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Efficient Emulation of Computer Models
Utilising Multiple Known Boundaries of

Differing Dimension

Samuel E. Jackson∗ and Ian Vernon†

Abstract. Emulation has been successfully applied across a wide variety of sci-
entific disciplines for efficiently analysing computationally intensive models. We
develop known boundary emulation strategies which utilise the fact that, for many
computer models, there exist hyperplanes in the input parameter space for which
the model output can be evaluated far more efficiently, whether this be ana-
lytically or just significantly faster using a more efficient and simpler numerical
solver. The information contained on these known hyperplanes, or boundaries,
can be incorporated into the emulation process via analytical update, thus in-
volving no additional computational cost. In this article, we show that such an-
alytical updates are available for multiple boundaries of various dimensions. We
subsequently demonstrate which configurations of boundaries such analytical up-
dates are available for, in particular by presenting a set of conditions that such
a set of boundaries must satisfy. We demonstrate the powerful computational
advantages of the known boundary emulation techniques developed on both an
illustrative low-dimensional simulated example and a scientifically relevant and
high-dimensional systems biology model of hormonal crosstalk in the roots of an
Arabidopsis plant.

Keywords: Bayes linear emulation, simulators, boundary conditions, systems
biology.

1 Introduction

Computer models, or simulators, have been used across a wide range of disciplines to
help understand the behavioural dynamics of physical systems. Such computer models
are often high-dimensional, due to them possessing large numbers of input parameters,
and take a substantial amount of time to evaluate. As a result, performing a full uncer-
tainty analysis of model behaviour – a critical part of any scientific study that requires
model evaluations at a vast number of parameter combinations – may be unfeasible. For
this reason, emulators are frequently used as fast statistical approximations to computer
model output, providing a predicted value at any input and a corresponding measure
of uncertainty, given that the model has been evaluated for a set of training inputs
(Sacks et al., 1989; Higdon et al., 2004; Bowman and Woods, 2016). Emulation has
been successfully applied across a variety of scientific disciplines, such as astrophysics
(Higdon et al., 2004; Kaufman et al., 2011; Vernon et al., 2014), climate science (Castel-
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letti et al., 2012; Williamson et al., 2013; Edwards et al., 2021), engineering (Du et al.,
2021), epidemiology (Andrianakis et al., 2015; McKinley et al., 2018), and volcanology
(Gu and Berger, 2016; Marshall et al., 2019). Improved emulation strategies therefore
have the potential to benefit many scientific areas, allowing more accurate analysis at
lower computational cost.

Vernon et al. (2019) describe an advance in emulation strategy that can lead to
substantial improvements in emulator performance by exploiting the fact that there
often exist parameter settings for which computer model output can be evaluated far
more efficiently (whether this be analytically or just significantly faster using a simpler
numerical solver). This may be possible as a result of allowing various modules to
decouple from more complex parts of the model, particularly when certain parameters
are set to zero. Such parameter settings commonly lie across boundaries or hyperplanes
of the input parameter space, hence leading to effectively known model behaviour on
these boundaries that impose constraints on the emulator itself (note that such Dirichlet
boundary conditions on the emulator are distinct from the Dirichlet boundary conditions
that could be imposed on the computer model itself). The information on these known
boundaries can be incorporated into the emulation process via analytical update, thus
involving no additional computational cost. This is preferable to the approach explored
by Tan (2018), which uses substantial extra modelling and multiple extra emulator
parameters (each requiring estimation) to ensure consistency with the known boundary.
In contrast, the approach in Vernon et al. (2019) includes no extra modelling, and zero
additional parameters, instead updating the Gaussian Process (GP) style emulator with
the boundary information in a natural way.

In this article, we extend the work of the literature to show that such analytical
updates are available for multiple boundaries of various dimensions. In particular, we
demonstrate which configurations of boundaries such analytical updates are available
for. The results of this article both provide analytical insights and are directly applicable
to the analysis of many realistic physical systems represented by computer models.
We demonstrate this by applying the methodology to a scientifically relevant model of
hormonal crosstalk in the roots of Arabidopsis Thaliana. Due to the ease and substantial
benefits of including known boundaries when emulating the Arabidopsis model, we
would suggest that future Uncertainty Quantification (UQ) analyses of scientific models
include a phase of identification and incorporation of known boundaries, if they are
found to exist, as standard practice.

The remainder of this article is organised as follows. In Section 2, we review and
extend the work of Vernon et al. (2019) to the case of a single known boundary of
any dimension (as opposed to p − 1, where p is the number of input components to
the computer model). Section 3 extends the theory to multiple boundaries of various
dimensions, covering which configurations of boundaries may be incorporated into an
emulator analytically, before exhibiting a low-dimensional illustrative example. This ex-
ample can be thoroughly investigated via associated code available at https://github.
com/samjacksonstats/KBE. Section 4 applies the emulation techniques to a current sys-
tems biology model of Arabidopsis Thaliana, with the article being concluded in Section
5. All referenced appendices can be found in the supplementary material (Jackson and
Vernon, 2022).

https://github.com/samjacksonstats/KBE
https://github.com/samjacksonstats/KBE
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2 Known Boundaries of Dimension p − k

This section reviews the work presented in Vernon et al. (2019), whilst extending it by
allowing the known boundaries to be of any dimension.

2.1 Emulation of Computer Models

We consider a computer model f(x), where x ∈ X denotes a p-dimensional vector con-
taining the computer model’s input parameters, and X ⊂ R

p is a pre-specified input
parameter space of interest. We assume that f(x) is univariate, however, the results
presented directly generalise to the corresponding multivariate case, with acceptable
correlation structure, as discussed further in Appendix H. We make the judgement,
consistent with much of the computer model literature, that f(x) has a product corre-
lation structure:

Cov[f(x), f(x′)] = σ2 r(x− x′) = σ2

p∏
j=1

rj(xj − x′
j), (1)

with rj(0) = 1, corresponding to deterministic f(x). For example, a common choice is
the Gaussian correlation function, given by

Cov [f(x), f(x′)] = σ2 exp

⎛
⎝−

p∑
j=1

{
xj − x′

j

θj

}2
⎞
⎠ . (2)

If we perform a set of runs at locations XD = {x(1), . . . , x(n)} over the input space
of interest X , giving computer model outputs as the column vector D = (f(x(1)), . . . ,
f(x(n)))T , then we can update our beliefs about the computer model f(x) in light
of D. While this can be done using Bayes theorem (if, say, f(x) is assumed to be a
Gaussian Process), we instead prefer a less fully specified framework. Hence, we treat
expectation as primitive (motivated by de Finetti (1974)), give a partial prior belief
specification only in terms of expectations, variances and covariances, and employ the
Bayes linear update which is the natural choice when operating under such a partial
specification (Goldstein, 1999; Goldstein and Wooff, 2007):

ED[f(x)] = E[f(x)] + Cov [f(x), D] Var[D]−1(D − E[D]), (3)

VarD[f(x)] = Var[f(x)]− Cov [f(x), D] Var[D]−1Cov [D, f(x)] , (4)

CovD [f(x), f(x′)] = Cov [f(x), f(x′)]− Cov [f(x), D] Var[D]−1Cov [D, f(x′)] ,(5)

where ED[f(x)], VarD[f(x)] and CovD [f(x), f(x′)] are the expectation, variance and
covariance of f(x) adjusted by D (Goldstein, 1999; Goldstein and Wooff, 2007). Al-
though we will work within the Bayes linear formalism, the derived results would apply
to a version of the fully specified probabilistic Bayesian emulation case, were one will-
ing to make the additional assumption of full normality that use of a GP entails, and
to condition on various emulator parameters. See Goldstein (1999) and Goldstein and
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Wooff (2007) for a further discussion of the Bayes linear approach and its foundational
motivation.

