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Abstract
The presence of protein aggregates in cells is a known feature of many human
age-related diseases, such as Huntington’s disease. Simulations using fixed
parameter values in a model of the dynamic evolution of expanded polyglutaime
(PolyQ) proteins in cells have been used to gain a better understanding of
the biological system. However, there is considerable uncertainty about the
values of some of the parameters governing the system. Currently, appropriate
values are chosen by ad hoc attempts to tune the parameters so that the model
output matches experimental data. The problem is further complicated by the
fact that the data only offer a partial insight into the underlying biological
process: the data consist only of the proportions of cell death and of cells with
inclusion bodies at a few time points, corrupted by measurement error. Devel-
oping inference procedures to estimate the model parameters in this scenario
is a significant task. The model probabilities corresponding to the observed
proportions cannot be evaluated exactly, and so they are estimated within the
inference algorithm by repeatedly simulating realizations from the model. In
general such an approach is computationally very expensive, and we therefore
construct Gaussian process emulators for the key quantities and reformulate
our algorithm around these fast stochastic approximations. We conclude by
highlighting appropriate values of the model parameters leading to new insights
into the underlying biological processes.

KEYWORDS
Gaussian process emulator, history matching, Markov chain Monte Carlo (MCMC), optimal
design, stochastic kinetic model

1 INTRODUCTION

One of the main aims of modeling biological systems is
to describe and understand the temporal evolution of the
system taking account of the potentially complex inter-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

relationships between components within the system.
Models can also be used to facilitate in silico experiments
in which virtual experiments are performed on a com-
puter. These in silico experiments have an advantage over
laboratory-based experiments as, in general, they are
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much cheaper and faster to conduct. This can lead to
a better understanding of, for example, the biological
system, how to focus drug development and how to con-
struct more efficient designs of future laboratory-based in
vitro experiments.
The accumulation of abnormal protein deposits within

cells are hallmarks of neurodegenerative diseases affect-
ing humans as they age. There are many such diseases,
(e.g., Alzheimer’s and Parkinson’s disease), in which
different parts of the brain are affected resulting in a
range of clinical symptoms such as loss of motor function,
dementia, and behavioral changes. Despite differences
between symptoms, there are similarities in the underly-
ing molecular mechanisms leading to the accumulation
of protein aggregates and the neuronal cell death (Gan
et al., 2018). Although age is the greatest risk factor for
neurodegeneration, there is a group of diseases that are
caused by genetic mutations. In nine of these diseases, the
mutation occurs in a gene that contains a repeat of a CAG
nucleotide (base pair) triplet (Lieberman et al., 2019). As
CAG encodes for the amino acid glutamine, these diseases
are known as polyglutamine diseases and the proteins
they encode are referred to as PolyQ proteins, although
different genes and proteins are involved in each disease,
for example, Huntington’s disease (HD), (Liebermanet al.,
2019). HD is an adult-onset, progressive disease character-
ized by loss of motor function, psychiatric disorders, and
dementia (McColgan and Tabrizi, 2018). In this disease,
the CAG triplet is found in the Huntingtin gene (HTT;
HGNC:4581). In the normal HTT gene, the CAG triplet is
repeated 10–35 times but in the mutated form the segment
is expanded from 36 to over 120 repeats. This leads to the
formation of an abnormally long protein which may be
cleaved within the cell into small toxic fragments that
enter the nucleus where they form aggregates, known as
inclusion bodies (or inclusions) and sequester other pro-
teins causing transcriptional dysregulation although the
exact mechanisms of how this occurs are still unknown
(McColgan and Tabrizi, 2018). In addition, Huntingtin
fragments form aggregates in the cytoplasm and may
impair cellular function, for example, impairment of
proteostasis (McColgan and Tabrizi, 2018).
There are currently no effective interventions for the

prevention, delay in onset or slowing down of disease pro-
gression inHD or in any other neurodegenerative disorder.
This is mainly due to a lack of a full understanding of the
underlyingmolecularmechanisms. In particular, although
protein aggregation is a common feature of all these dis-
orders, it is still not fully known how protein aggregates
actually contribute to the disease process. There has been
considerable controversy over which stage of the aggre-
gation process is most toxic to cells, and it has been sug-
gested that the formation of large inclusion bodies may be

protective as they sequester misfolded proteins and pre-
vent the overload of protein degradation pathways (Ross
and Poirier, 2004). This has been shown experimentally
in cell culture (Arrasate et al., 2004). However, this pro-
tective effect may only be short-term, as large aggregates
also contain proteins involved in the removal and repair of
damaged protein, and it has been suggested that they may
induce quiescence and induction of cell death via necrosis
(Ramdzan et al., 2017), which can cause damage to neigh-
boring cells. In addition, nuclear inclusions may impair
redox signaling leading to an increase in oxidative stress
and further damage (Paul and Snyder, 2019). The con-
troversy regarding cytoxicity of PolyQ proteins is largely
due to insufficient understanding of the molecular mech-
anisms involved. This motivated our previous study which
used live cell imaging with fluorescent reporter systems to
examine the relationship between PolyQ protein, activa-
tion of the stress kinase p38MAPK (MAPK14;HGNC:6876),
reactive oxygen species (ROS) generation, inhibition of
the proteasome (a protein complex which degrades cellu-
lar proteins), and formation of PolyQ nuclear inclusions
(Tang et al.. 2010). It was found that proteasome inhibition
usually preceded formation of inclusion bodies and that
p38MAPK inhibitors alleviated the inhibition of protea-
somes and delayed the onset of inclusion formation. Con-
versely, the addition of proteasome inhibitors resulted in
earlier formation of inclusions. This study also included a
computational model which explored the complex inter-
actions of PolyQ proteins with other elements of the cell,
and they used computer simulations from the model (with
fixed parameter values) to suggest ways to reduce the tox-
icity of PolyQ proteins on cells. As their model describes
dynamic interactions at the single cell level, the number
of different biochemical species vary discretely over time,
often with low copy numbers (Gillespie, 1977). Also the
interaction of the species is driven by Brownian motion
and so accurate modeling requires that it take account of
the inherent stochasticity present in the system.
Currently, plausible values for the parameters in the

