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We use persistent homology and persistence images as an observable of three different variants of
the two-dimensional XY model in order to identify and study their phase transitions. We examine
models with the classical XY action, a topological lattice action, and an action with an additional
nematic term. In particular, we introduce a new way of computing the persistent homology of lattice
spin model configurations and, by considering the fluctuations in the output of logistic regression
and k-nearest neighbours models trained on persistence images, we develop a methodology to extract
estimates of the critical temperature and the critical exponent of the correlation length. We put
particular emphasis on finite-size scaling behaviour and producing estimates with quantifiable error.
For each model we successfully identify its phase transition(s) and are able to get an accurate
determination of the critical temperatures and critical exponents of the correlation length.

I. INTRODUCTION

There is an emerging body of work exploring the use
of machine learning and other data analysis methods to
detect and classify phase transitions in statistical physics
systems. An incomplete list of references includes [1–14].
One of the motivations of this approach is to develop
methodologies which require minimal a priori knowledge
about the systems in question. The hope then is that
these data-centric methods will be able to offer new in-
sights into those models at the forefront of physics which
seem to defy analytical methods [15]. Much of the work
in this area makes use of neural network models which,
while unparalleled in machine learning tasks, are gen-
erally hard to interpret. But recently, among other geo-
metric and topological approaches [16–19], there has been
an interest in using persistent homology, a tool from the
new field of topological data analysis (TDA), to produce
interpretable features which are inherently sensitive to
topological objects. These can then be compared in their
own right, or fed into a machine learning model [20–25].

There are at least two paradigms for using persistent
homology to study phase transitions of a given statis-
tical physics model. The first can be called persistent
homology in configuration/data space, where the topol-
ogy of the high-dimensional space of model configura-
tions is probed from samples. This approach is based
on the topology hypothesis for the origin of phase tran-
sitions [26, 27] and is the approach used in [25]. The
idea here is that a thermodynamic phase transition nec-
essarily coincides with a change in the topology of the
energy level set, although such a change does not turn
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out to be a sufficient condition [28]. In the present work
however, we shall make use of a newer paradigm, inves-
tigated also in [20–24], which we call persistent homology
as an observable. Given a sampled configuration of a
model, we construct a sequence of geometric complexes
based on that configuration. This sequence of topologi-
cal spaces is known as a filtration. Applying persistent
homology to the filtration yields a collection of points
called a persistence diagram, which represents this con-
figuration. We can think of this process as a means to
reduce the degrees of freedom of the model and produce
nonlinear summaries of configurations. Statistics of these
persistence diagrams are then analysed as the system un-
dergoes a phase transition. Previous works have focused
on identifying the different phases in various models in a
mostly qualitative manner. While [24] makes some steps
towards obtaining quantitative measurements of the mul-
tiscale structure of the Ising model at criticality, a frame-
work for using persistent homology observables to make
rigorous numerical estimates of critical temperatures and
exponents with quantified error has not yet been explored
in the literature.

While the existing works on the persistent homology as
an observable paradigm share the same underlying idea,
the approaches seen so far have differed significantly,
both in how filtrations have been constructed, and how
the resulting persistence diagrams have been analysed.
Tran, Chen, and Hasegawa investigated phase transitions
in the 2D XY model, 1D transverse-field Ising and 1D
Bose-Hubbard models [22]. They computed the Vietoris-
Rips persistence of point clouds of lattice sites with inter-
point distances given by a linear combination of the Eu-
clidean distance in the lattice and the difference in the
spins. They show that clustering configurations based
on the the Persistence Fisher kernel [29], persistence en-
tropy and the second moment of persistence of the H1

diagrams identifies the different phases. They demon-
strate that increasing the lattice size produces sharper
estimates of the critical temperature. This approach is
extended to the XXZ model on a pyrochlore lattice by
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Olsthoorn, Hellsvik, and Balatsky, approximately sepa-
rating the six different phases of the model [23].

Cole, Loges, and Shiu apply a different methodology
to the previous works. Looking at the 2D Ising, square-
ice, XY and fully-frustrated XY models, they introduce
general constructions of filtrations for configurations of
discrete-valued and circle-valued spin models [24]. In par-
ticular, configurations of circle-valued models are given a
sublevel set filtration of the map f : Λ → (−π, π] which
assigns each site i ∈ Λ in the lattice a parameterisation of
its spin f(i) ∈ (−π, π]. This filtration yields cubical sub-
complexes of the lattice. They make use of persistence
images [30] to vectorise persistence diagrams, allowing
the application of a logistic regression model to separate
the phases. They relate some quantitative aspects of the
persistence diagrams to the estimation of critical expo-
nents in the case of the Ising model. For discrete mod-
els they construct α-complexes on subsets of the lattice
sites with the same spin. This is similar to the approach
used by Hirakida et al. in [21] who look at the effective
Polyakov line model.

Comparing the approach in [22] and [23] to that in
[24] makes it clear that there is a significant degree of
choice in picking the filtration used to compute the per-
sistent homology of a given lattice configuration. We will
demonstrate that this choice is an important factor in de-
termining what information about phase transitions one
can derive from the persistence. In particular, we in-
vestigate an XY model with a nematic interaction term
and find that using two different filtrations is required
to detect and analyse the two different phase transitions
undergone by the system.

Our main contributions are as follows:

• We introduce a new class of filtrations on lattice
spin systems which, while general, allow persistent
homology to easily detect topological defects.

• Extending the approach of using logistic regression
on persistence images introduced in [24], we inves-
tigate the applicability of finite-size scaling analy-
sis. In particular, we apply the standard statistical
tools of histogram reweighting and bootstrapping
to obtain estimates of the critical temperature and
the critical exponent of the correlation length with
quantified error.

• Finding inadequacies with using logistic regression
for precise estimates of the critical temperature, we
introduce a non-parametric method using k-nearest
neighbour classification as a tool to estimate the
critical temperature of phase transitions from per-
sistence images. This yields improved results.

• We consider a model with both an Ising-type
and Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion (the Nematic XY model) and find that two

different filtrations are required to capture the two
transitions. Each filtration sees one transition, but
neither is able to capture information about both
transitions. We take this as evidence that the
technique is not applicable entirely unsupervised;
rather, care must be taken to design a filtration
tuned for the problem.

The rest of the paper is organised as follows. In Section
II we give a brief review of the techniques we use, covering
persistent homology, supervised classification, finite-size
scaling analysis, histogram reweighting and bootstrap-
ping. At the end we detail the steps of the data genera-
tion and analysis pipeline. In Section III we look at the
three models under consideration. In each case we give a
brief review of the model and its phase transition(s) be-
fore discussing the analysis and results using logistic re-
gression and then k-nearest neighbours. In Section IV we
discuss our findings and identify potential directions for
future work. The appendices contain more detailed re-
views of some of the tools we use as well as the argument
demonstrating the stability of the persistence diagrams
obtained using our filtrations.

II. METHOD

A. Background on Persistent Homology and
Persistence Images

Persistent homology is a computational topology tool
introduced in its modern form in [31] and popularised in
[32]. It is one of the main tools of the emerging field of
Topological Data Analysis. We shall give a brief overview
here, but for a more complete review of persistent homol-
ogy useful references are [33–36].

