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Abstract
It is shown that the solution to the boundary - initial value problem for a Kelvin–
Voigt fluid of order one depends continuously upon the Kelvin–Voigt parameters, the
viscosity, and the viscoelastic coefficients. Convergence of a solution is also shown.
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1 Introduction

The equations for a viscoelastic fluid have been increasingly occupying attention. Such
fluids occur everywhere in real life and differ from Navier - Stokes fluids in that the
stress depends on the history of the velocity gradient. As such, the equations for such
fluids present many mathematical challenges, see e.g. [1–15].

A particular class of viscoelastic fluids of interest here are those associated with the
names ofKelvin andofVoigt, see e.g. [16–21].Muchof the interest in thesefluids stems
fromwork of Russian writers in this field and analytical studies of Kelvin–Voigt fluids
are contained in [22,23], with generalizations of these models and analytical results to
encompass the non - isothermal situation in [24–26]. A lucid account of viscoelastic
fluids associated with the names of Maxwell, of Oldroyd, and of Kelvin and Voigt, is
contained in [27], where the solution existence question is analysed, see also [28].

Kelvin–Voigt fluids are being increasingly employed in real life applications espe-
cially in industrial and engineering contexts. Many of these are reviewed in [19], but
we highlight here their employment in viscous dampers in large buildings, cf. [29,30].
For example, a large viscous damper is utilized in the 1667 feet high tower Taipei 101
in the city of Taipei. This building has been constructed to withstand earthquakes and
typhoons and the large viscous damper is essential.
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The goal of this article is to analyse continuous dependence of a solution to the
equations for a Kelvin–Voigt fluid of order one. Such questions are important and
belong to the general area of structural stability. [31], p. 304, pose the problem of what
effect does changing the parameters in a differential equation have upon the solution
to such an equation. They introduce this as the concept of structural stability. In this
article we concentrate on continuous dependence on parameters in the equations for
a Kelvin–Voigt fluid of order one. This is continuous dependence on the model itself
which is structural stability of the model. We point out that continuous dependence
on the model has been the subject of much recent attention in continuum mechanics,
see e.g. [13,16,32–54].

In the next section we introduce the Kelvin–Voigt equations of order one. The fol-
lowing section establishes continuous dependence on the Kelvin–Voigt parameter, λ.
This is important as this coefficient multiplies the highest derivative term in the equa-
tions. After this we establish continuous dependence upon the remaining coefficients
in the governing equations.

2 The Kelvin–Voigt equations of order one

Throughout this article we employ standard indicial notation in conjunction with the
Einstein summation convention. Hence, partial differentiation with respect to xi is
written as ,i ≡ ∂/∂xi , and Δ denotes the Laplacian in R3.

Let vi (x, t) be the velocity, p(x, t) be the pressure, and let fi (x, t) be the body force
at position x and time t . Now, let qmi (x, t), m = 1, . . . , L, be viscoelastic variables.
Then [27] define a hierarchy of viscoelastic fluid models. They write that a Maxwell
fluid of order L , L ∈ N, satisfies the equations

vi,t + v jvi, j −
L∑

m=1

β(1)
m Δqmi + p,i = fi ,

vi,i = 0,

qmi,t + γmq
m
i = vi , m = 1, . . . , L.

(1)

An Oldroyd fluid of order L , L ∈ N, satisfies the equations

vi,t + v jvi, j − μ(2)Δvi −
L∑

m=1

β(2)
m Δqmi + p,i = fi ,

vi,i = 0,

qmi,t + γmq
m
i = vi , m = 1, . . . , L.

(2)

A Kelvin–Voigt fluid of order L , L ∈ N, satisfies the equations

vi,t + v jvi, j − λΔvi,t − μ(3)Δvi −
L∑

m=1

β(3)
m Δqmi + p,i = fi ,
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vi,i = 0,

qmi,t + γmq
m
i = vi , m = 1, . . . , L. (3)

In equations (1) - (3), the coefficients β
(k)
m , k = 1, 2, 3, m = 1, . . . , L, γm,m =

1, . . . , L, μ(2), μ(3) and λ are positive constants, and it should be noted that there is
no sum on m in the terms γmqmi .