PolyQ model are determined by using model simulations
for specified values of the parameters and then adjusting
them in an attempt to match experimental data. Clearly
this is a difficult task, and one with which statisticians
can make a contribution. A key difficulty in conducting
parameter inference for complex stochastic models such
as the PolyQ model is that the experimental data are typ-
ically incomplete and subject to measurement error. This
necessitates the use of computationally intensive schemes
such as Gibbs sampling (Boys et al., 2008), pseudo-
marginal Metropolis–Hastings (Golightly and Wilkinson,
2011; Georgoulas et al., 2016; Wilkinson, 2018), population
Monte Carlo (Koblents and Míguez, 2015; Koblents et al.,
2019), and approximate Bayesian computation (Toni et al.,
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FISHER et al. 1197

2009; Liepe et al., 2014; Wu et al., 2014). Inference is partic-
ularly challenging for the PolyQ model since the data con-
sist only of the proportion of cells which are dead and the
proportion of cells which contain inclusion bodies. Since
the corresponding model probabilities are intractable,
these latent proportionsmust be estimated at each observa-
tion time by repeatedly forward simulating the model over
the duration of the time course. Computational cost can
be reduced by replacing the expensive and exact stochas-
tic simulator with a cheap approximation. For example,
approaches which replace the continuous-time stochas-
tic model with a discrete-time approximation include tau-
leaping (Gillespie, 2001; Cao et al., 2006) and the chemical
Langevin equation (Gillespie, 2000; van Kampen, 2001).

1.1 Contributions and organization of
the paper

The aim of this paper is to examine what insight the lim-
ited available experimental data provides about the PolyQ
model parameters and to check whether the model gives a
reasonable description of the dynamic variation observed
in the experimental data.
Given the prohibitive computational cost associated

with fitting the stochastic polyQ model, we consider a
computationally feasible approximation and performexact
(simulation-based) inference for the resulting model. We
eschew the use of an approximate simulator in favor of
directly emulating the empirical logit of the proportions
of interest with a Gaussian process (GP) (Santner et al.,
2003; Rasmussen and Williams, 2006). In particular, com-
bining the fitted GP emulator with a Gaussian measure-
mentmodel (on the same scale as the observed data) allows
a direct approximation of the observed data likelihood
without recourse to further simulation from the stochas-
tic PolyQ model.
The findings from this analysis give new information

regarding the parameters of themodel, which in turn leads
to new insights into the underlying biological processes.
For example, this analysis has shown that during the first
stages of the aggregation process both aggregation and dis-
aggregation probably occur much faster and that the dis-
aggregation/aggregation ratio is likely to be a magnitude
higher than was originally assumed. The biological impli-
cation of this is that it will take longer to reach the thresh-
old size required for inclusion formation but that therewill
also be higher levels of small aggregates which will inhibit
the proteasome.
The remainder of the paper is organized as follows. Sec-

tion 2 details the experimental data available and out-
lines how it was collected. A complete description of the
model is given in Section 3 which includes the underly-

ing stochastic model which describes the dynamic evolu-
tion of this biological process and the observation model,
which links the data to the underlying process. Our prior
assumptions about parameter values and initial levels are
given in Section 4. Amethod for determining the posterior
distribution for model quantities is described in Section 5
and, because a standard simulation-based Markov chain
Monte Carlo (MCMC) solution is prohibitively expensive,
we develop GP emulators in Section 6 which facilitate
timely generation of realizations from the posterior dis-
tribution. As we have high prior uncertainty on model
parameters, in Section 7 we employ a history matching
techniquewhich removes implausible training points in an
attempt to fit the GPs within regions of nonnegligible pos-
terior support. We also include an assessment of the qual-
ity of the final fittedGPs.We present our findings about the
PolyQ model in Section 8 and point out new insights into
this biological system.

2 EXPERIMENTAL DATA

Wehave data from two different sets of experiments. These
were carried out in the same laboratory and are described
briefly below. A more comprehensive description of the
experimental procedures can be found in Tang et al. (2010).

2.1 Cell death

The first experiment begins with a large number of
human U87MG glioblastoma cells maintained in a suit-
able medium at 37◦C at 5% CO2. The cells are transfected
with a construct that contains the expanded PolyQ Hunt-
ington protein (see Section 2.2 for details). The survival of
cells is monitored over time. Three different repeats of the
experiment are carried out under the following experimen-
tal conditions:

(i) Control group: No intervention.
(ii) Proteasome inhibition group: Cells are treated with

a proteasome inhibitor 24 h after transfection. The
stochastic kinetic model captures this scenario by
reducing the initial value 𝑘proteff = 1 to 𝑘proteff = 0.05

after 24 h.
(iii) p38 inhibition group: Cellswere pretreated for 2 hwith

a p38 inhibitor. The stochastic kinetic model captures
this scenario by setting 𝑘p38act = 0.05.

The changes to parameter values used to describe the dif-
ferent experimental conditions were determined by con-
versations with the experimentalists. It was felt that reduc-
ing the rates to zero in conditions (ii) and (iii) overstated
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1198 FISHER et al.