Given a topological space, such as a manifold or a
simplicial/cubical complex, homology can intuitively be
thought of as an algebraic way of describing the ’holes’ in
the space. In particular, the spaces we consider will be
cubical complexes. A very brief technical introduction
to cubical complexes and their homology can be found
in Appendix A. But in general terms, given a cubical
complex C, its kth cubical homology Hk(C) is a vector
space which has a basis in 1-1 correspondence with the
k-dimensional holes in C. Moreover, given a map of cu-
bical complexes f : C → C ′, we obtain induced linear
maps fk : Hk(C) → Hk(C

′). The rank of fk tells us how
many of the holes survived after being mapped into C ′

i.e. how many persisted. Given some data D, the idea of
(cubical) persistence then is to construct a sequence

F1(D) → F2(D) → . . . → FN (D)

of cubical complexes called a filtration using the data.
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Typically the Fi(D) are each subcomplexes of the final
complex FN (D); for each cell we specify the index i at
which it appears, and then Fi is the subcomplex consist-
ing of all cells that have appeared at or before i. The
maps Fi(D) → Fi+1(D) are simply the inclusions.

We then apply homology to obtain a sequence of linear
maps

Hk(F1(D)) → Hk(F2(D)) → . . . → Hk(FN (D)).

Using the ranks of these maps we can track the birth of
new holes, their persistence through the filtration, and
their deaths. We summarise this information as a multi-
set called a persistence diagram PHk(F (D)) ⊂ {(a, b) ∈
R2 | a ≤ b} which contains a pair (b, d) every time a
hole is born in Fb(D) and dies in Fd(D). We say that
a feature is born at b, dies at d and that its persistence
is d − b. This can also be represented as a barcode (a
multi-set of intervals [b, d)). There are a few ways to de-
fine distances between persistence diagrams, but those
which are most commonly used are the bottleneck and
Wasserstein distances. For many typical choices of filtra-
tion a small change in the input data D leads to only a
small change in the persistence diagram PHK(F (D)) as
measured by these distances. This property of persistent
homology is known as stability, and makes persistence a
useful tool for dealing with real-world, noisy data.

In the persistent homology in configuration space
paradigm, D is the entire collection of sampled configura-
tions, and we obtain a single persistence diagram. How-
ever, when we use persistent homology as an observable,
D is a single configuration of the model we are studying.
We therefore obtain a persistence diagram for each sam-
pled configuration and we can consider statistics com-
puted from these diagrams. Unfortunately persistence
diagrams in their raw form as multi-sets do not lend
themselves to computing the typical statistics of inter-
est such as means and variances. While there has been
work developing notions of these quantities as Frechét
means and variances [37], we shall instead prefer to work
with a vector representation of the diagrams known as
persistence images [30] which preserve stability.

Let ga,b : R2 → R denote a 2D Gaussian of standard
deviation σ centered at (a, b):

ga,b(x, y) =
1

2πσ2
exp

[
− (x− a)2 + (y − b)2

2σ2

]
.

Given a persistence diagram PHk = {(bi, di)}i∈I , its per-
sistence surface is the function ρk : R2 → R obtained by
translating each point (b, d) ∈ PHk into birth-persistence
coordinates (b, d − b), then placing Gaussians with vari-
ance σ2 on them, weighted by the persistence of the point:

ρk(x, y) =
∑

(b,d)∈PHk

(d− b) gb,d−b(x, y).

The persistence image PIk is obtained by discretizing a
rectangular region of the domain of ρk into a collection
of nI × nI pixels pi and integrating ρk within each:

PIik =

∫∫
pi

ρk(x, y)dxdy.

In this way we obtain a (nI)
2-dimensional vector repre-

senting our persistence diagram. See Figure 1 for an
example. So long as we choose the same σ and dis-
cretization for each diagram, we can compute averages
and variances component-wise. As observed in [38], if
we are sampling data from some distribution and the ex-
pected persistence diagram has a density with respect to
the Lebesgue measure on {(a, b) ∈ R2 | a ≤ b}, then the
average of the persistence images can be thought of as
an estimator for this density, multiplied by an additional
weighting equal to the persistence. Besides emphasising
high-persistence points, the linear weighting by the per-
sistence ensures the stability of the persistence image.
Finally we note that, as discussed in [30], machine learn-
ing models trained on persistence images are generally
insensitive to the resolution and variance parameters nI

and σ. Therefore in this work, we shall fix the parame-
ters with a resolution of 30 × 30 and σ equal to 10% of
a pixel. However, as a check we also performed one of
the later experiments with a 15 × 15 resolution, finding
no significant change in the results or estimated errors.
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FIG. 1. An illustration of how the persistence image is ob-
tained from a persistence diagram (a). It is first transformed
into birth-persistence coordinates (b), then the persistence
surface (c) is computed before discretisation, yielding the per-
sistence image (d).
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B. Filtrations

In this work we will be working with finite two-
dimensional lattices with a circle valued spin at each
lattice site. To apply persistent homology we must
choose how to define a filtration for a given configura-
tion θ = {θi}, where θi represents the spins as angles.
Our idea is to filter the square tiling of the plane corre-
sponding to the lattice Λ according to the differences in
neighbouring spins. For each cell in this cubical complex,
we will specify a time at which it appears, and then Ft

is the subcomplex of the plane consisting of all cells that
have appeared by time t. Denote the smallest angle be-
tween spins θi and θj by dij . This can also be seen as
the length of the shortest arc between θi and θj on the
unit circle. Then taking the lattice as a 2-dimensional
cubical complex, we introduce each vertex i at time 0,
each edge ⟨ij⟩ at time 1

2πdij , and each plaquette □ at

time maxi,j∈□
1
2πdij . We will call this the angle differ-

ence filtration. We will also introduce another similar
filtration to use with the Nematic XY model in Section
III C. This will instead use a nematic angle difference
dnij which denotes the smallest angle between the spins
θi and θj considered as directionless rods. We can think
of this as the length of the shortest arc connecting the
head of one spin to either the head or tail of the other
spin. That is dnij = min(dij , π − dij). We will call this
the nematic angle difference filtration.

The intuition behind these filtrations originally came
from considering the 2D XY model. Regions of the lat-
tice where spins vary slowly will be introduced in the
angle difference filtration early, while regions containing
rapidly varying spins, such as at the centre of vortices,
will enter the filtration later. We should expect then, at
least at low temperatures, that each vortex will be man-
ifested as a hole in the filtered lattice which is formed
early on in the filtration, and which only gets filled in
much later: i.e. a persistent H1 class. Figure 2 shows an
example of this. However we will see that this kind of
filtration can capture other structure such as spin waves,
or half-vortices and domain walls when we look at the
Nematic XY model. Moreover, compared to the point
cloud filtrations used in [22, 23] this class of filtrations has
the computational benefit that edges are only introduced
between neighbouring lattice sites and only elementary
cubes up to dimension 2 are included, greatly speeding
up the computation of persistent homology. In this case
the filtrations consist of subcomplexes of the plane, so
contain cubes of dimension at most 2 anyway. But note
that for models on higher dimensional lattices, including
cubes of higher dimension in the filtration would not have
any effect on H1 which is the only homological degree we
use in our analysis. As discussed in Appendix B, the
persistence diagrams obtained using these filtrations are
stable with respect to small perturbations to the spins,
in contrast to the sublevel set filtration used in [24].

