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We study the algebraic properties of binary relations whose underlying digraph is smooth,

that is has no source or sink. Such objects have been studied as surjective hyper-
operations (shops) on the corresponding vertex set, and as binary relations that are

defined everywhere and whose inverse is also defined everywhere. In the latter formula-

tion, they have been called multipermutations.
We study the lattice structure of sets (monoids) of multipermutations over an n-

element domain. Through a Galois connection, these monoids form the algebraic coun-

terparts to sets of relations closed under definability in positive first-order logic without
equality. We show one side of this Galois connection, and give a simple dichotomy theo-

rem for the evaluation problem of positive first-order logic without equality on the class

of structures whose preserving multipermutations form a monoid closed under inverse.
These problems turn out either to be in Logspace or to be Pspace-complete. We go

on to study the monoid of all multipermutations on an n-element domain, under usual

composition of relations. We characterize its Green relations, regular elements and show
that it does not admit a generating set that is polynomial on n.
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1. Introduction

A multipermutation is a binary relation φ over a set [n] = {1, . . . , n} so that: for

all x ∈ [n] there exists y ∈ [n] such that (x, y) ∈ φ; and for all y ∈ [n] there exists

x ∈ [n] such that (x, y) ∈ φ. The term multipermutation originates with Schein in

[36] but they were studied independently as surjective hyper-operations (shops) in

[26,28,27].
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In Universal Algebra there is a family of Galois connections that links relational

expressivity in fragments of first-order logic with closure operators that generate

particular types of algebra. For example, expressivity in the fragment of first-order

logic containing {∃,∧,=} (called primitive positive, or pp-logic) is linked with su-

perpositional closure of sets of finite arity operations (called clones). A survey of

these Galois connections can be found in [6] (see Table 1) and a survey more ori-

ented towards Computer Scientists containing much of the same material is [4] (see

Tables 1 and 2).

The model-checking problem for primitive positive logic on a fixed relational

structure B is known as the Constraint Satisfaction Probem CSP(B). The relevant

Galois connection just noted above gave rise to the so-called algebraic approach to

the computational complexity of CSP(B). This approach culminated in the proof

of the Feder-Vardi Conjecture, showing that such problems for finite B are either

in P or are NP-complete [10,40]. One side of the Galois connection we discuss

in this paper played a similar role in resolving the computational complexities of

the corresponding model-checking problems for the fragment of first-order logic

containing {∀,∃,∧,∨}, denoted by {∃,∀,∧,∨}-FO(B) for a fixed finite relational

structure B [27]. A complete Galois connection has two sides and it is the other side

of this connection that we prove in this paper.

Galois connections have been leveraged in a variety of contexts related to the

CSP in order to aid in classifications of computational complexity, where they have

played, or continue to play, a key part in those projects. In the case of the Quanti-

fied CSP, the relevant connection is noted in [5] and involves surjective operations

that preserve the corresponding relations (known in this case as well as the non-

surjective case as polymorphisms). The complexity classification for Quantified CSP

is famously wide open [41]. Another relative of the CSP, where the complexity clas-

sification is now known, is the Valued CSP. Here the corresponding “logic” is no

longer a fragment of first-order logic. The corresponding Galois connection was dis-

covered gradually, culminating in the notion of weighted clones in [14]. The algebraic

approach was pivotal in the final complexity classification for Valued CSPs [37,22],

though the full power of weighted clones turned out not to be necessary (the more

restricted notion of fractional polymorphism was enough). A final relative of the

CSP, where the complexity classification is still open, is the Promise CSP. Again,

the corresponding “logic” is not a fragment of first-order logic. The Galois con-

nection here first appeared in [31] and was used subsequently in [7]. The algebraic

approach here is ongoing and, indeed, promising (see [11]).

The Galois connection that we prove in this paper, related with the complex-

ity of {∃,∀,∧,∨}-FO(B), deals with sets of multipermutations φ over the set B

under which the relational B (whose domain is B) is invariant, in the following

sense. For a k-ary relation R of B and (x1, . . . , xk) ∈ R, always (y1, . . . , yk) ∈ R, if

(x1, y1), . . . , (xk, yk) ∈ φ. To these sets, always containing the identity and closed

under composition and subrelations (that are themselves also multipermutations),

we will call down shop-monoids (DSMs). In this paper we study the structure of the



September 15, 2021 14:13 WSPC/INSTRUCTION FILE multipermuta-
tionsijac

The lattice and semigroup structure of multipermutations 3

lattice of DSMs on a k-element domain. We give a full Galois connection proving an

isomorphism between the lattice of DSMs (over a k-element domain) and the lattice

of k-element structures closed under definabilty in positive first-order logic without

equality. We study in particular the automorphism born of the inverse operation

on multipermutations. DSMs that are closed under inverse have a fundamentally

group-like structure – what we call blurred permutation subgroups (BPSs). Using

this characterization, we prove a dichotomy for our evaluation problem on struc-

tures that we term she-complementative, i.e. whose monoid of multipermutations

under which they are invariant, is closed under inverse. Specifically, these problems

are either in Logspace or are Pspace-complete. This complexity classification follows

from the general result of [27] but our proof here is simpler.

Multipermutations have been studied earlier as monoids of binary relations,

when considered closed only under composition of relations (not also subrelations).

Schein [36] looked at sets Φ of binary relations φ defined everywhere (i.e. where

every element of the domain appears in the first component) that are closed under

inverses (i.e. φ−1 ∈ Φ for all φ ∈ Φ), so both the domain and range of these relations

are the full domain. Having termed these objects multipermutations, he went on to

characterize involutive semigroups of multipermutations. Furthermore, he proved

that every involutive semigroup of difunctional multipermutations is an inverse

semigroup, and every inverse semigroup is isomorphic to an involutive semigroup

of difunctional multipermutations. Ten years later McKenzie and Schein [29], after

showing that every semigroup is isomorphic to a transitive semigroup of binary

relations, leave as an open problem the question “Which semigroups are isomorphic

to transitive semigroups of multipermutations?” As far as we know this question is

still open.

Bredikhin [8] studied the monoid of all difunctional multipermutations on a k-

element domain. The operation he considered was not the usual composition of

operations, since the composition of two difunctional relations is not necessarily

difunctional. His idea on studying these monoids seemed to be to present a uni-

fication of the theories of inverse semigroups and lattices, see also [9]. These are,

as far as we are aware, the only articles mentioning multipermutations. With their

reappearance in the context mentioned above, we believe it is time to restart the

study of these structures. With this in mind, we look at structural properties of the

monoid of all multipermutations on a k-element domain.

The monoid of (all) binary relations on a k-element domain has been widely

studied since the 60s, as have some of its subsemigroups like the full transformation

monoid, Hall monoid and, more recently, diagram semigroups. The fact that binary

relations can also be represented as boolean square matrices and as graphs allows

us to use techniques from different areas of mathematics to study these monoids.

Drawing on similarities with previously studied monoids, we look at some struc-

tural properties of the monoid of multipermutations. We characterize its Green’s

relations, give an algorithm to compute regular elements, and show that this monoid,

unlike the symmetric group, does not admit a generating set that is of size polyno-
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mial in k. Finally we prove that blurred permutations are the completely regular

difunctional multipermutations. There are still many questions to answer about

the monoid of all multipermutations, e.g. What are its maximal subgroups? Is this

semigroup better behaved in any way than the semigroup of all binary relations?