As discussed in Vernon et al. (2019), since the results of this article rely on the prod-
uct correlation structure of the emulator, extension of these methods to more general
emulator forms requires further calculation.

2.2 Known Boundary Emulation

Let K = {x ∈ R
p|xj = αK

j , j ∈ JK} be a p−k-dimensional hyperplane defined by fixing
the value of a subset of the inputs, with JK = {j1, . . . , jk} ⊂ P = {1, . . . , p} being the
indices of the fixed inputs. We consider the situation where f is analytically solvable
along K (that is, we know f(x) for any x ∈ K). We wish to update our emulator, and
hence our beliefs about f(x) at input point x ∈ X , in light of K. We capture model
behaviour along K by evaluatingK = (f(y(1)), . . . , f(y(m))) for a large but finite number
m of points on K, denoted y(1), . . . , y(m), however we structure our calculations so that
they can be easily generalised to the case of continuous model evaluations on K, as shown
in Vernon et al. (2019). Naively plugging these m runs into the Bayes Linear update
Equations (3), (4) and (5) by replacing D with K may be infeasible due to the size of the
m×m matrix inversion Var[K]−1 (m may need to be extremely large to capture all the
information available from K). A direct update of the emulator is therefore non-trivial,
hence we show from first principles that this update can be performed analytically
for a wide class of emulators. This is done by exploiting a sufficiency argument briefly
described in the supplementary material of Kennedy and O’Hagan (2001) though, to our
knowledge, only utilised for the first time in the context of known boundary emulation
in Vernon et al. (2019).

We begin by evaluating f(xK), where xK is the orthogonal projection of x onto the
boundary K, and extending the collection of boundary evaluations, K, to be the m+ 1
column vector K = (f(xK), f(y(1)), . . . , f(y(m)))T . Note that xK

j = αK
j for j ∈ JK .

Crucially, we have that

Cov
[
f(xK),K

]
Var[K]−1 = (1, 0, · · · , 0), (6)

arising from the first row of the somewhat trivial equation Var[K]Var[K]−1 = I(m+1),
where I(m+1) is the identity matrix of dimension (m+ 1).

Equation (6) is of particular value when considering the behaviour of f at the point
of interest x. As we have defined xK as the orthogonal projection of x onto K, we can
define aK = x−xK to be the p-vector of shortest distance from boundary K to x. Note
that the elements of aK have the property that:

aKj =

{
xj − xK

j if j ∈ JK
0 if j ∈ PK = P\JK

,

where we define (for two sets A,B) A\B to be the elements in A but not B. We also
define:

rJ(q) =
∏
j∈J

rj(qj), (7)
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for a generic collection of indices J and vector of constants q. By partitioning the
dimension indices P = {1, . . . , p} into P = {JK , PK} we obtain the following covariance
expressions:

Cov[f(x), f(xK)] = σ2 rP (x− xK) = σ2 rJK
(aK) rPK (0) = σ2 rJK

(aK) , (8)

Cov[f(x), f(y(s))] = σ2 rP (x− y(s)) = σ2 rJK
(aK) rPK (xK − y(s))

= rJK
(aK) Cov[f(xK), f(y(s))], (9)

since rj(0) = 1, components JK of xK and y(s) must be equal as they all lie on K (that

is, xK
j = y

(s)
j for j ∈ JK), and xj − y

(s)
j = xK

j − y
(s)
j for j ∈ PK . From (8) and (9), the

covariance between f(x) and the set of boundary evaluations K is given by

Cov [f(x),K] = rJK
(aK) Cov

[
f(xK),K

]
. (10)

Using (6) and (10) we obtain the important result that:

Cov [f(x),K] Var[K]−1 = rJK
(aK) (1, 0, · · · , 0). (11)

As we have avoided the need to explicitly evaluate the intractable matrix inverse
Var[K]−1, we can find the Bayes Linear adjusted expectation for f(x) with respect
to K analytically by combining (3) and (11):

EK [f(x)] = E[f(x)] + rJK
(aK) (1, 0, · · · , 0)(K − E[K])

= E[f(x)] + rJK
(aK)Δf(xK), (12)

where we have defined Δf(·) = f(·) − E[f(·)]. We have thus eliminated the need to
explicitly invert the large matrix Var[K] entirely by exploiting the symmetric product
correlation structure and (6). Similarly, we find the adjusted covariance between f(x)
and f(x′) given the boundary K, where f(x′) is the model output at a second point x′,
using (5) and (11), and again exploiting the partition P = {JK , PK}:

CovK [f(x), f(x′)]

= Cov [f(x), f(x′)]− rJK
(aK) (1, 0, · · · , 0)Cov [K, f(x′)]

= Cov [f(x), f(x′)]− rJK
(aK) Cov

[
f(xK), f(x′K)

]
rJK

(a′K)

= σ2 rJK
(aK − a′K) rPK (x− x′)−σ2 rJK

(aK) rJK
(0) rPK (x− x′) rJK

(a′K)

= σ2 RJK
(aK , a′K) rPK (x− x′), (13)

where the ‘updated correlation component’ in the xJK
directions is given as

RJK
(aK , a′K) = rJK

(aK − a′K) − rJK
(aK) rJK

(a′K) . (14)

By setting x = x′, we obtain an expression for the adjusted variance of f(x):

VarK [f(x)] = σ2 (1− rJK
(aK) 2). (15)

Equations (12) and (15) give the expectation and variance of the emulator at a point
x, updated by a known boundary K. As they require only evaluations of the analytic
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boundary function and the correlation function they can be implemented with trivial
computational cost in comparison to a direct update by K. Useful insights into the
sufficiency, stationarity and limiting behaviour, along with a generalisation of the above
to continuous boundary evaluations K, are discussed in Vernon et al. (2019). Note that
when using a general product correlation structure, as given by (1), we require the known
boundary K (and all subsequent known boundaries) to be axially aligned. However,
if the Gaussian/squared exponential correlation structure is used which is invariant
under rotations in R

p, the initial boundary K can have any orientation, and subsequent
boundaries (see Section 3) can be included that are parallel to K or perpendicular to K
(in a basis where all correlation lengths are equal).

2.3 Three-dimensional Example

For illustration, we consider the problem of emulating the three-dimensional function:

f(x) = sin

(
x1

exp(x2)

)
+ cos(x3), (16)

over an input domain of interest given by [−2π, 2π] × [−π/4, π/4] × [−2π, 2π]. This
simulated example will, throughout this article, take a prior expectation E[f(x)] = 0,
and a product Gaussian covariance structure, as given by (2), with correlation length
parameters θ = (π, π/8, π) and variance parameter σ2 = 2. These values are adequate
for the example presented, as illustrated in the diagnostic panels of the figures that
follow. Having said this, it is important and informative to explore the effect of varying
the correlation length parameters on emulator predictions, particularly in combination
with known boundaries. We explore varying these parameters for the Arabidopsis model
application in Section 4.

We begin by assuming a known boundary K = {x ∈ R
3|(x2, x3) = (0, 0)}, hence

that we can evaluate f(xK) = sin(x1)+ 1 for any point on the boundary xK ∈ K. We
hence apply the emulator expectation and variance update given by (12) and (15).

