions as temperature increases. The first is
an Ising-type transition from a magnetic phase to a nematic
phase at T ≈ 0.3314 (as estimated using the magnetic suscep-
tibility) resulting in (anti)vortices (which remain bound into
vortex-antivortex pairs) stretching into domain walls with a
half-(anti)vortex at each end; across the wall the spins flip by
π . See Fig. 16 for an example. The second is a BKT transition
to a paramagnetic phase at T ≈ 0.7808 (as estimated using
the magnetic susceptibility) driven by the unbinding of these
pairs of now-elongated vortices and antivortices.

Following the intuition developed in Sec. II B, we consider
two different filtrations: The first is the angle difference filtra-
tion used for the XY and constrained XY model, where each
edge 〈i j〉 of the lattice is added into the filtration at time 1

2π
di j ;

The second is the nematic angle difference filtration which

FIG. 13. The curve collapse of χLR for the constrained XY model
with δc = 0.2843, ν = 0.4999, and b = 0.3009.

uses the nematic distance between spins, adding in edges at
time 1

2π
dn

i j = min( 1
2π

di j, 0.5 − 1
2π

di j ). The resulting average
persistence images are shown in Figs. 17 and 18, respectively.

From Fig. 17 we see that the magnetic-nematic transition is
manifested in the angle difference filtration by the emergence
of a cluster in the bottom right of the persistence image and
the rightwards movement of the cluster in the top left. These
correspond to the appearance of domain walls in configura-
tions. In particular, at a time close to 0.5 in the filtration, the
edges which cross domain walls will get added all at once,
forming many short-lived cycles. Meanwhile, (anti)vortices
get stretched out into strings so that more spins must be
connected in the filtration before a hole is formed, generally
causing the time at which this happens to increase a little.
There is little qualitative difference between the images across
the BKT transition, however. In Fig. 18 we see a familiar
picture of the BKT transition which is very similar to that ob-
served in the XY model and constrained XY model, while the
Ising-type transition is not detectable at all. We also looked at
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FIG. 14. The weights of the logistic regression model trained on
configurations over the BKT transition in the constrained XY model
with L = 140.
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FIG. 15. The curve collapse of χkNN for the constrained XY
model with δc = 0.2818, ν = 0.5003, and b = 0.3022.

a combined angle difference filtration using 
2π

di j + 1−
2π

dn
i j ,

but while this did seem to detect both phase transitions, it
was difficult to effectively train the classification models to
identify two phases at a time.

1. Logistic regression analysis of magnetic-nematic transition

We trained logistic regression models on samples drawn
from T = 0.32 and 0.3225 in the low-temperature phase, and
T = 0.3425 and 0.345 in the high-temperature phase with
10 000 samples from each. The regularization hyperparameter
was set to C = 10−6. We evaluated the models with 10 000
samples from each of T = 0.33, 0.33125, ..., 0.335. A plot of
the resulting phase indicators is shown in Fig. 19. The plot
of the pseudocritical temperatures against L−1 is shown in
Fig. 20. For the lower lattice sizes L < 60, we do not observe
any significant lattice-size dependence in the pseudocritical
temperatures. They instead seem to be distributed close to

FIG. 16. A configuration with a vortex that has stretched out into
two half-vortices separated by a domain wall.
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FIG. 17. The average H1 persistence image in birth-persistence
coordinates at different temperatures for the nematic XY model with
L = 30 using the angle difference filtration. The magnetic-nematic
phase transition occurs between the middle and right images on
the top row and the nematic-paramagnetic BKT transition occurs
between the middle and right images on the middle row.

0.00 0.25
0.00

0.25
T = 0.1

0.00 0.25
0.00

0.25
T = 0.25

0.00 0.25
0.00

0.25
T = 0.4

0.00 0.25
0.00

0.25

P
er

si
st

en
ce

T = 0.55

0.00 0.25
0.00

0.25
T = 0.7

0.00 0.25
0.00

0.25
T = 0.85

0.00 0.25
0.00

0.25
T = 1.0

0.00 0.25

Birth

0.00

0.25
T = 1.15

0.00 0.25
0.00

0.25
T = 1.3

FIG. 18. The average H1 persistence image in birth-persistence
coordinates at different temperatures for the nematic XY model with
L = 30 using the nematic angle difference filtration. The magnetic-
nematic phase transition occurs between the middle and right images
on the top row and the nematic-paramagnetic BKT transition occurs
between the middle and right images on the middle row. Note the
similarity with Figs. 3 and 10.
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FIG. 19. Plots showing (a) 〈OLR〉 and (b) 〈OkNN 〉 as a function of temperature for each lattice size for the magnetic-nematic transition in
the nematic XY model. The shaded regions indicate the temperatures used for the low- and high-temperature training data. The vertical line
shows the location of the expected critical temperature Tc = 0.3314.

