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Phylogenetic Diversity (PD) is a prominent quantitative measure of the biodiversity of a 
collection of present-day species (taxa). This measure is based on the evolutionary distance 
among the species in the collection. Loosely speaking, if T is a rooted phylogenetic tree 
whose leaf set X represents a set of species and whose edges have real-valued lengths 
(weights), then the PD score of a subset S of X is the sum of the weights of the edges of 
the minimal subtree of T connecting the species in S . In this paper, we define several 
natural variants of the PD score for a subset of taxa which are related by a known 
rooted phylogenetic network. Under these variants, we explore, for a positive integer k, the 
computational complexity of determining the maximum PD score over all subsets of taxa 
of size k when the input is restricted to different classes of rooted phylogenetic networks.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Phylogenetic diversity (PD) is a popular measure for quantifying the biodiversity of a set of species based on their 
evolutionary history and relatedness. Roughly speaking, the PD score of a group of species (taxa) quantifies how much of 
the ‘tree of life’ is spanned by the species in the group. Ever since its introduction by Daniel Faith in 1992 [8], this metric 
has attracted great attention in the literature both among empiricists and theorists. Indeed, Faith’s seminal paper has been 
cited in excess of 2000 times.

In the face of limited resources in biodiversity conservation, a central problem in relation to phylogenetic diversity is 
to identify subsets of species that maximise the PD score. While there are efficient algorithms for finding maximum PD 
sets on a given tree [15,20,27], variants of the problem (e.g., maximising PD across several trees [3,26] or incorporating 
conservation costs and extinction probabilities in the so-called ‘Noah’s ark problem’ [28]) have led to many interesting 
algorithmic questions. Most of this work to date has focused on measuring and maximising PD on phylogenetic trees. 
However, the metric has been extended to and analysed for so-called split networks [2,7,16,17,26] which are typically used 
to represent conflicts in data. More recently, the authors in [29] have suggested approaches to measuring PD on explicit 
phylogenetic networks, which represent the evolutionary histories of collections of species whose past include reticulation 
(non-treelike) events such as hybridisation and horizontal gene transfer.

As processes such as hybridisation pose new challenges to biodiversity conservation (e.g., [19,21]) and diversity measures 
beyond PD on phylogenetic trees are needed, in this paper we present the first rigorous analysis of the computational 
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complexity of optimising variants of phylogenetic diversity extended to rooted phylogenetic networks. These results could 
lead to algorithms that aid conservationists and policy makers in making more accurately informed decisions. We extend the 
work of [29] and define four natural variants of the PD score for a subset of taxa whose evolution is described by a rooted 
phylogenetic network N . We explore the relationships between these four measures and then analyse the computational 
complexity of, given N and a positive integer k, determining the maximum PD score over all subsets of taxa of size k under 
these variants of PD and for different classes of rooted phylogenetic networks.

The main results of this paper are as follows. We show that the complexity of determining the maximum AllPaths-PD 
score, our first variant of PD for rooted phylogenetic networks, depends on the class of networks to which N belongs. In 
particular, for tree-child networks the optimisation problem is hard, whereas for level-1 networks the problem is polynomial 
(see Section 4). In Section 5 we introduce a second variant, Network-PD, which, in contrast to AllPaths-PD, takes into 
account the proportion of features a reticulation vertex inherits from each of its parents. We show that Network-PD is a 
generalisation of AllPaths-PD, and thus the corresponding optimisation problem is again computationally hard in general. 
In addition, we show that there is a direct correspondence between the maximum and minimum of Network-PD, and the 
third and fourth variants of PD for phylogenetic networks considered in this manuscript, namely MaxWeightTree-PD and 
MinWeightTree-PD. We end the paper by analysing the latter two more in-depth. More precisely, we show that the problem 
of determining the maximum value over all subsets of taxa of size k is solvable in polynomial time for MaxWeightTree-
PD (Section 6), whereas for MinWeightTree-PD even computing the MinWeightTree-PD score of a fixed subset of X is 
computationally hard, and hence the optimisation problem is also hard (Section 7).

Before the main results, in Section 2 we give formal definitions of the structures and notation used throughout this 
manuscript. After reviewing the concept of PD on rooted phylogenetic trees, we then formally introduce our four variants 
of PD on rooted phylogenetic networks in Section 3. As described above, the remaining sections are devoted to analysing 
the complexity of determining the maximum PD score over all subsets of taxa of size k under these four variants of PD and 
when the input is restricted to different classes of rooted phylogenetic networks.

2. Notation and preliminaries

To formally state our results, we need some notation and terminology. Throughout the paper, X denotes a non-empty 
finite set (of taxa).

Phylogenetic networks A rooted binary phylogenetic network N on X is a rooted directed acyclic graph with no parallel arcs 
satisfying the following properties:

(i) the (unique) root has in-degree zero and out-degree two;
(ii) a vertex with out-degree zero has in-degree one, and the set of vertices with out-degree zero is X ; and

(iii) all other vertices have either in-degree one and out-degree two, or in-degree two and out-degree one.

For technical reasons, if |X | = 1, we allow N to consist of the single vertex in X . The vertices in X are leaves. We call X
the leaf set of N and frequently denote it by L(N ). The vertices with in-degree one and out-degree two are tree vertices, 
while the vertices with in-degree two and out-degree one are reticulations. We refer to arcs directed into a reticulation as 
reticulation arcs and to all other arcs as tree arcs. Furthermore, throughout the paper, we assume that all arcs of N have 
non-negative real-valued lengths, that is, if A denotes the arc set of N , then associated with N is a mapping w : A →R≥0

under which each arc e of N is assigned the weight w(e). As, for instance, indicated by [10], the underlying meaning of 
these arc lengths is often context-dependent, and ranges from the expected number of substitutions per site, to coalescent 
units, to the amount of (calendar) time elapsed. To illustrate, three rooted binary phylogenetic networks are shown in 
Fig. 1. Here, as in all figures in the paper, arcs are directed down the page. A rooted binary phylogenetic X-tree is a rooted 
binary phylogenetic network on X with no reticulations. For the remainder of the paper, we will refer to rooted binary 
phylogenetic networks and rooted binary phylogenetic trees as phylogenetic networks and phylogenetic trees, respectively, 
as all such networks and trees considered are rooted and binary.

We remark here that we have presented the arguments in this paper in terms of binary phylogenetic networks, both 
for simplicity of understanding and because the hardness results are stronger. However, we note that the results extend to 
phylogenetic networks whose non-leaf vertices have either in-degree one and out-degree at least two, or in-degree two and 
out-degree one. This is discussed further in Section 8.

Tree-child and level-1 networks A phylogenetic network N on X is a tree-child network [6] if each non-leaf vertex is the 
parent of a tree vertex or a leaf. Equivalently, N is tree-child if (i) no tree vertex is the parent of two reticulations and (ii) 
no reticulation is the parent of another reticulation [25]. And again, equivalently, N is tree-child if, for every vertex v of N , 
there is a path from v to a leaf � that consists only of tree vertices (except � and possibly v itself). We call such a path a 
tree path.

