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Abstract
We compute the distortion coefficients of the α-Grushin plane. They are expressed in
terms of generalised trigonometric functions. Estimates for the distortion coefficients
are then obtained and a conjecture of a measure contraction property condition for the
generalised Grushin planes is suggested.
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1 Introduction

Grushin structures first appeared in the work of Grushin on hypoelliptic operators in
the seventies, for example, see [11]. The α-Grushin plane, denoted by Gα , consists
of equipping the two-dimensional Euclidean space with the sub-Riemannian structure
generated by the global vector fields X = ∂x and Yα = |x |α∂y .

These structures form a class of rank-varying sub-Riemannian manifolds. In this
work, we will focus on the case α ≥ 1. The α-Grushin plane has Hausdorff dimension
α +1 and is not bracket-generating unless α is an integer. Furthermore, the α-Grushin
planes constitute a natural generalisation of the traditional Grushin plane, correspond-
ing to the case α = 1. Along with the Heisenberg groups Hn , they are considered as
fundamental examples of sub-Riemannian geometry, exhibiting key characteristics of
the theory.

Since the work first set out by Juillet in [13] and extended by the same author in
[15], it is known that, unlike Riemannian manifolds, no sub-Riemannian manifold sat-
isfies the curvature-dimension conditions introduced by Sturm, Lott and Villani. It has
been shown by Barilari and Rizzi in [4] that they can, however, support interpolation
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inequalities and even a geodesic Brunn–Minkowski inequality. For the Heisenberg
group, this was in fact first proved by Balogh, Kristály and Sipos in [3]. Distortion
coefficients, which capture some curvature information, play a key role in these results.
The present work studies the distortion coefficients of the α-Grushin plane.

To achieve this goal, it will be important to study the geodesics of Gα in depth.
Because of the lack of a natural connection in sub-Riemannian geometry, geodesics are
obtained with Pontryagin’s maximum principle. This is the Hamiltonian point of view:
a normal minimising path between two points can be lifted to one on the cotangent
bundle that satisfies Hamilton’s equations. The geodesics of the α-Grushin plane were
first studied by Li and Chang in [8]. They are expressed with a generalisation of
trigonometric functions, defined as inverses of some special functions. Sections 2.3
and 3.1 are devoted to these topics while in Sect. 3.2, we use an extended Hadamard
technique to find the cut loci of Gα . The notation Cut(q0) stands for the set of cut
loci of q0, i.e. the set of points in Gα where the geodesics starting at q0 stop being
minimising.

Theorem 1 (Distortion coefficients of the α-Grushin plane) Let q0 and q be two points
of Gα such that q /∈ Cut(q0). For all t ∈ [0, 1], we have

βt (q0, q) = J(t, x0, u0, v0)

J(1, x0, u0, v0)
,

with
J(t, x0, u0, v0) := t [u0x(t) − (u0t + x0)u(t)] , (1)

and where γ (t) := (x(t), y(t)) : [0, 1] → Gα denotes the unique constant speed
minimising geodesic joining q0 = (x0, y0) to q and u(t)dx |γ (t) + v(t)dy|γ (t) ∈
T∗

γ (t)(Gα) is the corresponding cotangent lift with initial covector u0dx |q0 + v0dy|q0 .
Because of the analyticity of the geodesic flow, the case v0 = 0 can be seen as

taking the limit of βt (q0, q) as v0 tends to 0. Geometrically, this means that the points
q0 and q are joined by a straight horizontal line.