TABLE 1 Proportions of cell death and inclusion bodies
observed under different experimental conditions

Condition 24 h 30 h 36 h 42 h 48 h
Cell death

(i) 0.1503 – 0.1455 – 0.2608
0.1788 – 0.1821 – 0.2846

(ii) 0.1897 – 0.1807 – 0.2250
0.1640 – 0.1973 – 0.2998

(iii) 0.2168 – 0.2344 – 0.3644
0.2436 – 0.2095 – 0.3872
Inclusion bodies

(i) 0.0909 0.2857 0.3824 0.4286 0.7273
0.0175 0.2131 0.3538 0.4304 0.5742

(ii) 0.0909 0.4247 0.6125 0.7403 0.8194
0.1154 0.5075 0.7895 0.8667 0.9157

(iii) 0.0303 0.0444 0.0612 0.1373 0.2200
0.0189 0.0938 0.1286 0.1613 0.1833

the effect of the experimental treatment, and so these rates
are set to low but nonzero values.
The cells are stained with propidium iodide, which is

a fluorescent dye with the property that it only binds to
nonviable (dead) cells. This technique is called propidium
iodide exclusion and is used to identify the viability of the
cells over time. The fluorescent dye can be viewed under a
microscope, and estimates of the proportion of cell death
can be observed over time. These proportions of cell death
form our experimental data which can be seen in Table 1
(top panel). Each row of the table corresponds to experi-
ments carried out under the different experimental condi-
tions outlined above. We have two repeats of each experi-
ment.
Within the stochasticmodel, cell death can occur via two

biological pathways, either via proteasome inhibition or by
p38 activation. This process is monitored within the model
by using the dummy species PIdeath and p38death.
These species are both binary variables, with a zero value
representing that the cell is alive.

2.2 Inclusion body formation

Experimentalists monitor the number of cells with inclu-
sion bodies by first creating a construct that encodes an
expanded PolyQ Huntington protein which is tagged with
yellow fluorescent protein (YFP). U87MG cells are trans-
fected with the construct and then imaged at 10 min
intervals between 24 and 48 h after transfection. Time
lapse images reveal the formation of inclusions (by detect-
ing YFP), and the percentage of cells with inclusions is

recorded every 6 h. The experimental results are given in
Table 1 (bottom panel).
Within the stochastic model, the number of cells

containing inclusions is counted via the number of cells
containing SeqAggP. In the laboratory, image analysis
suffers from a thresholding problem in detecting inclu-
sions and we capture this aspect by defining cells with
inclusions as those in which SeqAggP contains more
than 10 PolyQ proteins (i.e., SeqAggP > 10). The value of
this threshold is based on the biological modeler’s best
understanding of themechanism, though in fact the actual
value is not crucial since aggregates grow very rapidly, and
there is only a very small timeframe when SeqAggP is less
than 10.

3 THE STOCHASTICMODEL

3.1 PolyQ mechanism

The stochastic model for the PolyQ mechanism we con-
sider in this paper is a reduced form of that pro-
posed by Tang et al. (2010). The original model devel-
oped by Tang et al. (2010) was constructed in the Sys-
tems Biology Markup Language (SBML) and is available
from the Biomodels database (Li et al. 2010) (model ID:
BIOMD0000000285). The model was developed to investi-
gate the effects of PolyQ on proteasome function, oxidative
stress, and cell death. It contained a pool of PolyQ which
was continually turned over, being degraded by the protea-
some. It was assumed that the PolyQ aggregation process
started by two monomers interacting, which then inter-
acts with further monomers causing the aggregate to grow
(AggPolyQ1-5). At early stages, it was assumed that dis-
aggregation could also take place but that when the aggre-
gate reached a threshold size (denoted by SeqAggP in the
model), disaggregation does not take place, so that the
aggregate continues to grow and an inclusion forms. The
model also included a generic pool of protein which could
be damaged by ROS leading tomisfolding and aggregation.
It was assumed that small aggregates bind to the protea-
some but cannot be degraded and so inhibit proteasome
function. In addition, theymay increase levels of ROS. The
model also included the stress kinase p38MAPK (simply
modeled as two pools: inactive [p38] and active [p38P])
with activation occurring more frequently when levels of
ROS are high (Sato et al., 2014), and that high levels of p38P
activated a cell death pathway (denoted by p38death). Pro-
teasomes bound by aggregates (AggPProteasome) could
also activate a cell death pathway (denoted by PIdeath).
The model also included the turnover of a fluorescent pro-
tein (mRFPu) as an increase in mRFPu levels indicates that
the proteasome is inhibited, shown by live cell imaging in
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F IGURE 1 Example data from live cell imaging. This figure
appears in color in the electronic version of this article, and any
mention of color refers to that version

Tang et al. (2010). An example of this data is shown in Fig-
ure 1.
Given the complexity of the original model (with 27

chemical species and 72 reactions), it was necessary to con-
sider a simplification for this study. The changes to the
Tangmodel have been to reduce the number of species and
reactions by removing the generic pool of protein and its
associated reactions of misfolding and aggregation, and by
removing the fluorescent protein mRFPu, which had been
originally included as a marker of proteasome function.
In the process of model construction, it was found neces-
sary to add in an effect of ROS on the aggregation process.
The experimental biologists suggested that ROS increases
the propensity of PolyQ proteins to aggregate due to ROS
interfering with the ubiquitin-proteasome system (UPS),
so that PolyQ proteins are more likely to aggregate than be
degraded when ROS levels are high. The exact mechanism
is not fully understood, and so we simply included ROS in
the rate laws for PolyQ aggregation.
The resulting reduced model contains 14 chemical

species and 33 reaction channels, which is still relatively
largewhen compared to other stochastic kineticmodels for
which fully Bayesian inference is available in the literature
(Boys et al., 2008; Henderson et al., 2010). A complete list of

the reactions and their stochastic rate laws describing the
PolyQ model can be found in Web Appendix A of the Sup-
porting Information. All reactions except those relating to
aggregation follow the law ofmass action kinetics.We used
a Hill function for the effects of ROS as it is thought that
low levels of ROS would have little effect on the UPS with
a maximal effect when ROS levels are high. We assumed
that the rate of aggregation would be half the maximal
rate when ROS is at its basal level, which is achieved by
using the value 10 in the denominator of the rate law.
The model is represented graphically in Figure 2, where

oval shapes (nodes) represent chemical species and an
arrow between two nodes represents a reaction which can
take place involving the two chemical species. The figure
clearly shows the complex interlinkages and complex feed-
back loops within the model.