Let N be a phylogenetic network. A reticulation arc (u, v) of N is called a shortcut if there is a directed path in N from 
u to v that avoids (u, v). We say that N is a normal network [30] if it is tree-child and has no shortcuts. Finally, N is a 
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Fig. 1. Phylogenetic tree T and tree-child networks N and N ′ on X = {x1, . . . , x6} with non-negative real-valued arc weights. Note that N is normal but 
not level-1, whereas N ′ is level-1 but not normal (due to the shortcut (u, v)).

level-1 network if its underlying (undirected) cycles are vertex disjoint. Normal and level-1 networks are proper subclasses 
of tree-child networks. An example of two tree-child networks, one normal and the other level-1, is shown in Fig. 1.

Connecting subtrees Let N be a phylogenetic network on X with root ρ , and let Y ⊆ X . We call any subgraph T of N that 
is a directed rooted tree (i.e. an arborescence) with root ρ and leaf set Y , a connecting subtree for Y . Note that ρ may have 
out-degree one in T . Moreover, there might be several connecting subtrees for Y in N . We denote the set of all connecting 
subtrees for Y in N as TY (N ). Also note that any connecting subtree T for Y is an edge-weighted tree, where each edge 
e ∈ T inherits its weight w(e) from N .

3. Variants of phylogenetic diversity for phylogenetic networks

In this section, we introduce our variants of PD for phylogenetic networks and then consider the associated optimisation 
problems.

3.1. PD on phylogenetic trees and phylogenetic networks

Before we define variants of PD for phylogenetic networks, we briefly review PD for phylogenetic trees. Phylogenetic 
diversity arose as a quantitative measure of the biodiversity of a set of species for use in conservation decisions [8]. PD 
has been studied for a variety for organisms, ranging from bacteria [13], to plants [4], to mammals [24]. Moreover, the 
International Union for Conservation of Nature (IUCN) has established a ‘Phylogenetic Diversity Task Force’ aiming at promoting 
the use of PD in conservation decisions (see https://www.pdtf .org/). PD also serves as a basis for so-called phylogenetic 
diversity indices such as the ‘Fair Proportion index’ [22] (also called ‘evolutionary distinctiveness score’ [11]) and the ‘Equal 
Splits index’ [22,23] that rank species for conservation, based on their contribution to overall PD. These indices are used in 
conservation initiatives such as the ‘EDGE of Existence programme’ established by the Zoological Society of London [11].

The key underlying assumption in the use of PD as a quantitative measure is that if the arcs of a phylogenetic tree 
are weighted according to genetic distance, then features of interest (be that biological, pharmaceutical or conservational) 
will have arisen at a rate proportional to the lengths of the arcs. A further assumption is that all features that arose in an 
ancestral species have persisted to be present in the extant species descended from them. So the PD score is proportional to 
the number of distinct features present in a set of species. In particular, let T be a phylogenetic X-tree (with non-negative 
real-valued arc lengths). The phylogenetic diversity (PD score) of a subset S ⊆ X , denoted as PDT (S), is the sum of arc lengths 
in the (unique) connecting subtree for S in T . Referring to Fig. 1(i), if S = {x2, x4, x6}, then PDT (S) = 15.

AllPaths-PD There are different ways that the definition of PD may be extended from phylogenetic trees to phylogenetic 
networks, which we discuss now. The most straightforward approach is to again assume that all features that arise in 
any ancestral species persist to be present in all descendant extant species; then the natural extension of the PD score to 
networks is what we have called AllPaths-PD. Specifically, for a phylogenetic network N and a subset S ⊆ X , we define

AllPaths-PDN (S) =
∑

e∈Anc(S)

w(e),

where Anc(S) is the set of all arcs that are ancestral to at least one taxon in S , i.e. lie on a directed path from the root of 
N to some leaf in S .

Network-PD To obtain a more accurate evaluation of the relative feature diversity of different subsets of taxa, we require 
knowledge of the proportion of features present in a parent species that are inherited by a child species. At a reticulation 
representing a true hybridisation event, the child taxon might inherit 50% of the features of one parent and 50% of the 
68
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features of the other. Whereas, at a reticulation representing a lateral gene transfer, the child may inherit the entire genome 
of one parent species, i.e. 100% of the features, and also receive an injection of a small section of DNA from the other 
parent, perhaps 5% of the features. Thus, at each reticulation of our phylogenetic network, we must be given weights on 
each incoming arc corresponding to the proportion of features of the parent inherited by the child. Given this information, 
a more accurate measure, which we have called Network-PD, may be obtained.

On each incoming arc e = (u, v) to each reticulation v of a phylogenetic network N , let p(e) be the inheritance proportion 
(function), giving the proportion of features of the parent vertex u that are present in the child vertex v of that arc. We 
assume that for all reticulation arcs p(e) ∈ [0, 1]. (Just as genetic distance is used in the arc lengths of a phylogenetic tree 
when computing PD as a proxy for the number of features of interest, we could use the proportion of the parental genome 
present in the child taxon as an estimate for the proportion of parental features inherited by the child.) For a subset S of 
the leaves of N , we define, for each arc e = (u, v) ∈ N , the function γ (S, e) to be the proportion of the features of v that 
are present in the taxa set S . (Equivalently, γ (S, e) is the probability that a feature arising on arc e is inherited by some 
taxon in set S). We now define Network-PD as follows:

Network-PDN , p(S) =
∑
e∈N

γ (S, e) · w(e).

Where the phylogenetic network N or inheritance proportion function p is obvious, we may omit them from the subscript. 
We may compute γ (S, e) in a bottom up fashion as follows. For e = (u, v),

(i) if v is a leaf and v ∈ S then γ (S, e) = 1, whereas if v /∈ S then γ (S, e) = 0;
(ii) if v is a tree vertex with outgoing arcs f1 and f2, then

γ (S, e) = γ (S, f1) + γ (S, f2) − γ (S, f1)γ (S, f2);
(iii) if v is a reticulation vertex with outgoing arc f , then γ (S, e) = γ (S, f )p(e).

MaxWeightTree-PD and MinWeightTree-PD It is likely that, in practice, complete knowledge of the inheritance proportion 
function p will not be possible, so we may be interested in upper and lower bounds on Network-PD under varying p. Note 
that if p is allowed to vary without restriction it can still be no more than 1 on each arc, and that setting p = 1 on all 
arcs gives AllPaths-PD. The inheritance proportion p can also be no less than 0 on any arc, and setting p = 0 on all arcs 
reduces Network-PDN to PD on a phylogenetic tree (specifically PDT , where T is, up to isomorphism, the phylogenetic tree 
obtained by deleting each reticulation arc of N and connecting the reticulation vertices to the root by arcs of weight 0). 
These extremities of p on Network-PD are thus not (mathematically) interesting in their own right.

However, total inheritance proportions of 0 or 2 at a reticulation are unrealistic. Alternatively, we might assume that each 
feature inherited from the second parent replaces some feature from the first parent. That is to say, at a reticulation with 
incoming arcs e1 and e2 we require p(e1) + p(e2) = 1. Under this assumption upper and lower bounds for the total quantity 
of features present in a given subset of taxa are the PD scores of the maximum-weight and minimum-weight connecting 
subtrees for those taxa. Specifically, for a subset S ⊆ X , we define the following two variants of PD:

MaxWeightTree-PDN (S) = max
T ∈TS (N )

∑
e∈T

w(e)

and

MinWeightTree-PDN (S) = min
T ∈TS (N )

∑
e∈T

w(e).