Proposition 2 Let q0 and q be two points ofGα such that q /∈ Cut(q0). When v0 = 0,
we have

βt (q0, q) = t
(u0t + x0)2α(u0t + x0) − x2α0 x0
(u0 + x0)2α(u0 + x0) − x2α0 x0

,

for all t ∈ [0, 1].
Although the CD condition is not suited to this type of spaces, the weaker mea-

sure contraction property introduced independently by Ohta and Sturm in [18] and
[21] seems more adapted to sub-Riemannian geometry. Indeed, there are numerous
examples of sub-Riemannian manifolds that do satisfy a MCP condition, including
the Heisenberg groupHn (see [13]) and the Grushin planeG1 (see [4]). We, therefore,
investigate the MCP condition forGα and we obtain a relevant estimate on the distor-
tion coefficients for singular points, that is to say, those on the y-axis, and for those
lying on the same horizontal line. We, therefore, propose the following conjecture.
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Conjecture 3 (Curvature dimension of the α-Grushin plane)For α ≥ 1, the α-Grushin
plane satisfies the measure contraction property conditionMCP(K , N ) if and only if
K ≤ 0 and

N ≥ 2

[
(α + 1)mα + 1

mα + 1

]

with mα ∈ [−3,−2] the unique non-zero solution of

(m + 1)2α(m + 1) − ((2α + 1)m + 1) = 0.

We will provide evidence in favour of this conjecture in Sect. 4.2. As we will see,
the MCP(0, N ) condition is equivalent to a lower bound for the distortion coefficients
of the form βt (q0, q) ≥ t N . It will be proven that the lower bound holds for singular
points. Furthermore, it seems sharp for the points lying on the same horizontal line.

Note that in this work, we always write (·)2α for ((·)2)α and a subscript will some-
times denote a partial derivative.

2 Preliminaries

2.1 Synthetic Curvature-Dimension Conditions

In this section, we give an overview of metric geometry, synthetic notions of curvature
and distortion coefficients. A metric space (X , d) is a length space if the distance is
induced from a length structure. This means that d(x, y) := inf{L(γ )|γ : [a, b] →
X is admissible, γ (a) = x and γ (b) = y} where L : A → R ∩ {+∞} is a length
functional on a set of admissible paths A ⊆ Cd(X). A minimising geodesic is an
admissible path γ : [a, b] → X inA such that d(γ (a), γ (b)) = L(γ ). We refer to [6]
for more on metric geometry.

If the space has the property that every two points can be joined by a minimising
geodesic that has constant speed, we will say that (X , d) is a geodesic space. When
the metric space (X , d) is equipped with a Radon measure m, the structure (X , d,m)

is called a geodesic metric measure space. The notion of distortion coefficients fits
into this context.

Definition 4 Let x, y ∈ X . The distortion coefficient from x to y at time t ∈ [0, 1] is

βt (x, y) = lim sup
r→0+

m(Zt (x, Br (y)))

m(Br (y))
, (2)

where Zt (x, Br (y)) stands for the set of t-intermediate points from x to the ball centred
at y of radius r ;

Zt (A, B) := {γ (t)|γ ∈ Geo(X), γ (0) ∈ A and γ (1) ∈ B}

whenever A and B are m-measurable subsets of X .
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Note that Zt (x, Br (y)) may not be measurable. If this is the case, the measurem in
the numerator of (2) is understood as the outer measure of m.

There is an intuitive physical interpretation of the distortion coefficients (quoted
from [23, Chap. 14.]):

[βt (x, y)] compares the volume occupied by the light rays emanating from the
light source [x], when they arrive close to γ (t), to the volume that they would
occupy in a flat space.

In particular, we can thus heuristically expect that the distortion coefficients are related
to the curvature of the space.

The theory of synthetic curvature was developed by Lott, Sturm, and Villani (see
[17,20], and [21]). Here we summarise some of the points from their works.We denote
by P(X) the set of Borel probability measures and by P2(X) the subset of those with
finite second moment. We write Geo(X) for the set of all minimising geodesics of
X parametrised by constant speed on [0, 1]. For all t ∈ [0, 1], the evaluation map is
defined as

et : Geo(X) → X : γ 
→ γ (t).