C. Logistic Regression

Following the approach introduced in [24], we will train
a logistic regression model to map the persistence images
obtained from configurations onto phases. Recall that lo-
gistic regression is a generalised linear model which mod-
els a binary dependent variable y(x) ∈ {0, 1}. For input
x ∈ RN , a logistic regression model is parameterised by
a weight vector w = (w1, . . . , wN )T ∈ RN and intercept
b ∈ R. Its output is a logistic function

pw,b(x) =
1

1 + exTw+b
∈ (0, 1)

which can be interpreted as the probability that y(x) = 1,
with 1−p(x) giving the probability that y(x) = 0. Given
training data {(xi, yi)}, the weightsw and intercept b are
learnt by minimising a cross-entropy loss function

J(w, b) =

−
∑
i

[
yilog(pw,b(xi)) + (1− yi)log(1− pw,b(xi))

]
+

1

C
(wTw + b2).

The first term penalises misclassifications with the
penalty increasing as the confidence in the incorrect clas-
sification increases. The second term implements ℓ2 regu-
larisation, reducing overfitting by preventing the weights
from becoming too large, where C is a hyper-parameter
controlling the amount of regularisation.

In our case, x will be a persistence image, y(x) = 0
will indicate the low-temperature phase, and y(x) = 1
will indicate the high-temperature phase. As in [24] we
will train the model using data drawn in the low and high
temperature phases. However, since we are interested in
making a precise estimate of the critical temperature,
we will use data closer to the critical region. After suc-
cessful training, the weights will indicate features in the
persistence image characteristic of each phase. Weights
wj < 0 will indicate features of the low-temperature
phase, and weights wj > 0 will indicate features of the
high-temperature phase. In the intermediate range of
temperatures where there is no training data, the logis-
tic regression model will output an estimated classifica-
tion OLR ∈ {0, 1} depending on whether p is less than
or greater than 0.5. Notice that we clamp the output to
0 or 1 rather than using the direct output of the logis-
tic function. We find that this leads to better finite-size
scaling behaviour later on. We may then treat ⟨OLR⟩ as
a phase indicator, if not a true (dis)order parameter. In
this work we shall be interested in the distribution OLR

at different temperatures and different lattice sizes.

We note that training the logistic regression model
directly on raw configurations is ineffective due to the
highly nonlinear nature of the system.
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FIG. 2. An illustration of the angle difference filtration for a configuration of the XY model with an antivortex. The filtration
parameter increases from left to right and the state of the filtration is shown at 6 different stages. On the left-hand side only
those neighbouring spins which don’t differ too much are connected by edges and plaquettes. As we move towards the right,
more and more edges are introduced between more disparate spins. Note the correspondence between the bars and the holes
in the filtration. For example, the longest bar corresponds to the hole around the antivortex in the centre of the configuration.
This hole is formed early on as the spins far from the centre vary slowly, but survives until the central plaquette is added to
the filtration.

D. k-Nearest Neighbours Classification

We will also make use of k-nearest neighbours (k-
NN) classification to map persistence images onto phases.
This is a non-parametric model which models a categori-
cal dependent variable y(x) ∈ N, where x ∈ RN . The be-
haviour of the model is determined by the training data
{(xi, yi)} and a choice of the hyper-parameter k ∈ N.
Given new input x, it finds the k indices i1x, . . . , i

k
x which

minimise the Euclidean distance ||x− xi||2. It then out-
puts the most common label among the yi1x , . . . , yikx .

As in the case of logistic regression, x will be a persis-
tence image, y(x) = 0 will indicate the low-temperature
phase, and y(x) = 1 will indicate the high-temperature
phase. We will train the model using data drawn in the
low and high temperature phases close to the critical re-
gion. In the intermediate range of temperatures where
there is no training data, the k-NN model will output
an estimated classification OkNN ∈ {0, 1}. We may then
treat ⟨OkNN ⟩ as a phase indicator.

We note that training the classifier directly on raw
configurations is not computationally feasible; doing so
would require a vastly larger number of samples to suffi-
ciently fill out the configuration space and the computa-
tional cost of the kNN method would consequently grow
too large. The mapping from configurations to persis-
tence images concentrates the distribution near a low-
dimensional subspace, and hence kNN becomes effective
with far fewer samples.

E. Finite-Size Scaling Analysis

A typical approach to extracting the critical temper-
ature and critical exponents of continuous phase transi-
tions in spin systems is a finite-size scaling analysis of
quantities such as the magnetic susceptibility

χ(T ) =
L2

T

[
⟨|M |2⟩T − |⟨M⟩|2T

]
which diverges at the critical temperature in the ther-
modynamic limit, where M = L−2

∑
i(cos θi, sin θi) is

the magnetisation vector. On a finite lattice of length L
this quantity will remain analytic, instead displaying a
pronounced peak at a pseudo-critical temperature some-
where above or below the true critical temperature Tc.
As L → ∞ this peak grows taller and moves closer to-
wards Tc. For a second-order phase transition, like that
in the Ising model, the way in which the susceptibility
scales close to Tc can be described by the form

χ(L, t) = Lγ/ν χ̂(L1/ν t) (1)

where χ̂ is a dimensionless function, t = T−Tc

Tc
is the

reduced temperature, and γ and ν are the critical ex-
ponents for the susceptibility and correlation length re-
spectively. For a BKT transition, like that in the 2D XY
model, it scales approximately according to

χ(L, t) ≈ Lγ/ν χ̂(L exp(−bt−ν)) (2)

where we have ignored some small logarithmic correc-
tions. By simulating close to the phase transition on
different lattice sizes L we can extract the heights and
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locations of the different peaks then fit these to Equa-
tion 1 or Equation 2 as appropriate to estimate Tc, γ
and ν. Note that the logarithmic corrections we ignored
in the BKT case mean that this method is not typically
used for high precision studies, where approaches based
on the spin stiffness are more common.

Analogously, we might expect the persistent homology
of a configuration to demonstrate large variations at crit-
icality. We quantify this by looking at the fluctuations
in the output OLR and OkNN of the trained logistic re-
gression and k-NN models, measuring the variance

χLR(T ) = ⟨O2
LR⟩T − ⟨OLR⟩2T

= ⟨OLR ⟩T (1− ⟨OLR⟩T ).
(3)

Note that the second equation follows since OLR takes
values in {0, 1}. This will display a peak, indicating
the temperature at which the model is least certain
about which phase configurations are from, when ⟨OLR⟩T
crosses 0.5. χkNN is defined similarly. We find evidence
that these quantities may also display finite-size scaling
behaviour similar to Equations 1 and 2 which we will use
to estimate the critical temperature Tc and the critical
exponent of correlation length ν.

We will initially assume that ν is known and estimate
the critical temperature Tc by fitting the peak temper-
atures Tc(L) of χLR and χkNN obtained from multiple
lattice sizes to the ansatz

Tc(L)− Tc(∞) ∝ 1

L1/ν
. (4)

in the case of a second order transition, or

Tc(L)− Tc(∞) ∝ 1

log(L)1/ν
. (5)

for a BKT transition.

