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hyperbolic space, where this approach is not applicable because the moduli space metric
defined by the kinetic energy is not finite. In the case of hyperbolic monopoles, an alterna-
tive metric has been defined using the abelian connection on the sphere at infinity, but its
relation to the dynamics of hyperbolic monopoles is unclear. Here this metric is placed in a
more general context of boundary metrics on soliton moduli spaces. Examples are studied
in systems in one and two space dimensions, where it is much easier to compare the results
with simulations of the full nonlinear field theory dynamics. It is found that geodesics of
the boundary metric provide a reasonable description of soliton dynamics.
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1 Introduction

In the geodesic approximation the motion of slowly moving BPS solitons is described by
geodesic motion in the moduli space of static solitons, equipped with a metric induced by
the kinetic energy of the field theory [1]. This approach has been applied to a wide variety
of soliton systems, following its initial application to the study of magnetic monopole
dynamics in three-dimensional Euclidean space [2]. The physical intuition underlying the
success of this approximation is that slowly moving solitons possess only a small amount
of kinetic energy and therefore energy conservation prevents the field configuration from
deforming far from the moduli space of minimal energy static soliton solutions. Projecting
the dynamics to an adiabatic evolution in the moduli space therefore appears a reasonable
simplification. This physical argument is supported by rigorous mathematical justification
in the case of vortices and monopoles [3, 4].

There are some BPS soliton systems where the geodesic approximation is not applica-
ble because restricting the dynamics to motion in the moduli space yields infinite kinetic
energy, and therefore is not a prescription to obtain a metric on the soliton moduli space. A
notable example is the case of BPS monopoles in three-dimensional hyperbolic space. The
static properties of monopoles in hyperbolic space share many of the features of monopoles
in Euclidean space [5], but this crucial difference in the divergence of the metric means
that nothing is known about the dynamics of hyperbolic monopoles. Braam and Austin
defined a metric on the moduli space of hyperbolic monopoles using the abelian connec-
tion on the sphere at infinity [6], but its relation to the dynamics of hyperbolic monopoles
remains unclear. The moduli space of a single hyperbolic monopole equipped with the
Braam-Austin metric is three-dimensional hyperbolic space, which is encouraging, as inter-
preting its geodesics as the free motion of a single hyperbolic monopole seems reasonable.
Simulating the full field dynamics of hyperbolic monopoles would be a worthy endeavour,
although this is by no means an easy task.

In this paper an alternative approach is adopted to gain some support for the relevance
of the Braam-Austin metric to the dynamics of hyperbolic monopoles. This metric is placed
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in a more general context of boundary metrics on BPS soliton moduli spaces. The metric
is obtained by a simple renormalization of the divergent metric induced from the field
theory kinetic energy. By introducing a cutoff, the leading divergence can be identified
and used to renormalize the metric via multiplication by a factor that depends only on
the cutoff. Multiplication by this factor, of course, does not change the geodesic equation,
so the basic fact being exploited by this approach is that there is a convergence for the
geodesic equation as the cutoff is removed, even though the natural metric diverges. The
geodesic equation obtained in the limit is the equation for the geodesics of the renormalized
metric, which is termed a boundary metric because it depends only on the soliton fields at
spatial infinity. The next section provides the details of the construction of the boundary
metric for hyperbolic monopoles, and further sections consider a radial lump in the CP1

sigma model in the plane, and kink dynamics on a line. The advantage of low-dimensional
examples is that comparisons with full nonlinear field theory simulations are much easier
to investigate.

2 Hyperbolic monopoles

This section concerns SU(2) magnetic monopoles in three-dimensional hyperbolic space of
curvature −1, with metric

ds2(H3) = 4(dx2
1 + dx2

2 + dx2
3)

(1− r2)2 , (2.1)

where r2 = x2
1 + x2

2 + x2
3 < 1. The Higgs field Φ and the gauge potential Ai take values in

su(2), and the monopole scale relative to the curvature of hyperbolic space is fixed by the
boundary condition |Φ|2 = −1

2tr(Φ
2)→ 1

4 as r → 1.
Hyperbolic monopoles are solutions of the Bogomolny equation

Fij = 2
1− r2 εijkDkΦ, (2.2)

where εijk is the totally anti-symmetric tensor, Fij = ∂iAj − ∂jAi + [Ai, Aj ] is the gauge
field, and DiΦ = ∂iΦ + [Ai,Φ] is the covariant derivative of the Higgs field.