In order to illustrate the effect of the known boundary on the emulator, we examine
emulator behaviour across two-dimensional slices (keeping one variable fixed) of the
three-dimensional input space, as shown in Figure 1. The top row depicts the input
space as a cube, with the one-dimensional boundary being illustrated by the red line.
The green planes are two-dimensional slices of the input space over which emulator and
simulator behaviour are compared in the remaining plots. The remaining rows show
(from top to bottom) simulator f(x) (for comparison purposes), emulator expectation
μ(x) = EK [f(x)], emulator variance ν(x) = VarK [f(x)] and standardised diagnostic
values s(x) = (EK [f(x)]− f(x))/

√
VarK [f(x)]. In each case, the variable with smaller

index is along the horizontal axis. The left column of the figure shows the results for
x2 = 0. Since this slice contains the known boundary, we see that for x3 = 0 emulator
expectation precisely matches the true simulator function, and the variance goes to
zero. As we move further away from the boundary in the x3 direction, the variance
increases. Note that, since K is parallel to the x1 direction, altering the value of this
variable doesn’t alter the emulator variance. The middle column shows a slice away
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Figure 1: Updating the emulator for the three-dimensional function given by (16) by
a single boundary K. Rows from top to bottom, show: 1) position of known boundary
(red line) in the three-dimensional input space, along with the position of the two-
dimensional slices (green planes) illustrating the two-dimensional plane in the three-
dimensional input space, over which the remaining plots in the same column are plotted,
2) simulator function f(x), 3) emulator expectation μ(x), 4) emulator variance ν(x), 5)
standardised errors s(x). Columns from left to right show results on the three planes
x2 = 0, x2 = −π/8 and x1 = −π respectively, shown as the green planes in the top row.
Note that for each two dimensional plot, the variable with smaller index is along the
horizontal axis.
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from the boundary (x2 = −π/8). Again, the smallest variance is at x3 = 0, however,
now it is not zero. The right column shows x1 = −π. In this case, the function is
only known at the centre point (x2, x3) = (0, 0) with variance increasing radially away
from this point. The diagnostic plots provide evidence for the validity of the emulator,
with few parts of the input space having standardised errors greater than 2. Associated
code for the examples contained in Sections 2 and 3 can be found at https://github.
com/samjacksonstats/KBE. This code permits user-friendly investigation into varying
all features of the presented example, including toy function, parameter ranges, known
boundaries and diagnostic slices.

2.4 Updating by Further Model Evaluations

Since we have analytic expressions for EK [f(x)], VarK [f(x)] and CovK [f(x), f(x′)], we
are now able to include additional computer model evaluations into the emulation pro-
cess. To do this, we perform n (expensive) evaluations of the computer model across X
to obtain D = (f(x(1)), . . . , f(x(n))), and use these to supplement the evaluations, K,
available on the boundary. We want to update the emulator by the union of the evalu-
ations D and K, that is to find EK∪D[f(x)], VarK∪D[f(x)] and CovK∪D [f(x), f(x′)].
This can be achieved via a sequential Bayes Linear update:

EK∪D[f(x)] = EK [f(x)] + CovK [f(x), D] VarK [D]−1(D − EK [D]), (17)

VarK∪D[f(x)] = VarK [f(x)]− CovK [f(x), D] VarK [D]−1CovK [D, f(x)] , (18)

CovK∪D [f(x), f(x′)] = CovK [f(x), f(x′)]− CovK [f(x), D] VarK [D]−1CovK [D, f(x′)] ,
(19)

where we first update our emulator analytically by K, and subsequently update these
quantities by the evaluations D (Goldstein and Wooff, 2007). n is typically of
small/modest size due to the relative expense of evaluating the computer model, hence
these calculations (in particular VarK [D]−1) will remain tractable, leading to an overall
O(n3) calculation. It is worth comparing this to the brute force approach of including a
large number m of points on the (p− k)-dimensional known boundary K, and updating
the emulator directly, which leads to an O((m + n)3) operation. For example, we may
consider a fine grid of points that are half a correlation length (θ/2) apart in each di-
rection to be enough to capture most of the information from the boundary K. In this
case we would have O((2/θ)(p−k) + n)3) assuming X = [0, 1]p, which if θ = 1/4, say, is
O((8(p−k) + n)3). For the Arabidopsis application, p = 38 and k = 4. This represents a
vastly less efficient calculation compared to the above analytic O(n3) approach.

It is worth noting that users of standard black-box GP emulation packages may
be unable to implement directly the formulae of (12) and (15). However, we see that
due to underlying sufficiency arguments, such a user can simply add the (n+ 1) trivial
boundary evaluations f(xK) and DK = (f(x(1)K), . . . , f(x(n)K)) to D to give D∗ =
{D,DK , f(xK)}, and then their black box Gaussian process package will produce results
that precisely match (17)-(19). This would only require the inversion of a (2n + 1) ×
(2n + 1) matrix, and hence be of O((2n + 1)3). However, this is only true for a single
emulated point, while typically a user would wish to emulate at a large number n′ of

https://github.com/samjacksonstats/KBE
https://github.com/samjacksonstats/KBE
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input locations. Naively adding all corresponding n′ boundary evaluations directly toD∗

would lead to an unnecessary O((n′+2n)3) calculation with n′ � n. However, splitting

the n′ points into N ′ batches improves calculation efficiency to O(N ′( n′

N ′ +2n)3), which
has a computationally optimal batch size of n, thus an optimal number of batches N ′ =
n′/n. This results in the calculation being O(N ′( n′

N ′ + 2n)3) = O(33n′n2) = O(n′n2),
where again n′ � n. As typical values may be say n = 102 and n′ = 106, whereby
n′ = n3, were this relationship to scale, we would have O(n5). In comparison, the above
proposed analytic method ((17)-(19) combined with (12), (13), and (15)) is of O(n3)
regardless of the size of n′, and hence is seen to be clearly superior. For further discussion
of this issue and its exacerbation for multiple known boundaries, see Appendix G.

3 Multiple Boundaries of Various Dimensions

In this section, we begin by discussing the requirements for being able to analytically
update by a second known boundary, before considering larger numbers of boundaries.

3.1 Two Known Boundaries

Given the results of Section 2, we now proceed to consider analytical updating by
a second known boundary L = {x ∈ R

p|xj = αL
j , j ∈ JL} of dimension p − l. As this

section progresses, we will restrict the form of L, for example, to being either intersecting
and orthogonal, or parallel to K, however, for now we consider the general case. We

define L =
(
f(xL), f(z(1)), . . . , f(z(m))

)T
to be a vector of model evaluations, where

z(1), · · · , z(m) constitute a large but finite number m of points along L, and denote the
p-vector of shortest distance to x from its orthogonal projection xL as aL = x−xL. We
also define xLK to be the sequential orthogonal projection of x first onto L and then
onto K, and correspondingly aLK = x − xLK to be the p-vector of shortest distance
to x from this sequential projection. In Vernon et al. (2019), it was demonstrated that
analytic updating of two perpendicular or parallel p − 1-dimensional boundaries K,L
could be achieved. As an example, the update for two perpendicular p − 1-boundaries
was given by:

EK∪L[f(x)] = E[f(x)] + r1(a
K)Δf(xK) + r2(a

L)Δf(xL)− r1(a
K) r2(a

L)Δf(xLK),
(20)

CovK∪L [f(x), f(x′)] = σ2 R1(a
K , a′K) R2(a

L, a′L)

p∏
j=3

rj(x− x′), (21)

where it is assumed that K and L are defined by x1 = αK and x2 = αL, and we have
utilised the notation of (7) and (14). The inclusion-exclusion nature of this result will
also feature in the general results that follow, both in this section and in Section 3.2.