T = 0.3325, which is the midpoint of the training tempera-
tures. At the larger lattice sizes L � 60, a linear dependence
on L−1 emerges. Fitting a line to the largest four lattice sizes
yields an extrapolated critical temperature of

Tc = 0.3314 ± 0.0001.

The curve collapse (Fig. 21) procedure gives

Tc = 0.3315 ± 0.0001,

ν = 0.8562 ± 0.0102.

While these estimates of the critical temperature are good,
the expected value of ν = 1 doesn’t fall within the error bars
estimated with this approach.

The weights of the logistic regression model trained for
L = 140 are shown in Fig. 22. We observe that the classifier
learns to detect exactly what we saw in Fig. 17, namely, a
rightwards shift of the upper left cluster, and the emergence of
a cluster in the bottom right, corresponding to domain walls
forming in the configurations.

2. k-nearest-neighbor analysis of magnetic-nematic transition

We trained the k-nearest-neighbor models on samples
drawn from T = 0.32 and 0.3225 in the low-temperature

phase, and T = 0.3425 and 0.345 in the high-temperature
phase with 4000 samples from each. The neighbor hyperpa-
rameter was set to k = 30. We evaluated the models with 4000
samples from each of T = 0.33, 0.33125, ..., 0.335. A plot of
the resulting phase indicators is shown in Fig. 19. The plot
of the pseudocritical temperatures against L−1 is shown in
Fig. 20. Here we see that for L � 60, the pseudocritical tem-
peratures fit reasonably well on a straight line when plotted
against L−1. Fitting a line to the largest four lattice sizes yields

Tc = 0.3315 ± 0.0002.

The curve collapse (Fig. 23) procedure gives

Tc = 0.3316 ± 0.0002,

ν = 0.9551 ± 0.0196,

very close to the expected value of Tc = 0.3314, but not quite
compatible with ν = 1 although better than the logistic regres-
sion result.

3. Logistic regression analysis of nematic-paramagnetic transition

We trained logistic regression models on samples drawn
from T = 0.74, 0.75, and 0.76 in the low-temperature phase,
and T = 0.8, 0.81 and 0.82 in the high-temperature phase

FIG. 20. Estimating the critical temperature for the magnetic-nematic transition in the nematic XY model using (a) logistic regression and
(b) k-nearest neighbors. The pseudocritical temperatures for the different lattice sizes, calculated from finding the peak of χp, are fitted to
the ansatz in Eq. (4). In both cases we use the largest four lattice sizes for the fit. The intercept gives the estimate for Tc(∞). Error bars are
estimated by bootstrapping.
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FIG. 21. The curve collapse of χLR for the magnetic-nematic
transition in the nematic XY model with Tc = 0.3315 and ν =
0.8562.

with 10 000 samples from each. The regularization hyperpa-
rameter was set to C = 0.001. We evaluated the models with
10,000 samples from each of T = 0.74, 0.75, ..., 0.82. A plot
of the resulting phase indicators is shown in Fig. 24. The plot
of the pseudocritical temperatures against log(L)−2 is shown
in Fig. 25. We do not observe any significant lattice-size
dependence in the pseudocritical temperatures. They instead
seem to be distributed just above to T = 0.78, which is the
midpoint of the training temperatures. While a straight line fit
to all but the smallest lattice size yields an extrapolated critical
temperature of

Tc = 0.7804 ± 0.0002,

not too far from the expected Tc ≈ 0.7808, Fig. 25 does not
suggest that increasing the statistics would lead to increased
accuracy. However, the curve collapse (Fig. 26) procedure
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FIG. 22. The weights of the logistic regression model trained on
configurations over the magnetic-nematic transition in the nematic
XY model with L = 140.