The nonlinearity in equations (1) - (3) consists of the v jvi, j term. An equation
which has been studied is one for the so called Navier - Stokes - Voigt fluid, cf. the
very interesting results on attractors and regularity by [55], [56]. The Navier - Stokes
- Voigt equations, which are also known as the Kelvin–Voigt equations of order zero,
are

vi,t + v jvi, j − λΔvi,t − μΔvi + p,i = fi ,

vi,i = 0.
(4)

These equations also contain the nonlinear term v jvi, j and a very interesting article
establishing the existence of weak solutions and of strong solutions in appropriate
Lq(Ω) spaces for 1 < q < ∞ with Ω a bounded domain in R

d , d ≥ 2, is due to
[57]. These writers raise the question of how equations (4) might be derived from the
balance of linear momentum and continuity equations for a viscous incompressible
fluid, namely,

vi,t + v jvi, j = Tji, j + fi ,

vi,i = 0,
(5)

where Ti j is the symmetric Cauchy stress tensor. They argue that some writers present
for equations (4) a constitutive equation of form

Ti j = −pδi j + 2μdi j + 2λdi j,t , (6)

where di j = (vi, j + v j,i )/2, and they point out that this is not correct since the
tensor di j,t is not objective. Thus, the term −λΔvi,t in (4) should be regarded as a
regularization term for the Navier - Stokes equations.

One may use the [57] argument also for equations (3). However, a fully nonlinear
model for a Navier - Stokes - Voigt fluid is derived by [58]. This model is now referred
to as a Walters fluid, see e.g. [59]. The model of [58] recognizes the fact that di j,t is
not objective as [57] point out and they replace it with an objective derivative of form

d�
i j = di j,t + vkdi j,k − v j,kdik − vi,kdk j ,
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see also [60], [59]. This requires one to analyse instead of (4) the momentum equation

vi,t + v jvi, j = − p,i + μΔvi + λΔvi,t

+ λ[vk(vi, j + v j,i ),k], j
− λ[v j,k(vi,k + vk,i )], j
− λ[vi,k(vk, j + v j,k)], j .

(7)

Here the divergence of v is also zero. If we employ this argument for a Kelvin–Voigt
fluid of order one then instead of equation (3)1 with L = 1 we should use (7) with a
−βΔqi term added to the right hand side.

Of particular interest to the present article are equations (1) - (3) for fluids of order
one, i.e. when L = 1. [13] study continuous dependence and convergence for a linear
system arising from the Maxwell equations (1) and we develop linear equations here.
In the linear case we write the analogous systems to (1) - (3) of order one as, with
fi = 0,
Maxwell,

vi,t − βΔqi + p,i = 0,

vi,i = 0,

qi,t + γ qi = vi ,

(8)

Oldroyd,

vi,t − μΔvi − βΔqi + p,i = 0,

vi,i = 0,

qi,t + γ qi = vi ,

(9)

Kelvin–Voigt,

vi,t − λΔvi,t − μΔvi − βΔqi + p,i = 0,

vi,i = 0,

qi,t + γ qi = vi .