More generally, to permit analytic updating by a second boundary L of dimen-
sion p − l, as defined above, we need to find an analogous version of (10), which re-
lates CovK [f(x), L] to CovK

[
f(xL), L

]
. We begin by examining the expression for
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CovK
[
f(xL), f(z(s))

]
in light of (13), exploiting the notation of (7) and (14), and using

the partition PK = {JL\JK , PK∪L} where PK∪L = P\(JK ∪ JL):

CovK

[
f(xL), f(z(s))

]

= σ2 RJK (xL − xLK , z(s) − z(s)K) rPK (xL − z(s))

= σ2 rPK∪L(x
L − z(s)) rJL\JK

(xL − z(s))

×
(
rJK (xL − z(s)) − rJK (xL − xLK) rJK (z(s) − z(s)K)

)

= σ2 rPK∪L(x − z(s))

×
(
rJK\JL

(x− z(s)) − rJK\JL
(aK) rJK\JL

(z(s) − z(s)K) rJK∩JL(LK) 2

)
, (22)

since xL
j −z

(s)
j = 0 for j ∈ JL, rPK∪L(xL

j −z
(s)
j ) = rPK∪L(xj−z

(s)
j ) and xL

j −xLK
j = LKj

for j ∈ JL, where LKj is a constant giving the orthogonal distance from L to K in the
xj-direction. In addition, note that we define throughout r∅(·) = 1. We then examine:

CovK

[
f(x), f(z(s))

]

= σ2 RJK (x − xK , z(s) − z(s)K) rPK (x − z(s))

= σ2 rPK∪L(x − z(s)) rJL\JK
(x− z(s))

(
rJK (x− z(s)) − rJK (x− xK) rJK (z(s) − z(s)K)

)

= σ2 rPK∪L(x − z(s)) rJL\JK
(aL)

(
rJK\JL

(x− z(s)) rJK∩JL(a
L)

− rJK\JL
(aK) rJK∩JL(a

K) rJK\JL
(z(s) − z(s)K) rJK∩JL(LK)

)
. (23)

By combining (22) and (23) we obtain:

CovK

[
f(x), f(z(s))

]
=

rJK\JL
(x− z(s)) rJK∩JL(a

L) − rJK\JL
(aK) rJK∩JL(a

K) rJK\JL
(z(s) − z(s)K) rJK∩JL(LK)

rJK\JL
(x− z(s)) − rJK\JL

(aK) rJK\JL
(z(s) − z(s)K) rJK∩JL(LK)2

× rJL\JK
(aL)CovK

[
f(xL), f(z(s))

]
. (24)

In order to obtain an equation analogous to (10) we need to be able to write CovK
[
f(x),

f(z(s))
]
as a product of CovK

[
f(xL), f(z(s))

]
and a function that does not depend

on z(s), thus permitting replacement of f(z(s)) by L in the CovK
[
· , f(z(s))

]
terms. In

general, this is not possible for a second boundary, since the required product correlation
structure no longer exists, thus resulting in the appearance of z(s) several times in the
quotient in the expression on the right hand side of (24). However, there are two general
and commonly occurring cases when this dependency does not exist and our methods
permit further analytic update by a second known boundary (and indeed further known
boundaries, as discussed in Sections 3.2 and 3.3). The first case is if we wish to update
by a known boundary which is a hyperplane which is orthogonal to and intersecting
the first, and the second case is if we wish to update by a known boundary that is a
hyperplane which is parallel to the first, or a subplane thereof. We discuss these two
cases in the following sections.
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Two Intersecting Orthogonal Known Boundaries

If K and L are two intersecting orthogonal boundaries, that is K ∩ L �= ∅, then αK
j =

αL
j , a

K
j = aLj and LKj = 0 for j ∈ JK ∩ JL. In this case we can rewrite (24) as:

CovK

[
f(x), f(z(s))

]

=
rJK\JL

(x− z(s)) rJK∩JL(a
L) − rJK\JL

(aK) rJK∩JL(a
L) rJK\JL

(z(s) − z(s)K) rJK∩JL(0)

rJK\JL
(x− z(s)) − rJK\JL

(aK) rJK\JL
(z(s) − z(s)K) rJK∩JL(0)

2

× rJL\JK
(aL)CovK

[
f(xL), f(z(s))

]

= rJK∩JL(a
L) rJL\JK

(aL) CovK

[
f(xL), f(z(s))

]

= rJL(a
L) CovK

[
f(xL), f(z(s))

]
, (25)

so that
CovK [f(x), L] = rJL

(aL) CovK
[
f(xL), L

]
. (26)

We can now avoid explicit evaluation of the intractable VarK [L]−1 term by combining
(26) with sequential update (17)-(19) to give:

EK∪L[f(x)] = E[f(x)] + rJK (aK)Δf(xK) + rJL(a
L)Δf(xL)− rJK∪JL(a

LK)Δf(xLK), (27)

CovK∪L

[
f(x), f(x′)

]
= σ2 rPK∪L(x− x′)RK,L(x, x

′), (28)

with RK,L(x, x
′) =

2∑
i=0

(−1)i
∑

T⊆{K,L}, |T |=i

r(JK∪JL)\JT
(x− x′) rJT (a

LK) rJT (a
′LK),

where JT =
⋃

t∈T Jt. Extended derivation of the general Expressions (27) and (28) for
updating by any two intersecting orthogonal boundaries can be found in Appendix A.
Note that if K is defined by x1 = αK , and L is defined by x2 = αL, these expressions
collapse back to those given by (21). We can see that Expressions (27) and (28) are
invariant under the interchange of the two boundaries. This should be as expected,
since the boundaries are orthogonal to and intersecting each other.

Two Parallel Boundaries

Consider now that L is such that JK ⊆ JL. In other words, L is either a hyperplane
which is parallel to K, or a subplane thereof. Note that now xL = xKL �= xLK , that is,
the order of the boundaries matters, and that xLK �= xK in general (unless JK = JL).
We also define LK to be the p-vector of shortest distance from (any point on) L to K.
In this case, (24) can be rewritten as

CovK

[
f(x), f(z(s))

]

=
rJK

(aL) − rJK
(aK) rJK

(LK)

1− rJK
(LK)

rJL\JK
(aL) CovK

[
f(xL), f(z(s))

]

=
RJK

(aK , LK)

RJK
(LK,LK)

rJL\JK
(aL) CovK

[
f(xL), f(z(s))

]
, (29)
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hence we have that:

CovK [f(x), L] =
RJK

(aK , LK)

RJK
(LK,LK)

rJL\JK
(aL) CovK

[
f(xL), L

]
. (30)

Equation (30) allows us to again avoid explicit evaluation of the intractable VarK [L]−1

term. The adjusted expectation and covariance can then be calculated using the sequen-
tial update (17)-(19), to be:

EK∪L[f(x)]

= EK [f(x)] +
RJK

(aK , LK)

RJK
(LK,LK)

rJL\JK
(aL) (f(xL)− EK [f(xL)])

= E[f(x)] + rJK
(aK)Δf(xK) +

RJK
(aK , LK)

RJK
(LK,LK)

rJL\JK
(aL)Δf(xL)

− RJK
(aK , LK)

RJK
(LK,LK)

rJL\JK
(aL) rJK

(KL)Δf(xLK), (31)

CovK∪L [f(x), f(x′)] = σ2 rPK∪L(x− x′)R
(2)
K,L(x, x

′), (32)

where we define:

R
(2)
K,L(x, x

′)

= RJK (aK , a′K) rJL\JK
(x− x′) − RJK (aK , LK)RJK (LK, a′)

RJK (LK,LK)
rJL\JK

(aL) rJL\JK
(a′L).