3.2 The observation model

Weassume that the experimental data are noisy versions of
the equivalent quantities in the stochasticmodel and adopt
a simple model for this observation error which is addi-
tive independent normal noise on a logit scale (as the data
are proportions). Other error models are possible, such as
embedding the model probabilities within a Beta distribu-
tion, but this logistic normal model affords advantages in
the subsequent analysis.
Suppose the stochastic model for the experiment run

under condition 𝑐with parameter vector 𝜽 gives𝑝𝐷𝑡,𝑐(𝜽) and
𝑝𝐼𝑡,𝑐(𝜽) as the probabilities of death and of the presence of
inclusions at time 𝑡 and the logits of their observed versions
as 𝑦𝐷𝑡,𝑐,𝑟 and 𝑦

𝐼
𝑡,𝑐,𝑟 in experimental repeat 𝑟. We assume the

observation model is, for 𝑐 = 1, 2, 3, 𝑟 = 1, 2

𝑦𝐷𝑡𝑖 ,𝑐,𝑟 = logit𝑝𝐷𝑡𝑖,𝑐(𝜽) + 𝜎𝐷𝜀𝑖,𝑐,𝑟, 𝑖 = 1, 2, 3

𝑦𝐼𝑡𝑖 ,𝑐,𝑟 = logit𝑝𝐼𝑡𝑖 ,𝑐(𝜽) + 𝜎𝐼𝜀
∗
𝑖,𝑐,𝑟

, 𝑖 = 1, … , 5,

where the 𝜀𝑖,𝑐,𝑟 and 𝜀∗𝑖,𝑐,𝑟 are independently and identically
distributed standard normal quantities and 𝑡𝑖 denote the
𝑖th time point at which an observation is available. Note
that this model assumes the same measurement error dis-
tribution for each experimental condition and repeat. The
implications of this observation model on the probabil-
ity scale is explored in Web Appendix B of the Support-
ing Information.

4 PRIOR INFORMATION

Tables 2 and 3 contain a list of all parameters in the model.
Some parameters are known quite accurately in the liter-
ature. For example, the synthesis and degradation rates
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F IGURE 2 Network diagram of the PolyQ model. This figure appears in color in the electronic version of this article, and any mention of
color refers to that version

TABLE 2 Parameters in the PolyQ model under condition (i) with their known values

Parameter Value Unit Reference
𝑘synPolyQ 0.25 molecule s−1 Calculated from value of 𝑘degPolyQ to give steady-state level of 1000 molecules
𝑘degPolyQ 2.5 × 10−7 molecule−1s−1 Half-life of 30 h (Persichetti et al., 1996)
𝑘actp38 2 × 10−3 molecule−1s−1 Phosphorylation occurs within (Aoki et al. 2013)
𝑘p38act 1.0 Dimensionless Dummy variable (set to 0.05 for p38 inhibition)
𝑘proteff 1.0 Dimensionless Dummy variable (set to 0.05 for proteasome inhibition)

of PolyQ proteins 𝑘synPolyQ and 𝑘degPolyQ can be obtained
by considering the half-life of PolyQ proteins (Persichetti
et al., 1996).
Also, to reduce the number of parameters in the model,

it was thought reasonable to fix some rates to be identical
to others or to be functions of other rates. For example, the
disaggregation rates for different sized PolyQ aggregates
have been fixed as known proportions of the rate for

single PolyQ aggregates: 𝑘disaggPolyQ2 = 0.8 𝑘disaggPolyQ1,
𝑘disaggPolyQ3 = 0.6 𝑘disaggPolyQ1, and so on. In each case,
these identities or fixed proportions have been chosen
according to the biological modeler’s best understanding
of the reaction system.
Only limited information is available for the remain-

ing stochastic rate parameters, and we represent these
fairly weak prior beliefs using independent log-normal

 15410420, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13467 by T
est, W

iley O
nline L

ibrary on [18/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FISHER et al. 1201

TABLE 3 Parameters in the PolyQ model under condition (i)
with their prior distribution

Parameter Prior distributions
𝑘aggPolyQ 𝜃1 = log 𝑘aggPolyQ ∼ 𝑁(log 10−7, 5)

𝑘disaggPolyQ1
𝜃2 = log 𝑘disaggPolyQ1

∼ 𝑁(log(5 × 10−7), 5)

𝑘seqPolyQ 𝜃3 = log 𝑘seqPolyQ ∼ 𝑁(log(8 × 10−7), 5)

𝑘inhprot 𝜃4 = log 𝑘inhprot ∼ 𝑁(log(5 × 10−9), 5)

𝑘remROS 𝜃5 = log 𝑘remROS ∼ 𝑁(log(2 × 10−4), 5)

𝑘genROSSeqAggP 𝜃6 = log 𝑘genROSSeqAggP ∼ 𝑁(log(10−7), 5)

𝑘genROSAggP 𝜃7 = log 𝑘genROSAggP ∼ 𝑁(log(5 × 10−6), 5)

𝑘inactp38 𝜃8 = log 𝑘inactp38 ∼ 𝑁(log 0.8, 5)

𝑘genROSp38 𝜃9 = log 𝑘genROSp38 ∼ 𝑁(log(7 × 10−7), 5)

𝑘p38death 𝜃10 = log 𝑘p38death ∼ 𝑁(log(9 × 10−8), 5)

𝑘PIdeath 𝜃11 = log 𝑘PIdeath ∼ 𝑁(log(2.5 × 10−8), 5)

𝜎𝐷 𝜎𝐷 ∼ InvChi(2, 0.12)
𝜎𝐼 𝜎𝐼 ∼ InvChi(0.75, 0.05)

distributions with medians set at our biological modeler’s
best guess. On the log scale, the kinetic rate parameters
are denoted by 𝜃1, … , 𝜃11 and these parameters have inde-
pendent normal prior distributions. The weak beliefs are
represented by prior variances of five on the log scale as
these correspond to a plausible range of values for the
(untransformed) kinetic rates from 0.01 to 100 times their
median value.
We have prior beliefs for the level of measurement error

in the cell death experiments (𝜎𝐷) from time course data on
two independent replicates froman independent (but simi-
lar) studymeasuring cell death proportions. The difference
between these replicates on the logit scale forms a random
sample from a𝑁(0, 𝜎2𝐷) distribution, and so these logit dif-
ferences lead to an inverse gamma posterior for 𝜎2𝐷 under
a vague prior. This posterior corresponds to an inverse chi
distribution for 𝜎𝐷 , where this distribution is defined as
that of 1∕