We elaborate further how Network-PD is bounded by MinWeightTree-PD and MaxWeightTree-PD in Section 5.1.
Note that AllPaths-PD is called ‘phylogenetic subnet diversity’ in [29], MinWeightTree-PD is called ‘phylogenetic net 

diversity’, and MaxWeightTree-PD is related to the notion of ‘embedded phylogenetic diversity’ discussed therein. However, 
while the authors of [29] introduced and compared different variants of PD for phylogenetic networks, they did not analyse 
the complexity of, given a phylogenetic network N and a positive integer k, computing the maximum PD score over all 
subsets of taxa of size k, or finding a subset S ⊆ X of cardinality k which maximises the PD score under these variants. In 
the following, we consider the first problem, i.e. computing the maximum PD score over all subsets of taxa of size k under 
the phylogenetic diversity variants introduced above on phylogenetic networks.

3.2. Optimisation problems

The problem of finding a subset of taxa of cardinality k maximising the PD score has been extensively studied on phylo-
genetic trees. It corresponds to the task in conservation biology of determining which k species maximise the biodiversity 
of the group [8]. Here, we focus on the problem of computing the maximum PD score over all subsets of taxa of size k
under the variants of PD defined above. More precisely, we study the following optimisation problems:
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MAX-ALLPATHS-PD(N , k):
Input: A phylogenetic network N on taxa set X and a positive integer k.
Objective: Determine the maximum value of AllPaths-PDN (S) over all subsets S ⊆ X of cardinality k.

MAX-NETWORK-PD(N , p, k):
Input: A phylogenetic network N on taxa set X , a inheritance proportion function p on the reticulation arcs of N , and a 
positive integer k.
Objective: Determine the maximum value of Network-PDN , p(S) over all subsets S ⊆ X of cardinality k.

MAX-MAXWEIGHTTREE-PD(N , k):
Input: A phylogenetic network N on taxa set X and a positive integer k.
Objective: Determine the maximum value of MaxWeightTree-PDN (S) over all subsets S ⊆ X of cardinality k.

MAX-MINWEIGHTTREE-PD(N , k):
Input: A phylogenetic network N on taxa set X and a positive integer k.
Objective: Determine the maximum value of MinWeightTree-PDN (S) over all subsets S ⊆ X of cardinality k.

The complexity of these optimisation problems will be discussed in the sections that follow.

4. AllPaths-PD

We begin by studying AllPaths-PD. Let N be a phylogenetic network on X . Recall that, for any subset S ⊆ X , we defined 
AllPaths-PDN (S) to be the sum of the weights of all arcs of N which lie on a path from the root of N to a leaf in S , 
and Max-AllPaths-PD to be the problem of finding the maximum value of AllPaths-PDN (S) over all subsets S ⊆ X of 
cardinality k.

In this section we show first that, in general, the problem Max-AllPaths-PD is NP-hard even when restricted to the class 
of normal networks. Moreover, we observe that Max-AllPaths-PD cannot be approximated within 1 − 1

e ≈ 0.632 unless 
P = NP, and that a greedy algorithm will achieve this approximation ratio. Second, we show that Max-AllPaths-PD can be 
solved in polynomial time on level-1 networks.

4.1. Maximising AllPaths-PD is NP-hard

In order to show that Maximising AllPaths-PD is NP-hard we will use a reduction to the well-known Maximum Coverage 
problem:

MAXIMUM COVERAGE(S, k):
Input: A collection S = {S1, S2, ..., Sn} of sets and a positive integer k.
Objective: Find a subset S ′ ⊆ S such that |S ′| = k and the number of covered elements, | ⋃Si∈S ′ Si |, is maximised.

Maximum Coverage is NP-hard to solve exactly. Indeed, the inapproximability of Maximum Coverage is well studied, and it 
is known that the approximation threshold is 1 − 1

e . That is, unless P = NP, no polynomial-time algorithm exists that always 
returns a solution to Maximum Coverage that is guaranteed to have value greater than 1 − 1

e of the optimal solution [9].

Theorem 4.1. The problem Max-AllPaths-PD is NP-hard. Moreover, Max-AllPaths-PD cannot be approximated in polynomial time 
with approximation ratio better than 1 − 1

e unless P = NP.

Proof. Let S , a collection of sets, and k, a positive integer, be an instance of Maximum Coverage. We begin by constructing 
a phylogenetic network N with leaf set S as follows. Set E = ⋃

S∈S S , that is, E is the ground set of the Maximum Coverage

instance. Take any phylogenetic tree (a caterpillar would do) with leaf set E , where each internal arc has weight 0 and each 
pendant arc (i.e. an arc incident with a leaf) has weight 1. The arcs of weight 1 are thus in one-to-one correspondence with 
the elements in E . Label each of these arcs with the same element of E as its incident leaf. Now, for each S ∈ S , (i) add 
two new vertices S and Ŝ to this construction and a new arc ( Ŝ, S), and (ii), for each e ∈ S , add a new arc (e, ̂S).

This will result in each vertex labelled e, where e ∈ E , having out-degree corresponding to the number of sets containing 
e, and each vertex Ŝ having in-degree corresponding to the number of members of S . Next, refine every vertex that has 
either out-degree at least three or in-degree at least three, so that every resulting vertex has out-degree equal to two or 
in-degree equal to two, respectively. These new arcs below the arcs of E are all assigned weight 0. Finally, suppress any 
vertices of in-degree one and out-degree one resulting from an element e ∈ E that is only contained in a single member 
of S , and keep weight 1 and the label e on the newly merged arc. The resulting phylogenetic network on S is N and the 
construction takes time polynomial in the size of S . See Fig. 2 for an example of the construction.
70



M. Bordewich, C. Semple and K. Wicke Theoretical Computer Science 917 (2022) 66–80
Fig. 2. The network N resulting from reducing a Maximum Coverage instance (S, k) to a Max-AllPaths-PD instance (N , k). In this case, S =
{S1, S2, S3, S4}, where S1 = {e1, e3, e4}, S2 = {e2, e5, e6}, S3 = {e4, e5, e7} and S4 = {e7, e8, e9}, and so E = {e1, e2, . . . , e9}. On the left the network N ′
illustrates the construction before the final step of suppressing the vertices of in-degree one and out-degree one.

Consider a subset S ′ of the leaves of N . An arc e ∈ E is on a path from the root of N to a member S of S ′ if and only if 
the set S contains the corresponding element e. Thus the number of arcs in E that lie on paths from the root to a member 
of S is precisely | ⋃S∈S ′ S|. Since all the arcs of N have weight 0 except those labelled with an element of E which have 
weight 1,

AllPaths-PDN (S ′) =
∣∣∣∣∣
⋃

S∈S ′
S

∣∣∣∣∣ .
Thus solving Max-AllPaths-PD is at least as hard as solving Maximum Coverage, which is well known to be NP-hard [9].