To estimate ν (as well as Tc), we will use a curve col-
lapse approach, plotting y = χLR or y = χkNN for multi-
ple lattice sizes simultaneously against x = L1/ν t (second
order) or x = L exp(−bt−ν) (BKT) and finding values of
ν and Tc which minimise the distance between the curves
using the Nelder-Mead method, as in the procedure de-
scribed in [39].

F. Statistical Analysis

The use of histogram reweighting to extrapolate esti-
mates of ensemble averages to an interval of temperatures
around the critical temperature [40, 41] and the use of
bootstrap or jackknife analysis to obtain error estimates
[42] are standard in quantitative investigations of phase
transitions. To provide a full demonstration of a quan-
titative analysis based on persistent homology we will

make use of both techniques which are briefly reviewed
in Appendices C and D.

In particular, we use histogram reweighting to inter-
polate the outputs of our models ⟨OLR⟩T and ⟨OkNN ⟩T .
This allows us to obtain interpolated values of the vari-
ances χLR and χkNN . Assuming the sampling tempera-
tures are close enough, this allows us to obtain a better
estimate of the height and location of peaks of each quan-
tity.

We estimate the sampling error in the training data
and the sampling error in the data in the critical region
independently. We do this by performing two bootstrap
procedures: the first by resampling the training data, and
the second by resampling the data in the critical region.
In both cases we resample the data from each temper-
ature individually. The two bootstrap procedures yield
approximate sampling distributions of the quantity we
are measuring, which we then turn into an error by com-
bining the standard deviations treating the distributions
as independent.

G. Analysis Pipeline

Combining the previous sections we arrive at the pro-
cedure for our analysis of each model at each lattice size.

1. We sample the model on the given lattice size us-
ing the Wolff cluster algorithm [43] at a range of
temperatures spanning the phase transition(s). We
perform 50, 000 Wolff cluster flips to properly ther-
malise the model, and 100 cluster flips between
samples to ensure that the autocorrelation is neg-
ligible.

2. For each sample, we compute persistence images
with 30 × 30 resolution and σ equal to 10% of a
pixel.

3. We use persistence images from the low and high
temperature phases to train the logistic regression
and k-NN models.

4. Using the trained classification models, we assign
a predicted phase to each sample from the critical
region.

5. Close to the peaks in the variances χLR and
χkNN of the classifier we apply multiple histogram
reweighting to obtain an interpolated curve and a
more precise estimate of the location of the peak.

Once we have the interpolated variance curve and peak
temperature for each of the lattice sizes, we estimate Tc

and ν by fitting the peak temperatures to the appropriate
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finite-size scaling ansatz (Equations 4 and 5) and opti-
mising the data collapse of the variance curves. For each
lattice size we perform two bootstraps: first by resam-
pling the training samples, and second by resampling the
samples in the critical region. In each case we resam-
ple 500 times, obtaining bootstrap distributions for the
estimates of Tc and ν. We estimate the error in these
quantities by taking the square root of the sum of the
variances of the two bootstrap distributions.

III. ANALYSIS

We analyse three different variants of the 2-
dimensional XY model; each undergoes a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition. One of the
variants also exhibits a second order transition in the
Ising universality class, and it presents an interesting
challenge to classify both transitions. For each model, we
considered square lattices with periodic boundary condi-
tions and linear sizes L = 30, 40, 50, 60, 70, 80, 100, 120,
140.

A. XY Model

The 2-dimensional XY model is defined on an L × L
square lattice Λ by assigning an angle θi ∈ S1 to each
lattice site i ∈ Λ. The energy of a given configuration of
spins θ = {θi}i∈Λ is given by the Hamiltonian

H(θ) = −J
∑
⟨ij⟩

cos(θi − θj)

where ⟨ij⟩ ranges over neighbouring lattice sites and J
is a coupling parameter we shall set equal to 1. At low
temperatures spins tend to align with their neighbours,
but collectively twist in spin waves preventing true long-
range order. Moreover a small number of vortices and
antivortices, where spins twist round the full circle, may
be found in bound pairs. As the temperature increases,
the model undergoes a BKT transition driven by the un-
binding of these vortex-antivortex pairs, so that at high
temperatures lone (anti)vortices proliferate. The critical
temperature is approximately T = 0.8929 [44] and the
critical exponent of correlation length is ν = 1

2 .

Using the angle difference filtration described in Sec-
tion II B we obtain average persistence images as shown
in Figure 3. At low temperatures we see that most
points in the persistence diagrams are concentrated in
the lower left corner. These come from the presence of
spin waves: spins tend to differ more with those in the
opposite corner of a plaquette than with their immediate
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FIG. 3. The average H1 persistence images in birth-
persistence coordinates at different temperatures for the XY
model with L = 30.

neighbours, producing a short-lived cycle. As the tem-
perature increases we observe that the spin-wave cycles
persist longer and longer. At around T = 0.8, 0.95, close
to the critical point, we begin to see points close to the
downwards diagonal persistence = 0.5 − birth, or equiv-
alently death = 0.5. These represent (anti)vortices: they
are born reasonably early, as spins far away from the
centre vary slowly, but die much later due to the large
difference in spins at the vortex core. In fact, we can
check that the sum of the components of the persistence
image lying on the diagonal and the two immediate sub-
diagonals correlates well with the absolute vorticity (the
total count of vortices and antivortices) of the configura-
tions. For example, computing the Pearson correlation
coefficient on 2000 configurations at T = 1.0 for L = 140
yields a correlation coefficient of r = 0.70, p < 0.001. At
high temperatures we see this concentration of cycles on
the diagonal increase and shift rightwards, indicating a
disordered phase with many vortices.

1. Logistic Regression Analysis

We trained logistic regression models on samples
drawn from T = 0.85, 0.86 and 0.87 in the low tem-
perature phase, and T = 0.91, 0.92 and 0.93 in the high
temperature phase with 10, 000 samples from each. The
regularisation hyper-parameter was set to C = 0.001. We
evaluated the models with 10, 000 samples from each of
T = 0.88, 0.89 and 0.90. A plot of the resulting phase
indicators is shown in Figure 4 and their variance curves
are shown in Figure 6. The plot of the pseudo-critical
temperatures against log(L)−2 is shown in Figure 5. We
do not observe any significant lattice-size dependence in
the pseudo-critical temperatures. They instead seem to
be distributed close to T = 0.89 which is the midpoint
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FIG. 4. Plots showing (a) ⟨OLR⟩ and (b) ⟨OkNN ⟩ as a function of temperature for each lattice size for the XY model. The
shaded regions indicate the temperatures used for the low and high temperature training data. The vertical line shows the
location of the expected critical temperature Tc = 0.8929.
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FIG. 5. Estimating the critical temperature for the XY model using (a) logistic regression and (b) k-nearest neighbours. The
pseudo-critical temperatures for the different lattice sizes, calculated from finding the peak of χp, are fitted to the ansatz in
Equation 5. For the logistic regression we use all the lattice sizes in the fit, and for the k-nearest neighbours we use the largest
three lattice sizes. The intercept gives the estimate for Tc(∞). Error bars are estimated by bootstrapping.

of the training temperatures. A straight line fit yields an
extrapolated critical temperature of

Tc = 0.8872± 0.0009,

well below the expected Tc = 0.8929. The curve collapse
(Figure 7) procedure gives

Tc = 0.8824± 0.0001
ν = 0.4968± 0.0055
b = 0.5098± 0.0068,

not accounting within one standard deviation for the ex-
pected values of Tc = 0.8929 and ν = 1

2 .