√
𝑋, where𝑋 has a gamma distribution. Further,

as these data arise from a similar but different study, we
choose to construct our prior as a powered down version
of this inverse chi posterior as this makes it more diffuse
around an appropriate value (Ibrahim and Chen, 2000).
Our knowledge about the level of measurement error in
the inclusion body experiments is weaker, and so we use
an even more powered down prior for 𝜎𝐼 .
There is also uncertainty about some of the initial lev-

els of the different species. This uncertainty is captured by
independent prior distributions elicited from the biological
modeler. Other species levels are known due to the con-
struction of the experiment, such as those for AggPolyQ1–
AggPolyQ5, others obey a conservation law (p38 + p38P =
100), and some levels, such as that for this conservation
level and for PolyQ, set at fairly arbitrary high values
reflecting the relative abundance of these species within

TABLE 4 Value or prior distribution of the initial levels of the
chemical species

Name Value or prior distribution
PolyQ 1000
Proteasome 𝐷𝐿𝑁(6.9, 0.12)

AggPolyQ1−5 0
SeqAggP 0
AggPProteasome 0
ROS 𝐷𝐿𝑁(2.5, 0.252)

p38P 𝑈{0, 1, … , 5}

p38 100-p38P
PIdeath 0
p38death 0

the cell. The values or prior distribution of the initial lev-
els are listed in Table 4. Note that two of these initial
levels have a discrete log-normal 𝐷𝐿𝑁 prior distribution,
with probability function 𝜋(𝑖) = 𝑃𝑟(𝑖 − 0.5 < 𝑋 < 𝑖 + 0.5),
where 𝑋 is a log-normal random variable.

5 POSTERIOR INFERENCE

Knowledge of the kinetic rates 𝜽 and the observation error
levels𝝈 = (𝜎𝐷, 𝜎𝐼) is summarized in the posterior distribu-
tion, which has density

𝜋(𝜽, 𝝈|𝒚) ∝ 𝜋(𝜽)𝜋(𝝈)𝜋(𝒚|𝜽, 𝝈),
where 𝒚 represents the collection of all data on cell death
and inclusions. Although the normal likelihood has a
simple form, it does require calculation of the probabili-
ties 𝑝𝐷𝑡,𝑐(𝜽) and 𝑝

𝐼
𝑡,𝑐(𝜽). Unfortunately, analytic expressions

for these probabilities are not available due to the com-
plexity of the stochastic model. Prior uncertainty around
the initial species levels 𝒙0 is a further complicating fac-
tor as, for example, 𝑝𝐷𝑡,𝑐(𝜽) = 𝐸𝒙0{𝑝

𝐷
𝑡,𝑐(𝜽, 𝒙0)}, where 𝐸𝒙0{⋅}

denotes expectation with respect to 𝒙0. Therefore, we esti-
mate these probabilities using 𝑛 independent realizations
of the stochastic model, initialized according to the prior
distribution on initial levels. Suppose that a typical prob-
ability is estimated by the proportion 𝑝𝑛. For sufficiently
large 𝑛, the empirical logit of such proportions elogit𝑝𝑛 =
log{(𝑝𝑛 + 0.5∕𝑛)∕(1 − 𝑝𝑛 + 0.5∕𝑛)} is unbiased for logit 𝑝
and its sampling variability is closely described by a nor-
mal distribution with variance 1∕{𝑛𝑝𝑛(1 − 𝑝𝑛)}. Thus, tak-
ing an improper constant prior for logit𝑝 gives its posterior
distribution as a normal distribution with mean elogit𝑝𝑛
and variance 1∕{𝑛𝑝𝑛(1 − 𝑝𝑛)}. Therefore, we can integrate
out posterior uncertainty about logit 𝑝 in the observation
model, modifying it to have independent components of
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1202 FISHER et al.

the form

𝑦 ∼ 𝑁
(
elogit𝑝𝑛(𝜽), 𝜎2 + 1∕[𝑛 𝑝𝑛(𝜽){1 − 𝑝𝑛(𝜽)}]

)
.

Building an MCMC inference scheme around this normal
likelihood is straightforward. We found that estimating
the probabilities using 𝑛 = 1000 model simulations gave
empirical logits which fitted well to a normal distribution.
Note that, in order for these estimates to be uncorrelated,
they have each been calculated using independent realiza-
tions of the model.
Unfortunately, the MCMC scheme requires the gener-

ation of many millions (or even billions) of realizations
from the stochastic model as it explores the posterior
distribution. Clearly, this problem prohibits using such
a scheme for obtaining realizations from the posterior
distribution in a timely manner. In such situations, it is
commonplace to use stochastic approximations for these
deterministic model probabilities. We will use GP approxi-
mations (sometimes called emulators), which are popular
in the deterministic computer model literature and else-
where. Useful background articles in this area are Santner
et al. (2003) and Bayarri et al. (2007). The suitability of
GPs as emulators is highlighted in O’Hagan (2006). Also
see Henderson et al. (2009) for an illustration of the utility
of GP emulators in the analysis of complex biological
models.