It is known that the approximation threshold of Maximum Coverage is 1 − 1
e . Since we have equality in the optimal 

solutions to the two problems, if a polynomial-time algorithm that approximated Max-AllPaths-PD to a better ratio than 
1 − 1

e existed, then using the reduction above we would be able to obtain a polynomial-time approximation for Maximum 
Coverage with the same ratio. Thus, unless P = NP, this is not possible. This completes the proof of the theorem. �

The hardness result of Theorem 4.1 can be extended to show that Max-AllPaths-PD remains NP-hard even when the 
input phylogenetic network is restricted to be from the class of normal networks.

Theorem 4.2. The problem Max-AllPaths-PD is NP-hard even when the inputted phylogenetic network is restricted to be from the 
class of normal networks.

Proof. The construction is the same as used in the proof of Theorem 4.1 with the following additions. Starting from the 
constructed phylogenetic network N with leaf set S , we transform it into a normal network N ′ by

(i) assigning weight 1 to the pendant arcs leading to the leaves of N labelled by elements of S (which we call original
leaves); and

(ii) subdividing all reticulation arcs of N with a new vertex and adjoining a new leaf via a new pendant arc with weight 0
to each new vertex (which we call a new leaf ).

Note that the construction in (ii) means that N ′ is normal [30]. Furthermore, this construction takes time polynomial in the 
size of N . Now observe that, for any subset S ′ of the leaf set of the augmented phylogenetic network N ′ , if S ′ contains a 
new leaf �, then we may find an original leaf �′ that is a descendent of �’s parent vertex. The set (S ′ ∪ {�′}) − {�} will have 
an AllPaths-PD score at least as high as that for the set S ′ , since all arcs with weight 1 on a path from the root of N ′ to �
are also on a path from the root of N ′ to �′ . Moreover, if a subset S ′′ ⊆ S contains k original leaves, then its AllPaths-PD 
score is precisely

k +
∣∣∣∣∣
⋃

′′
S

∣∣∣∣∣ .

s∈S

71



M. Bordewich, C. Semple and K. Wicke Theoretical Computer Science 917 (2022) 66–80
Thus optimal solutions to Max-AllPaths-PD still correspond to optimal subsets of S , and thus Max-AllPaths-PD remains 
NP-hard even in this restricted case. �

We next show that AllPaths-PD is a submodular function. From this it will follow that a greedy algorithm yields a 
guaranteed approximation for Max-AllPaths-PD.

Lemma 4.3. Let N be a phylogenetic network on X. Then the function AllPaths-PD, which assigns each subset S ⊆ X a non-negative 
real value, is a submodular function, i.e. for all A, B ⊆ X, we have

AllPaths-PDN (A ∪ B) + AllPaths-PDN (A ∩ B) ≤ AllPaths-PDN (A) + AllPaths-PDN (B).

Proof. Recall that, for all S ⊆ X , Anc(S) is the set of arcs that are ancestral to at least one taxon in S . Thus

AllPaths-PD(S) =
∑
e∈N

δ(S, e) · w(e),

where

δ(S, e) =
{

1, if e ∈ Anc(S);
0, otherwise.

If e ∈ Anc(A ∪ B), then e is on a path from the root of N to a leaf in A ∪ B , that is, e is on a path from the root of N to a 
leaf in either A or B . Thus

Anc(A ∪ B) = Anc(A) ∪ Anc(B)

and, similarly,

Anc(A ∩ B) ⊆ Anc(A) ∩ Anc(B).

It follows that, for all arcs e in N and all A, B ⊆ X ,

δ(A ∪ B, e) + δ(A ∩ B, e) − δ(A, e) − δ(B, e) ≤ 0.

Since

AllPaths-PD(A ∪ B) + AllPaths-PD(A ∩ B) − AllPaths-PD(A) − AllPaths-PD(B)

is a weighted sum of the corresponding δ quantities above with non-negative weights, the statement now follows. �
Consider the following greedy algorithm for Max-AllPaths-PD. Given a phylogenetic network N on X and an integer 

k, first select a taxon at maximum distance from the root of N and then iteratively select a taxon that maximises the 
incremental increase in AllPaths-PD until a total of k taxa have been selected.

Corollary 4.4. The greedy algorithm above returns a 
(
1 − 1

e

)
approximation for the Max-AllPaths-PD problem.

Proof. By Lemma 4.3, AllPaths-PD is a submodular function. It is also non-decreasing (adding a taxon will never decrease 
the AllPaths-PD score). Hence it fits the framework of standard approaches to constructing greedy algorithms for cardi-
nality constrained submodular functions studied in [18]. In particular, by [18], it yields an approximation algorithm with 
approximation ratio 1 − 1

e . �
Note that, by Theorem 4.1, the approximation ratio in the statement of Corollary 4.4 cannot be improved unless P �= NP.

4.2. Maximising AllPaths-PD on level-1 networks

Although Max-AllPaths-PD is NP-hard in general, in this section we show that it is polynomial time for the class of 
level-1 networks. Let N be a level-1 network on X . We begin by determining two connecting subtrees T1 and T2 for X in 
N that together cover all arcs of N . Let v be a reticulation of N . Since N is level-1, it is easily seen that there is a unique 
tree vertex, s say, of N such that there exist distinct (directed) paths P and P ′ starting at s and ending at v such that s
and v are the only vertices of P and P ′ in common. We refer to s as the source vertex of v . Now, let v1, v2, . . . , vk denote 
the reticulations of N . For each i ∈ {1, 2, . . . , k}, let si denote the source vertex of vi . Furthermore, for each i ∈ {1, 2, . . . , k}, 
let ui and u′

i denote the (distinct) parents of vi . Note that at most one of ui and u′
i is si . Let T1 be the connecting subtree 

for X in N obtained from N by deleting (u′, vi) for all i, and re-weighting each of the arcs on the (unique) path from si to 
i
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Fig. 3. (i) A level-1 network N on X = {x1, x2, . . . , x5}, and (ii) a weighted covering (T1, T2) of N .

u′
i as zero for all i. All other arcs of T1 keep the weighting inherited from N . Similarly, let T2 be the connecting subtree for 

X in N obtained from N by deleting (ui, vi) for all i, and re-weighting each arc not on the (unique) path from si to vi via 
u′

i as zero for all i. We call (T1, T2) a weighted covering of N . To illustrate this construction, an example is given in Fig. 3, 
where N is a level-1 network, and (T1, T2) is a weighted covering of N .

The following proposition is sufficient to show that Max-AllPaths PD is polynomial time for the class of level-1 networks. 
The reason for this sufficiency is given after its proof.

Proposition 4.5. Let N be a level-1 network on X, and let (T1, T2) be a weighted covering of N . If S ⊆ X, then AllPaths-P DN (S)

equates to the sum of P DT1 (S) and P DT2 (S).

Proof. Let A>0(T1) and A>0(T2) denote the arcs of T1 and T2, respectively, of non-zero weight. For each i ∈ {1, 2}, let φi

denote the embedding map from A>0(Ti) to the arc set of N . By construction, for each i, the map φi is one-to-one and, for 
each non-zero weighted arc e of N , the arc e is in the co-domain of exactly one of φ1 and φ2. Now suppose that S ⊆ X , 
and let � ∈ S and let e be a non-zero weighted arc of N . Then e is on a directed path from the root of N to � if and only 
if there is a unique i such that φ−1

i (e) has non-zero weight and φ−1
i (e) is on the (unique) path in Ti from its root to �. It 

now follows that

AllPaths-PDN (S) = PDT1(S) + PDT2(S). �
As an example of Proposition 4.5, consider Fig. 3 and choose S = {x2, x4}. Then AllPaths-PDN (S) = 16, PDT1 (S) = 11, and 

PDT2 (S) = 5. In particular,

AllPaths-PDN (S) = PDT1(S) + PDT2(S).