Extended derivation of Expressions (31) and (32) can be found in Appendix B.

We observe that, for the case when JK ⊂ JL, the result is not invariant under the
interchange of the two boundaries K ↔ L, as expected. Although the order in which we
update by the two boundaries should not affect the final result, whilst we were able to
provide the analytical solution above for the case where we updated by the boundary
of largest dimension first, this is not the case if we first update by the boundary of
lower dimension. As discussed in Section 3.1, a problem arises in the latter case due
to us being unable to write CovK

[
f(x), f(z(s))

]
as a product of CovK

[
f(xL), f(z(s))

]
and a function of x only. Therefore, we cannot obtain an expression analogous to (11)
which enables analytic updating of f(x) by K and L by avoiding the explicit inversion
of VarK [L]−1. In the case when JK = JL, the result is invariant under K ↔ L, as shown
in Appendix C. In addition, if K is given by x1 = αK and L is given by x1 = αL,
Expressions (31) and (32) collapse to the result in Vernon et al. (2019).

3.2 Multiple Known Boundaries

Following Section 3.1, it is logical to assume that analytic updating would be possible for
further intersecting orthogonal and parallel hyperplanes along which model behaviour is
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known. We hence proceed to discuss the form of an emulator updated by h boundaries
KH = K1, . . . ,Kh, where boundary Ki = {x ∈ R

p|xKi
j = αKi

j , j ∈ JKi} is of dimension
p − ki. In this section, we first consider intersecting orthogonal boundaries, then we
consider parallel boundaries. Similar to the previous sections, we define aKi = x− xKi

to be the vector of shortest distance from boundary Ki to x, where xKi is the orthogonal
projection of x onto boundary Ki. Letting T = (t1, . . . , tτ ) be a sequence of boundary
indices, we also define KT to be the sequence of boundaries Kt1 , . . . ,Ktτ , x

KT to denote
x projected sequentially onto boundaries KT in reverse order (that is, Ktτ ,Ktτ−1 , etc.),
and aKT = x− xKT .

Multiple Intersecting Orthogonal Boundaries

In this section, we consider that the h boundaries are all orthogonal to and intersecting
each other, in other words that K1 ∩ · · · ∩ Kh �= ∅.

Theorem 3.2.1. The expectation and covariance of f(x) sequentially adjusted by bound-
aries KH , such that K1 ∩ · · · ∩ Kh �= ∅, are given by:

EKH
[f(x)] = E[f(x)] +

h∑
i=1

(−1)i+1
∑

T⊆H, |T |=i

rJT
(aKT )Δf(xKT ),(33)

CovKH
[f(x), f(x′)] = σ2 RKH

(x, x′) rPH (x− x′), (34)

with RKH
(x, x′) =

h∑
i=0

(−1)i
∑

T⊆H, |T |=i

rJH\JT
(x− x′) rJT

(aKH ) rJT
(a′KH ),

where H = 1, . . . , h, JT =
⋃

t∈T JKt , JH =
⋃

i∈H JKi and PH = P\JH .

Theorem 3.2.1 provides the general form for analytically updating our emulator by
multiple intersecting orthogonal boundaries. We can see that Expressions (33) and (34)
are invariant under the interchange of the h boundaries. This should be as expected,
since all boundaries are orthogonal to and intersecting each other. Proof of Theorem
3.2.1 by induction is presented in Appendix D.

Multiple Parallel Boundaries

In this section, we consider that the h boundaries are such that JKi−1 ⊆ JKi . In other
words, for all i ≥ 2, Ki is either a hyperplane which is parallel to Ki−1, or a subplane
thereof. Such ordering of the boundaries by decreasing dimension size is required in
order to leave the correlation structure in the appropriate product form to perform all
the calculations analytically at each stage (see the discussion in the main part of Section
3.1 and at the end of Section 3.1 for more detail).

Theorem 3.2.2. The expectation and covariance of f(x) adjusted by h ≥ 2 parallel
boundaries KH , with JKi−1 ⊆ JKi for i = 2, . . . , h, are given by:
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EKH [f(x)] (35)

= E[f(x)] + rJ1(a
K1)Δf(xK1) +

h∑
γ=2

R
(γ−1)
KΓ−1

(x,Kγ)

R
(γ−1)
KΓ−1

(Kγ ,Kγ)
rJγ\JΓ−1

(aKγ )

(
Δf(xKγ ) +

γ∑
i=2

∑
b⊂Γ, b1<...<bi=γ

(−1)i+1
i−1∏
l=1

R
(bl−1)
KBl−1

(Kγ ,Kbl)

R
(bl−1)
KBl−1

(Kbl ,Kbl)
rJbl

\JBl−1
(Kbl+1Kbl)Δf(xKb)

)
,

CovKH

[
f(x), f(x′)

]
= σ2 rPH (x− x′)R

(h)
KH

(x, x′), (36)

where Γ − 1 = 1, . . . , γ − 1, Bl = 1, . . . , bl, Bl − 1 = 1, . . . , bl − 1, r∅(·) = 1, Ki1Ki2 is
the p-vector of shortest distance from Ki1 to Ki2 , and R(γ) is defined recursively by:

R
(γ)
KΓ

(x, x′) =

(
R

(γ−1)
KΓ−1

(x, x′) rJγ\JΓ−1
(x− x′)

−
R

(γ−1)
KΓ−1

(x,Kγ)R
(γ−1)
KΓ−1

(x′,Kγ)

R
(γ−1)
KΓ−1

(Kγ ,Kγ)
rJγ\JΓ−1

(aKγ ) rJγ\JΓ−1
(a′Kγ )

)
,

with R(0) = 1, and defining R
(γ)
KΓ

(x,Ki) = R
(γ)
KΓ

(x, y) , R
(γ)
KΓ

(Ki,Ki′) = R
(γ)
KΓ

(y, y′) for
any points y ∈ Ki, y

′ ∈ Ki′ respectively.

Note that for a single boundary R
(1)
K (x, x′) = RJK

(aK , a′K) . Theorem 3.2.2, proved
by induction in Appendix E, provides the general formulae for analytically updating our
emulator by multiple parallel boundaries. Expressions (35) and (36) are not invariant
under interchange of the h boundaries due to the need for the boundaries to be taken
in order of decreasing dimension size in order for the calculations to be performed
analytically.

3.3 Additional Sets of Known Boundaries

Section 3.2 demonstrated that analytic update calculations are possible given a set of
mutually orthogonal known boundaries or for sets of known boundaries where each
boundary is a hyperplane which is parallel to the previous one, or a subset thereof.
Given these results, the natural question to ask is: for which combinations of known
boundaries can an emulator be updated, whilst allowing all of the necessary calculations
to be performed analytically? We now state the following proposition to answer this
general question.

Proposition 3.3.1. Given that beliefs about model output have been analytically updated
given information on a sequence of boundaries KH−1 = K1, . . . ,Kh−1, with Ki = {x ∈
R

p|xKi
j = αKi

j , j ∈ JKi} , we can update by a further boundary Kh if and only if, for
each i = 1, . . . , h− 1, either Kh ∩ Ki �= ∅ or JKi ⊆ Jh.