The Higgs field at infinity defines a map between two-spheres, Φ|r=1 : S2 → S2, and
the monopole charge N is the associated positive integer element of the homotopy group
π2(S2) = Z. The moduli space, MN , of charge N monopole solutions of the Bogomolny
equation (2.2), up to gauge transformations, is a (4N − 1)-dimensional manifold [5]. In
regions of this moduli space where the monopoles are well-separated, these parameters may
be interpreted as a position for each monopole and a set of relative phases.

Monopole solutions of the Bogomolny equation are static solutions of a dynamical
SU(2) Yang-Mills-Higgs theory with metric ds2 = dt2 − ds2(H3) and kinetic energy

T =
∫
r≤1

−tr
{ 2

(1− r2)3 (DtΦ)2 + 1
2(1− r2)E

2
i

}
dx1dx2dx3, (2.3)
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where DtΦ = Φ̇ + [At,Φ] and Ei = Ȧi− ∂iAt + [At, Ai], with a dot denoting differentiation
with respect to t. The equation of motion for At that follows from the variation of (2.3) is
Gauss’ law

Di

(
Ei

1− r2

)
= 4

(1− r2)3 [DtΦ,Φ]. (2.4)

In the gauge At = 0 the kinetic energy simplifies to

T =
∫
r≤1

−tr
{ 2

(1− r2)3 Φ̇2 + 1
2(1− r2)Ȧ

2
i

}
d3x, (2.5)

subject to the constraint from Gauss’ law

Di

(
Ȧi

1− r2

)
= 4

(1− r2)3 [Φ̇,Φ], (2.6)

to ensure that the motion is orthogonal to the gauge orbit.
In the geodesic approximation the time evolution of the fields is restricted to time

evolution in the moduli space. Taking the time derivative of (2.2) yields

DiȦj −DjȦi = 2
1− r2 εijk(DkΦ̇ + [Ȧk,Φ]). (2.7)

The solutions (Φ̇, Ȧi) of (2.7) and (2.6) are the tangent vectors, but each has a length-
squared, given by the kinetic energy (2.5), that is infinite. This is the reason that the
geodesic approximation is not applicable to hyperbolic monopoles. To examine the details
of this divergence let Tb denote the regularized kinetic energy evaluated with a cutoff, so
that the region of integration is r ≤ b, with Tb finite for 0 < b < 1. A naive examination
of (2.5) might conclude that the first term leads to a divergence as b → 1, due to the
appearance of the factor (1 − r2)−3. However, the condition of orthogonality to gauge
orbits yields a finite limit for Φ̇(1− r2)−2 as r → 1, so there is no divergence of the kinetic
energy as b→ 1 from this first term. The divergence arises solely from the contribution of
Ȧi in the direction of Φ, because the abelian component ȧi = −tr(ȦiΦ) is finite as r → 1.
This produces a logarithmic divergence with −Tb/ log(1− b) finite as b→ 1.

The boundary metric is defined by the associated renormalized kinetic energy

T̂ = − lim
b→1

Tb/ log(1− b) =
∫
S2

1
2 ȧ

2
i sin θ dθdϕ, (2.8)

where the integration is over the boundary sphere r = 1, with θ and ϕ the usual angular
coordinates on S2. On this boundary sphere Gauss’ law (2.6) projected onto the abelian
component reduces to ar = 0 and the requirement that the angular components must
satisfy

∂θ(ȧθ sin θ) + ∂ϕȧϕ
sin θ = 0. (2.9)

Finally, with this condition, the renormalized kinetic energy on the monopole moduli space
becomes that of an abelian gauge theory on the sphere

T̂ =
∫
S2

1
2

(
ȧ2
θ +

ȧ2
ϕ

sin2 θ

)
sin θ dθdϕ. (2.10)
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The fact that this defines a metric on the monopole moduli space relies on the result that,
up to gauge transformations, the abelian connection a = aθdθ + aϕdϕ on S2 determines
the monopole [6].