An advantage of using a generalised linear model like
logistic regression, as explored in [24], is that we can eas-
ily match the learned weights against the pixels of the
persistence images. This allows us to interpret how the
classifier distinguishes phases. The weights of the logis-
tic regression model trained on the L = 140 XY model

data is shown in Figure 8. We see that the low tempera-
ture phase is characterised by cycles which are born early
and which tend to have low persistence, representing spin
waves. The high temperature phase is indicated by cycles
with a later birth time and persistence. In particular, the
most important region in identifying the high tempera-
ture phase is close to birth = 0.1, persistence = 0.4 which
detects (anti)vortex cycles beginning to change behaviour
and move down the diagonal persistence = 0.5− birth.

2. k-Nearest Neighbours Analysis

In the case of the XY model, we found that the
k-nearest neighbours classification worked best when
trained on a broad range of temperatures. We trained
the models on samples drawn from T = 0.20, 0.25, . . . ,
0.85 in the low temperature phase, and T = 0.95, 1.00,
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FIG. 6. Plots showing (a) χLR and (b) χkNN as a function
of temperature for the largest three lattice sizes of the XY
model. These are what we use to perform the curve collapse
procedure.

4 2 0 2
ln(L) b(T Tc)

0.00

0.05

0.10

0.15

0.20

0.25

LR

L = 100
L = 120
L = 140

FIG. 7. The curve collapse of χLR for the XY model with
Tc = 0.8824, ν = 0.4968 and b = 0.5098.

. . . , 1.60 in the high temperature phase with 2000 sam-
ples from each. The neighbours hyper-parameter was
set to k = 30. We evaluated the models with 10, 000
samples from each of T = 0.90, 0.905, . . . , 0.95. A
plot of the resulting phase indicators is shown in Figure
4. The plot of the pseudo-critical temperatures against
log(L)−2 is shown in Figure 5. Here we see an asymptotic
convergence towards a linear dependence between the
pseudo-critical temperatures Tc(L) and log(L)−2. Fit-
ting a straight line to the largest three lattice sizes yields

Tc = 0.8935± 0.0043,

much closer to the expected Tc ≈ 0.8929 than the result
of the logistic regression approach. The curve collapse
(Figure 9) procedure gives
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FIG. 8. The weights of the logistic regression model trained
on the XY model configurations with L = 140.
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FIG. 9. The curve collapse of χkNN for the XY model with
Tc = 0.8918, ν = 0.4972 and b = 0.5073.

Tc = 0.8918± 0.0033
ν = 0.4972± 0.0264
b = 0.5073± 0.0137,

very close to the expected values.

B. Constrained XY Model

What we will refer to as the 2-dimensional Constrained
XY model was introduced and investigated in [45, 46]
where it is called an XY model with a topological lattice
action. It is defined similarly to the classical XY model
by assigning an angle θi ∈ S1 to each lattice site i ∈ Λ of
an L × L square lattice Λ. However the Hamiltonian is
defined as

H(θ) =

{
0 if 1

2π |θi − θj | ≤ δ for all ⟨i, j⟩
∞ otherwise.

Therefore all configurations are constrained so that the
spins at neighbouring sites cannot differ by more than
δ. Since the partition function does not depend on the
thermodynamic temperature, we consider the parameter
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δ as taking on this role instead and the model undergoes
a BKT transition as δ increases at approximately δ =
0.2825 [46] with ν = 1

2 . Notice that while δ < 0.25 no
(anti)vortices may form.
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FIG. 10. The average H1 persistence image in birth-
persistence coordinates at different deltas for the Constrained
XY model with L = 30.

Using the angle difference filtration described in Sec-
tion II B we obtain average persistence images as shown
in Figure 10. We immediately see a resemblance with the
persistence images obtained for the XY model in Figure
3 except that we see a cutoff effect at birth = δ, since by
this point all neighbouring lattice sites must have been
connected in the filtration. For this model we must adjust
our methodology slightly since histogram reweighting is
not possible. Instead we will sample deltas more densely,
then to extract the maximums of χLR and χkNN we will
fit a parabola to the three highest points.

1. Logistic Regression Analysis

We trained logistic regression models on samples
drawn from δ = 0.27, 0.272, . . . , 0.28 in the low delta
phase, and δ = 0.286, 0.288, . . . , 0.296 in the high delta
phase with 4000 samples from each. The regularisation
hyper-parameter was set to C = 0.001. We evaluated
the models with 4000 samples from each of δ = 0.27,
0.271, . . . , 0.296. A plot of the resulting phase indi-
cators is shown in Figure 11. The plot of the pseudo-
critical deltas against log(L)−2 is shown in Figure 12. We
do not observe any significant lattice-size dependence in
the pseudo-critical deltas. They instead seem to be dis-
tributed close to δ = 0.283 which is the midpoint of the
training deltas. The curve collapse (Figure 13) procedure
gives

δc = 0.2843± 0.0013
ν = 0.4999± 0.0189
b = 0.3009± 0.0041,

which is not likely to account for the expected value of
δc = 0.2825 but does support ν = 1

2 .

The weights of the logistic regression model trained for
L = 140 are shown in Figure 14. We observe a similar-
ity to the weights learnt for the XY model in Figure 8
although in this case it appears to be more difficult to de-
lineate which regions of the persistence images indicate
the two phases.

2. k-Nearest Neighbours Analysis

We trained the k-nearest neighbours models on sam-
ples drawn from δ = 0.27, 0.272, . . . , 0.28 in the low
delta phase, and δ = 0.286, 0.288, . . . , 0.296 in the high
delta phase with 4000 samples from each. The neigh-
bours hyper-parameter was set to k = 30. We evaluated
the models with 4000 samples from each of δ = 0.27,
0.271, . . . , 0.296. A plot of the resulting phase indi-
cators is shown in Figure 11. The plot of the pseudo-
critical deltas against log(L)−2 is shown in Figure 12.
Here we see an asymptotic convergence towards a lin-
ear dependence between the pseudo-critical deltas δc(L)
and log(L)−2. Fitting a straight line to the largest three
lattice sizes yields

δc = 0.2821± 0.0014.

The curve collapse (Figure 15) procedure gives

δc = 0.2818± 0.0017
ν = 0.5003± 0.0206
b = 0.5022± 0.0048,

very close to the expected values.