This paper is, partially, based on [28]. Some of the content from [28] is now ob-

solete and has been removed, other parts appear here (with minor issues) corrected.

The section on the monoid of multipermutations, Section 4, is new to this paper.

Presentation. The paper is organized as follows. In Section 2 we give the necessary

preliminaries and introduce the Galois connection. In Section 3, we discuss the

structure of our lattices, with particular emphasis on an automorphism born of an

inverse operation. We go on to prove the characterization theorem that allows us to

derive the complexity dichotomy for she-complementative structures. In Section 4

we study the monoid of all multipermutations on a k-element domain.

2. Preliminaries

Let B be a structure, always with finite domain B, over an at most countable re-

lational signature σ. Let {∃,∀,∧,∨}-FO(B) be the positive fragment of first-order

(fo) logic without equality. An extensional relation is (the interpretation in a struc-

ture of) a relation of the signature σ. We will usually denote extensional relations

of B by R and other relations by S (or by some formula that defines them). In

{∃,∀,∧,∨}-FO(B), the atomic formulae are exactly substitution instances of exten-

sional relations. The problem {∃,∀,∧,∨}-FO(B) has:

• Input: a sentence ϕ ∈ {∃,∀,∧,∨}-FO(B).

• Question: does B |= ϕ?

QCSP(B) is the restriction of this problem to formulae involving no disjunction,

what in our notation would be {∃,∀,∧}-FO. When B is of size one, the evaluation

of any FO sentence may be accomplished in Logspace (essentially, the quantifiers

are irrelevant and the problem amounts to the boolean sentence value problem, see

[24]). In this case, it follows that {∃,∀,∧,∨}-FO(B) is in Logspace. Furthermore, by

inward evaluation of the quantifiers, {∃,∀,∧,∨}-FO(B) is readily seen to always be

in Pspace.

For a structure B define the complement structure B to be over the same domain

B with relations which are the set-theoretic complements of those of B. That is, for

each r-ary relation R, RB = Br \RB. Similarly, for a relation R ⊆ Br, let R denote

Br \R.

Consider the finite set X = [n] := {1, . . . , n} and its power set P(X). A hyper-

operation on X is a function f : X → P(X) \ {∅} (that the image may not be

the empty set corresponds to the hyper-operation being total, following [3]). If the

hyper-operation f has the additional property that

• for all y ∈ X, there exists x ∈ X such that y ∈ f(x),
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then we designate (somewhat abusing terminology) f surjective. A surjective hyper-

operation in which each element is mapped to a singleton set is identified with a per-

mutation (bijection). Instead of operations we can think of these hyper-operations

as being binary relations. Given an hyper-operation f on X, we can construct the

binary relation {(x, f(x)) : x ∈ X}, thus surjective hyper-operations can be thought

of as binary relations f ⊆ X ×X that satisfy

∀x ∈ X ∃y1, y2 ∈ X s.t. (x, y1), (y2, x) ∈ f.

Following the work of Schein [35], we denote these multipermutations, and will keep

this terminology for both the relations and hyper-operations.

A surjective hyper-endomorphism (she) of a set of relations (forming the finite-

domain structure) B over X is a multipermutation f on X that satisfies, for all

relations R of B,

• if (x1, . . . , xi) ∈ R then, for all y1 ∈ f(x1), . . . , yi ∈ f(xi), (y1, . . . , yi) ∈ R.

More generally, for r1, . . . , rk ∈ X, we say f is a she from (B; r1, . . . , rk) to

(B; r′1, . . . , r
′
k) if f is a she of B and r′1 ∈ f(r1), . . . , r′k ∈ f(rk). A she may be

identified with a surjective endomorphism if each element is mapped to a singleton

set. On finite structures surjective endomorphisms are necessarily automorphisms.

2.1. Galois Connections

2.1.1. Relational side.

For a set F of multipermutations on the finite domain B, let Inv(F ) be the set of

relations on B of which each f ∈ F is a she (when these relations are viewed as

a structure over B). We say that S ∈ Inv(F ) is invariant or is preserved by (the

multipermutations in) F . Let shE(B) be the set of shes of B. Let Aut(B) be the set

of automorphisms of B.

Let 〈B〉{∃,∀,∧,∨}-FO and 〈B〉{∃,∀,∧,∨,=}-FO be the sets of relations that may be

defined on B in {∃,∀,∧,∨}-FO and {∃,∀,∧,∨,=}-FO, respectively.

Lemma 2.1 ([25]). Let r := (r1, . . . , rk) be a k-tuple of elements of the finite-

signature B. There exists:

(i). a formula θr(u1, . . . , uk) ∈ {∃,∀,∧,∨,=}-FO such that (B, r′1, . . . , r′k) |=
θr(u1, . . . , uk) iff there is an automorphism from (B, r1, . . . , rk) to

(B, r′1, . . . , r′k).

(ii). a formula θr(u1, . . . , uk) ∈ {∃,∀,∧,∨}-FO such that (B, r′1, . . . , r′k) |=
θr(u1, . . . , uk) iff there is a she from (B, r1, . . . , rk) to (B, r′1, . . . , r′k).

The following is the main theorem of [25].

Theorem 2.2 ([25]). For a finite-signature structure B we have

(i). 〈B〉{∃,∀,∧,∨,=}-FO = Inv(Aut(B)) and
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(ii). 〈B〉{∃,∀,∧,∨}-FO = Inv(shE(B)).

We will need a countable-signature version of this theorem for our final lattice

isomorphism.

Theorem 2.3. For a countable-signature structure B we have

(i). 〈B〉{∃,∀,∧,∨,=}-FO = Inv(Aut(B)) and

(ii). 〈B〉{∃,∀,∧,∨}-FO = Inv(shE(B)).

Proof. Part (i) is well-known [20,2] and may be proved in a similar, but simpler,

manner to Part (ii), which we now prove. The direction [ϕ(v) ∈ 〈B〉{∃,∀,∧,∨}-FO
⇒ ϕ(v) ∈ Inv(shE(B))] is proved as before.

For [S ∈ Inv(shE(B)) ⇒ S ∈ 〈B〉{∃,∀,∧,∨}-FO], we proceed similarly to before,

but using finiteness of the domain B, which will rescue us from the pitfalls of an

infinite signature. Let r1, . . . , rm enumerate the tuples of S. Consider the following

finite disjunction:

θS(u1, . . . , uk) := θr1(u1, . . . , uk) ∨ . . . ∨ θrm(u1, . . . , uk).

Let R1, R2, . . . be an enumeration of the extensional relations of B. Let Bi be the

reduct of B to the signature 〈R1, . . . , Ri〉. For j ∈ [m] let θirj (u1, . . . , uk) be built as

in Lemma 2.1, but on the reduct Bi. The relations θ1rj (u1, . . . , uk), θ2rj (u1, . . . , uk),

. . . are monotone decreasing on Bk – the shes must preserve an increasing number

of extensional relations – and therefore reach a limit lj such that θ
lj
rj (u1, . . . , uk)

=θrj (u1, . . . , uk). Let l := max{l1, . . . , lm} and build θS(u1, . . . , uk) over the finite-

signature reduct Bl. The result follows.

In the following, ≤Logspace indicates the existence of a logspace many-to-one

reduction.

Theorem 2.4. Let B and B′ be structures over the same domain B such that B′
is finite-signature.