(10)

It is sometimes convenient to eliminateqi in these equations andderive the following
equations for vi and a generalized pressure, of form,
Maxwell,

vi,t t − βΔvi + γ vi,t = −φ,i ,

vi,i = 0,
(11)

Oldroyd,

vi,t t − μΔvi,t + γ vi,t − (β + μγ )Δvi = −φ,i ,

vi,i = 0,
(12)
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Kelvin–Voigt,

vi,t t − λΔvi,t t − (γ λ + μ)Δvi,t + γ vi,t − (β + μγ )Δvi = −φ,i ,

vi,i = 0,
(13)

where φ = p,t + γ p.
We observe that formally, as λ → 0 the Kelvin–Voigt system (13) tends to the

Oldroyd equations (12). As μ → 0 the Oldroyd equations (12) tend to the Maxwell
equations (11). Furthermore, if we put γ = β = 1/ζ and rescale the pressure φ as
φ = ψ/ζ , then the Maxwell system (11) becomes

ζvi,t t − Δvi + vi,t = −ψ,i ,

vi,i = 0.
(14)

When ζ → 0, equations (14) tend to those of Stokes flow, cf. [13].
In this article we concentrate on equations (10) or (13) and we establish continuous

dependence of the solution upon the parameters λ, β, γ and μ.

3 Continuous dependence upon the Kelvin–Voigt coefficient �

As remarked at the end of the introduction, the Kelvin–Voigt coefficient multiplies
the highest derivative term in (10) or (13), and as such it is highly important that the
solution depends continuously on changes in this parameter. To establish continuous
dependence upon λ we let (ui , q1i , p

1) and (vi , q2i , p
2) be solutions to equations (10)

for fixed constantsμ, β andγ , but forλ1 andλ2, respectively. In each case the equations
are defined on a bounded regionΩ inR3 with boundaryΓ which is sufficiently regular
to allow application of the divergence theorem.We here restrict attention to a bounded
domain in R3 although the methods work for a bounded domain in Rn , n ≥ 2.

Thus, (ui , q1i , p
1) satisfies the boundary - initial value problem

ui,t − λ1Δui,t − μΔui − βΔq1i = −p1,i ,

ui,i = 0,

q1i,t + γ q1i = ui ,

(15)

on Ω × (0, T ), for some T > 0, with the boundary and initial conditions,

ui = i (x), x ∈ Γ ,

ui (x, 0) = fi (x), q1i (x, 0) = hi (x), x ∈ Ω,
(16)

for prescribed functions fi , hi and i . In general, one should like i (x) to also depend
on t . The method we employ requires us to allow i to depend only on x, which was
also the case in [13].
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The solution (vi , q2i , p
2) satisfies the boundary - initial value problem

vi,t − λ2Δvi,t − μΔvi − βΔq2i = −p2,i ,

vi,i = 0,

q2i,t + γ q2i = vi ,

(17)

on Ω × (0, T ), for some T > 0, with the boundary and initial conditions,

vi = i (x), x ∈ Γ ,

vi (x, 0) = fi (x), q2i (x, 0) = hi (x), x ∈ Ω.
(18)

Define the difference variables wi , qi , π and λ as

wi = ui − vi , qi = q1i − q2i , π = p1 − p2, λ = λ1 − λ2.

Then (wi , qi , π) satsifies the boundary - initial value problem

wi,t − λΔui,t − λ2Δwi,t − μΔwi − βΔqi = −π,i ,

wi,i = 0,

qi,t + γ qi = wi ,

(19)

on Ω × (0, T ), for some T > 0, with the boundary and initial conditions,

wi = 0, x ∈ Γ ,

wi (x, 0) = 0, qi (x, 0) = 0, x ∈ Ω.
(20)

Let now (·, ·) and ‖ · ‖ denote the inner product and norm on L2(Ω).
We commence the continuous dependence analysis by multiplying (19)1 bywi and

integrating over Ω . After use of the boundary conditions one obtains

d

dt

(1
2
‖w‖2 + λ

2
‖∇w‖2

)
+ μ‖∇w‖2 = −λ(ui,t j , wi, j ) − β(wi, j , qi, j ). (21)

Next we differentiate equation (19)3 with respect to x j and t , multiply by qi, j and
integrate over Ω to find

d

dt

1

2
‖∇q‖2 + γ ‖∇q‖2 = (wi, j , qi, j ). (22)