6 EMULATION

Weneed to build GP emulators approximating the stochas-
tic output of the proportion of cell death and that of inclu-
sions under the three different conditions. Time (𝑡) is an
input variable in these six emulators, in addition to the
unknown stochastic rate constants (𝜽) and observation
error levels (𝝈). However, it can be problematic to specify
appropriate covariance kernels over time. In any case, for
Bayesian inference, all that is needed are emulators for the
distributions of the probabilities under each experimen-
tal condition at the distinct time points occurring in the
datasets. Therefore, we will build a total of 24 emulators: 9
for proportions of cell death and 15 for proportions of inclu-
sion bodies. Using these time-condition-specific emulators
also has the advantage that they can be built in parallel.
Thus we build GP emulators for

𝑥𝐷𝑡𝑖 ,𝑐(𝜽) = elogit𝑝𝐷𝑡𝑖,𝑐(𝜽) 𝑖 = 1, 2, 3 and

𝑥𝐼𝑡𝑖 ,𝑐(𝜽) = elogit𝑝𝐼𝑡𝑖 ,𝑐(𝜽) 𝑖 = 1, … , 5,

for each condition 𝑐 = 1, 2, 3. The aim is to replace the
empirical proportions in the observation model with GP

emulators, allowing for their uncertainty. Fortunately,
this is straightforward as each emulator prediction is also
normally distributed and so, as before, the additional
uncertainty introduced by the GPs can be integrated out
analytically and there is no need for the MCMC scheme to
integrate over an additional latent layer within the model.

6.1 Training data

In order to build the emulators for the 𝑥𝐷𝑡𝑖 ,𝑐(𝜽) and 𝑥
𝐼
𝑡𝑖 ,𝑐
(𝜽),

we first need to evaluate their values at some set of cho-
sen values for 𝜽. This amounts to choosing the size and
values in an 𝑛𝑑-point design 𝚯 = (𝜽1, … , 𝜽𝑛𝑑 ). In common
with other work in this area (Santner et al., 2003; Hender-
son et al., 2010), we choose to base our design on a Latin
hypercube design (LHD) constructed using the maximin
algorithm of Morris and Mitchell (1995). These designs are
popular as they produce an effective and efficient coverage
of a bounded space. We take the bounded space to be the
central hypercube of the prior distribution defined by the
marginal 99% intervals for the rates 𝜃𝑗 . Inevitably, deter-
mining an appropriate design from which to construct GP
emulators is a sequential process. This is because it is not
unusual to find that there are only a few design points in
the region of high posterior support, particularly when the
marginal priors have large uncertainty (as we have here).
To help with this problem, as part of the sequential build-
ing of the emulators, we filter out design points which are
implausible (inconsistent with the data) by using a his-
tory matching technique (see Section 7). Note that obtain-
ing estimates at each point in the LHD for the proportions
of cell death and of inclusions over repeated simulations
of the stochastic model is easily parallelizable on a high-
performance computer system.

6.2 Mean function and covariance
function

The mean function was taken as a linear predictor in the
components of 𝜽, with the least-squares estimates as the
coefficients. Thus each emulator has a mean function at
input 𝜽 = (𝜃1, … 𝜃11)

𝑇 of the form

𝑚(𝜽) = 𝛽0 +

11∑
𝑖=1

𝛽𝑖𝜃𝑖.

This choice was taken to give a parsimonious yet reason-
ably well-fitting mean function and essentially leaves the
residuals to this fit being modeled by a zero mean function
GP. As is commonly used in the emulation literature, we
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FISHER et al. 1203

specified a squared exponential covariance function, with

𝐾(𝜽𝑖, 𝜽𝑗|𝑎, 𝒓) = 𝑎 exp

{
−

11∑
𝑘=1

𝑟2
𝑘
(𝜃𝑖𝑘 − 𝜃𝑗𝑘)

2

}
,

where, for example, 𝜃𝑖𝑘 denotes the 𝑘th component of 𝜽𝑖 .
The parameters of this function control the overall level
of variability and smoothness of the process, with smaller
values of the inverse length scales 𝑟𝑘 giving smoother real-
izations.

6.3 Hyperparameter estimation

The hyperparameters 𝑎 and 𝒓 = (𝑟𝑖) for each emulator
need to be estimated from the training data before we
can use them as part of the MCMC inference scheme.
When fitting a typical GP to training data 𝒙(𝚯) =

(𝑥(𝜽1), … , 𝑥(𝜽𝑛𝑑 ))
𝑇 , the likelihood for the hyperparameters

results from 𝒙(𝚯)|𝑎, 𝒓 ∼ 𝑁𝑛𝑑(𝒎(𝚯), 𝐾(𝚯,𝚯|𝑎, 𝒓)), where
𝑁𝑛𝑑(⋅, ⋅) denotes an 𝑛𝑑-dimensional Gaussian distribution
and𝐾(𝚯,𝚯|𝑎, 𝒓)𝑖𝑗 = 𝐾(𝜽𝑖, 𝜽𝑗|𝑎, 𝒓). In general, it is not pos-
sible to obtain a posterior distribution in closed form for
a prior on (𝑎, 𝒓). Here we take independent weak log-
normal prior distributions for the hyperparameters, with
𝑎 ∼ LN(0, 100) and 𝑟𝑖 ∼ LN(0, 100), 𝑖 = 1, … , 11. The GPs
were fitted by using the “no-U-turn” Hamiltonian Monte
Carlo sampler and implemented via the RStan package
interface to the Stan package (Carpenter et al., 2017; Stan
Development Team, 2018).

6.4 Modified observation model

For a typical GP, the prediction at a point 𝜽† has distribu-
tion

𝑥(𝜽†) ∼ 𝑁(𝑚∗(𝜽†), 𝑣∗(𝜽†)), (1)

where

𝑚∗(𝜽†) = 𝑚(𝜽†) + 𝐾(𝜽†,𝚯)𝐾(𝚯,𝚯)−1{𝒙(𝚯) −𝒎(𝚯)}

𝑣∗(𝜽†) = 𝐾(𝜽†, 𝜽†) − 𝐾(𝜽†,𝚯)𝐾(𝚯,𝚯)−1𝐾(𝜽†,𝚯)𝑇.

Strictly speaking, this emulator distribution is a function
of the GP hyperparameters and so we should average over
their posterior uncertainty. However, we have found that
there is little gain in doing this over using a delta approx-
imation in which the hyperparameters are fixed at their
posterior mean.