Let N be a level-1 network. It is clear that a weighted covering (T1, T2) of N can be constructed in time polynomial in 
the size of N using the approach described prior to Proposition 4.5. However, as N is tree-child, the number of vertices, 
and thus arcs, in N is linear in the size of X [6,14], and so this construction can be done in time polynomial in the size 
of X . By Proposition 4.5, finding the maximum value of AllPaths-PDN (S) over all subsets S of X of size k is equivalent to 
finding the maximum value of PDT1 (S) + PDT2 (S) over all subsets S of X of size k. The latter problem, called Weighted 
Average PD on 2 Trees, is shown to be solvable in time polynomial in the size of X in [3] by reformulating the problem 
as a set of |X | minimum-cost flow problems. It follows that Max-AllPaths-PD for the class of level-1 networks is also 
polynomial time in the size of X . In particular, we have the following corollary.

Corollary 4.6. Let N be a level-1 network on X, and let k be a positive integer. Then Max-AllPaths-PD(N , k) can be solved in time 
polynomial in the size of X.

5. Network-PD

In this section, we turn to Network-PD, our variant of PD for phylogenetic networks that is potentially more realistic 
than AllPaths-PD discussed previously, but that requires additional information in the form of inheritance proportions on 
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each reticulation arc. Let N be a phylogenetic network on X with an additional weight p(e), the inheritance proportion, 
on each incoming arc to each reticulation. This additional weight indicates the proportion of features of the parent vertex 
present in the child vertex of that arc. Recall that, for any subset S ⊆ X , we defined Network-PDN , p(S) as

Network-PDN , p(S) =
∑
e∈N

γ (S, e) · w(e),

where, for each arc e = (u, v) ∈ N , the coefficient γ (S, e) denotes the proportion of the features of v that are present in 
the taxa set S . Thus, while AllPaths-PD implicitly assumes that each reticulation inherits all features present in both its 
parents, Network-PD allows us to model the fact that a reticulation representing, for example, a true hybridisation event 
might inherit only a proportion of features from each of its two parents.

In the following corollary of Theorems 4.1 and 4.2, we observe that Network-PD is a generalisation of AllPaths-PD, from 
which it follows that maximising Network-PD is NP-hard.

Corollary 5.1. The problem Max-Network-PD is NP-hard even when the inputted phylogenetic network is restricted to be from the 
class of normal networks. Moreover, Max-Network-PD cannot be approximated in polynomial time with approximation ratio better 
than 1 − 1

e unless P = NP.

Proof. Given an input (N , k) for Max-AllPaths-PD, we define an instance of Max-Network-PD as (N , p, k) where p(e) = 1
for all reticulation arcs. Since, for all subsets S ⊆ X , AllPaths-PDN (S) = Network-PDN , p(S), both problems have the same 
optimal solution. As Max-AllPaths-PD is NP-hard, it follows that Max-Network-PD is also NP-hard and, by Theorem 4.1, 
cannot be approximated in polynomial time with approximation ratio better than 1 − 1

e unless P = NP. �
For a fixed arc e and a subset A of X , let EA be the event that a feature arising on arc e is inherited by some taxon in 

set A. Then γ (A, e) = Pr[EA]. For two subsets A, B ⊆ X , by the inclusion-exclusion principle

γ (A ∪ B, e) = Pr[EA ∪ EB ] = Pr[EA] + Pr[EB ] − Pr[EA ∩ EB ] ≤ γ (A, e) + γ (B, e) − γ (A ∩ B, e),

where the inequality is because EA∩B is a sub-event of (EA ∩ EB). Thus γ is submodular. As for AllPaths-PD, we therefore 
obtain the following immediate corollary.

Corollary 5.2. A greedy algorithm returns a 1 − 1
e approximation for Max-Network-PD. Moreover, this approximation ratio cannot 

be improved unless P �= NP.

Remark. We have already seen that the case of Max-Network-PD in which p(e) = 1 on all reticulation arcs is equivalent 
to Max-AllPaths-PD and is NP-hard. It is also the case that if p(e) = 0.5 on all reticulation arcs (which might correspond 
to each reticulation being a perfect hybrid), then Max-AllPaths-PD is NP-hard. This can be seen by a reduction from the 
NP-complete problem Exact-Cover-By-4-Sets, which takes as input a set E with |E| = 4q, and a collection C of 4-element 
subsets of E with no element occurring in more than four subsets. The objective is to decide if there is a subset C ′ of C
which is a partition of E . Such a subset is called an exact cover. The construction is similar to that shown in Fig. 2, where 
the leaf set is C , and there is an exact cover if and only if the optimal Network-PD of a subset of |E|/4 leaves is |E|/4 (each 
leaf contributing four weight-1 arcs but with γ averaging 0.25).

5.1. Max and Min Network-PD

In the previous section, we have seen that Network-PD is a generalisation of AllPaths-PD obtained by setting the in-
heritance proportion p(e) to one for each reticulation arc e of a phylogenetic network N . If we restrict the inheritance 
proportions such that, for a reticulation with incoming arcs e1 and e2 to

p(e1) + p(e2) = 1,

we obtain the following relationship between the maximum (respectively, minimum) value of Network-PD and MaxWeight-
Tree-PD (respectively, MinWeightTree-PD) as defined in Section 3.

Theorem 5.3. Let N be a phylogenetic network on X, and let S be a fixed subset of k elements of X. Let R be the set of reticulation arcs 
of N , and let P be the set of all functions mapping R to [0, 1]|R| with the restriction that at each reticulation the incoming arcs, e1, e2

say, have inheritance proportions adding up to 1, that is p(e1) + p(e2) = 1. Then

max
p∈P

Network-PDN , p(S) = MaxWeightTree-PDN (S),

and

min Network-PDN , p(S) = MinWeightTree-PDN (S).

p∈P
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Proof. We prove the maximisation part of the theorem. The proof of the minimisation part is similar and omitted. Let T
be a connecting subtree for S in N such that PDT (S) = MaxWeightTree-PDN (S). Let pmax be a function on R defined as 
follows: at each reticulation v of N that is in T , set pmax(e) = 1 if e is directed into v and e is in T and set pmax(e) = 0 if 
e is directed into v and e is not in T , and at each reticulation of N that is not in T , set pmax to be 1 on one incoming arc 
and 0 on the other arbitrarily. Then, under pmax, all features are inherited along the arcs of T and hence

max
p∈P

Network-PDN , p(S) ≥ Network-PDpmax(S) = MaxWeightTree-PD(S).