A dynamical transference plan � is a Borel probability measure on Geo(X) while a
displacement interpolation associated to � is a path (μt )t∈[0,1] ⊆ P2(X) such that
μt = (et )#� for all t ∈ [0, 1]. We equip P2(X) with the L2-Wasserstein distance
W2: for any μ, ν ∈ P2(X),

W2(μ0, μ1) := inf
π∈�(μ,ν)

∫
X
d(x, y)2π(dxdy),

with �(μ, ν) := {ω ∈ P(X2)|(proj1)#ω = μ and (proj2)#ω = ν}. For μ0, μ1 ∈
P2(X), the set OptGeo(μ0, μ1) is the space of all measures ν ∈ P(Geo(X)) such
that (e0, e1)#ν realises the minimum for the L2-Wasserstein distance. A measure
ν ∈ OptGeo(μ0, μ1) is called a dynamical optimal plan. We now need to define the
distortion coefficients of the (K , N )-model space. For K ∈ R, N ∈ [1,+∞], θ ∈
(0,+∞) and t ∈ [0, 1], we set

τ
(t)
K ,N (θ) = t1/Nσ

(t)
K ,N−1(θ)1−1/N ,

with

σ
(t)
K ,N (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+∞ K θ2 ≥ Nπ2

sin(tθ
√
K/N )

sin(θ
√
K/N )

if 0 < K θ2 < Nπ2

t if K θ2 < 0 and N = 0 or if K θ2 = 0
sinh(tθ

√−K/N )

sinh(θ
√−K/N )

if K θ2 ≤ 0 and N > 0.
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The definition of the coefficients τK ,N is not arbitrary. In fact, they are nothing
but the distortion coefficients of the model space X(K ,N ); that is to say, X(K ,N ) is the
N -sphere of constant cuvature K if K > 0, X(K ,N ) is the N -Euclidean space if K = 0
and X(K ,N ) is the N -hyperbolic plane of constant curvature K if K < 0 (see again
[23, Chap. 14.]).

We are ready to introduce a first notion of synthetic curvature: the curvature-
dimension condition.

Definition 5 Let K ∈ R and N ∈ [[, o]penright]1+∞. A geodesic metric measure
space (X , d,m) satisfies CD(K , N ) if, for any μ0, μ1 ∈ P2(X ,m) with bounded
support, there exists ν ∈ OptGeo(μ0, μ1) and a W2-optimal plan π ∈ P(X2) such
that μt := (et )#ν � m and for any N ′ ≥ N ,

EN ′(μt ) ≥
∫
X2

τ
(1−t)
K ,N (d(x, y))ρ−1/N ′

0 + τ
(t)
K ,N (d(x, y))ρ−1/N ′

1 π(dxdy),

where EN stands for the Rényi functional

EN : P(X) → [0,+∞] : ρm + μs 
→
∫
X

ρ1−1/Nm(dx).

For an extensive treatment of theCD-condition andmore generally of optimal trans-
port theory, we refer the reader to [23]. Alongside this notion of curvature, a weaker
condition was developed independently by Sturm and Ohta: the measure contraction
property (see [18,21]).

Definition 6 Let K ∈ R and N ∈ [1,+∞). A geodesic metric measure space
(X , d,m) satisfies MCP(K , N ) if, for every x ∈ X and measurable set A ⊆ X
with m(A) ∈ (0,+∞), there exists ν ∈ OptGeo (μA, δx ) such that for all t ∈ [0, 1]

μA ≥ (et )#
(
τ

(1−t)
K ,N (d(γ (0), γ (1)))ν(dγ )

)
,

where μA := 1
m(A)

m ∈ P(X) is the normalisation of μ|A.
Both the CD andMCP conditions generalise the notion of Ricci curvature bounded

frombelowby K ∈ R and dimension bounded fromabove by N ≥ 1 fromRiemannian
geometry. Indeed, if (M, g) is a Riemannian manifold and ψ a positive C2 function
on M , dg the Riemannian distance and volg the Riemannian smooth volume, then the
metric measure space (M, dg, ψ · volg) satisfies the CD(K , N ) condition if and only
if dim(M) ≤ N and if Ricg,ψ,N ≥ Kg where

Ricg,ψ,N := Ricg − (N − n)
∇2
gψ

1
N−n

h
1

N−n

.

Note that in the case where N = n, it only makes sense to consider constant functions
ψ in the definition of the generalised Ricci tensor. The proof of the equivalence with
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the CD condition can be found in [21] and [17]. Furthermore, it is also proved in
[18, Theorem 3.2, Corollary 3.3.] that, in the Riemannian setting, the MCP(K , N )

condition is equivalent to CD(K , N ) if N is greater than the topological dimension of
(M, g).