(i). If Aut(B) ⊆ Aut(B′) then {∃,∀,∧,∨,=}-FO(B′) ≤Logspace {∃,∀,∧,∨,=
}-FO(B).

(ii). If shE(B) ⊆ shE(B′) then {∃,∀,∧,∨}-FO(B′) ≤Logspace {∃,∀,∧,∨}-FO(B).

Proof. Part (i) is well-known [20,2] and the proof is similar to that of Part (ii),

which we give. If shE(B) ⊆ shE(B′), then Inv(shE(B′)) ⊆ Inv(shE(B)). From Theo-

rem 2.2, it follows that 〈B′〉{∃,∀,∧,∨}-FO ⊆ 〈B〉{∃,∀,∧,∨}-FO. Recalling that B′ contains

only a finite number of extensional relations, we may therefore effect a logspace

reduction from {∃,∀,∧,∨}-FO(B′) to {∃,∀,∧,∨}-FO(B) by substitution of predi-

cates by formulas. That is, we reduce φ′, an instance of {∃,∀,∧,∨}-FO(B′), to φ,

an instance of {∃,∀,∧,∨}-FO(B), by substituting instances of R′ in φ′ by their

{∃,∀,∧,∨}-FO definition over B.
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2.1.2. Down-shop-monoids and the functional side.

Consider the finite domain X. The identity multipermutation idX is defined by

x 7→ {x}. Given multipermutations f and g, define the composition g◦f by x 7→ {z :

∃y z ∈ g(y)∧y ∈ f(x)}. We say that f is a sub-multipermutation of g, denoted f ⊆ g,

if f(x) ⊆ g(x) for all x, and f is a multipermutation. A set of multipermutations on

a finite set B is a down-shop-monoid (DSM), if it contains idB , and is closed under

composition and sub-multipermutationsa. The multipermutation idB is a she of all

structures with domain B, and, if f and g are shes of B, then so is g◦f . Further, if g is

a she of B, then so is f for all sub-multipermutations f ⊆ g. It follows that shE(B) is

always a DSM. If F is a set of permutations, then we write 〈F 〉G to denote the group

generated by F . If F is a set of multipermutations on B, then let 〈F 〉DSM denote the

minimal DSM containing the multipermutations of F . If F is the singleton {f}, then,

by abuse of notation, we write 〈f〉 instead of 〈{f}〉. For multipermutations on small

domains we will represent it by listing all elements of the domain on the left and

their images on the right, e.g. the multipermutation 1 7→ {1, 2}, 2 7→ {2}, 3 7→ {1, 3}
will be represented by

1 1, 2

2 2

3 1, 3

. Also, if the multipermutation is a permutation we will

keep the usual cycle notation.

For a multipermutation f , define its inverse f−1 by x 7→ {y : x ∈ f(y)}. Note

that f−1 is also a multipermutation and (f−1)−1 = f , though f ◦ f−1 = idB only

if f is a permutation. For a set of multipermutation F , let F−1 := {f−1 : f ∈ F}.
A permutation group on a finite set B is a set of permutations of B closed under

composition. It may easily be verified that such a set contains the identity and is

closed under inverse. A permutation group may be identified with a particular type

of DSM in which all multipermutations have only singleton sets in their range.

Theorem 2.5. Let X be a finite set.

(i) Let F be a set of permutations on X. Then〈F 〉G = Aut(Inv(F )).

(ii) Let F be a set of multipermutations on X. Then 〈F 〉DSM = shE(Inv(F )).

Proof. Part (i) is well-known but we give a proof for illustrative purposes.

[〈F 〉G ⊆ Aut(Inv(F )).] By induction. One may easily see that if f, g ∈
Aut(Inv(F )) then f ◦ g ∈ Aut(Inv(F )). Further, if f ∈ Aut(Inv(F )) then f−1 ∈
Aut(Inv(F )) as the set of automorphisms is closed under inverse.

[Aut(Inv(F )) ⊆ 〈F 〉G.] Let |X| = n. One may easily see that Inv(F ) = Inv(〈F 〉G)

(for the forward containment, note that inverse follows from the fact that F is a set

of bijections on a finite set). Let R be the n-ary relation that lists the permutations

in 〈F 〉G (e.g., the identity appears as (1, 2, . . . , n)); R is preserved by 〈F 〉G. We

will prove Aut(Inv(〈F 〉G)) ⊆ 〈F 〉G by contraposition. If g is a permutation not in

〈F 〉G, then g /∈ R and g does not preserve R as it maps the identity to g. Therefore

g /∈ Aut(Inv(〈F 〉G)) and the result follows.

aClosure under sub-multipermutations is termed down closure in [3], hence the D in DSM.
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[Part (ii).]

[〈F 〉DSM ⊆ shE(Inv(F )).] By induction. One may easily see that if f, g ∈
shE(Inv(F )) then f ◦ g ∈ shE(Inv(F )). Similarly for sub-multipermutations and the

identity.

[shE(Inv(F )) ⊆ 〈F 〉DSM .] Let |D| = n. One may easily see that Inv(F ) =

Inv(〈F 〉DSM ). Let R be the n2-ary relation that lists the shes of 〈F 〉DSM in the

following manner. Consider the n2 positions enumerated in n-ary, i.e. by (i, j) s.t.

i, j ∈ [n]. Each she f gives rise to many tuples in which the positions (i, 1),. . . , (i, n)

are occupied in all possible ways by the elements of f(i). Thus, f0 :=
1 1, 2

2 2

3 3

generates

the following eight tuples

(1, 1, 1, 2, 2, 2, 3, 3, 3)

(1, 1, 2, 2, 2, 2, 3, 3, 3)

(1, 2, 1, 2, 2, 2, 3, 3, 3)

(1, 2, 2, 2, 2, 2, 3, 3, 3)

(2, 1, 1, 2, 2, 2, 3, 3, 3)

(2, 1, 2, 2, 2, 2, 3, 3, 3)

(2, 2, 1, 2, 2, 2, 3, 3, 3)

(2, 2, 2, 2, 2, 2, 3, 3, 3)

Let pi,j ∈ [n] be the element at position (i, j). We describe as a full coding of f

any such tuple s.t., for all i, {pi,1, . . . , pi,|D|} = f(i). In our example, all tuples

except the first and last are full codings of f0. Note that R is preserved by 〈F 〉DSM .

We will prove that shE(Inv(〈F 〉G)) ⊆ 〈F 〉DSM by contraposition. If g is a shop

not in 〈F 〉DSM , then g does not appear fully coded in R and g does not preserve

R as it maps the identity to all tuples that are full codings of g. Therefore g /∈
shE(Inv(〈F 〉DSM )) and the result follows.

2.2. Lattice isomorphism

Consider sets of relations Γ on the domain D = [n], closed under {∃,∀,∧,∨}-FO-

definability (such sets may be seen as countable signature structures D). Let Rn be

the lattice of such sets ordered by inclusion. Let the lattice Fn be of DSMs on the

set [n], again ordered by inclusion.

Corollary 2.6. The lattices Rn and Fn are isomorphic and the operators Inv and

shE induce isomorphisms between them.

Proof. From the second parts of Theorems 2.3 and 2.5.