C. Nematic XY Model

There are a variety of generalised XY models with
nematic interactions. We will consider the model with
Hamiltonian

H(θ) = −
∑
⟨ij⟩

[
∆ cos(θi − θj) + (1−∆) cos(2(θi − θj))

]
where we will fix ∆ = 0.15. The first term is the usual
XY interaction, but the second term is a nematic inter-
action which remains invariant when any individual spin
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FIG. 11. Plots showing (a) ⟨OLR⟩ and (b) ⟨OkNN ⟩ as a function of delta for each lattice size for the Constrained XY model.
The shaded regions indicate the deltas used for the low and high delta training data. The vertical line shows the location of the
expected critical delta δc = 0.2825. Note that for the k-NN plot the training regions extend further away than what is shown.
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FIG. 12. Estimating the critical delta for the Constrained XY model using (a) logistic regression and (b) k-nearest neighbours.
The pseudo-critical deltas for the different lattice sizes, calculated from finding the peak of χp, are fitted to the ansatz in
Equation 5. For the logistic regression we use all the lattice sizes in the fit, and for the k-nearest neighbours we use the largest
three lattice sizes. The intercept gives the estimate for δc(∞). Error bars are estimated by bootstrapping.
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FIG. 13. The curve collapse of χLR for the Con-
strained XY model with δc = 0.2843, ν = 0.4999
and b = 0.3009.
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FIG. 14. The weights of the logistic regression
model trained on configurations over the BKT
transition in the Constrained XY model with L =
140.

is rotated 180 degrees. We can imagine this as an in-
teraction between the spins considered as headless rods:

spins which are parallel contribute less energy, even if
they point in opposite directions. The T -∆ phase dia-



12

10 8 6 4 2
ln(L) b(T Tc)

0.14

0.16

0.18

0.20

0.22

0.24

kN
N

L = 100
L = 120
L = 140

FIG. 15. The curve collapse of χkNN for the Constrained XY
model with δc = 0.2818, ν = 0.5003 and b = 0.3022.

gram of this model is explored in [47–49], and we see
that at our chosen ∆ = 0.15, it undergoes two phase
transitions as temperature increases. The first is an
Ising-type transition from a magnetic phase to a nematic
phase at T ≈ 0.3314 (as estimated using the magnetic
susceptibility) resulting in (anti)vortices (which remain
bound into vortex-antivortex pairs) stretching into do-
main walls with a half-(anti)vortex at each end; across
the wall the spins flip by π. See Figure 16 for an exam-
ple. The second is a BKT transition to a paramagnetic
phase at T ≈ 0.7808 (as estimated using the magnetic
susceptibility) driven by the unbinding of these pairs of
now-elongated vortices and antivortices.

FIG. 16. A configuration with a vortex that has stretched out
into two half-vortices separated by a domain wall.

Following the intuition developed in Section II B, we
consider two different filtrations: The first is the an-
gle difference filtration used for the XY and Constrained
XY model, where each edge ⟨ij⟩ of the lattice is added
into the filtration at time 1

2πdij ; The second is the
nematic angle difference filtration which uses the ne-
matic distance between spins, adding in edges at time
1
2πd

n
ij = min( 1

2πdij , 0.5 − 1
2πdij). The resulting average

persistence images are shown in Figures 17 and 18 re-
spectively.

From Figure 17 we see that the Magnetic-Nematic
transition is manifested in the angle difference filtration
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FIG. 17. The average H1 persistence image in birth-
persistence coordinates at different temperatures for the Ne-
matic XY model with L = 30 using the angle difference filtra-
tion. The Magnetic-Nematic phase transition occurs between
the middle and right images on the top row and the Nematic-
Paramagnetic BKT transition occurs between the middle and
right images on the middle row.

by the emergence of a cluster in the bottom right of the
persistence image and the rightwards movement of the
cluster in the top left. These correspond to the appear-
ance of domain walls in configurations. In particular,
at a time close to 0.5 in the filtration, the edges which
cross domain walls will get added all at once, forming
many short-lived cycles. Meanwhile, (anti)vortices get
stretched out into strings so that more spins must be
connected in the filtration before a hole is formed, gen-
erally causing the time at which this happens to increase
a little. There is little qualitative difference between the
images across the BKT transition however. In Figure 18
we see a familiar picture of the BKT transition which is
very similar to that observed in the XY model and Con-
strained XY model, while the Ising-type transition is not
detectable at all. We also looked at a combined angle
difference filtration using ∆

2πdij +
1−∆
2π dnij , but while this

did seem to detect both phase transitions, it was difficult
to effectively train the classification models to identify
two phases at a time.
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FIG. 18. The average H1 persistence image in birth-
persistence coordinates at different temperatures for the Ne-
matic XY model with L = 30 using the nematic angle differ-
ence filtration. The Magnetic-Nematic phase transition oc-
curs between the middle and right images on the top row and
the Nematic-Paramagnetic BKT transition occurs between
the middle and right images on the middle row. Note the
similarity with Figures 3 and 10.

1. Logistic Regression Analysis of Magnetic-Nematic
Transition

We trained logistic regression models on samples
drawn from T = 0.32 and 0.3225 in the low temperature
phase, and T = 0.3425 and 0.345 in the high temperature
phase with 10, 000 samples from each. The regularisation
hyper-parameter was set to C = 10−6. We evaluated
the models with 10, 000 samples from each of T = 0.33,
0.33125, . . . , 0.335. A plot of the resulting phase indi-
cators is shown in Figure 19. The plot of the pseudo-
critical temperatures against L−1 is shown in Figure 20.
For the lower lattice sizes L < 60, we do not observe any
significant lattice-size dependence in the pseudo-critical
temperatures. They instead seem to be distributed close
to T = 0.3325 which is the midpoint of the training tem-
peratures. At the larger lattice sizes L ≥ 60, a linear
dependence on L−1 emerges. Fitting a line to the largest
four lattice sizes yields an extrapolated critical tempera-
ture of

Tc = 0.3314± 0.0001.

The curve collapse (Figure 21) procedure gives

Tc = 0.3315± 0.0001
ν = 0.8562± 0.0102.

While these estimates of the critical temperature are
good, the expected value of ν = 1 doesn’t fall within the
error bars estimated with this approach.

The weights of the logistic regression model trained for
L = 140 are shown in Figure 22. We observe that the
classifier learns to detect exactly what we saw in Figure
17, namely a rightwards shift of the upper left cluster,
and the emergence of a cluster in the bottom right, cor-
responding to domain walls forming in the configurations.

2. k-Nearest Neighbours Analysis of Magnetic-Nematic
Transition

We trained the k-nearest neighbours models on sam-
ples drawn from T = 0.32 and 0.3225 in the low temper-
ature phase, and T = 0.3425 and 0.345 in the high tem-
perature phase with 4000 samples from each. The neigh-
bours hyper-parameter was set to k = 30. We evaluated
the models with 4000 samples from each of T = 0.33,
0.33125, . . . , 0.335. A plot of the resulting phase indica-
tors is shown in Figure 19. The plot of the pseudo-critical
temperatures against L−1 is shown in Figure 20. Here we
see that for L ≥ 60, the pseudo-critical temperatures fit
reasonably well on a straight line when plotted against
L−1. Fitting a line to the largest four lattice sizes yields

Tc = 0.3315± 0.0002.

The curve collapse (Figure 23) procedure gives

Tc = 0.3316± 0.0002
ν = 0.9551± 0.0196,

very close to the expected value of Tc = 0.3314, but not
quite compatible with ν = 1 although better than the
logistic regression result.