Upon forming (21)+β×(22) one derives

d

dt

(1
2
‖w‖2+λ2

2
‖∇w‖2 + β

2
‖∇q‖2

)
+ βλ‖∇q‖2 + μ‖∇w‖2

= −λ(ui,t j , wi, j )
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≤ λ2

2ε
‖∇u,t‖2 + ε

2
‖∇w‖2 , (23)

for ε > 0, where we have employed the arithmetic - geometric mean inequality. Pick
ε = μ and integrate over (0, t) to find

1

2
‖w‖2 + λ2

2
‖∇w‖2 + β

2
‖∇q‖2 + βγ

∫ t

0
‖∇q‖2ds

+ μ

2

∫ t

0
‖∇w‖2ds ≤ λ2

2μ

∫ t

0
‖∇u,s‖2ds.

(24)

We now proceed to bound the right hand side of (24) in terms of data. To do this
we differentiate (15)1,3 to obtain

ui,t t − λ1Δui,t t − μΔui,t − βΔq1i,t = −p1,i t ,

q1i,t t j + γ q1i,t j = ui,t j .
(25)

To employ (25)1 we additionally prescribe ui,t (x, 0) = gi (x). Multiply (25)1 by ui,t
and integrate over Ω noting ui,t = 0 on Γ . Multiply (25)2 by q1i,t j and integrate over
Ω . After some manipulation one may obtain

d

dt

(1
2
‖u,t‖2 + λ1

2
‖∇u,t‖2 + β

2
‖∇q1,t‖2

)
+ μ‖∇u,t‖2 + βγ ‖∇q1,t‖2 = 0.

This equation is integrated over (0, t) to find using the initial data

1

2
‖u,t‖2 + λ1

2
‖∇u,t‖2 + β

2
‖∇q1,t‖2 + μ

∫ t

0
‖∇u,s‖2ds

+ βγ

∫ t

0
‖∇q1,s‖2ds = 1

2
‖g‖2 + λ1

2
‖∇g‖2 + ‖∇f − γ∇g‖2

= d0 , (26)

where d0 is the data term defined in (26). From this expression one deduces

∫ t

0
‖∇u,s‖2ds ≤ 1

μ
d0 .

Employ this in (24) to obtain the inequality

1

2
‖w‖2 + λ2

2
‖∇w‖2 + β

2
‖∇q‖2 + βγ

∫ t

0
‖∇q‖2ds

+ μ

2

∫ t

0
‖∇w‖2ds ≤ d0

2μ2 λ2.

(27)

Inequality (27) establishes continuous dependence of a solution on λ in the measures
‖w‖, ‖∇w‖, and ‖∇q‖.
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Remark If we set λ2 = 0 and put λ1 = λ then (27) yields a convergence result
indicating how ui converges to vi , a solution to the Oldroyd order one equations.

4 Continuous dependence upon the parameters �,ˇ,�

Let now (ui , q1i , p
1) and (vi , q2i , p2) be solutions to the Kelvin–Voigt order one

equations (10) for the same coefficient λ, but with values μ1, β1, γ1, and μ2, β2, γ2,
respectively. Thus, these solutions satisfy the boundary - initial value problems

ui,t − λΔui,t − μ1Δui − β1Δq1i = −p1,i ,

ui,i = 0,

q1i,t + γ1q
1
i = ui ,

(28)

on Ω × (0, T ), with

ui = i (x), x ∈ Γ ,

ui (x, 0) = fi (x), q1i (x, 0) = hi (x), x ∈ Ω,
(29)

and

vi,t − λΔvi,t − μ2Δvi − β2Δq2i = −p2,i ,

vi,i = 0,

q2i,t + γ2q
2
i = vi ,

(30)

on Ω × (0, T ), with

vi = i (x), x ∈ Γ ,

vi (x, 0) = fi (x), q2i (x, 0) = hi (x), x ∈ Ω.
(31)

Define the difference variables by

wi = ui − vi , qi = q1i − q2i , π = p1 − p2,

μ = μ1 − μ2, β = β1 − β2 γ = γ1 − γ2..