The permutation groups form a lattice under inclusion whose minimal element

contains just the identity and whose maximal element is the symmetric group (on

the size of the domain). As per Theorem 2.4, this lattice classifies the complexities

of {∃,∀,∧,∨,=}-FO(B) (again there is an isomorphism between this lattice and sets

of relations closed under positive fo-definability). In the lattice of DSMs, Fn, the
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Fig. 1. The lattice F2.
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Fig. 2. The lattice F3. The authors are grateful to Jos Martin for calculating and drawing F3.

minimal element still contains just the identity, but the maximal element contains all

multipermutations. However, the lattice of permutation subgroups always appears

as a sub-lattice within the lattice of DSMs. In the case of F2, Figure 1, we have 5

DSMs, two of which are the subgroups of S2. In the case of F3, Figure 2, we have

115 DSMs, only six of which are the subgroups of S3 – so the lattice complexity

jumps very quickly.
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3. The structure of Fn

3.1. Blurred permutation subgroups and symmetric

multipermutations

Many of the DSMs of Fn are reminiscent of subgroups of the symmetric group Sm
for some m ≤ n. We say that a multipermutation f on the domain [n] is a blurred

permutation if it may be built from (the multipermutation associated with) the

permutation g on the domain [m] (m ≤ n) in the following manner:

(*) for P1, . . . , Pm a partition of [n], set f(k) = Pg(i) for all k ∈ Pi, i = 1, . . . ,m.

We note that if f is a blurred permutation obtained as above with partition

P1, . . . , Pm and permutation g, then f−1 is also a blurred permutation obtained

with the same partition and permutation g−1. This is easy to see if we think of

f−1(k) as the set of elements that get mapped to k under f .

We say that a DSM N over domain [n] is a blurred permutation subgroup (BPS)

if one may build it from (the DSM associated with) a subgroup M of Sm, m ≤ n

by replacing each permutation g ∈ M by the blurred permutation f created as in

(∗), and then taking the closure under sub-multipermutations. For the example, the

group M := 〈 1 2

2 1
〉

• becomes the BPS N := 〈
1 2, 3, 4

2 1

3 1

4 1

〉 when P1 := {1} and P2 := {2, 3, 4}, and

• becomes the BPS N := 〈
1 2, 4

2 1, 3

3 2, 4

4 1, 3

〉 when P1 := {1, 3} and P2 := {2, 4},

and the permutation
1 1

2 3

3 2

becomes the blurred permutation
1 1

2 3, 4

3 2

4 2

when P1 := {1},

P2 := {2} and P3 := {3, 4}. A blurred symmetric group is a BPS built in the

manner described from a symmetric group.

With an arbitrary multipermutation f on D, we may associate the digraph Gf
on D in which there is an edge (x, y) if f(x) 3 y. The condition of totality ensures

Gf has no sinks and the condition of surjectivity ensures Gf has no sources. f

contains the identity as a sub-multipermutation iff Gf is reflexive. There is an edge

from a to some y in Gg and an edge from y to b in Gf iff there is an edge from a to

b in Gf◦g. In this fashion, it is easy to verify that there is a directed path of length

n from a to b in Gf iff b ∈ fn(a).

A binary relation (and consequently a multipermutation) f is symmetric if, for

all a and b, we have a ∈ f(b) iff b ∈ f(a), and it is reflexive if a ∈ f(a) for all a ∈ D.

Examples of symmetric multipermutations are idD and
1 1, 2

2 1, 2

3 3

. It not hard to see that

f is symmetric iff f = f−1 iff Gf is undirected.

Lemma 3.1. The reflexive blurred permutations are the ones built in the manner

(∗) from an identity multipermutation. Furthermore, they are symmetric.
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Proof. Let f be a reflexive blurred permutation obtained as in (∗) from the permu-

tation σ with partition P1, . . . , Pm, m ≤ n. We have, for any i ∈ [m], f(Pi) = Pσ(i).

Since f is reflexive, for every k ∈ Pi we have k ∈ Pσ(i), so that Pi = Pσ(i), implying

i = σ(i). Thus σ is the identity permutation. Recall that f−1 is obtained from

σ−1 with the same partition. Since σ = σ−1, it follows that f = f−1, hence f is

symmetric.

We note that not all reflexive or symmetric multipermutations are blurred per-

mutations.

Example 3.2. The multipermutation
1 1, 2

2 1, 2, 3

3 2, 3

is symmetric and reflexive but is not a

blurred permutation.

Lemma 3.3. For all multipermutations f , f ◦ f−1 and f−1 ◦ f are symmetric and

reflexive multipermutations.

Proof. It is sufficient to prove that f ◦ f−1 is symmetric. Let a ∈ f ◦ f−1(b). Then

there exists y s.t. b ∈ f−1(y) and y ∈ f(a). Thus, y ∈ f(b) and a ∈ f−1(y), i.e.

b ∈ f ◦ f−1(a). The fact that they are reflexive is easy to see.

Let f and g be symmetric multipermutations on the domain D. The minimal sym-

metric multipermutation h containing both f and g as a sub-multipermutation is

said to be the join of f and g. The union (f ∪g) of f and g is the multipermutation

given by, for all x ∈ D, (f ∪ g)(x) := f(x) ∪ g(x).

Lemma 3.4. Let f and g be symmetric and reflexive multipermutations on the

domain [n]. The join of f and g is (f ∪ g)n = (f ◦ g)n = (g ◦ f)n.

Proof. Consider the union f ∪ g. Since f and g are both reflexive, we can see that

f ∪ g ⊆ f ◦ g ⊆ (f ∪ g)2 and f ∪ g ⊆ g ◦ f ⊆ (f ∪ g)2. The join h of f and g contains

exactly those a ∈ h(b) and b ∈ h(a) for which there is a path in f ∪ g from a to

b (and b to a). By reflexivity of f ∪ g this is equivalent to there being an n-path

between a and b in (f ∪ g), which is equivalent to there being an edge in (f ∪ g)n.

Noting (f ∪ g)n = (f ∪ g)n+1, the result follows.

Lemma 3.5. In each DSM there is a unique maximal reflexive and symmetric

multipermutation g. Furthermore g is a blurred permutation.

Proof. Since each DSM contains the idn we know that all DSMs contain at least

one reflexive and symmetric multipermutation. Suppose, for a contradiction that

there exist two maximal reflexive and symmetric multipermutations, f, g, on a DSM

M . Then, by Lemma 3.4 the join of f, g also belongs to M , which contradicts

the maximality of f and g. Thus in each DSM there exists a unique maximal

reflexive and symmetric multipermutation. We now need to show that it is a blurred
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permutation. Since for any multipermutation f we have f ⊆ f2, given g the maximal

reflexive and symmetric multipermutation on a DSM M with domain [n], we have

gn = g (since g is maximal). To then see that g is a blurred permutation we can

think of the graph Gg that is the union of disjoint reflexive cliques.

Let g be a blurred permutation on the domain [n] with associated partition

P1, . . . , Pm. We say that a multipermutation f respects g if neither

(i) exist a, b and c, d such that a, b are in the same set Pi and c, d are in distinct

sets Pj , Pk, respectively, and c ∈ f(a) and d ∈ f(b), nor

(ii) exist a, b and c, d such that a, b are in distinct sets Pj , Pk, respectively, and

c, d are in the same set Pi and c ∈ f(a) and d ∈ f(b).

Lemma 3.6. If the multipermutation f does not respect the blurred permutation g,

then either (f ◦ g) ◦ (g−1 ◦ f−1) or (f−1 ◦ g−1) ◦ (g ◦ f) is a reflexive and symmetric

multipermutation that is not a sub-multipermutation of g.