For general metric measure spaces, the two notions of synthetic curvature are not
equivalent. However, the CD condition does imply the MCP condition when the space
is non-branching (see [7]). Aswewill see later, this already appears in sub-Riemannian
geometry.

2.2 Sub-Riemannian Geometry

In what follows, we set up the basics of sub-Riemannian geometry. We rely on [2] for
the general theory (see also [5] for vector fields that are not necessary of class C∞).

A manifold is a set equipped with an equivalence class of differentiable atlases
such that its manifold topology is connected, Hausdorff and second-countable. Here
we emphasise the theory of sub-Riemannian manifolds of class Cr instead of class
C∞. As we will see later, the α-Grushin plane is a sub-Riemannian manifold that is
generated by global vector fields that might not be smooth.

Definition 7 Let M be a smooth manifold of class Cr for r ∈ N≥1 ∪ {∞} ∪ {ω}. A
triple (E, 〈·, ·〉E , fE ) is said to be a sub-Riemannian structure of class Cr on M if

1. E is a Cr -vector bundle on M ,
2. 〈·, ·〉E is a Cr -Euclidean metric on E ,
3. fE : E → T(M) is a Cr -morphism of vector bundles.

The family D of Cr -horizontal vector fields is defined as

D := { fE ◦ u|u is a section of E of class Cr }.

We also define the distribution at point a p ∈ M with

Dp := {v(p) | v ∈ D}.

The rank of the sub-Riemannian structure at p ∈ M is rank(p) := dim(Dp). Observe
that in our definition, a sub-Riemannian manifold can be rank-varying; i.e. the map
rank(·) might not be constant.

Definition 8 We say that curve γ : [0, T ] → M is horizontal if γ is Lipschitz in charts
and if there exists a control u ∈ L2([0, T ], E) such that for all t ∈ [0, T ], we have
u(t) ∈ Eγ (t) and γ̇ (t) = fE (u(t)). The sub-Riemannian length of γ is defined by

LCC(γ ) =
∫ T

0
‖γ̇ (t)‖γ (t)dt,

where ‖v‖Dp := min
{√

g(u, u) | u ∈ Ep and fE (u) = (p, v)
}
for v ∈ Dp and p ∈

M .
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Remark 9 It can be proven that ‖·‖Dp is well defined, induced by an inner product
〈·, ·〉Dp and that the map ‖γ̇ (·)‖Dγ (·) is measurable.

In the case where every two points can be joined by a horizontal curve, we have a
well-defined distance function on M .

Definition 10 Let M be a sub-Riemannian manifold. The sub-Riemannian distance
dCC of M , also called the Carnot–Carathéodory distance, is defined by

dCC(x, y) := inf{LCC(γ )|γ : [0, T ] → M is horizontal and γ (0) = x and γ (T ) = y}.

Traditionally, the definition of a sub-Riemannian structure demands thatD is a C∞-
distribution and that it satisfies the Hörmander condition; that is to say, Liep(D) =
Tp(M) for all p ∈ M . This is motivated by the following well-known result.

Theorem 11 (Chow–Rashevskii theorem) Let M be a sub-Riemannian manifold such
that its distribution D is C∞ and satisfies the Hörmander condition. Then, (M, dCC)

is a metric space and the manifold and metric topology of M coincide.

We refrain from this convention here, as theGrushin planes that wewill study do not
always satisfy this property. However, we will assume hereafter that every two points
of the sub-Riemannian manifold M can be joined by a horizontal curve, making dCC
a distance of M , and that the metric and manifold topologies do coincide.

Finally, the horizontal distribution of a sub-Riemannian manifold M is defined by

H(M) :=
⊔
p∈M

Dp.