3. Logistic Regression Analysis of Nematic-Paramagnetic
Transition

We trained logistic regression models on samples
drawn from T = 0.74, 0.75 and 0.76 in the low tem-
perature phase, and T = 0.8, 0.81 and 0.82 in the high
temperature phase with 10, 000 samples from each. The
regularisation hyper-parameter was set to C = 0.001. We
evaluated the models with 10, 000 samples from each of
T = 0.74, 0.75, . . . , 0.82. A plot of the resulting phase
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FIG. 19. Plots showing (a) ⟨OLR⟩ and (b) ⟨OkNN ⟩ as a function of temperature for each lattice size for the Magnetic-Nematic
transition in the Nematic XY model. The shaded regions indicate the temperatures used for the low and high temperature
training data. The vertical line shows the location of the expected critical temperature Tc = 0.3314.
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FIG. 20. Estimating the critical temperature for the Magnetic-Nematic transition in the Nematic XY model using (a) logistic
regression and (b) k-nearest neighbours. The pseudo-critical temperatures for the different lattice sizes, calculated from finding
the peak of χp, are fitted to the ansatz in Equation 4. In both cases we use the largest four lattice sizes for the fit. The intercept
gives the estimate for Tc(∞). Error bars are estimated by bootstrapping.
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FIG. 21. The curve collapse of χLR for the
Magnetic-Nematic transition in the Nematic XY
model with Tc = 0.3315 and ν = 0.8562.
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FIG. 22. The weights of the logistic regression
model trained on configurations over the Magnetic-
Nematic transition in the Nematic XY model with
L = 140.

indicators is shown in Figure 24. The plot of the pseudo-
critical temperatures against log(L)−2 is shown in Figure

25. We do not observe any significant lattice-size depen-
dence in the pseudo-critical temperatures. They instead
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FIG. 23. The curve collapse of χkNN for the Magnetic-
Nematic transition in the Nematic XY model with Tc =
0.3316 and ν = 0.9551.

seem to be distributed just above to T = 0.78 which
is the midpoint of the training temperatures. While a
straight line fit to all but the smallest lattice size yields
an extrapolated critical temperature of

Tc = 0.7804± 0.0002,

not too far from the expected Tc ≈ 0.7808, Figure 25 does
not suggest that increasing the statistics would lead to
increased accuracy. However, the curve collapse (Figure
26) procedure gives

Tc = 0.7803± 0.0025
ν = 0.5107± 0.0101
b = 0.3037± 0.0076,

accounting for the expected value of Tc = 0.7808, but
giving a potentially questionable result for ν = 1

2 which
lies just outside one standard deviation.

The weights of the logistic regression model trained for
L = 140 are shown in Figure 27. We note the similarity
to the weights learnt for the XY model in Figure 8 except
now the region in the top left represents half-vortices and
half-antivortices which change behaviour, shifting down
to the right as temperature increases and they unbind.

4. k-Nearest Neighbours Analysis of Nematic-Paramagnetic
Transition

Similarly to the case of the XY model, we found that
the k-nearest neighbours classification worked best when
trained on a broad range of temperatures. We trained the
models on samples drawn from T = 0.5, 0.55, . . . , 0.7 in
the low temperature phase, and T = 0.85, 0.9, . . . , 1.05
in the high temperature phase with 2000 samples from
each. The neighbours hyper-parameter was set to k = 30.
We evaluated the models with 10, 000 samples from each
of T = 0.74, 0.75, . . . , 0.82. A plot of the resulting

phase indicators is shown in Figure 24. The plot of the
pseudo-critical temperatures against log(L)−2 is shown
in Figure 25. Here we see an asymptotic convergence
towards a linear dependence between the pseudo-critical
temperatures Tc(L) and log(L)−2. Fitting a straight line
to the largest four lattice sizes yields

Tc = 0.7766± 0.0034.

While this is further from the expected Tc ≈ 0.7808
than the result of the logistic regression approach, the
approach towards the correct finite-size scaling is much
clearer. The curve collapse (Figure 28) procedure gives

Tc = 0.7757± 0.0064
ν = 0.4983± 0.0226
b = 0.3051± 0.0083,

which is compatible with the expected values of Tc =
0.7808 and ν = 1

2 .

IV. CONCLUSIONS AND DISCUSSION

We have introduced a new way of applying persistent
homology to analyse the configurations of lattice spin
models, investigating the phase transitions in the 2D
XY model with three different Hamiltonians: the stan-
dard action, a topological lattice action, and a modified
standard action with an additional nematic interaction
term. In each case we were able to successfully identify
the phase transition and estimate its critical temperature
and critical exponent of the correlation length by consid-
ering the finite-size scaling of observables derived from
the persistent homology of configurations. In particular
we trained logistic regression and k-nearest neighbours
classifiers to identify the phases of the models from per-
sistence images. The critical point was estimated as the
temperature at which the variance in the classification
reached a maximum.

We have found that the previously introduced ap-
proach of using logistic regression for classification, while
useful for interpreting which regions of the persistence
image indicate the different phases, fails to produce ac-
curate estimates of the critical temperature or exponents
in the case of the BKT transitions. Instead it will tend to
yield the midpoint between the low and high-temperature
training temperatures as the critical temperature. In-
deed, using different temperatures for the training causes
the estimated critical temperature to shift accordingly.
We believe this failure is because logistic regression is
a generalised linear model and the data here is highly
non-linear. On the other hand, the non-parametric k-
nearest neighbours approach generally produces good re-
sults, with a clear asymptotic approach towards the ex-
pected finite-size scaling behaviour in all cases.
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FIG. 24. Plots showing (a) ⟨OLR⟩ and (b) ⟨OkNN ⟩ as a function of temperature for each lattice size for the Nematic-
Paramagnetic transition in the Nematic XY model. The shaded regions indicate the temperatures used for the low and
high temperature training data. The vertical line shows the location of the expected critical temperature Tc = 0.7808. Note
that for the k-nearest neighbours case the training regions lie outside the bounds of the plot.
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FIG. 25. Estimating the critical temperature for the Nematic-Paramagnetic transition in the Nematic XY model using (a)
logistic regression and (b) k-nearest neighbours. The pseudo-critical temperatures for the different lattice sizes, calculated from
finding the peak of χp, are fitted to the ansatz in Equation 5. For the logistic regression we use all the lattice sizes except the
smallest in the fit, and for the k-nearest neighbours we use the largest four lattice sizes. The intercept gives the estimate for
Tc(∞). Error bars are estimated by bootstrapping.
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FIG. 26. The curve collapse of χLR for the Nematic-
Paramagnetic transition in the Nematic XY model with Tc =
0.7803, ν = 0.5107 and b = 0.3037.

There are a number of interesting questions and direc-
tions for further research:

• The approach presented in this paper could eas-
ily be extended to other lattice spin models, but
it would also be interesting to see if the filtration
presented in Section II B could be adapted to more
complex models such as those from lattice gauge
theory.

• The similarity of the persistence images across the
BKT transition in all three models raises the ques-
tion of the extent to which the persistence is a uni-
versal quantity. This could potentially facilitate a
transfer learning approach where classifiers trained
on one model can identify phase transitions of the
same universality class in another model (see, e.g.,
[11]).

• It could also be investigated if the use of a vec-
torisation and a classifier is necessary in the first
place. There is a notion of variance for persistence
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FIG. 27. The weights of the logistic regression model trained
on configurations over the Nematic-Paramagnetic transition
in the Nematic XY model with L = 140.
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FIG. 28. The curve collapse of χkNN for the Nematic-
Paramagnetic transition in the Nematic XY model with Tc =
0.7757, ν = 0.4983 and b = 0.3051.

diagrams called Fréchet variance [37] which might
show finite-size scaling behaviour directly. However
this is computationally expensive to measure.