Proof. If f does not respect g because of Item (i) above, noting that g(a) = g(b),

then h := (f ◦ g) ◦ (f ◦ g)−1 satisfies h(c) ⊇ {c, d}. So h 6⊆ g, and the result follows

from Lemma 3.3 as (f ◦ g) ◦ (f ◦ g)−1 = (f ◦ g) ◦ (g−1 ◦ f−1).

If f does not respect g because of Item (ii) above, then f−1 does not respect g

because of Item (i) above. The result follows.

Lemma 3.7. If g is the maximal reflexive and symmetric multipermutation in a

DSM M and f is a blurred permutation that respects g, then f ∈M iff there exists

f ′ ⊆ f s.t. f ′ ∈M .

Proof. The forward direction is trivial since M is closed under sub-

multipermutations. Assume now that there exists f ′ ⊆ f s.t. f ′ ∈ M . Since

f is a blurred permutation that respects g we can see that the partition of f

must be a refinement of the partition of g, i.e. if P1, . . . , Pm is the partition of

f and Q1, . . . , Ql is the partition of g we have for each i ∈ [m], Pi ⊆ Qj for

some j ∈ [l]. Now, applying the multipermutations right to left, we have for any

a ∈ [n] g ◦ f ′(a) = g(T ) with f ′(a) = T ⊆ f(a) = Pi ⊆ Qj for some i ∈ [m]

and j ∈ [l], with g(a) = g(Qj). By Lemmas 3.1 and 3.5 it follows that g is a

blurred permutation obtained from the identity permutation, so g(Qj) = Qj . Then

f(a) = Pi ⊆ Qj = g(f ′(a)) = g(T ) = g(Qj). Hence f ⊆ g ◦ f ′, so f ∈M .

3.2. Automorphisms of Fn

The lattice Fn has a collection of very obvious automorphisms corresponding to the

permutations of Sn, in which one transforms a DSM M to M ′ by the uniform rela-

belling of the elements of the domain according to some permutation. For example,

M := 〈 1 1, 2

2 2

3 3

〉 maps to M ′ := 〈 1 1

2 2

3 2, 3

〉 under the permutation {1 7→ 3, 2 7→ 2, 3 7→ 1}.
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There is another, more interesting, automorphism of Fn, which we will call the

inverse automorphism. We do not close our DSMs under inverse because they were

defined in order that the given Galois connections held. It is not hard to verify that

if M is a DSM, then {f−1 : f ∈ M} is also a DSM, which we call the inverse and

denote M−1. It is also easy to see that f = (f−1)−1 and M = (M−1)−1, from where

it follows that inverse is an automorphism of Fn.

3.3. Properties of inverse

Call a structure B she-complementative if shE(B) = shE(B)−1. Note that, if F is a

DSM, then so is F−1. In fact, this algebraic duality resonates with the de Morgan

duality of ∃ and ∀, and the complexity-theoretic duality of NP and co-NP [25].

Lemma 3.8. For all B, shE(B) = shE(B)−1.

Proof. It follows from the definition of she that f is a she of B iff f−1 is a she of

B.

We are now in a position to derive the following classification theorem.

Theorem 3.9. A DSM N is a BPS iff N = N−1.

Proof. It is straightforward to see that a BPSN is such thatN = N−1. Specifically,

if f ∈ N then f is derived from a multipermutation g of a permutation in a group

M . The inverse f−1 may be derived in the same manner from the inverse g−1 of g.

Now suppose N is such that N = N−1. Let g be the maximal reflexive and

symmetric multipermutation in N . Let P1, . . . , Pm be the associated partition of g

in the manner previously discussed. Let M be the blurred symmetric group formed

from Sm by the sets P1, . . . , Pm. We claim N ⊆ M . This follows from Lemmas 3.4

and 3.6, since, if N ⊆/ M , then some multipermutation f ∈ N fails to respect g,

contradicting the maximality of g. This shows that all multipermutations f ∈ N
can be extended to a blurred permutation with partition P1, . . . , Pm.

Let f be a multipermutation inN and f ′ be a blurred permutation with partition

Pi, . . . , Pm such that f ⊆ f ′. By Lemma 3.7 f ′ ∈ N . Thus N is generated by

precisely the blurred permutations f ′, with partition P1, . . . , Pm, that contain the

multipermutations f ∈ N . Thus we see that N is a BPS.

Corollary 3.10. A DSM N is a BPS iff the maximal elements in N are blurred

permutations.

Proof. Forward is trivial. Assume now that all maximal elements of N are blurred

permutations. By Theorem 3.9, it is enough to show that N−1 = N . Let f ∈ N
be arbitrary, f ⊆ g, with g a maximal blurred permutation of N with partition

P1, . . . , Pm. Then there exists k ∈ N such that gk acts as the identity on the sets of
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the partition, i.e. gk(Pi) = Pi for all i = 1, . . . ,m. Hence g generates its inverse, i.e

g−1 = gl for some l < k. We can then obtain f−1 as a submultipermutation of gl.

Thus f−1 ∈ N , and we can conclude that N = N−1.

We may now give a complexity classification for she-complementative structures

based on the following result of [25].

Lemma 3.11 ([25]). If shE(B) is a BPS derived from Sm, for m ≥ 2, then

{∃,∀,∧,∨} -FO(B) is Pspace-complete.

Corollary 3.12. If B is she-complementative then {∃,∀,∧,∨}-FO(B) is either in

Logspace or is Pspace-complete.

Proof. We know from Theorem 3.9 that shE(B) is a BPS. If it is a BPS formed

from the trivial group S1, then shE(B) contains all multipermutations. It follows that

{∃,∀,∧,∨}-FO(B) is in Logspace (indeed one may evaluate the quantified variables

in an instance arbitrarily - for more details see [25]). If shE(B) is a BPS formed

from Sm, with m ≥ 2, then {∃,∀,∧,∨}-FO(B) is Pspace-complete by Lemma 3.11.

4. The structure of Mn

Let Mn denote the monoid of all multipermutations on [n] with the binary operation

of composition of relations. In this section we study the structure of (Mn, ◦) from

a semigroup point of view.

Several well studied monoids are associated with Mn: the symmetric group Sn
is a submonoid of Mn; the Hall monoid Hn (where every relation contains a permu-

tation, see for example [12]) is also a submonoid of Mn; while the transformation

semigroup Tn (all maps from [n] to [n]) is not contained in Mn since not all trans-

formations are surjective. Let Bn be the semigroup of all n × n matrices over the

boolean semiring {0, 1}. This semigroup is isomorphic, in a natural way, to the semi-

group of all binary relations on [n], where the operation is the usual composition

of relations, and Mn is (isomorphic to) a submonoid of Bn. We can then think of

Mn as the submonoid of Bn composed of all boolean matrices with at least one 1 in

every row and every column. We will slightly abuse notation and use Bn to denote

both this monoid and the monoid of all binary relations on [n].

4.1. Green’s relations

Green’s relations for Tn and Sn are trivial and can be found in any book on Semi-

group Theory. In contrast, for the semigroup of all binary relations Bn no simple,

direct, charaterization is known. They were characterized, possibly among others,

by Zaretskii [38,39] in terms of lattices; Plemmons and West [32] in terms of boolean

matrices, and by Adu [1] using direct composition (and skeletons of the relations).

Similarly, for Mn a simple characterization has so far eluded us. In this section, to
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keep our results matching the current literature, we will multiply matrices left to

right (i.e. compose multipermutations left to right).