We can incorporate the stochastic approximation of the
GP emulator to elogit 𝑝𝑛 into our observation model and
integrate it out to give a model with independent compo-
nents of the form

𝑦 ∼ 𝑁
(
𝑚∗(𝜽), 𝜎2 + 𝑣∗(𝜽) + 1∕[𝑛 𝑝∗𝑛(𝜽){1 − 𝑝∗𝑛(𝜽)}]

)
,

where

𝑝∗𝑛(𝜽) = eexpit(𝜽)

= {𝑒𝑚
∗(𝜽)(1 + 0.5∕𝑛) − 0.5∕𝑛}∕{1 + 𝑒𝑚

∗(𝜽)}

is the GP prediction at point 𝜽 on the probability scale.

7 HISTORYMATCHING AND
VALIDATION

It is quite likely that large parts of parameter space will
give rise to model outputs, which are incompatible with
the observed proportions. In practice, we need our GPs to
be accurate over regions of parameter space with nonneg-
ligible posterior support and so time spent fitting them in
regions of negligible posterior support is wasted. We can
target the building of our GPs within regions of nonneg-
ligible posterior support using methods known as history
matching (Cumming and Goldstein, 2010; Vernon et al.,
2014). These methods work by determining which design
points are implausible before undertaking the computa-
tionally intensive task of evaluating themodel output (here
empirical logits) at these points. After fitting a GP over,
implausible design points are determined by comparing
data points 𝑦𝑖 with their GP prediction. An implausibility
measure at data point 𝑦𝑖 takes the form

𝐼𝑖(𝜽) =
|𝑦𝑖 − 𝑚∗(𝜽)|√

𝜎2 + 𝑣∗(𝜽) + 1∕[𝑛 𝑝∗𝑛(𝜽){1 − 𝑝∗𝑛(𝜽)}]
.

Adopting a conservative strategy, the implausibility mea-
sure over the entire dataset is calculated as 𝐼(𝜽) =

max𝑖 𝐼𝑖(𝜽). Large values of 𝐼(𝜽) indicate that 𝜽 is an implau-
sible point in parameter space. It is common to declare
points as implausible if 𝐼(𝜽) > 3, this threshold being
determined using Pukelsheim’s 3-sigma rule. Notice that
the implausibility measure requires a value to be given for
the measurement error level. We take the upper 1% value
of its prior distribution (𝜎𝐷 = 0.58) as this possibly overes-
timates 𝜎𝐷 and in doing so lowers the chance of incorrectly
declaring a point as implausible while still ruling out a sig-
nificant proportion of parameter space.
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1204 FISHER et al.

F IGURE 3 Flow chart showing the work flow involved in iteratively fitting Gaussian process emulators. This figure appears in color in
the electronic version of this article, and any mention of color refers to that version

7.1 Iterative fitting of Gaussian
processes

We used a sequential procedure for fitting the GP in order
to make best use of the limited computing resources avail-
able to simulate realizations from the stochastic model
(Figure 3). In what follows, we provide a brief description
of this procedure and refer the reader to Web Appendix C
of the Supporting Information for further details.
Webegan inWave 0 of the fitting procedure by construct-

ing a 10K-point LHD within the cuboid defined by the 11
univariatemarginal 99% prior equi-tailed intervals for each
parameter 𝜃𝑗 . Multiple realizations (𝑛 = 1000) were then
obtained from the stochastic model at these design points
to determine the empirical logit proportions of cell death
and of inclusion bodies. Next we eliminated those design
points which gave proportions (of cell death or of inclu-
sion bodies) outside the range (0.01,0.99), as such values
look to be inconsistent with the data and they take consid-
erable computing time to obtain. Finally, inWave 0, we fit-
ted a Gaussian process (𝐺𝑃0) to the remaining 415 training
points. Next, in Wave 1, we constructed an additional 10K-
point LHD and removed any design points which had pre-
dicted probabilities (of the form eexpit{𝑚∗

𝐺𝑃0
(𝜽𝑖)}) outside

(0.01,0.99). The points surviving Wave 0 were then added
and any points with implausibilities 𝐼𝐺𝑃0(𝜽𝑖) > 3 removed.
Note that these implausibilities were calculated using the
Gaussian processes 𝐺𝑃0 fitted at the end of Wave 0. Multi-
ple realizations from the stochastic model were then sim-
ulated at the remaining 429 design points, empirical logits
calculated, and Gaussian processes 𝐺𝑃1 fitted to this out-
put. In practice, this process could be repeated to givemany
morewaves of historymatching, and thereby narrow down
the plausible parameter space even further. However, due
to our limited computer resources, we terminated our pro-
cess with 𝐺𝑃1.

7.2 Emulator validation

Before using the 𝐺𝑃1 emulators as part of the inference
scheme, it is important to verify that they provide an ade-
quate description of model realizations of the empirical
logits. There are a variety of diagnostic checks available
based on comparisons of realizations from the stochastic
model at a new set of design points (𝜽†

𝑖
) and comparing

these with predictions made from the emulators; see, for
example, Bastos and O’Hagan (2009) and Gneiting et al.
(2007).
We constructed a validation design of a similar size to

that used for fitting the 𝐺𝑃1 emulators by repeating the
Wave 0–1 procedure described in the previous section.
This approach gives an independent design, but still con-
tains points in regions of nonnegligible posterior support,
where we most need the emulators to fit well. For each
GP, we calculated individual prediction errors (IPEs) at
each design point as 𝐷(𝜽†

𝑖
) = {𝑥(𝜽†

𝑖
) − 𝑚∗(𝜽†

𝒊
)}∕

√
𝑣∗(𝜽†

𝑖
),

where 𝑥(𝜽†
𝑖
) is an empirical logit (for a particular time-

condition proportion) calculated from 𝑛 = 1000 runs of
the stochastic model with rates 𝜽 = 𝜽