Note that H(M) has no natural structure of subbundle in T(M) if M is rank-varying.
Now, that we have turned our sub-Riemannian manifold into a metric space, we

would like to study the geodesics associated with dCC. These would be horizontal
curves that are locally a minimiser for the length functional LCC. Because of the lack
of a torsion-free metric connection, we cannot study geodesics through a covariant
derivative. Rather, some sub-Riemannian geodesics can be characterised via Hamil-
ton’s equation.

Given m-global Cr -vector fields X1, . . . , Xm : M → T(M) on a Cr -manifold
M , we can induce on M a sub-Riemannian structure in the following way. We set
E = M × Rm the trivial bundle of rank m, fE : E → T(M) : (p, (u1, . . . , um)) 
→∑m

k=1 uk Xk(p) and finally themetric on E is the Euclidean one. In this way, we induce
an inner product on Dp = span{X1(p), . . . , Xm(p)} by the polarisation formula
applied to the norm

‖u‖2Dp
:= min

{
m∑

k=1

u2i |
m∑

k=1

ui Xk(p) = u

}
. (3)

The family (X1, . . . , Xm) is said to be a generating family of the sub-Riemannian
manifold (M, E, 〈·, ·〉E , fE ). A free sub-Riemannian structure is one that is induced
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from a generating family. Every sub-Riemannian structure is equivalent to a free one
(see [2, Sect. 3.1.4]). From now on, we will therefore assume that the sub-Riemannian
manifolds considered are free.

Definition 12 Let M be a sub-Riemannian manifold and (X1, . . . , Xm) a generating
family of vector fields. The Hamiltonian of the sub-Riemannian structure is defined
by

H : T∗(M) → R : (p, λ0) 
→ H(p, λ0) := 1

2

m∑
k=1

hk(p, λ0)
2,

where hk(p, λ0) := 〈λ0, Xk(p)〉.
We therefore approach the problem via the cotangent bundle T∗(M), on which

there is a natural symplectic form σ . We can now characterise length minimisers of a
sub-Riemannian manifold.

Theorem 13 (Pontryagin’s maximum principle) Let γ : [0, T ] → M be a horizontal
curve which is a length minimiser parametrised by constant speed. Then, there exists
a Lipschitz curve λ(t) ∈ T∗

γ (t)(M) such that one and only one of the following is
satisfied:

(N) λ̇ = −→
H (λ), where

−→
H is the unique vector field in T∗(M) such that σ(·,−→H (λ)) =

dλH for all λ ∈ T∗(M);
(A) σλ(t)(λ̇(t),∩n

k=1ker(dλ(t)hk)) = 0 for all t ∈ [0, T ].
If λ satisfies (N ) (resp. (A)), we will say that λ is a normal extremal (resp. abnormal

extremal) and γ is a normal geodesic (resp. abnormal geodesic). Note that a geodesic
may be both normal and abnormal. The projection of a normal extremal onto M is
locally minimising, that is to say a (normal) geodesic parametrised by constant speed.

If γ is a normal geodesic associated with a normal extremal λ, then (N ) is nothing
but Hamilton’s equation for H in the natural coordinates of the cotangent bundle:

⎧⎪⎨
⎪⎩

ẋi = ∂H

∂ pi

ṗi = −∂H

∂xi
.

(4)

The exponential map at p ∈ M is the function

expp : Ap → M : λ0 
→ π(e
�H (λ0)),

where π : T∗(M) → M is the projection, et
−→
H is the flow of

−→
H and Ap ⊆ T∗

p(M) is
the open set of covectors such that the corresponding solution of (4) is defined on the
whole interval [0, 1].

The cut time of a geodesic γ is defined as

tcut[γ ] := sup{t > 0 | γ |[0,±] is minimising}.
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When tcut[γ ] < +∞, we say that γ (tcut[γ ]) is the cut point to γ (0) along γ . If
tcut[γ ] = +∞, we say that γ has no cut point. We denote by Cut(q0) the set of all cut
points of geodesics starting from a point q0 ∈ M .

The study of abnormal geodesics is an area of intensive research. It does happen
that a sub-Riemannian structure does not have any non-trivial abnormal geodesic (the
trivial geodesic is always abnormal as soon as rank(Dp) < dim(M)). In this case, a
sub-Riemannian manifold is said to be ideal.