We can think of the rows and columns of an n × n boolean matrix from Bn as

vectors on {0, 1}n, so these can be, naturally, added and compared coordinate-wise

using boolean operations.

Let α ∈ Bn. The row space of α, V (α), is the set of all possible sums of rows of

α, including the zero vector. Analogously, the column space of α, W (α), is the set

of all possible sums of columns of α, including the zero vector.

Lemma 4.1 (Zaretskii). For any α, β ∈ Bn:

(1) αLβ ⇔ V (α) = V (β);

(2) αRβ ⇔ W (α) = W (β).

Following this characterization given by Zarestkii [39] for Green’s relations in

Bn, which can also be found in [32, Lemma 1.2], we obtained the following charac-

terization for Mn:

Theorem 4.2. Given α ∈ Mn let R(α) be the set of rows and C(α) the set of

columns, respectively, of α. Define 〈R(α)〉 = {ρ ∈ V (α)\{0} : ∃αj ∈ R(α) : ρ ≤ αj}
and 〈C(α)〉 analogously. For any α, β ∈Mn, we have

(1) αLβ ⇔ 〈R(α)〉 = 〈R(β)〉,
(2) αRβ ⇔ 〈C(α)〉 = 〈C(β)〉,
(3) αHβ ⇔ 〈R(α)〉 = 〈R(β)〉and 〈C(α)〉 = 〈C(β)〉.

Proof. For each γ ∈Mn denote by γi the ith row of γ (when γ is in matrix form).

Let α, β ∈ Mn be such that 〈R(α)〉 = 〈R(β)〉. Since R(α) ⊆ 〈R(α)〉, for all

i ∈ [n] there exist j1, . . . , jl ∈ [n] such that αi = βj1 + · · ·+ βjl , we can then define

ρ ∈Mn by the rule ρi has a 1 in exactly all places j1, . . . , jl (and zeros everywhere

else). It is then easy to see that ρ ◦ β = α. In a similar way we can define δ ∈Mn

such that δ ◦ α = β. It follows that αLβ.

Let us assume now that α, β ∈Mn are such that αLβ. By Lemma 4.1 we know

that V (α) = V (β), so, for all i ∈ [n], αi ∈ V (β) which implies that αi = βj1+· · ·+βjl
for some βj1 , . . . , βjl ∈ R(β), since αi 6= 0. Since there exists ρ ∈ Mn, so that i

appears in the image of ρ (i.e. ρ has at least one 1 in column i), such that ρα = β, we

have that αi ≤ βj for some j = 1, . . . , n. Hence αi ∈ 〈R(β)〉, and so R(α) ⊆ 〈R(β)〉.
It the follows, by definition of 〈R(α)〉, that 〈R(α)〉 ⊆ 〈R(β)〉. Analogously, we can

show that 〈R(β)〉 ⊆ 〈R(α)〉. Thus 〈R(α)〉 = 〈R(β)〉.
In a similar way, reversing rows and columns, we can show that αRβ if and only

if 〈C(α)〉 = 〈C(β)〉. And, as a consequence of both these facts we have that αHβ if

and only if 〈R(α)〉 = 〈R(β)〉 and 〈C(α)〉 = 〈C(β)〉.

Example 4.3. We have
1 1

2 1

3 1, 2, 3

L 1 1

2 1, 2, 3

3 1, 2, 3

R 1 1, 2

2 1, 2, 3

3 1, 2, 3

.
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Example 4.4. The following multipermutations are L related in Bn but not in Mn

1 1

2 2, 3

3 1, 2, 3

and
1 1

2 2, 3

3 2, 3

.

Example 4.5. The following multipermutations are L related in Mn but do not

have the same set of rows
1 1, 3

2 1

3 3

4 2, 4

5 1, 3, 5

and

1 1

2 3

3 2, 4

4 2, 4

5 1, 3, 5

.

4.2. Regular elements

An element a of a semigroup S is called regular if there exists x ∈ S s.t. a = axa, x

is called an inverse of a. Schein [34] gave us a way of checking if a binary relation

is regular in the semigroup of all binary relations.

Lemma 4.6 ([34]). Let ρ ∈ Bn be a binary relation. Then ρ is regular (in Bn) iff

ρ ⊆ ρ ◦ (ρ−1 ◦ ρc ◦ ρ−1)c ◦ ρ.

Here ρ−1 is the inverse relation, as defined earlier on for multipermutations

ρ−1 = {(y, x) : (x, y) ∈ ρ}, and ρc is the complement relation ρc = {(x, y) ∈
X ×X : (x, y) /∈ ρ}. Since we are here using the word inverse for distinct things we

will use just inverse for semigroup inverse and will call inverse relation as ρ−1 to

avoid confusion. In the same paper he showed that the relation

(ρ−1 ◦ ρc ◦ ρ−1)c ◦ ρ ◦ (ρ−1 ◦ ρc ◦ ρ−1)c

is the greatest (relatively to containment of relations) inverse of ρ.

Using Schein’s condition we can check if a multipermutation ρ has an inverse,

by checking if this greatest inverse is also a multipermutation, but it is not enough

to check the regularity condition presented in the lemma above.

Example 4.7. The multipermutation
1 1, 2

2 3

3 1, 2, 3

is regular as a binary relation, but not

as a multipermutation, since all inverses of it are binary relations that are not

multipermutations.

Even though this greatest inverse is computable in polynomial time it is not

always simple to check. We adapted an algorithm by Kim & Roush [21] to compute

inverses for multipermutations, in particular we keep the notation used in that

article for easier comparison.

Let Vn be the set of all n-tuples of elements of {0, 1}. A subset W of Vn is called

a subspace of Vn if it contains the zero vector and u+ v ∈W for all u, v ∈W . The

subspace spanned by W is the smallest subspace that contains W , we denote it by

〈W 〉. A vector v is said to be dependent on W if v ∈ 〈W 〉. A set W is said to be

independent if for all v ∈ W , v is not dependent on W\{v}. A subset S is said to

be a basis for a subspace W if W = 〈S〉 and S is an independent set.
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If v ∈ Vn we denote by vi the element of {0, 1} occurring in position i of v. For

u, v ∈ Vn we say that u 6 v if ui = 1 only if vi = 1 for all i = 1, . . . , n. Given α, a

boolean square matrix, let αi∗ denote the ith row of α.

By the row space of α we mean the subspace spanned by the set of rows of α,

and denote it by R(α). We denote by b(α) the basis for R(α) and call it the row

basis of α.

For each v ∈ b(α) a vector u with one 1 is called an identification vector of v if

and only if: u 6 w holds if and only if v 6 w for w ∈ b(α).

Let I(v) denote the set of identification vectors of a basis vector v of α. Finally,

set p(t) = inf{w ∈ R(α) : t ≤ w}, where the infimum is taken in the lattice V (α).

Algorithm for binary relations: Kim & Roush [21]

Input α ∈ Bn,

(1) find b(α);

(2) find I(v) for each v ∈ b(α);

(3) for each v ∈ b(α), choose a specific identification vector u ∈ I(v);

(4) for each such chosen u, choose a vector s such that si = 1 if αi∗ 6 v and

such that si = 1 for at least one i such that αi∗ = v ;

(5) choose any vector t with exactly one 1 entry other than the u’s chosen in

Step (3), if t is not less than any row vector, send t to an arbitrary vector.