†
𝑖
. Individual values

of 𝐷(𝜽†
𝑖
) are informative about emulator fit, but it is par-

ticularly instructive to look at their overall distribution.
If the assumptions underpinning the emulator are appro-
priate then the 𝐷(𝜽†

𝑖
) values should be a random sam-

ple from a standard normal distribution. In particular, we
would expect that roughly 95% of the IPE values are within
the interval (−2, 2). If the magnitude of the IPE is too
large, this indicates that, at this input point, the emula-
tor either fits poorly or its variability is underestimated.
Conversely, too many very small values are indicative of
an inflated emulator variance. Gneiting et al. (2007) sug-
gest that checks also be made using the probability inte-
gral transform (PIT) to assess the (standard) normality of
the 𝐷(𝜽†

𝑖
) as, if this holds, values of Φ{𝐷(𝜽†

𝑖
)} should form
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FISHER et al. 1205

F IGURE 4 Boxplots of the individual prediction errors for each emulator together with horizontal lines showing the position of the
quartiles and upper and lower 2.5% points of the standard normal distribution. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

a random sample from a standard uniform distribution,
where Φ(⋅) is the standard normal distribution function.
The IPEs for all 24 time-condition emulators are shown in
Figure 4. Rather than produce additional PIT plots we give
boxplot summaries for each emulator and include horizon-
tal lines showing the positions of the quartiles and upper
and lower 2.5% points of the standard normal distribution.
These and other plots (seeWebAppendixD of the Support-
ing Information) suggest that there are no strong depar-
tures from the univariate normal assumptions (1) used to
form the likelihood function.

8 POSTERIOR SUMMARIES AND
CONCLUSIONS

To construct the emulators, training data (consisting of
stochastic realizations from the model) were generated in
parallel on a high-performance computer (HPC), with 64
compute nodes, where each node had at least 128 GB of

RAM and a minimum processor speed of 2.5 GHz. Hyper-
parameter inferencewas performed via the RStan interface
to Stan, on a different HPC (with 23 cores and a minimum
processor speed of 2.70 GHz). The total CPU time to obtain
the fitted emulators was approximately 1 day.
Realizations from the joint posterior distribution of all

parameters of interest were obtained by using the fitted
emulators and again implemented via the RStan interface
to Stan.
This MCMC algorithm uses the “no-U-Turn” Hamil-

tonian Monte Carlo sampler which efficiently explores
the parameter space to maximize mixing. We ran three
chains, each for 100K iterations, and using different ini-
tializations. For each chain, the first half (50K iterates)
were discarded as warm-up/adaptation and the remain-
ing half were thinned to give 1K (almost) unautocorrelated
realizations from the posterior distribution. Convergence
was assessed by a variety of methods, including graphical
methods; see Web Appendix E in the Supporting Informa-
tion for example traceplots, autocorrelation plots, and an
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1206 FISHER et al.

F IGURE 5 Marginal prior and posterior distributions for the (logged) stochastic kinetic rate parameters (histogram – posterior; red
curve – prior). This figure appears in color in the electronic version of this article, and any mention of color refers to that version

assessment ofmodel fit.We also examined diagnostics pro-
vided by the shinystan application (Gabry, 2018). In par-
ticular, we looked at the potential scale reduction statis-
tic �̂�, which is the ratio of the within-chain variance and
between-chain variance of the posterior sample (Gelman
and Rubin, 1992). Here an �̂�-value close to one indicates
that all chains have reached equilibrium, and in our poste-
rior sample, all parameters had values less than 1.1.We also
found that, for all parameters, the Monte Carlo standard
errorswas less than 10% of the posterior standard deviation
and the effective sample sizes greater than 10% of the total
sample size. Running the MCMC scheme for 100K itera-
tions took approximately 7 days. Hence, the total computa-
tional cost (of obtaining the fitted emulators and perform-
ing the final calibration task) is of the order of 8 days. For
comparison, consider use of the simulator directly inside
an MCMC scheme. If we assume that a single iteration
takes 60 seconds, then 100K iterations would take 70 days.
We note that this estimate is conservative, as in reality, the
mixing of such a schememay necessitate manymore itera-
tions. Therefore, we expect that our use of emulators gives
between one and two orders ofmagnitude increase in com-
putational savings.
Graphical summaries of the marginal posterior distri-

butions of the (logged) kinetic rates are given in Figure 5.
The figure shows that, despite the experimental data being

thought to perhaps give only a very partial insight into the
biological mechanism, it has in fact been very informa-
tive about many parameters. The analysis has confirmed
values, with very much increased precision, for the rates
of cell death due to activation of p38 (𝑘p38death) and due
to inhibition of the proteasome by aggregates (𝑘PIdeath),
which were also observed but with no information on
cause of death. It is of particular note that the posterior
distribution suggests that the early stages of the aggre-
gation process, when it is reversible, probably occur at a
much faster rate than had previously been assumed. This
suggests that both the disaggregation of small aggregates
and the formation and early growth of aggregates are more
rapid. Also the ratio of disaggregation and aggregation
rates (𝑘disaggPolyQ1

∕𝑘aggPolyQ) is around an order of magni-
tude higher than was thought. This suggests on the one
hand that it may take longer to reach the threshold size
required for inclusion formation but also that there will
be more small aggregates present which will inhibit the
proteasome. The decrease in posterior mean also suggests
that proteasome inhibition (𝑘inhprot) is likely to occur at a
slower rate than first thought; probably due to originally
underestimating the production of small aggregates.
Looking at the rates involved in ROS turnover, the pos-

terior suggests that the rate at which ROS is removed
(kremROS) is faster and that less ROS is generated by
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small aggregates (kgenROSAggP) thanwas thought, which
means that the generation of ROS via the p38 pathway
probably plays a larger contribution. This confirms the
suggestion by Tang et al. (2010) that p38 inhibitors, an
experimental intervention that they tested, have therapeu-
tic potential to reduce the detrimental effects of the aggre-
gation process.
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