FIG. 23. The curve collapse of χkNN for the magnetic-nematic
transition in the nematic XY model with Tc = 0.3316 and ν =
0.9551.

gives

Tc = 0.7803 ± 0.0025,

ν = 0.5107 ± 0.0101,

b = 0.3037 ± 0.0076,

accounting for the expected value of Tc = 0.7808, but giving
a potentially questionable result for ν = 1

2 which lies just
outside one standard deviation.

The weights of the logistic regression model trained for
L = 140 are shown in Fig. 27. We note the similarity to
the weights learnt for the XY model in Fig. 8 except now
the region in the top left represents half-vortices and half-
antivortices which change behavior, shifting down to the right
as temperature increases and they unbind.

4. k-nearest-neighbor analysis of nematic-paramagnetic transition

Similarly to the case of the XY model, we found that the
k-nearest-neighbor classification worked best when trained on
a broad range of temperatures. We trained the models on sam-
ples drawn from T = 0.5, 0.55, ..., 0.7 in the low-temperature
phase, and T = 0.85, 0.9, ..., 1.05 in the high-temperature
phase with 2000 samples from each. The neighbor hyper-
parameter was set to k = 30. We evaluated the models with
10 000 samples from each of T = 0.74, 0.75, ..., 0.82. A plot
of the resulting phase indicators is shown in Fig. 24. The plot
of the pseudocritical temperatures against log(L)−2 is shown
in Fig. 25. Here we see an asymptotic convergence towards
a linear dependence between the pseudocritical temperatures
Tc(L) and log(L)−2. Fitting a straight line to the largest four
lattice sizes yields

Tc = 0.7766 ± 0.0034.

While this is further from the expected Tc ≈ 0.7808 than
the result of the logistic regression approach, the approach
towards the correct finite-size scaling is much clearer. The
curve collapse (Fig. 28) procedure gives

Tc = 0.7757 ± 0.0064,

ν = 0.4983 ± 0.0226,

b = 0.3051 ± 0.0083,
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FIG. 24. Plots showing (a) 〈OLR〉 and (b) 〈OkNN 〉 as a function of temperature for each lattice size for the nematic-paramagnetic transition
in the nematic XY model. The shaded regions indicate the temperatures used for the low- and high-temperature training data. The vertical line
shows the location of the expected critical temperature Tc = 0.7808. Note that for the k-nearest-neighbor case the training regions lie outside
the bounds of the plot.

which is compatible with the expected values of Tc = 0.7808
and ν = 1

2 .

IV. CONCLUSIONS AND DISCUSSION

We have introduced a way of applying persistent homology
to analyze the configurations of lattice spin models, investi-
gating the phase transitions in the 2D XY model with three
different Hamiltonians: the standard action, a topological lat-
tice action, and a modified standard action with an additional
nematic interaction term. In each case we were able to suc-
cessfully identify the phase transition and estimate its critical
temperature and critical exponent of the correlation length by
considering the finite-size scaling of observables derived from
the persistent homology of configurations. In particular we
trained logistic regression and k-nearest-neighbor classifiers
to identify the phases of the models from persistence images.
The critical point was estimated as the temperature at which
the variance in the classification reached a maximum.

We have found that the previously introduced approach of
using logistic regression for classification, while useful for
interpreting which regions of the persistence image indicate
the different phases, fails to produce accurate estimates of

the critical temperature or exponents in the case of the BKT
transitions. Instead it will tend to yield the midpoint between
the low- and high-temperature training temperatures as the
critical temperature. Indeed, using different temperatures for
the training causes the estimated critical temperature to shift
accordingly. We believe this failure is because logistic regres-
sion is a generalized linear model and the data here are highly
nonlinear. On the other hand, the nonparametric k-nearest-
neighbor approach generally produces good results, with a
clear asymptotic approach towards the expected finite-size
scaling behavior in all cases.

There are a number of interesting questions and directions
for further research:

(1) The approach presented in this paper could easily be
extended to other lattice spin models, but it would also be
interesting to see if the filtration presented in Sec. II B could
be adapted to more complex models such as those from lattice
gauge theory.