Otherwise send t to a vector b such that bi = 1 only if αi∗ 6 p(t);

(6) linearly order the set of vectors with only one 1 in such a way that the

mapping i 7→ (δi1, δi2, . . . , δin) is an order isomorphism. Write the vectors

s and b in the order of the u’s and t.

Algorithm for multipermutations:

Input α ∈Mn,

(1) find b(α);

(2) find I(v) for each v ∈ b(α);

(3) for each v ∈ b(α), choose a specific identification vector u ∈ I(v);

(4) for each such chosen u, choose a vector s such that si = 1 if αi∗ 6 v;

(5) choose any vector t with exactly one 1 entry other than the u’s chosen in

Step (3), and send t to a vector b such that bi = 1 only if αi∗ 6 p(t);

(6) linearly order the set of vectors with only one 1 in such a way that the

mapping i 7→ (δi1, δi2, . . . , δin) is an order isomorphism. Write the vectors

s and b in the order of the u’s and t.

The resulting matrix will be an inverse of α, that will also be a multipermutation

when the conditions presented in Theorem 4.11 are satisfied. We note that this algo-

rithm differs from the one above in Step (5) since for the case of multipermutations

all columns of the matrix have a 1.
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Example 4.8. Let α =
1 2

2 2, 3

3 1

∈Mn, in matrix form we have α =

0 1 0

0 1 1

1 0 0


Following the steps above we get:

(1) b(α) = {(0 1 0), (0 1 1), (1 0 0)} which we note is equal to R(α);

(2) I((0 1 0)) = {(0 1 0)}; I((0 1 1)) = {(0 0 1)}; I((1 0 0)) = {(1 0 0)};
(3) the u’s are clearly defined, no choice needs to be made;

(4) For u = (0 1 0), s must be (1 0 0); for u = (0 0 1) the vector s can be

(1 1 0) or (0 1 0); for u = (1 0 0), s must be (0 0 1);

(5) no choice for t;

(6) there are two inverses of α in Mn, they are

0 0 1

1 0 0

1 1 0

 and

0 0 1

1 0 0

0 1 0


Lemma 4.9. Let α ∈ Mn be arbitrary. If b(α) 6= R(α) then α has no inverse in

Mn.

Proof. Suppose that α1 6= b(α), so that α1 can be written as the sum of other rows

of α. We show that all inverses of α in Bn will have only zeros in the first column.

Following the algorithm above, we know that α1 6= v for all v ∈ b(α), so no vector

s, produced by the algorithm, will have a 1 in the first component. Since t contains

a unique 1 we know that p(t) 6= α1, it follows that b will not contain 1 in its first

component.

Lemma 4.10. Let α ∈Mn be arbitrary. If p(t) = 0, for any possible t, then α has

no inverse in Mn.

Proof. If p(t) = 0 then, from the above algorithm we get b = 0, since no row of

α is the zero row, so all inverses of α will have a zero row, thus they will not be

multipermutations.

Theorem 4.11. A multipermutation α has an inverse, in Mn, iff b(α) = R(α),

I(v) 6= ∅ for each v ∈ b(α), and p(t) 6= 0 (for some t).

Proof. (⇒.) Follows from [21, Lemma 1] and Lemmas 4.9 and 4.10.

(⇐.) Assume that b(α) = R(α), I(v) 6= ∅ for each v ∈ r(α), and p(t) 6= 0 (for

some t). By [21, Lemma 1] we know that α has an inverse in Bn. Since p(t) 6= 0 for

some t we know that α will have an inverse with no zero row. We now just need to

show that one of the inverses with no zero row also has no zero column.

We know, by assumption, that α∗1 (the first row of α) belongs to b(α), hence,

when we are at Step (3) of the algorithm and v = α∗1 we will choose s such that
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s1 = 1. Thus the first column of the inverse of α will be non zero. Since all rows of

α belong to b(α) it follows that we can choose an inverse with non zero columns.

Thus α has an inverse in Mn.

Example 4.12.
1 1, 2, 3

2 2, 3

3 1

has inverses in Bn but not in Mn. Using the algorithm above

for binary relations, we can check that all its inverses are

1 3

2 2

3

,
1 3

2 2

3 2

, and
1 3

2

3 2

,

none being a multipermutation. This follows from the fact that its row basis does

not include all its rows.

4.3. Generators

It is known that, unlike Sn that is generated by two elements, Bn does not admit

a polynomial (on n) generating set. This was mentioned by Devadze [16] and more

recently proved by Konieczny [23].

In this section we show that Mn also does not admit a polynomial generating

set, and does indeed need more elements to be generated than Bn.

Using Devadze’s set of generators, and the proof provided by Konieczny, we

show that any set of generators of Mn must include the two permutations that

generate Sn and a set of representatives of the prime D-classes of Mn. To obtain a

generating set we add a few more multipermutations to the set mentioned above.

Let α, β, γ ∈ Bn, the monoid of binary relations. We say that α is prime if it is

not a permutation and if α = β ◦ γ implies that either β or γ are a permutation.

De Caen and Gregory [15] showed that if α ∈ Bn is prime then no column of α

can contain another column, and no row of α can contain another row. In particular

if α ∈ Bn is prime then α has no zero row or column and no row or column with all

entries equal to 1. This means that all prime elements of Bn are multipermutations.

In the same paper they also show that prime multipermutations are not regular,

and if a D-class of Bn contains a prime relation then all relations in that class are

prime. We will call these classes prime D-classes, and they are D-classes of Mn that

are located just below the group of units Sn in the partial order of D-classes of Mn.

This can also be found in [23] without mentioning multipermutations.

We are now trying to build a generating set for Mn, and it follows from

Konieczny’s result, adapted to multipermutations, that any set of generators must

contain a set of generators of Sn and a set of representatives of the prime D-classes

of Mn. The following is the equivalent of [23, Lemma 4.2].

Lemma 4.13. Let D be a prime D-class of Mn and let T be a set of generators of

Mn. Then D ∩ T 6= ∅.

Proof. Assume, for a contradiction, that D ∩ T = ∅. Let

m = min{k : α = t1 ◦ · · · ◦ tk for some α ∈ D and t1, . . . , tk ∈ T}.
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Choose some α ∈ D such that α = t1◦· · ·◦tk for some t1, . . . , tm ∈ T . Since α /∈ T we

have m ≥ 2. Note that t1 /∈ Sn since otherwise t−11 α = t2◦· · ·◦tm ∈ D, which would

contradict the minimality of m. Similarly, tm /∈ Sn. Since tm is a multipermutation

we must have that |tm(i)| ≥ 2 (or when in matrix form, there is a row of tm with

at least two 1s) for some i = 1, . . . , n, it follows that |t2 ◦ · · · ◦ tm(j)| ≥ 2 for some

j = 1, . . . ,m (note that we apply the relations left to right). Hence t2 ◦· · ·◦tm /∈ Sn,

and since t1 /∈ Sn, and α = t1 ◦ (t2 ◦ · · · ◦ tm), which is a contradiction since α is

prime. Thus D ∩ T 6= ∅.

The number of prime D-classes grows faster than a polynomial on n, so we

won’t be able to find a minimal generating for Mn that is polynomial. A minimal

generating set for it will contain a set of representatives of the prime D-classes, the

two permutations that generate Sn, the multipermutation (in matrix form)

π =


1 0 0 0 · · · 0 0

1 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0
...

...