• Finally, we note that there have been a variety of
different filtrations used to compute the persistent
homology of configurations of lattice spin models.
It would be interesting to see how these perform
and complement one another on a single data set.
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Appendix A: Cubical Complexes and Homology

This is a very compressed version of the exposition
found in [51]. An elementary interval is an interval of the
form [i, i+1] ⊂ R (non-degenerate) or [i, i] = {n} (degen-
erate) for some choice of i ∈ Z. An elementary cube is a
finite product of elementary intervals Q = I1× . . .×In ⊂
Rn, where n is some fixed embedding dimension. Its di-
mension dimQ is the number of non-degenerate inter-
vals in the product. A cubical complex C is a subset of
Rn which is a union of elementary cubes. Specifying a
field F, we define F-vector spaces Ck = {∑αiQi | Qi ⊆
C, dimQi = k, αi ∈ F} for each k ∈ N, consisting of
finite formal sums of elementary cubes. The boundary of
a non-degenerate elementary interval is given by the for-
mal sum ∂[i, i+1] = [i+1, i+1]− [i, i]. For a degenerate
elementary interval the boundary is zero. The boundary
of an elementary cube Q = (I1× . . .×In) is a formal sum

∂Q =

n∑
j=1

(−1)
∑j−1

i=1 dim Qi(I1× . . .×∂Ij × . . .×In) (A1)

where we consider × as distributing over the formal sum-
mation. We can see that for dimQ ≥ 1 we have dim ∂Q =
dimQ − 1. Therefore we can extend ∂ to linear maps
∂k : Ck → Ck−1 via the mapping

∑
αiQi 7→

∑
αi(∂Qi).

Since ∂∂I = 0 for any elementary interval I, we also see
that ∂k◦∂k+1 = 0 for all k ∈ N., so that im ∂k+1 ⊆ ker ∂k.
A sequence of linear maps

. . . → C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ 0

with this property is called a chain complex. The kth

cubical homology of C over F is defined to be the quotient
vector space

Hk(C;F) =
ker ∂k
im ∂k+1

.

This construction is functorial: given a suitable definition
of a cubical map f : C → D between cubical complexes,
there is an induced map fk : Hk(C;F) → Hk(D;F) for
each k ∈ N. We will not introduce these in general, but
will note that given C ⊆ D, the inclusion map C ↪−→ D
is cubical and hence induces maps on homology.
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FIG. 29. Example of how the boundary operator ∂ acts on
a simple cubical complex consisting of a single 2-dimensional
cube. Note how sum in equation (A1) being alternating en-
sures that ∂∂ = 0.

Appendix B: Stability of Filtration

We briefly show that the filtrations introduced in Sec-
tion II B yields persistent homology which is stable under
small perturbations of spins with respect to the bottle-
neck distance between persistence diagrams. We make
use of the following concept:

Definition (Interleaving). Given filtrations

F,G : (R,≤) → CubicalComplex,

we say that F and G are ϵ-interleaved if for all t ∈ R we
have that F (t) ⊆ G(t + ϵ) and G(t) ⊆ F (t + ϵ). We say
that the interleaving distance between F and G is

dI(F,G) = inf{ϵ |F and G are ϵ-interleaved}.

Then from [52] we have the following theorem.

Theorem ([52] Proposition 3.6 and Theorem 4.16).
Given filtrations F and G as before, and k ∈ N, we have
that

dB(PHk(F ), PHk(G)) ≤ dI(F,G)

where dB is the bottleneck distance.

Thus we just need to show that the filtration we as-
sign to a configuration Fθ are ϵ-interleaved with the fil-
tration obtained after a perturbation of the configuration
for some ϵ bounded by the changes in the spins. Take F
to be the angle difference filtration introduced in Section
II B and suppose we have a configuration θ and change
spin θi to θi + ∆θ to obtain a configuration θ′. Then
given a neighbouring spin θj , denote the length of the
smallest arc between θi and θj by dij and the length of
the arc between θi + ∆θ and θj by d′ij . Then we have
that

dij −∆θ ≤ d′ij ≤ dij +∆θ.

Hence for all filtration values t ∈ R we have inclusions
Fθ(t) ↪→ Fθ′(t+∆θ/2π) and Fθ′(t) ↪→ Fθ(t+∆θ/2π) so
that the filtrations are ∆θ

2π -interleaved. By the theorem
above, we have

dB(PHk(Fθ), PHk(Fθ′)) ≤ ∆θ

2π

for all k ∈ N. A straightforward application of the tri-
angle inequality shows that if multiple spins are altered
then the bottleneck distance is bounded by the sum of
the alterations. The same argument applies in the case
of the nematic angle difference filtration.

On the other hand, we observe that the sublevel set
filtration for S1-valued spins introduced in [24] does not
have this stability. An arbitrarily small perturbation ϵ to
one of the spins can change its angle from π to −π + ϵ,
potentially introducing or removing a high persistence
point in the persistence diagram. Although this is miti-
gated to an extent in practise by choosing angle 0 to be
in the direction of the magnetisation.

Appendix C: Histogram Reweighting

Histogram reweighting allows us to express the ensem-
ble average of an observable O at temperature T ′ in terms
of averages at any other temperature T according to the
equation

⟨O⟩T ′ =
⟨Oe−(β′−β)E⟩T
⟨e−(β′−β)E⟩T

(C1)

where β = 1/T , β′ = 1/T ′, and E is the energy of a con-
figuration [40]. However, in practice we can only reweight
so far, so that the energy distributions for T and T ′ have
a sizable overlap. To reliably extrapolate to a wider re-
gion we can make use of multiple histogram reweighing
[41] where we sample at multiple temperatures T1, . . . , TR

(with corresponding inverses β1, . . . , βR). Suppose we
sample Ni configurations at temperature Ti, then we can
iterate the equation

e−fβ =

R∑
i=1

Ni∑
a=1

g−1
i e−βEa

i∑R
j=1 Njg

−1
j e−βjEa

i +fj

to estimate the free energies fi = fβi
at the temperatures

Ti up to an additive constant, where each gi is a quantity
related to the integrated autocorrelation of the samples
in run i. Given the fi we can estimate

⟨O⟩T ′ =

R∑
i=1

Ni∑
a=1

Oa
i g

−1
i e−βkE

a
i +fβ′∑R

j=1 Njg
−1
j e−βjEa

i +fj
.

Appendix D: Bootstrap Error Estimation

In order to make any reasonable conclusions from the
results of our analysis we need to be able to estimate the
error in any numerical values obtained. While the error
in ensemble averages can be directly estimated from the
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sample, we also calculate various fits to the data. The
way in which error propagates here is not necessarily easy
to calculate directly. Recall that the idea of bootstrap
analysis is to sidestep these concerns by estimating the
sampling distribution of a statistic directly. Suppose we
obtain N sampled configurations S = {θ1, . . . ,θN} and
calculate some numerical statistic f(S) from the data.
Given some preset integer NB , bootstrap analysis pro-
ceeds by:

1. resampling S with replacement NB times to obtain

samples S1, . . . , SNB
each of size N ; then

2. computing f(Si) for each i ∈ {1, . . . , NB}.

For large enough NB , the distribution of the f(Si) ap-
proximates the sampling distribution of f and we can
estimate the standard error

σf ≈
√

1

NB − 1

∑
i

(
f(Si)− f(Sj)

)2
.
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