In other words, for each i = 1, . . . , h − 1, Kh must either be an intersecting and
orthogonal hyperplane to Ki, or be a hyperplane (or subplane thereof) which is parallel
to Ki.
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As discussed in Section 3.1, in order to perform an analytical update by a further
known boundary, we needed to be able to write CovK

[
f(x), f(z(s))

]
as a product of

CovK
[
f(xL), f(z(s))

]
and a function that does not depend on z(s). In other words, we

needed an appropriate product correlation structure. This same criterion extends to
further known boundaries, and must hold between every pair of a set of boundaries for
analytic update to be performed. The general formula is somewhat complex, although
the analytic update formulae can be derived by iteratively applying the sequential up-
date (17)-(19) with appropriate analogous equations to (10).

3.4 Three-Dimensional Example

We continue the example of Section 2.3 by adding two extra boundaries. We add a one-
dimensional boundary L = {x ∈ R

3|(x2, x3) = (0,−π)} which is parallel to the first,
and also a two-dimensional boundary M = {x ∈ R

3|x1 = 0}, which is orthogonal to the
others. K,L and M therefore form a set of known boundaries satisfying the conditions
given in the propostion in Section 3.3. The update formulae for this particular set of
boundaries can be given as:

EK∪L∪M [f(x)]

= E[f(x)] + r1(a
M )Δf(xM ) + r{2,3}(a

K)
(
Δf(xK)− r1(a

M )Δf(xMK)
)

+
R{2,3}(a

K , LK)

R{2,3}(LK,LK)

(
Δf(xL)− r1(a

M )Δf(xML)
)

−
R{2,3}(a

K , LK)

R{2,3}(LK,LK)
r{2,3}(LK)

(
Δf(xLK)− r1(a

M )Δf(xMLK)
)
, (37)

VarK∪L∪M [f(x)] = σ2 R
(2)
K,L(x, x)R1(a

M , aM ). (38)

The derivation of (37) and (38) is provided in Appendix F. The emulator outputs,
derived using these equations, are shown in Figure 2. We can see that with these three
boundaries, much is learnt across each of the displayed two-dimensional slices of the
input space. Variance is particularly reduced for x2 = 0 (left-hand column), this column
also essentially containing the story of a smaller two-dimensional example (that when
x2 = 0) with three one-dimensional boundaries. The emulator predicts the model across
much of the input space well; only in the top left and top right corners, when x3 is large
and x1 small or large, is behaviour really uncertain.

The middle column shows the plane x2 = π/8. We can see that the intersecting
known boundary M at x1 = 0 has much greater influence on the adjusted beliefs across
the plane of interest than the lower dimensional known boundaries K and L, these being
subplanes of a plane parallel to the one of interest in this case. In contrast, if the plane
of interest is parallel to the two-dimensional plane, for example x1 = π in the right-hand
column, then the intersecting lines have a greater influence, although concentrated over a
smaller area of the plane. The right-hand column particularly highlights the advantages
of having as many known boundaries as possible. The intersecting lines provide much
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Figure 2: Updating the emulator for the three-dimensional function given by (16) by
two sets of perpendicular boundaries with two and one boundaries respectively. Rows
from top to bottom, show 1) position of known boundaries (red line K, blue line L
and pink plane M) in the three-dimensional input space, along with the position of
the two-dimensional slices (green planes) illustrating the two-dimensional plane in the
three-dimensional input space, over which the remaining plots in the same column are
plotted, 2) simulator function f(x), 3) emulator expectation μ(x), 4) emulator variance
ν(x), 5) standardised errors s(x). Columns from left to right show results on the three
planes x2 = 0, x2 = −π/8 and x1 = −π respectively, shown as the green planes in the
top row. Note that for each two-dimensional plot, the variable with smaller index is
along the horizontal axis.



S. E. Jackson and I. Vernon 181

increased precision over a smaller area, whilst the parallel plane reduces variance slightly
(though still to a worthwhile degree) across the whole plane. In addition, the diagnostics
are satisfactory across each plane in the example.

To summarise, for computer model applications where such sets of known boundaries
exist, the gains of including them in the analysis using the general results derived in this
section can be substantial, and therefore they should be included whenever possible.

4 Application of Methods to Arabidopsis Model

In the previous sections of this article, we have presented methodology for utilising
knowledge of the behaviour of computer models along particular boundaries of the
input space to aid emulation across the whole input space. In this section, we explore
the implications such boundaries can have on a higher-dimensional scientifically relevant
systems biology model of the hormonal crosstalk in the roots of an Arabidopsis plant.

4.1 Model of Hormonal Crosstalk in Arabidopsis Thaliana

Arabidopsis Thaliana is a small flowering plant that is widely used as a model organism
in plant biology (Initiative, 2000). We demonstrate our known boundary emulation
techniques on a model of hormonal crosstalk in the root of an Arabidopsis plant that
was constructed by Liu et al. (2013). This Arabidopsis model represents the crosstalk of
auxin, ethylene and cytokinin in Arabidopsis root development as a set of 18 differential
equations, given in Table 2 of Appendix I, which must be solved numerically. The
model takes an input vector of 45 rate parameters (k1, k1a, k2, . . .), although we will be
interested in a subset of 38 of them, as discussed in Appendix I, and returns an output
vector of 18 chemical concentrations ([Auxin], [X], [PLSp], . . .). This Arabidopsis model
has been successfully emulated in the literature in the context of history matching
(Vernon et al., 2018).

For the purposes of this article, we are interested in modelling the important output
component [ET ], which represents the concentration of ethylene (Burg, 1973; Swarup
et al., 2007), at early time t = 2. The ranges over which we allowed the inputs to vary
are given in Table 3 in Appendix I, these being elicited as ranges of interest deemed
sensible by the biological experts (Liu et al., 2013), and square rooted and mapped to
a [−1, 1] scale prior to analysis.

4.2 Establishing Known Boundaries

Establishing known boundaries requires some understanding of the scientific model. It
is not uncommon for one or more known boundaries to occur in a model for some
output components. Often, setting certain parameters to specific values will decouple
smaller subsections of the system, which may allow subsets of the model equations to be
solved analytically, for particular output components, as is the case for the Arabidopsis
model.
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We consider known boundaries for output component [ET ] by considering its rate
equation:

d[ET ]

dt
= k12 + k12a[Auxin][CK]− k13[ET ]. (39)

A known boundary exists when rate parameter k12a = 0, since in this case:

d[ET ]

dt
= k12 − k13[ET ] ⇒ [ET ] =

([ET 0]k13 − k12) exp(−k13t) + k12
k13

, (40)

where [ET 0] is the initial condition of the [ET ] output component, and we see that [ET ]
has been entirely decoupled from the rest of the system. [ET ] can now be obtained along
the boundary k12a = 0 with negligible computational cost. Note that this boundary is
of dimension p − 1 = 38 − 1 = 37. The second (perpendicular) known boundary for
[ET ] is a p− 4 = 34-dimensional boundary given by k1a = k2a = k3a = k18a = 0, which
decouples the combined system of [Auxin], [CK] and [ET ]. In this case, we can solve
for [Auxin] and [CK] first:

d[Auxin]

dt
= k2 − k3[Auxin]

⇒ [Auxin] =
([Auxin0]k3 − k2) exp(−k3t) + k2

k3
, (41)

d[CK]

dt
= −k19[CK]

⇒ [CK] = [CK0] exp(−k19t). (42)