The CD(K , N ) condition is never satisfied for ideal sub-Riemannian manifolds M
such that rank(Dp) < dim(M) at every point p ∈ M (see [15]). However, it is known
that they often satisfy anMCP condition: theHeisenberg groups (see [13]), generalised
H-type groups, Sasakian manifolds (see [4, Sect. 7.]), etc. We conclude this section
with the following theorem that relates the MCP condition to a lower bound on the
distortion coefficients of an ideal sub-Riemannian manifold.

Theorem 14 ([4, Theorem 9.]) Let M be an ideal sub-Riemannian manifold equipped
with a smooth measure μ. When N ≥ 1, the following conditions are equivalent:

(i) βt (q0, q) ≥ t N for all q0, q /∈ Cut(M) and t ∈ [0, 1];
(ii) The measure contraction property MCP(0, N ) is satisfied, i.e. for all non-empty

Borel sets B ⊆ M and q ∈ M we have μ(Zt (q, B)) ≥ t Nμ(B).

2.3 Generalised Trigonometric Functions

In this section, we give an account of (p, q)-trigonometry. The generalised sine and
cosine functions will be essential in the study of the geometry of the α-Grushin plane,
as shown by Li in [8]. Generalised trigonometry has a long history. The theory as
presented here was pioneered by Edmunds in [9]. For recent developments, we point
out the work of Takeuchi [22] and the references therein, as well as [16] for a related
approach via convex geometry.

Consider

Fp,q : [0, 1] → R : x 
→
∫ x

0

1
p
√
1 − tq

dt .

The map Fp,q being strictly increasing, we may define its inverse

sinp,q : [0, πp,q

2
] → R : x 
→ F−1

p,q(x),

where the (p, q)-pi constant is defined as

πp,q := 2
∫ 1

0

1
p
√
1 − tq

dt = B

(
1

p
, 1 − 1

q

)
.

Here the function B(·, ·) stands for the complete beta function.
We will extend the (p, q)-sine function to the whole real line. We first note

that sinp,q(0) = 0 and sinp,q(πp,q/2) = 1. For x ∈ [πp,q/2, πp,q ], we set
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sinp,q(x) := sinp,q(πp,q − x). The (p, q)-sine is then extended to [−πp,q , πp,q ]
by requiring that it is odd and finally to the whole R by 2πp,q -periodicity. We then
define the (p, q)-cosine by setting cosp,q := (sinp,q)

′. These two functions are of
class C1. In fact, they are also of class C∞ except at the points x = kπp,q for k ∈ Z.

We have the following identities:

⎧⎨
⎩

| sinp,q |q + | cosp,q |p = 1,

(sinp,q)
′′ = (cosp,q)′ = −q

p
| cosp,q |2−p| sinp,q |q−2 sinp,q .

(5)

Therefore, the (p, q)-sine function can be alternatively defined as the solution to the
following ordinary differential equation

− (| f ′|p−2 f ′)′ = (p − 1)q

p
| f |q−2 f , f (0) = 0, f ′(0) = 1. (6)

As for the usual sine and cosine functions, we have sinp,q(x+πp,q) = − sinp,q(x)
and cosp,q(x + πp,q) = − cosp,q(x). However, unlike the case of classical trigono-
metric functions, general addition formulas are not known for sinp,q(x + y) and
cosp,q(x + y) (except for very specific values of p and q). This problem ultimately
comes down to finding a function Fp,q that solves the integral equation

∫ Fp,q (x,y)

0

1
p
√
1 − tq

dt =
∫ x

0

1
p
√
1 − tq

dt +
∫ y

0

1
p
√
1 − tq

dt .