0 0 0 0 · · · 0 1


and a few more multipermutations. This will be the subject of future work, and we

leave here a few examples that were tested using GAP [19,30]:

Example 4.14. The only prime element in M3 (up to equivalence) is
1 1, 2

2 2, 3

3 1, 3

[15,

Example 2.3]. A generating set for M3 is the given by the permutations (1 2), (1 2 3),

the prime multipermutation, the multipermutation
1 1

2 1, 2

3 3

(called π above) and
1 1

2 1

3 2, 3

.

Example 4.15. The prime elements in M4 (up to equivalence) are [15, Example

2.5] 
0 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

 and


1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1


and they belong to different D-classes. A generating set for M4 is given by the

(1 2), (1 2 3 4), the prime multipermutations above, the multipermutation
1 1

2 1, 2

3 3

4 4

(called π above), together with the multipermutations
1 1

2 2

3 2

4 3, 4

,
1 1, 2

2 1, 3

3 2, 3

4 4

.

4.4. Blurred permutations

A multipermutation, or more generally binary relation, f , is called difunctional if

it satisfies f ◦ f−1 ◦ f ⊆ f . Schein [36] showed that every inverse semigroup is iso-

morphic to an appropriate inverse semigroup of full difunctional binary relations
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(here the operation is not usual composition since the composition of two difunc-

tional binary relations is not necessarily difunctional). In this subsection we relate

blurred permutations with difunctional relations. It is worth noting that in some

articles these are named bifunctional, e.g. [17]b, and that in that article difunctional

multipermutations are called biequivalences or block bijections.

Lemma 4.16. Every blurred permutation is difunctional.

Proof. Let f be a blurred permutation obtained from the permutation σ with

partition P1, . . . , Pm, then f−1 is obtained from σ−1 with partition Pσ(1), . . . Pσ(m).

For any i = 1, . . . ,m and any k ∈ Pi we have f(k) = f(Pi) = Pσ(i), and f ◦ f−1 ◦
f(k) = f ◦ f−1(Pσ(i)) = f(Pi) = Pσ(i). Thus f ◦ f−1 ◦ f = f , and it follows that f

is difunctional.

It is also clear from this proof that blurred permutations are all regular and the

inverse multipermutation is also an inverse (in the sense of regular element). We

note that the reverse of this lemma is not true.

Example 4.17. The multipermutation
1 1, 3

2 1, 3

3 2, 4

4 2, 4

is difunctional but not a blurred per-

mutation.

Theorem 4.18. Blurred permutations are the difunctional multipermutations f

that satisfy f ◦ f−1 = f−1 ◦ f . Hence they can be defined exactly by the rules

f ◦ f−1 ◦ f = f and f ◦ f−1 = f−1 ◦ f , or equivalently are full total binary relations

on X of the form (A1 × B1) ∪ · · · ∪ (Ak × Bk), with {A1, . . . Ak} = {B1, . . . , Bk}
partitions of X.

Proof. We can see in [36] a result attributed to J. Riguet that says that a binary

relation is difunctional if and only if it is of the form (A1 × B1) ∪ · · · ∪ (Ak ×
Bk), with A1, . . . , Ak all distinct and B1, . . . , Bk all distinct. So we can say that a

multipermutation on [n] is difunctional if and only if it is of the form (A1 × B1) ∪
· · · ∪ (Ak × Bk), with {A1, . . . Ak}, {B1, . . . , Bk} partitions of [n]. We now need to

show that {A1, . . . Ak} = {B1, . . . , Bk}.
Let f be a blurred permutation. Since it is difunctional it satisfies f ◦f−1◦f = f ,

so we just need to show it satisfies f ◦ f−1 = f−1 ◦ f . Suppose that f is obtained

from permutation σ and partition A1, . . . , Am, then f−1 ◦ f(Ai) = f−1(Aσ(i)) =

Aσ−1σ(i) = Ai and f◦f−1(Ai) = f(Aσ−1(i)) = Aσσ−1(i) = Ai. Thus f◦f−1 = f−1◦f .

From this we can also see that the (A1×B1)∪ · · · ∪ (Ak ×Bk) can be rewritten

as (A1 ×Aσ(1))∪ · · · ∪ (Ak ×Aσ(k)), so it follows that {A1, . . . Ak} = {B1, . . . , Bk}.
We now show the reverse implication. If f = (A1 × B1) ∪ · · · ∪ (Ak × Bk) with

{A1, . . . Ak} = {B1, . . . , Bk} we can see that it is a blurred permutation obtained

from the permutation that sends Ai to Bi.

bThe dual terminology of difunctional and bifunctional may have arisen from translation of the

French difonctionelle from [33].
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If we assume that f is a multipermutation that satisfies f = f ◦ f−1 ◦ f and

f ◦ f−1 = f−1 ◦ f , we know it is difunctional, so f = A1×B1 ∪ · · · ∪Ak×Bk , then

f−1 ◦ f = (B1 ×B1) ∪ · · · ∪ (Bk ×Bk) and f ◦ f−1 = (A1 ×A1) ∪ · · · ∪ (Ak ×Ak).

It then follows that we must have {A1, . . . , Ak} = {B1, . . . , Bk}, so f is a blurred

permutation.

In other words, blurred permutations are the completely regular difunctional

multipermutations. For the definition of completely regular see for example [13].

Corollary 4.19. For any difunctional multipermutation f , the multipermutations

f ◦ f−1 and f−1 ◦ f are blurred permutations.

Proof. Let f be an arbitrary difunctional multipermutation. Since (f ◦ f−1)−1 =

f ◦ f−1, we have

(f ◦ f−1) ◦ (f ◦ f−1)−1 = f ◦ f−1 ◦ f ◦ f−1 = (f ◦ f−1)−1 ◦ (f ◦ f−1),

and

(f ◦ f−1) ◦ (f ◦ f−1)−1 ◦ (f ◦ f−1) = f ◦ f−1 ◦ f ◦ f−1 ◦ f ◦ f−1 = f ◦ f−1

due to the fact that f ◦ f−1 is idempotent, for f is difunctional. It follows from

Theorem 4.18 that f ◦ f−1 is a blurred permutation. Similarly, we can show that

f−1 ◦ f is a blurred permutation.

In light of Corollary 3.12, and the connection between BPSs and blurred per-

mutations given in Corollary 3.10, one might ask whether the more general class of

difunctional multipermutations are naturally associated with DSMs M = shE(B),

where the complexity of {∃,∀,∧,∨}-FO(B) is only in Logspace or Pspace-complete

(and cannot attain the complexities NP-complete and co-NP-complete). We do not

know whether the set of DSMs whose maximal elements are difunctional is dif-

ferent from the set of DSMs whose maximal elements are blurred permutations.

Indeed, we leave this as an interesting open question. However, it follows from the

results in [27], that the multipermutations f associated with NP-completeness and

co-NP-completeness are as far from difunctionality as possible since f ◦ f−1, and

consequently f ◦ f−1 ◦ f , will always be the full multipermutation, i.e. the multi-

permutation that sends every element to the full domain. This would only satisfy

difunctionality if f were itself the full multipermutation, in which case any corre-

sponding {∃,∀,∧,∨}-FO(B) would be in Logspace. It follows that the complexity of

{∃,∀,∧,∨}-FO(B), where shE(B) = M , all of whose maximal elements are difunc-

tional, is either in Logspace or is Pspace-complete.

Another interesting class of multipermutations worth looking at in this context,

is the factor power of the symmetric group, whose study was initiated in [18].
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