Inserting these solutions into the rate equation for [ET ] then yields:

d[ET ]

dt
= k12 + k12a[CK0] exp(−k19t)

(
([Auxin0]k3 − k2) exp(−k3t) + k2

k3

)
− k13[ET ]

⇒ [ET ] =
k12
k13

(1− exp(−k13t)) +
k12a[CK0]k2
k3(k19 − k13)

(
1− exp

(
(k13 − k19)t

))

+
k12a[CK0]([Auxin0]k3 − k2)

k3(k3 + k19 − k13)

(
1− exp

(
(k13 − (k3 + k19))t

))
, (43)

which can now be solved analytically with negligible computational cost, given the initial
conditions [Auxin0] and [CK0] for Auxin and Cytokinin respectively. In this case, we
have [CK0] = [ET 0] = [Auxin0] = 0.1 as the initial conditions suggested by the
biological experts. The remaining initial conditions are shown in Table 4 in Appendix
I. We will refer to this p − 4-dimensional boundary as K and the earlier presented
p − 1-dimensional boundary as L in order to show the effect of the smaller-dimension
boundary in comparison to the larger-dimension one. In addition, it is important to
note that both boundaries K and L lie outside the input space of interest X as given by
Table 3 in Appendix I. Despite this, assuming the behaviour of the model is reasonable
in the vicinity of the boundaries, the information provided by the analytical solutions
along the boundary can be useful for predicting model behaviour inside X .
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4.3 Emulator Structure and Specification

We restrict the form of our emulator to have the covariance structure as given by (1). We
used a product Gaussian correlation function of the form given by (2), as we assumed
that the solution to the Arabidopsis model would most likely be smooth and that many
orders of derivatives would exist.

The prior emulator expectation and variance were taken to be constant, that is
E[f(x)] = β and Var[f(x)] = σ2 , where β and σ2 were estimated to be the sample
mean and variance of a set of previously evaluated scoping runs. In this section, we
specify a common correlation length parameter θ = 3 for each input, a choice consistent
with the argument for approximately assessing correlation lengths presented in Vernon
et al. (2010). This value of θ was also checked for adequacy using standard emulator
diagnostics (Bastos and O’Hagan, 2008). We made this relatively simple emulator spec-
ification for illustrative purposes, the reason being that we wish to demonstrate that
there are benefits to utilising the known boundaries regardless of how the parameters
may have been estimated. To this end, in Section 4.5 we compare the effects of several
different values of θ on an analysis with and without the known boundaries, but for now
keep the value fixed at θ = 3.

4.4 Comparison of Results

In this section, we compare the emulators of the above form constructed with and
without use of the known boundaries K : k1a = k2a = k3a = k18a = 0 and L : k12a = 0,
and also with and without the addition of training points. The design for the additional
training points is obtained by constructing a Maximin Latin hypercube design of size
1000 across the 38-dimensional input space, this then being sampled from to explore the
effects of using different numbers of training points up to 1000. Bayes linear updates
were carried out using the single and two perpendicular boundary updates given by
(12), (13) and (33), (34) respectively. Additional updating is then performed using the
sequential update formulae given by (17)-(19).

Equivalent plots to those shown in Figures 1 and 2 are substantially more difficult to
visualise across all dimensions of a high-dimensional input space. We will use numerical
diagnostics to assess these emulators in Section 4.5, but in this section we will restrict
comparison of the emulators to visual diagnostics. Figure 3 shows model output against
emulator expectation ±3 standard deviations for a set of 100 diagnostic test points for
each of six emulators; first row: no boundaries (0KB); second row: 1 known boundary K
(1KB); third row: two known boundaries K and L (2KB). The left column shows diag-
nostics for emulators without any training pointsD in the bulk of the input space (0TP),
and the right column shows diagnostics for emulators that include 500 training points
(500TP). Since the error bars for most of the points intersect the line f(x) = E[f(x)],
this gives evidence to the fact that these emulators are valid, in the sense of generating
predictions with appropriate associated uncertainty estimates, without making refer-
ence to the accuracy of the predictions. This heuristic appeals to Pukelsheim’s Three
Sigma Rule (Pukelsheim, 1994) which states that 95% of the probability mass of any
unimodal distribution lies within 3 standard deviations of the mean.
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Figure 3: Diagnostic plots for the emulators of the Arabidopsis model output component
[ET ]. These show true model output against emulator expectation plus/minus 3 stan-
dard deviations for a set of diagnostic test points given; first row – no known boundary
(0KB); second row – single known boundary K (1KB); third row – two known boundaries
K and L (2KB). The left column shows diagnostics for emulators without additional
training points D in the bulk of the input space (0TP), and the right column shows
with 500 additional points (500TP), all for common correlation length parameter θ = 3
for all input parameters.
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In terms of the predictions themselves, the middle left panel of Figure 3 shows that
the expected values of the points have been marginally influenced in general by K, but
to a greater degree for inputs for which the model output is smaller. The bottom left
panel shows that the addition of L results in a much improved effect on the predictions
than boundary K alone. We do note that in addition to increased accuracy, this leads
here to slightly underestimated predictions: this is due to the the function values on
the boundary L being typically lower than corresponding orthogonal parts of the input
space, in addition to the emulator expectation approximately tracking the form of the
correlation component r1(a) when moving orthogonally away from the boundary, a form
which may undershoot the true form of f(x). We note that the results of including both
boundaries K and L are comparable to using no boundaries and 500 training points
across the input space (top right panel), thus highlighting that utilising knowledge of
computer model behaviour along known boundaries is worthwhile. Crucially, however,
whereas the 500 training points require 500 potentially computationally intensive model
evaluations and emulator matrix inversion calculations, the known boundaries involve no
model evaluations or matrix inversion calculations. The simultaneous inclusion of both
known boundaries and additional training points leads, unsurprisingly, to the emulators
with greatest accuracy. In particular, it may be fair to say that out of the six emulators
for which diagnostic plots are provided here, only the one with diagnostics provided in
the bottom right panel yields sufficient accuracy and predictive capability for practical
application.

The substantial and moderate effects of L and K respectively on our beliefs in
comparison to individual points is largely a result of the dimension of the objects. The
known boundaries are p − 1- and p − 4-dimensional objects respectively, resulting in
significant variance resolution as a consequence of the volume of the input space within
their proximity (particularly L for which the correlation function is effectively over a
single dimension). In comparison, individual training runs (which are 0−dimensional
objects) influence far smaller volumes especially in high dimensions.

Since there is little computational cost involved in the incorporation of known bound-
aries, the most practical solution is to utilise them in conjunction with the regular
training points. Looking at the bottom right panel of Figure 3, we notice a substantial
improvement in comparison to using either the known boundaries or the training points
individually. Were one aware of the known boundaries in advance, one could design the
set of 500 runs accordingly, leading to further efficiency gains (see Vernon et al. (2019)).
In terms of the biological application to the Arabidopsis model, we see that we are
now able to utilise the information from many more known boundaries, now of differ-
ing dimensions, for each of the biological outputs of interest, leading to more powerful
emulators. This is in contrast to Vernon et al. (2019) where only p−1 boundaries could
be used, which restricted the number of boundaries available.