Now consider p0 ∈ P which maximises Network-PDN , p0 (S) and among all p which maximise Network-PDN , p(S), 
choose p0 to have a minimum number of arcs e with fractional inheritance proportion, i.e. such that p0(e) /∈ {0, 1}. Suppose 
that for all reticulation arcs e, we have p0(e) ∈ {0, 1}. Then at every reticulation one incoming arc has p0 equal to 1 and the 
other has p0 equal to 0. Therefore Network-PDN , p(S) is the PD of the minimal connecting tree of S in the tree obtained 
from N by deleting all reticulation arcs of N with p0 equal to 0, and so

max
p∈P

Network-PDN , p(S) = Network-PDN , p0(S) ≤ MaxWeightTree-PDN (S).

This proves the maximisation part of the theorem unless there is some arc with p0 /∈ {0, 1}.
Now suppose, for a contradiction, that there is some reticulation arc with p0 /∈ {0, 1}. Then there must be a reticulation v

with parents u1, u2 such that (i) p0(u1), p0(u2) /∈ {0, 1}, (ii) for all reticulations that are descendants of v the incoming arcs 
have p0 equal to 0 or 1, and (iii) there is a subset S ′ ⊆ S such that there is a path from v to each element of S ′ consisting 
of tree arcs and reticulation arcs with p0 = 1. (Otherwise we can follow arcs down towards leaves until we find a last 
reticulation with inheritance from both parents, and if it is not an ancestor of any leaf in S , then we can reset its incoming 
arcs weights without affecting Network-PD(S), thereby reducing the number of reticulations with positive inheritance from 
both parents.)

Now consider the contribution to Network-PDN , p0 (S) of each arc e in N . This is w(e) times the probability that a 
feature that arises on e is inherited by some member of S , where the only randomness comes on reticulations which have 
p0 /∈ {0, 1}. For all subsets A ⊆ S , let Ee

A be the event that a feature that arises on e is inherited by an element of A. Then 
the contribution of e to Network-PDN , p0 (S) is

w(e)Pr[Ee
S ] = w(e)Pr[Ee

S\S ′ ] + w(e)Pr[Ee
S\S ′ ∩ Ee

S ′ ],
where, as above, S ′ is the subset of S consisting of those elements in S that can be reached from v by paths whose 
reticulation arcs have p0 = 1. Since all reticulation arcs below v have p0 ∈ {0, 1}, it follows that if e is a descendent arc of 
v , then Pr[Ee

S\S ′ ∩ Ee
S ′ ] = Pr[Ee

S ′ ] and it is either 0 or 1 but, importantly, it is independent of p0((u1, v)) and p0((u2, v)).
Let Ee

u1
be the event that a feature that arises on e is inherited down to the vertex u1, and Ee

u2
be the event that a 

feature that arises on e is inherited down to the vertex u2. If e is not a descendant arc of v , then writing q0 = p0((u1, v)), 
and so (1 − q0) = p0((u2, v)), we have

Pr[Ee
S\S ′ ∩ Ee

S ′ ] = Pr[Ee
S\S ′ ∩ Ee

u1
]q0 + Pr[Ee

S\S ′ ∩ Ee
u2

](1 − q0) − Pr[Ee
S\S ′ ∩ Ee

u1
∩ Ee

u2
]q0(1 − q0).

So the full contribution from all arcs not descendants of v is∑
e

w(e)

(
Pr[Ee

S\S ′ ] + Pr[Ee
S\S ′ ∩ Ee

u1
]q0 + Pr[Ee

S\S ′ ∩ Ee
u2

](1 − q0) − Pr[Ee
S\S ′ ∩ Ee

u1
∩ Ee

u2
]q0(1 − q0)

)
.

For convenience, write A = ∑
e w(e) Pr[Ee

S\S ′ ], B = ∑
e w(e) Pr[Ee

S\S ′ ∩ Ee
u1

], C = ∑
e w(e) Pr[Ee

S\S ′ ∩ Ee
u2

], and D =∑
e w(e) Pr[Ee

S\S ′ ∩ Ee
u1

∩ Ee
u2

]. Note that D ≤ min{B, C}. Without loss of generality, we may assume that B ≥ C . Then we get 
the contribution to Network-PDN , p0(S) from all arcs not descendants of v is

A + Bq0 + C(1 − q0) − Dq0(1 − q0) < A + B.

Hence if we amend p0 by setting p0((u1, v)) = q0 = 1 and p0((u2, v)) = 0, then we can only be increasing Network-
PDN , p0 (S) and, simultaneously, reducing the number of arcs e such that p0(e) /∈ {0, 1}. This contradicts the choice of p0, 
and hence it must be that there is no arc with p0 /∈ {0, 1}. This completes the proof of the theorem. �

Theorem 5.3 gives us the following immediate corollary.

Corollary 5.4. Let N be a phylogenetic network on X, let k be a positive integer, and let P be the set of all inheritance proportion 
functions whereby, if p ∈ P , and e1 and e2 are the reticulation arcs directed into a reticulation of N , then p(e1) + p(e2) = 1. Then

max Max-Network-PD(N , p,k) = Max-MaxWeightTree-PD(N ,k)

p∈P
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and

min
p∈P

Max-Network-PD(N , p,k) = Max-MinWeightTree-PD(N ,k).

6. MaxWeightTree-PD

Given the importance of MaxWeightTree-PD and MinWeightTree-PD as bounds for Network-PD, we now analyse the 
complexity of determining the maximum possible PD score over all subsets of taxa of size k under these two variants more 
in-depth. We begin by considering MaxWeightTree-PD and turn to MinWeightTree-PD in Section 7.

Let N be a phylogenetic network on X . Recall that, for any subset S ⊆ X , we have defined MaxWeightTree-PD(S) to be 
the maximum of 

∑
e∈T w(e) over all connecting subtrees for S in N . We now show that the corresponding optimisation 

problem Max-MaxWeightTree-PD can be solved in polynomial time by reducing Max-MaxWeightTree-PD to a minimum-
cost flow problem, following the approach of [3].

Theorem 6.1. Let N be a phylogenetic network on X, and let k be a positive integer. Then Max-MaxWeightTree-PD applied to N
and k can be solved in polynomial time.

Proof. Starting with N , we define a flow network by

• setting the root ρ of N to be the source,
• adding additional arcs from ρ to each tree vertex of N , which we shall call the extra arcs,
• appending a new vertex t with an arc from each leaf of N directed into t , and a new vertex t′ , the sink, with a single 

arc from t to t′ ,
• setting the capacity of all arcs inherited from N , and the arcs from the leaves to t , to be 1,
• setting the capacity of the extra arcs and the final arc (t, t′) to be k, and
• setting the cost of each arc e inherited from N to be the negative of its weight, that is −w(e), and the cost of all the 

additional arcs to be 0.

An example for this construction is given in Fig. 4. Observe that, due to the arc (t, t′), the maximum flow from the source 
ρ to the sink t′ is k units. Therefore, as all capacities are integral, there is a minimum-cost integral flow of k units that may 
be found in polynomial time (see, for example, [1,3]).