The boundary metric defined by the renormalized kinetic energy (2.10) is the metric
introduced by Braam and Austin [6]. They used a symmetry argument to show that
the single monopole moduli space, M1, equipped with this metric, is three-dimensional
hyperbolic space H3. More explicitly, let X be the point in the interior of the unit ball that
corresponds to the position of the monopole, given by the location at which Φ vanishes. In
a suitable gauge

ȧθ = −tr
(

ΦẊ · ∂Aθ
∂X

)∣∣∣∣
r=1

, ȧϕ = −tr
(

ΦẊ · ∂Aϕ
∂X

)∣∣∣∣
r=1

, (2.11)

satisfy (2.9) and then (2.10) yields

T̂ = 4π
3

|Ẋ|2

(1− |X|2)2 , (2.12)

which is indeed proportional to ds2(H3).
To even consider the relevance to hyperbolic monopole dynamics of the geodesics of

the boundary metric given by (2.10), it is necessary to clarify the type of field theory initial
conditions that might be appropriate. Clearly, the fields (Φ, Ai) at an initial time should
be taken to be those of a point in the moduli space MN , but the initial time derivatives
cannot be taken to be a tangent vector (Φ̇, Ȧi), as this requires infinite kinetic energy and
is therefore unphysical. The suggestion here is to curtail the tangent vector by multiplying
it by a smoothed indicator function χ, satisfying χ ≈ 1 in the core of the monopoles and
χ ≈ 0 far from the core of any monopole, with χ→ 0 as r → 1 sufficiently rapidly so that
the kinetic energy is finite. A suitable choice is χ = 1− (2|Φ|)m, where m is a large positive
integer. For any initial condition of this form, causality considerations imply that for a
sufficiently large m, the evolution within any given spatial region will be insensitive to the
value of m for evolution up to some time limit that can be increased by increasing m.

3 Radial lumps in the CP1 sigma model

For a second example of a boundary metric, consider the CP1 sigma model, in three-
dimensional Minkowski spacetime, given by the Lagrangian density

L = ∂µW∂µW

(1 + |W |2)2 . (3.1)

Here W takes values in the Riemann sphere and satisfies the boundary condition W → 0
as x2

1 + x2
2 → ∞. This one-point compactification of the plane implies that at any fixed

time W : R2 ∪ {∞} 7→ CP1, with an associated topological charge N ∈ Z = π2(CP1) that
counts the number of solitons, often known as lumps in this context.

For each positive integer N , the general static N -lump solution is given by taking W
to be a rational function of x1 + ix2 with degree N . Restricting attention to static radially
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symmetric charge N lumps positioned at the origin gives a two-dimensional moduli space
of solutions

W = λNeiψ

(x1 + ix2)N , (3.2)

with λ > 0 a measure of the size of the lump and ψ an internal phase.
For N > 1 the geodesic approximation is applicable to motion in this two-dimensional

moduli space as the kinetic energy is finite. Explicitly, allowing λ and ψ to be time-
dependent produces the kinetic energy

T =
∫ |Ẇ |2

(1 + |W |2)2 d
2x = (N2λ̇2 + λ2ψ̇2) π2

N2 sin(π/N) , (3.3)

yielding a flat metric on this moduli space. However, for N = 1 there is a logarithmic
divergence in the kinetic energy for motion in the moduli space, making it a relevant
example for the study of boundary metrics. As in the previous section, the boundary metric
is defined by the associated renormalized kinetic energy T̂ . Introducing polar coordinates
r, θ in the plane, let Tb denote the regularized kinetic energy defined by integration over
the disc r ≤ b, and set

T̂ = lim
b→∞

Tb
log b =

∫ 2π

0

|Ẇ |2r2

(1 + |W |2)2

∣∣∣∣
r=∞

dθ = (λ̇2 + λ2ψ̇2)2π, (3.4)

where the integration is over the boundary circle at infinity.
Note that the geodesics of this boundary metric fit naturally as the N = 1 member of

the geodesics of the general family of flat metrics

ds2 = N2dλ2 + λ2dψ2, (3.5)

proportional to those obtained from the geodesic approximation with N > 1. For all N the
qualitative dynamics is the same. If the internal phase is constant, ψ̇ = 0, then the size λ
of the lump either increases without limit, or shrinks to zero in a finite time, as this family
of metrics are geodesically incomplete. If there is motion in the internal phase then the
non-zero conserved quantity λ2ψ̇ prevents the lump from shrinking to zero size and any
initial shrinking is eventually reversed and ultimately the lump expands without limit.