4.5 Sensitivity to Emulator Parameter Specification

We now compare emulators constructed using various different emulator parameter
specifications. In particular, we explore the effect of changing the common correlation
length parameter θ discussed in Section 4.3. We do this as we wish to focus on the
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Sum of Variances MASPE
θ 0.1 1 3 6 10 0.1 1 3 6 10

0TP, 0KB 344.23 344.23 344.23 344.23 344.23 0.84 0.83 0.83 0.83 0.83
0TP, 1KB 344.23 344.08 284.03 131.07 55.56 0.84 0.83 0.60 1.50 4.26
0TP, 2KB 344.23 295.29 100.77 15.04 2.44 0.84 0.67 1.77 24.67 182.44

200TP, 0KB 344.23 344.23 277.21 55.00 9.19 0.84 0.83 0.52 1.26 7.35
200TP, 1KB 344.23 344.08 230.32 24.13 2.12 0.84 0.83 0.43 3.61 49.21
200TP, 2KB 344.23 295.29 81.11 2.71 0.09 0.84 0.67 1.00 60.25 2508.44
500TP, 0KB 344.23 344.23 251.15 37.13 5.04 0.84 0.83 0.37 1.59 12.50
500TP, 1KB 344.23 344.08 209.05 16.29 1.10 0.84 0.83 0.35 4.66 82.04
500TP, 2KB 344.23 295.29 73.44 1.82 0.05 0.84 0.67 1.02 83.80 4305.17
1000TP, 0KB 344.23 344.23 229.70 23.87 2.07 0.84 0.83 0.33 2.16 25.09
1000TP, 1KB 344.23 344.08 191.42 10.87 0.56 0.84 0.83 0.33 5.86 129.16
1000TP, 2KB 344.23 295.29 67.08 1.21 0.02 0.84 0.67 1.07 117.86 7764.93

Table 1: Sum of Variances and Mean Absolute Standardised Prediction Error for the
set of 500 diagnostic points for different values of common θ and numbers of known
boundaries (KB) and training points (TP) in the bulk of the input space.

advantage of utilising known boundaries on emulation without confounding the effect on
choice of parameter specification. Whilst we will demonstrate that the effects of known
boundaries are substantial regardless of emulator structure and parameter specification,
the value of θ does affect the relative size of the contributions of individual points to
known boundaries (that is, larger dimensional objects). We compare several emulators
with various values of correlation length parameter θ, numbers of training points and
numbers of known boundaries using numerical diagnostics for 500 diagnostic points.
These diagnostics, shown numerically in Table 1 and visually in Figure 4, are the sum
of variances and Mean Absolute Standardised Prediction Error (MASPE), given by:

500∑
w=1

ν(x(w)) and
1

500

500∑
w=1

|f(x(w))− μ(x(w))|√
ν(x(w))

,

respectively, where μ(x) and ν(x) represent the appropriate emulator mean and variance
in each case.

The prior sum of variances is 344.23 (constant for all θ), this being reduced by various
degrees depending on the three varying features of our analysis. For small θ = 0.1,
neither training points nor known boundaries reduce the variances of the diagnostic
points appreciably. With θ = 1, training points are having negligible effect on variance,
however, the larger known boundary objects have sufficient diagnostic points within
their proximity to reduce uncertainty to some degree. For θ = 6, the reduction in
diagnostic variance arising from two known boundaries only (15.04) is greater than that
of 1000 training points alone (23.87). As θ gets larger, 1000 training points in X have
greater affect than two known boundaries outside of X , for example, reducing the sum
of variances to 2.07 and 2.44 respectively when θ = 10 (and to 0.02 when both are
used). These results are as expected from purely geometrical considerations.

It is common for acceptable values of the MASPE to be broadly around 1 (appealing
to the properties of a standard half-normal distribution, which has expectation

√
2/π),

and providing substantial evidence that an emulator is invalid if much greater than 2
or 3 (appealing to Pukelsheim’s 3σ rule (Pukelsheim, 1994)). Equivalently, substantial
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Figure 4: Sum of Variances and log Mean Absolute Standardised Prediction Error for
the set of 500 diagnostic points for different values of common θ and numbers of known
boundaries (KB) and training points (TP) in the bulk of the input space.

change in MASPE between prior and adjusted beliefs is also cause for concern. Prior
MASPE is 0.84, which is suitably close to both 1 and

√
2/π ≈ 0.8. The MASPE values

for emulators with large values of θ are as expected unacceptable, with the value for
1000 training points alone being 25.09 and that for 1000 training points and two known
boundaries 7764.93. This excessively larger value is due to the different ways in which
known boundaries and training points influence the emulator. The known boundaries
affect the input space as a large object with much influence over a particular part of
the input space. On the other hand, since the training points are spread out across X ,
the effect of averaging via interpolation of the points is likely to result in more accurate
(and thus with common variance reduction appear more valid) predictions, even if θ is
large. The MASPE values for θ = 3, 1000 training points and two known boundaries
is 1.07, which is much more acceptable. For the emulators with acceptable diagnostics,
we see that the inclusion of known boundaries is clearly beneficial. In addition to sum
of variances and MASPEs, we also calculated Root Mean Square Errors (RMSEs) for
each emulator, these being displayed and discussed in Appendix I.

5 Conclusion

We have discussed how additional prior insight into the physical structure of a com-
puter model related to known boundaries can be incorporated into emulators leading
to substantial increases in accuracy for little additional computational cost.

In particular, here it is shown that if a computer model has boundaries or hyper-
planes in its input space where it can either be analytically solved or just evaluated
far more efficiently, then these known boundaries can be formally incorporated into
the emulation process by analytic Bayesian updating of the emulators with respect to
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the information contained on the boundaries. Furthermore, we have shown that this is
possible for a large class of emulators, and for multiple boundaries of various forms.
The progress in this work in comparison to Vernon et al. (2019) is that we presented
substantially more general results for arbitrary numbers of boundaries of varying di-
mension, stating which configurations of known boundaries permit analytical updates.
Due to these analytic results and to the ease and substantial benefits of including known
boundaries when emulating the Arabidopsis model, we would suggest that future UQ
analyses of serious scientific models include a phase of identification and incorporation
of known boundaries, if they are found to exist, as standard practice. Whilst the results
of this article were with respect to a univariate computer model, the results extend
naturally to the multivariate case, as discussed in Appendix H. In addition, many of the
examples in this article can be thoroughly investigated via the associated code available
at https://github.com/samjacksonstats/KBE.

There are many ways in which the work of this article could be developed. For
example, extensions to the case of uncertain regression parameters within the emulator
are possible, although the formal update would now depend on the specific form of
the correlation function rj(a), which may not be tractable for some choices. Curved
boundaries of various geometries could also be incorporated, provided both that suitable
transformations were found to convert them to hyperplanes and that we were happy to
adopt the induced transformed product correlation structure as our prior beliefs. Finally
we note that, for some applications, there may be several hyperplanes in the input space
along which model behaviour is known, however, analytical updates incorporating the
information given by all of them may not be possible due to the set not satisfying the
properties of the proposition in Section 3.3. There is then a possible design problem
which involves selecting the best (in some sense) subset of the known boundaries which
do permit analytic updating. This choice of boundaries may be in conjunction with
design of the training points in the bulk of the input space XD. Training point design
should anyway take the known boundaries into account, as discussed in Vernon et al.
(2019). We leave all these considerations to future research.

Supplementary Material

Supplementary Material to the Article: Efficient Emulation of Computer Models Utilis-
ing Multiple Known Boundaries of Differing Dimension (DOI: 10.1214/22-BA1304SUPP;
.pdf). This file contains proofs for some of the results contained within this article, along
with extended discussions relating to black box emulation packages, multivariate emu-
lation, and the application of our methods to the model of Arabidopsis Thaliana.
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