Since there is a cut of the flow network between the leaves in L(N ) and t , and each of these arcs has capacity 1, exactly 
k of these arcs are used in the minimum-cost integral flow. We denote the set of leaves adjacent to these arcs by S . Note 
that if a minimum-cost flow has non-zero flow through any extra arc (ρ, v), then there is a minimum-cost flow that has 
non-zero flow in the arc (u, v) of N directed into v , since there is a path from ρ to v via (u, v) which has lower cost than 
the path from ρ to v via the extra arc (ρ, v) and is not at capacity due to the extra arcs. (In the case that the arc (u, v)

has weight zero, this path actually has the same cost but, without loss of generality, we can still assume our minimum-cost 
flow routes through (u, v).)

Therefore the set of arcs of N that have non-zero flow form a connecting subtree T S for S , since (i), by the argument of 
the previous paragraph, there must be flow from the root to each leaf in S and (ii), each arc directed out of a reticulation 
has capacity 1, so at most one incoming arc to a reticulation has non-zero flow. The total cost of such a flow is exactly 
the negative of the sum of the weight of arcs in the T S . Moreover, any connecting subtree T S for S can be realised as a 
flow of k units by routing as much flow as possible through the arcs constituting T S , and routing extra flow through the 
extra arcs as necessary. Since we can find the minimum-cost integral k-flow in polynomial time, we can therefore find the 
max-weight embedded connecting subtree for any set of k leaves of N in polynomial time. �
Remark. The proof of the last theorem can be easily extended to show that the MaxWeightTree-PD can be optimised for the 
following problem using a construction similar to that used in [3] for the analogous optimisation problem for phylogenetic 
trees.

WEIGHTED AVERAGE PD ON 2 NETWORKS

Input: Two phylogenetic networks N1 and N2 on X with (arc) weight functions w1 and w2, and a positive integer k.
Objective: Determine the maximum value of∑

e∈T1

w1(e) +
∑
e∈T2

w2(e),

where T1 ∈ TS (N1) and T2 ∈ TS (N2), over all subsets S ⊆ X of cardinality k.
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Fig. 4. (i) Phylogenetic network N on X = {x1, . . . , x6} (identical to the phylogenetic network N shown in Fig. 1). (ii) The flow network resulting from the 
construction described in the proof of Theorem 6.1. Each solid arc has the indicated cost and capacity 1. The dotted arcs have cost 0 and capacity k.

7. MinWeightTree-PD

Recall that, for a phylogenetic network on X , we defined Max-MinWeightTree-PD to be the problem of determining 
the maximum weight, over all subsets of X of cardinality k, of the minimum weight connecting subtree of the subset. 
Our first observation is that for an arbitrary phylogenetic network N on X , even computing MinWeightTree-PDN (X) is 
computationally hard. To make this more precise consider the following problem:

MINIMUM-WEIGHT X -TREE(N )

Input: A phylogenetic network N on taxa set X .
Objective: The value of MinWeightTree-PDN (X), i.e. the minimum weight of a connecting subtree for X in N .

We will show that this problem is hard by making use of a reduction from the well-known NP-complete problem Exact 
Cover By 3-Sets [12]:

EXACT COVER BY 3-SETS(X, C)

Input: A set X with |X | = 3q, and a collection C of 3-element subsets of X with no element occurring in more than three 
subsets.
Objective: Determine if C contains an exact cover of X , that is a subset C ′ of C which is a partition of X?

Theorem 7.1. The problem Minimum-Weight X-Tree is NP-hard.

Proof. Take an instance of Exact Cover By 3-Sets:, i.e. a set X with |X | = 3q, and a collection C = {C1, C2, . . . , Ck} of 3-
element subsets of X with no element occurring in more than three subsets. Similar to a construction in [12], construct a 
phylogenetic network on X as follows. Let D be the rooted acyclic digraph with vertex set C ∪ X ∪ ρ and arc set

{(ρ, Ci) : i ∈ {1,2, . . . ,k}} ∪ {(Ci, x) : x ∈ X ∩ Ci}.
Now weight the arcs of D so that (ρ, Ci) has weight 3 for all i and all remaining arcs have weight zero. We next construct 
a phylogenetic network N on X from D and its weighting. First, refine the vertices ρ and Ci for all i so that all vertices 
(except elements of X) with in-degree zero or in-degree one have out-degree two. Second, for each element x in X , adjoin 
a new vertex to it via a new arc so that the new vertex has in-degree one (and out-degree zero) and relabel so that the 
resulting new vertex is now x. Third, refine each vertex with in-degree three so that no vertex has in-degree more than two. 
Lastly, extend the weighting of D by assigning all (new) unweighted arcs weight zero. The resulting phylogenetic network 
on X is N . To illustrate the construction, the top half of D and its weighting, and a possible top half of N is shown in 
Fig. 5(i) and (ii), respectively. Clearly, N can be constructed in time polynomial in the size of the initial instance of Exact 
Cover By 3-Sets. Furthermore, it is easily seen that C contains an exact cover of X if and only if N has a connecting subtree 
for X of weight at most |X |. Hence computing MinWeightTree-PDN (X) is NP-hard. �

Although we have shown that computing MinWeightTree-PDN (X) is hard on a general phylogenetic network N , if we 
restrict N to be a tree-child network, the problem of computing MinWeightTree-PDN (X) can be solved in polynomial time.
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Fig. 5. (i) The top half of D and its weighting, and (ii) a possible top half of N .

Theorem 7.2. Let N be a tree-child network on X. Then Minimum-Weight X-Tree applied to N can be solved in polynomial time in 
the size of X.

Proof. Let T be a connecting subtree for X in N . Since N is tree-child, T contains every tree arc of N and T contains, 
for each reticulation v of N , precisely one reticulation arc directed into v [25]. Thus, to find a minimum-weight connecting 
subtree for X in N it suffices to determine for each reticulation vi , a reticulation arc of minimum weight directed into vi . 
In particular, if ei is such an arc for all i, then the arc set of a minimum-weight connecting subtree for X in N is the union 
of the set of tree arcs in N and {ei : vi is a reticulation in N }. This completes the proof of the theorem. �

In contrast to the last theorem, computing MinWeightTree-PDN (S) for a given subset S ⊂ X of a phylogenetic network 
N on X is hard even if N is a normal network (and so, in particular, if N is tree-child).

Theorem 7.3. Let N be a phylogenetic network on X and let S ⊂ X be a strict subset of X. Then, computing MinWeightTree-PDN (S)

is NP-hard even if N is a normal network.

Proof. Take an instance of Minimum-Weight X-Tree, i.e. an arbitrary phylogenetic network N on X . We construct a normal 
network N ′ on X ′ ⊃ X from N by subdividing all reticulation arcs and adjoining a new leaf via a new arc to each new ver-
tex. If (u, v) was a reticulation arc in N with weight w(u, v), we assign weight w(u, v) to the arc of the subdivision directed 
into the corresponding reticulation in N ′ , and we assign weight zero to the other arc of the subdivision as well as to the in-
cident pendant arc leading to a new leaf in X ′ − X . Setting S = X ⊂ X ′ , the problem of calculating MinWeightTree-PDN ′ (S)

for the normal network N ′ on X ′ corresponds to the problem of calculating MinWeightTree-PDN (X) for the arbitrary net-
work N on X . However, by Theorem 7.1, the latter problem is NP-hard, and hence computing MinWeightTree-PDN ′ (S) for 
the normal network N ′ on X ′ and S ⊂ X ′ is NP-hard. This completes the proof of the theorem. �

We now turn to the original problem of this section and show that it is again an NP-hard problem.