The qualitative features predicted by the geodesic approximation using the boundary
metric are in good agreement with the results from field theory simulations [7, 8]. Numerical
studies of the shrinking to zero size in finite time for a 1-lump confirm that a linear decrease
in the size of the lump remains an accurate description right up until times very close to
the critical time at which the size vanishes. The simulations are performed on a numerical
grid with a finite spatial extent, taken large enough so that causality prevents any influence
of the boundary on the field at the centre of the lump during the simulation time [8]. This
is equivalent to using an indicator function with χ = 1 in the simulation region, with the
value outside this region being irrelevant for the evolution of the field at the centre of the
lump, within the limited time of the simulation.

The main difference between the field theory evolution and the geodesic approximation
is attributed to the fact that the latter neglects radiation, which is essential in expelling
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excess energy from the core of the lump [9]. This applies equally well to all values of
N , but for N > 1 an initial slow evolution tangential to the moduli space implies that
the kinetic energy is small compared to the potential energy, whereas this is not the case
for N = 1. The geodesic approximation using the boundary metric models field theory
evolution in which the kinetic energy can be arbitrarily large, depending upon the details
of the indicator function χ, or equivalently the spatial extent of the simulation region in
numerical simulations.

A radially symmetric lump located at the origin is an appropriate system for the
application of the geodesic approximation using the boundary metric, because all tangent
vectors in the two-dimensional moduli space have infinite length. This is complementary
to previous studies of lump dynamics using the geodesic approximation restricted to only
those tangent vectors that have finite length [10, 11]. Neither approach is applicable for
motion in the full moduli space of N -lumps, because of the existence of tangent vectors of
both finite and infinite length.

4 Kink dynamics

The simplest system to illustrate and investigate a boundary metric on a soliton moduli
space is a kink in one spatial dimension. Consider a modified φ4 theory given by the
Lagrangian density

L = 1
2 φ̇

2 cosh(κx)− 1
2φ
′2 − 1

2(1− φ2)2, (4.1)

where κ is a non-negative constant and prime denotes differentiation with respect to the
spatial coordinate x. The standard φ4 theory is obtained for κ = 0. As the static sector
is independent of κ then there is a one-dimensional moduli space of static kink solutions
given by the usual φ4 kink

φ(x, t) = tanh(x− a), (4.2)

where the arbitrary real constant a is a coordinate on the moduli space corresponding to
the position of the kink.

The geodesic approximation restricts the motion to the moduli space by promoting a
to be time dependent, producing the tangent vector

φ̇ = −ȧ sech 2(x− a). (4.3)

If 0 ≤ κ < 4 then the associated kinetic energy

T =
∫ ∞
−∞

1
2 φ̇

2 cosh(κx) dx (4.4)

is finite and the standard geodesic approximation is applicable. For example, if κ = 1 then
T = π

4 ȧ
2 cosh a with geodesics given by ä = −1

2 ȧ
2 tanh a. The upper red curve in figure 1

shows the geodesic with a(0) = a0 = 0 and ȧ(0) = v = 0.1.
It is a simple task to compare the results of the geodesic approximation with field

theory simulations using the initial condition

φ(x, 0) = tanh(x− a0), φ̇(x, 0) = −v sech 2(x− a0). (4.5)
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Figure 1. The black curves give the position a of the kink obtained from a field theory simulation
with an initial condition given by a0 = 0 and v = 0.1. The red curves are the corresponding geodesic
approximation, using the boundary metric in the case κ = 4.

The results presented below use a numerical scheme with 6001 lattice points and a lattice
spacing ∆x = 0.0025 giving a simulation interval [−7.5, 7.5]. Spatial derivatives are ap-
proximated using fourth-order accurate finite differences and time evolution is performed
using a fourth-order Runge-Kutta method with a timestep ∆t = 1

2∆x. No flux boundary
conditions are imposed at the ends of the interval. The position of the kink, a, is extracted
using linear interpolation between the two lattice points at which φ changes sign. In fig-
ure 1 there is in fact an upper black curve showing the results of the field theory simulation,
but it is almost totally obscured by the red curve, because the geodesic approximation is
so accurate in this case.

To see a slight difference between the geodesic approximation and field theory simu-
lations, consider the case κ = 2. The kinetic energy is T = 4

3 ȧ
2 cosh(2a) with geodesics

given by ä = −ȧ2 tanh(2a). The middle red curve in figure 1 again shows the geodesic with
a0 = 0 and v = 0.1, and the black curve is the field theory result that displays just enough
difference to allow separate curves to be distinguished.