(2) The similarity of the persistence images across the
BKT transition in all three models raises the question of the
extent to which the persistence is a universal quantity. This
could potentially facilitate a transfer learning approach where
classifiers trained on one model can identify phase transitions

FIG. 25. Estimating the critical temperature for the nematic-paramagnetic transition in the nematic XY model using (a) logistic regression
and (b) k-nearest neighbors. The pseudocritical temperatures for the different lattice sizes, calculated from finding the peak of χp, are fitted to
the ansatz in Eq. (5). For the logistic regression we use all the lattice sizes except the smallest in the fit, and for the k-nearest neighbors we use
the largest four lattice sizes. The intercept gives the estimate for Tc(∞). Error bars are estimated by bootstrapping.
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FIG. 26. The curve collapse of χLR for the nematic-paramagnetic
transition in the nematic XY model with Tc = 0.7803, ν = 0.5107,
and b = 0.3037.

of the same universality class in another model (see, e.g.,
[11]).

(3) It could also be investigated if the use of a vectoriza-
tion and a classifier is necessary in the first place. There is
a notion of variance for persistence diagrams called Fréchet
variance [37] which might show finite-size scaling behavior
directly. However, this is computationally expensive to mea-
sure.

(4) Finally, we note that there have been a variety of dif-
ferent filtrations used to compute the persistent homology of
configurations of lattice spin models. It would be interesting
to see how these perform and complement one another on a
single data set.
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APPENDIX A: CUBICAL COMPLEXES AND HOMOLOGY

This is a very compressed version of the exposition found
in [51]. An elementary interval is an interval of the form
[i, i + 1] ⊂ R (nondegenerate) or [i, i] = {n} (degenerate) for
some choice of i ∈ Z. An elementary cube is a finite prod-
uct of elementary intervals Q = I1 × · · · × In ⊂ Rn, where
n is some fixed embedding dimension. Its dimension dim Q
is the number of nondegenerate intervals in the product. A
cubical complex C is a subset of Rn which is a union of
elementary cubes. Specifying a field F, we define F-vector
spaces Ck = {∑αiQi | Qi ⊆ C, dim Qi = k, αi ∈ F} for each
k ∈ N, consisting of finite formal sums of elementary cubes.
The boundary of a nondegenerate elementary interval is given
by the formal sum ∂[i, i + 1] = [i + 1, i + 1] − [i, i]. For a
degenerate elementary interval the boundary is zero. The
boundary of an elementary cube Q = (I1 × · · · × In) is a for-
mal sum

∂Q =
n∑

j=1

(−1)
∑ j−1

i=1 dim Qi (I1 × · · · × ∂I j × · · · × In), (A1)

where we consider × as distributing over the formal sum-
mation. We can see that for dim Q � 1 we have dim ∂Q =
dim Q − 1. Therefore we can extend ∂ to linear maps ∂k :
Ck → Ck−1 via the mapping

∑
αiQi �→ ∑

αi(∂Qi). Since
∂∂I = 0 for any elementary interval I , we also see that ∂k ◦
∂k+1 = 0 for all k ∈ N, so that im ∂k+1 ⊆ ker ∂k . See Fig. 29
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FIG. 29. Example of how the boundary operator ∂ acts on a
simple cubical complex consisting of a single 2D cube. Note how
the sum in Eq. (A1) being alternating ensures that ∂∂ = 0.

for an example. A sequence of linear maps

· · · → C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

with this property is called a chain complex. The kth cubical
homology of C over F is defined to be the quotient vector
space

Hk (C; F) = ker ∂k

im ∂k+1
.

This construction is functorial: given a suitable definition of
a cubical map f :C → D between cubical complexes, there
is an induced map fk: Hk (C; F) → Hk (D; F) for each k ∈ N.
We will not introduce these in general, but will note that
given C ⊆ D, the inclusion map C ↪−→ D is cubical and hence
induces maps on homology.