Theorem 7.4. The problem Max-MinWeightTree-PD is NP-hard.

Proof. Take an instance of Minimum-Weight X-Tree, i.e. a phylogenetic network N on X with |X | = k. We now construct 
a phylogenetic network N ′ on X ′ ⊃ X as follows:

• Choose a pendant arc e leading to a leaf, say x, of N , subdivide it (possibly several times), and adjoin a new leaf via a 
new arc with weight zero to each new vertex.

• If the weight of e in N was w(e), assign weight w(e) to the arc incident with x, and assign weight zero to all other 
arcs of the subdivision.

Now, consider the instance (N ′, k) of the problem Max-MinWeightTree-PD, i.e. consider the problem of computing the 
maximum value of MinWeightTree-PDN ′ (S) over all subsets S ⊆ X ′ of cardinality |X | = k on N ′ . As all elements in X ′−X
are attached to N ′ via pendant arcs of weight zero and all non-pendant arcs on a path from the root of some connecting 
subtree T for X ′ in N to elements in X ′ − X are also covered by a path from the root of T to x, there is a subset S ⊆ X ′ of 
cardinality k = |X | maximising MinWeightTree-PDN ′ (S ′) over all subsets S ′ ⊆ X ′ with |S ′| = |X | that does not contain any 
of the leaves in X ′ − X . In other words, we can assume that S = X . Thus, the maximum value of MinWeightTree-PDN ′ (S ′)
in N ′ over all subsets S ′ ⊆ X ′ with |S ′| = |X | coincides with the value of MinWeightTree-PDN (X) in N . By Theorem 7.1, 
the latter problem is NP-hard, and so we conclude that the problem Max-MinWeightTree-PD is also NP-hard. �
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Fig. 6. (i) Semi-binary level-1 network N , and (ii) a possible resolution into a binary level-1 network N ′ . In the network N , the tree vertex u is the source 
of reticulations v1 and v2, and the arcs incident with u “leading to” v1, respectively v2, are e1 and e′

1, respectively e2 and e′
2. In the resolution N ′ , these 

pairs of arcs are incident to the same tree vertex, respectively. Moreover, all arcs of N ′ inherit their weights from N , and the three newly added arcs are 
assigned weight 0.

8. Semi-binary phylogenetic networks

We have presented the arguments in this paper in terms of binary phylogenetic networks, both for simplicity of un-
derstanding and because the hardness results are stronger. In this section, we discuss extending the results to so-called 
semi-binary phylogenetic networks [5]. The definition of a semi-binary phylogenetic network is the same as for a binary 
phylogenetic network except that non-leaf vertices of in-degree one are allowed to have out-degree at least two. Naturally, 
such vertices are called tree vertices. First note that all hardness results (Theorems 4.1, 4.2, 7.3, 7.4 and Corollary 5.1) hold for 
semi-binary phylogenetic networks, since binary phylogenetic networks are a special case of such phylogenetic networks.

Given any semi-binary phylogenetic network N on X in which there are tree vertices of degree greater than two, we 
can resolve such vertices arbitrarily, inserting new arcs assigned weight 0, and obtain a binary phylogenetic network N ′
on X such that the PD of any subset S ⊆ X is the same on N and N ′ , under any of the variants we have discussed. Thus 
Corollary 4.4 and Theorem 6.1 hold for semi-binary phylogenetic networks. However, this is not quite enough to ensure that 
all of the positive results in the paper also hold for semi-binary phylogenetic networks as some have additional conditions, 
in particular, the binary phylogenetic network is either level-1 or tree-child. Consequently, we must both define these 
properties for semi-binary networks, and ensure that we can resolve N so that these properties are preserved in N ′ .

A semi-binary phylogenetic network is tree-child if each non-leaf vertex is the parent of a tree vertex or a leaf. Let N
be a semi-binary tree-child network, and suppose that u is a tree vertex of N with out-degree more than two. Let v be 
a child of u that is also a tree vertex. We now describe a construction that iteratively resolves N to a binary tree-child 
network. Let u1, u2, . . . , uk denote the children of u other than v . Next, subdivide (u, v) with vertices w1, w2, . . . , wk−1
and, for each i ∈ {1, 2, . . . , k − 1}, delete (u, ui) and join wi and ui with the new arc (wi, ui). Noting that the unique path 
from u to v consists of tree vertices, it follows that, as N is tree-child, the resulting semi-binary phylogenetic network N ′
is also tree-child. Iteratively resolving each of the tree vertices of N ′ with out-degree more than two in the same way gives 
a binary tree-child network. Thus, Theorem 7.2 holds for semi-binary tree-child networks.

A semi-binary phylogenetic network is a level-1 network if all of its biconnected components contain at most one reticu-
lation vertex. Notice that in the case of binary phylogenetic networks this definition coincides with the definition of level-1
networks presented earlier. However, in the case of semi-binary phylogenetic networks, the underlying (undirected) cycles 
in a level-1 network do not need to be vertex disjoint. An example is given in Fig. 6(i). Let N be a semi-binary level-1
network, and suppose that u is a tree vertex of N with out-degree more than two. Since N is level-1, observe that if u is 
a vertex in k distinct underlying cycles of N , where k ≥ 2, then u is the source vertex of at least k − 1 reticulations. Now, 
for each tree vertex u of N with out-degree more than two, resolve u so that if u is the source vertex of a reticulation v , 
then the two arcs incident with u that “lead to” v are incident to the same tree vertex after the resolution. It is easily seen 
that the resulting binary phylogenetic network is level-1. To illustrate, a semi-binary level-1 network and a possible binary 
resolution is given in Fig. 6. It now follows that Proposition 4.5 holds for semi-binary level-1 networks.

9. Concluding remarks

Phylogenetic diversity is widely used for quantifying the biodiversity of a set of species based on their evolutionary 
history and relatedness. Traditionally, PD was calculated on a phylogenetic tree representing the evolution of a set of species. 
However, it is now commonly accepted that evolution is not always tree-like and that many species’ evolutionary history 
contains reticulation events such as hybridisation or lateral gene transfer. In this paper, we therefore defined four natural 
variants of the PD score for a subset of taxa whose evolutionary history is represented by a phylogenetic network. Under 
these variants, we considered the computational complexity of, given a positive integer k, determining the maximum PD 
score over all subsets of taxa of size k when the input is restricted to different classes of phylogenetic networks. More 
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precisely, we showed that determining the maximum PD score over all subsets of taxa of size k under AllPaths-PD is NP-
hard even when the inputted phylogenetic network is restricted to be from the class of normal networks. However, the 
problem is solvable in polynomial time for the class of level-1 networks. The corresponding maximisation problem is also 
NP-hard under Network-PD and MinWeightTree-PD (again, even when the inputted phylogenetic network is restricted to be 
from the class of normal networks), but it is solvable in polynomial time under MaxWeightTree-PD.

An interesting question, however, is to determine the computational complexity of the problems Max-Network-PD and
Max-MinWeightTree-PD when the inputted phylogenetic network is restricted to be from the class of level-1 networks. We 
leave this problem to future research.
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