Turning now to the case κ = 4, then the kinetic energy is infinite if motion is restricted
to the moduli space, making it a suitable example for the application of a boundary metric.
Let Tb denote the regularized kinetic energy integrated over the interval [−b, b]. As Tb is
linearly divergent as b→∞, define the renormalized kinetic energy

T̂ = lim
b→∞

Tb
b

= lim
x→∞

[1
2 φ̇

2 cosh(4x)
]

+ lim
x→−∞

[1
2 φ̇

2 cosh(4x)
]

= 8ȧ2 cosh(4a). (4.6)

The geodesics of this boundary metric are given by ä = −2ȧ2 tanh(4a). The lower red
curve in figure 1 again shows the geodesic with a0 = 0 and v = 0.1, and the black curve is
the field theory result. This demonstrates that geodesics of the boundary metric provide a
reasonable description of kink dynamics. As earlier, the field theory computation should be
regarded as equivalent to using an indicator function with χ = 1 in the simulation region,
with the value outside this region being irrelevant for the evolution of the kink over the
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Figure 2. Left: the moving kink (black curve) at t = 200 and the static kink (red curve) with the
same position. Right: the moving kink (black curve) at t = 200. The field at t = 200 from the
initial condition φ = −1 (blue curve) and φ = 1 (orange curve) with the initial time derivative φ̇
the same as for the moving kink.

timescale of the simulation. This has been justified by performing the same computation
using double the spatial region and confirming that there is no discernible difference in the
evolution of the position of the kink. Changing the boundary conditions from no flux to
Dirichlet also yields no perceptible change, providing another numerical check.

The expectation is that radiation is the main source of the discrepancy between field
theory evolution and the geodesic approximation. In theories with a boundary metric, the
slow motion of a soliton no longer implies that the kinetic energy is a small fraction of the
total energy. A moving soliton may therefore generate a considerable amount of radiation
and energy conservation does not provide such a useful constraint to prevent the field
configuration from deforming far from the moduli space. To illustrate this issue, the black
curve in the left-hand-side plot in figure 2 shows the field φ at the end of the simulation
(t = 200) associated with the data from figure 1. Also shown (red curve) is the static kink
with the same position. This reveals that the two fields agree in the core of the kink, but
that there are significant deformations in the regions around x ≈ ±3. To check that these
deformations are consistent with an initial burst of radiation leaving the core of the kink,
consider the equation for the characteristics that pass through the origin at t = 0∫ x

0

√
cosh(4X) dX = ±t. (4.7)

Evaluating this equation at t = 200 yields x = ±3.17, which is indeed consistent with the
location of the deformation.

Further evidence for the nature of the deformation is provided by considering initial
conditions given by the vacuum fields φ(x, 0) = −1 and φ(x, 0) = 1, with the initial
time derivative φ̇(x, 0) the same as that of the moving kink. The results are displayed in
the right-hand-side plot in figure 2, where the field at time t = 200 is shown in blue for
φ(x, 0) = −1 and orange for φ(x, 0) = 1. For comparison, the moving kink field is displayed
again as the black curve. This clearly shows that the moving kink may be decomposed into
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a soliton component, well-approximated by a point in the moduli space, and a substantial
radiation component, which nonetheless has little influence on the soliton core.

5 Conclusion

The concept of a boundary metric allows the geodesic approximation of soliton dynamics
to be applied to situations in which motion in the soliton moduli space yields infinite
kinetic energy. Numerical studies of a low-dimensional example provide support for this
approach and suggest that it provides a reasonable description of the soliton component
of the dynamics, even though there is more radiation than in the usual application of the
geodesic approximation. This work provides motivation for a future study of the Braam-
Austin metric on the moduli space of hyperbolic monopoles and an interpretation of the
results in terms of hyperbolic monopole scattering. To date, only the metric on the moduli
space of a single hyperbolic monopole has been calculated. Numerical field theory studies
of hyperbolic monopole dynamics would also be interesting, for comparison to predictions
from the geodesic approximation, although this is a significant numerical challenge.

It would be interesting to see if any rigorous mathematical results can be derived for
the geodesic approximation with a boundary metric, along the lines of the results obtained
for the usual geodesic approximation [3, 4].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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