One then finds that the difference solution satisfies the boundary - initial value problem

wi,t − λΔwi,t − μΔui − μ2Δwi − βΔq1i − β2Δqi = −π,i ,

wi,i = 0,

qi,t + γ q1i + γ2qi = wi ,

(32)
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on Ω × (0, T ), with

wi = 0, x ∈ Γ ,

wi (x, 0) = 0, qi (x, 0) = 0, x ∈ Ω.
(33)

Next, differentiate (32)3 with respect to x j , and multiply the result by qi, j and
integrate over Ω . Multiply (32)1 by wi and integrate over Ω . After some integration
by parts and use of the boundary conditions one may combine the results to derive

d

dt

(1
2
‖w‖2 + λ

2
‖∇w‖2 + β2

2
‖∇q‖2

)
+ μ2‖∇w‖2 + γ2β2‖∇q‖2

= −μ(ui, j , wi, j ) − β(q1i, j , wi, j ) − β2γ (q1i, j , qi, j ).

We next employ the arithmetic - geometric mean inequality on the right hand side of
this equation to see that

d

dt

(1
2
‖w‖2 + λ

2
‖∇w‖2 + β2

2
‖∇q‖2

)
+ μ2‖∇w‖2 + γ2β2‖∇q‖2

≤ 2

μ2
μ2‖∇u‖2 +

( 2

μ2
β2 + 1

β2γ2
γ 2

)
‖∇q1‖2.

(34)

We need to bound the right hand side of (34) in terms of μ2, β2 and γ 2. To do this
we observe that ui satsify the equations (13) for γ1, μ1, β1, andwe impose ui,t (x, 0) =
gi (x). We multiply the appropriate version of (13)1 by ui,t and integrate over Ω to
obtain after integration by parts and integration over (0, t),

1

2
‖u,t‖2 + λ

2
‖∇u,t‖2 +

(β1 + γ1μ1

2

)
‖∇u‖2

+ (γ1λ + μ1)

∫ t

0
‖∇u,s‖2ds + γ1

∫ t

0
‖u,s‖2ds

= 1

2
‖g‖2 + λ

2
‖∇q‖2 +

(β1 + γ1μ1

2

)
‖∇f‖2.

(35)

Furthermore, differentiate (28)3 to find

q1i, j t + γ1q
1
i, j = ui, j .

Multiply this by q1i, j and integrate overΩ to find after use of the arithmetic - geometric
mean inequality

d

dt
‖∇q1‖2 + γ1‖∇q1‖2 ≤ 1

γ1
‖∇u‖2. (36)

Let d1 be the data term

d1 = 1

(β1 + γ1μ1)
‖g‖2 + λ

(β1 + γ1μ1)
‖∇g‖2 + ‖∇f‖2.
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Then from (35) we deduce

‖∇u‖2 ≤ d1 . (37)

We employ this estimate in (36) and integrate to obtain

‖∇q1‖2 ≤ 1

γ 2
1

d1 + ‖∇g‖2 e−γ1t = d2 , (38)

where d2 is the indicated data term. Upon employment of (37) and (38) in (34) and a
further integration we may obtain

1

2
‖w‖2 + λ

2
‖∇w‖2 + β2

2
‖∇q‖2

+ μ2

2

∫ t

0
‖∇w‖2ds + γ2β2

2

∫ t

0
‖∇q‖2ds ≤ d3 ,

(39)

where d3 is the data term (involving μ2, β2, γ 2)

d3 = 2d1t

μ2
μ2 +

( 2

μ2
β2 + 1

β2γ2
γ 2

)(d1t
γ 2
1

+ 1

γ1
‖∇g‖2

)
.

Inequality (39) demonstrates continuous dependence of the solution upon the
parameters μ, β and γ .
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