APPENDIX B: STABILITY OF FILTRATION

We briefly show that the filtrations introduced in Sec. II B
yields persistent homology which is stable under small per-
turbations of spins with respect to the bottleneck distance
between persistence diagrams. We make use of the following
concept:

Definition (Interleaving). Given filtrations

F, G : (R,�) → CubicalComplex,

we say that F and G are ε-interleaved if for all t ∈ R we have
that F (t ) ⊆ G(t + ε) and G(t ) ⊆ F (t + ε). We say that the
interleaving distance between F and G is

dI (F, G) = in f {ε | F and G are ε-interleaved}.
Then from [52] we have the following theorem.
bold Theorem Given filtrations F and G as before, and k ∈

N, we have that

dB(PHk (F ), PHk (G)) � dI (F, G),

where dB is the bottleneck distance.
Thus we just need to show that the filtration we assign to a

configuration Fθ are ε-interleaved with the filtration obtained
after a perturbation of the configuration for some ε bounded
by the changes in the spins. Take F to be the angle differ-
ence filtration introduced in Sec. II B and suppose we have
a configuration θ and change spin θi to θi + θ to obtain a
configuration θ′. Then given a neighboring spin θ j , denote the
length of the smallest arc between θi and θ j by di j and the
length of the arc between θi + θ and θ j by d ′

i j . Then we have

that

di j − θ � d ′
i j � di j + θ.

Hence for all filtration values t ∈ R we have inclusions
Fθ (t ) ↪→ Fθ′ (t + θ/2π ) and Fθ′ (t ) ↪→ Fθ (t + θ/2π ) so
that the filtrations are θ

2π
-interleaved. By the theorem above,

we have

dB(PHk (Fθ ), PHk (Fθ′ )) � θ

2π

for all k ∈ N. A straightforward application of the triangle
inequality shows that if multiple spins are altered then the
bottleneck distance is bounded by the sum of the alterations.
The same argument applies in the case of the nematic angle
difference filtration.

On the other hand, we observe that the sublevel set filtra-
tion for S1-valued spins introduced in [24] does not have this
stability. An arbitrarily small perturbation ε to one of the spins
can change its angle from π to −π + ε, potentially introduc-
ing or removing a high persistence point in the persistence
diagram. Although this is mitigated to an extent in practice by
choosing angle 0 to be in the direction of the magnetization.

APPENDIX C: HISTOGRAM REWEIGHTING

Histogram reweighting allows us to express the ensemble
average of an observable O at temperature T ′ in terms of
averages at any other temperature T according to the equation

〈O〉T ′ = 〈Oe−(β ′−β )E 〉T

〈e−(β ′−β )E 〉T
, (C1)

where β = 1/T , β ′ = 1/T ′, and E is the energy of a config-
uration [40]. However, in practice we can only reweight so
far, so that the energy distributions for T and T ′ have a sizable
overlap. To reliably extrapolate to a wider region we can make
use of multiple histogram reweighing [41] where we sample
at multiple temperatures T1, . . . , TR (with corresponding in-
verses β1, . . . , βR). Suppose we sample Ni configurations at
temperature Ti, then we can iterate the equation

e− fβ =
R∑

i=1

Ni∑
a=1

g−1
i e−βEa

i∑R
j=1 Njg

−1
j e−β j Ea

i + f j

to estimate the free energies fi = fβi at the temperatures Ti up
to an additive constant, where each gi is a quantity related to
the integrated autocorrelation of the samples in run i. Given
the fi we can estimate

〈O〉T ′ =
R∑

i=1

Ni∑
a=1

Oa
i g−1

i e−βkEa
i + fβ′∑R

j=1 Njg
−1
j e−β j Ea

i + f j
.

APPENDIX D: BOOTSTRAP ERROR ESTIMATION

To make any reasonable conclusions from the results of
our analysis we need to be able to estimate the error in any nu-
merical values obtained. While the error in ensemble averages
can be directly estimated from the sample, we also calculate
various fits to the data. The way in which error propagates here
is not necessarily easy to calculate directly. Recall that the idea
of bootstrap analysis is to sidestep these concerns by estimat-
ing the sampling distribution of a statistic directly. Suppose
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we obtain N sampled configurations S = {θ1, . . . , θN } and
calculate some numerical statistic f (S) from the data. Given
some preset integer NB, bootstrap analysis proceeds by the
following:

(1) Resampling S with replacement NB times to obtain
samples S1, . . . , SNB each of size N ; then

(2) Computing f (Si ) for each i ∈ {1, . . . , NB}.

For large enough NB, the distribution of the f (Si ) approxi-
mates the sampling distribution of f and we can estimate the
standard error

σ f ≈
√

1

NB − 1

∑
i

[ f (Si ) − f (S j )]2.
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