Wewould then have sinp,q(x+y) = Fp,q(sinp,q(x), sinp,q(y)). This is a very difficult
problem, even for integer values of p and q. For (p, q) = (2, 2), the classical addition
formula for the sine functions emerges. When (p, q) = (2, 4), the corresponding
addition formula is the one used for the lemniscate function that Euler investigated in
[10]: let sl(x) := sin2,4(x) (resp. sl′(x) := cos2,4(x)) stand for the sinlem function
(resp. the sinlem’ function), then we have

sl(x + y) = sl(x)sl′(y) + sl(y)sl′(x)
1 + sl2(x)sl2(y)

,

with an analogous formula for sl′(x + y). Note that Euler’s coslem function is defined
as cl(x) = sl(x + π(2,4)/2), which is different from our (2, 4)-cosine function.

3 Geometry of the˛-Grushin Plane

3.1 Geodesics of the˛-Grushin Plane

For α ∈ [1,+∞), the α-Grushin planeGα is defined as the sub-Riemannian structure
on R2 generated by the global vector fields X = ∂x and Yα = |x |α∂y , as explained in
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Sect. 2.2. This generating family of vector fields is C�α� if α is not an integer and C∞
otherwise.

The horizontal space at p ∈ Gα is Dp (Gα) = span{X(p),Yα(p)} and the hori-
zontal distribution is the disjoint union of these H(Gα) = �p∈Gα Hp(Gα). The rank of
D = span {X ,Yα} is not constant: it is a singular distribution if x = 0 and Riemannian
otherwise. We then consider the scalar metric 〈·, ·〉Dp on Dp as described in (2.2). If
for example uX(x, y) + vYα(x, y) ∈ D(x,y) and x �= 0, then

〈u, v〉D(x,y) = u2 + 1

x2α
v2.

This turns the α-Grushin plane Gα into a sub-Riemannian manifold. It is easy to see
that it does not satisfy the Hörmander condition unless α is an integer.

Let I be a non-empty interval of R. As we have seen in the previous section, a
path γ : I → Gα is said to be horizontal if, for almost every t ∈ I , the equality
γ̇ (t) = u(t)X(γ (t)) + v(t)Yα(γ (t)) holds for some L2-maps u, v : I → R. In
particular, this implies that γ̇ (t) ∈ Dγ (t) for almost every t ∈ I . We can compute the
length of a horizontal curve with the formula Lα(γ ) = ∫

I ‖γ̇ (t)‖Dγ (t)dt . We denote
the Carnot–Carathéodory distance associated with Lα by dα . Equipping the α-Grushin
plane with the Lebesgue measure L2, we obtain a metric measure space (Gα, dα,L2).

The theory of sub-Riemannian geometry informs us that the geodesics of the space
are found by solving Hamilton’s equations. Here, the Hamiltonian is

H : T∗(Gα) → R : (x, y, udx |(x,y) + vdy|(x,y)) 
→ 1

2
(u2 + v2x2α).

A simple calculation shows that there are no non-trivial abnormal geodesics in the
α-Grushin plane. Consequently, the sub-Riemannian manifold Gα is ideal. In this
context, Hamilton’s equations (4) become

⎧⎪⎪⎨
⎪⎪⎩

ẋ = u,

ẏ = vx2α

u̇ = −αv2x2(α−1)x
v̇ = 0

. (7)

We observe that ẍ = −αv2x2(α−1). When v0 = 1, this is just the equation (6) for
(p, q) = (2, 2α). The (2, 2α)-trigonometric functions will therefore be essential and
in what follows, we will denote sinα instead of sin2,2α (and respectively cosα , πα) for
simplicity.

Theorem 15 Let γ : I → Gα be a horizontal path with initial value γ (0) = (x0, y0)
and λ(t) = u(t)dx |γ (t) + v(t)dy|γ (t) be the cotangent lift with initial covector
(u(0), v(0)) = (u0, v0).
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In the case where v0 �= 0 and (x0, u0) �= 0, the curve γ is a geodesic if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = A sinα(ωt + φ)

y(t) = y0 + v0
A2α

(α + 1)ω2

[
ω2t + ω cosα(φ) sinα(φ)

−ω cosα(ωt + φ) sinα(ωt + φ)
]

u(t) = Aω cosα(ωt + φ)

v(t) = v0

(8)

for uniquely determined parameters A, ω ∈ R \ {0} and φ ∈ [0, 2πα) satisfying

Aω > 0, A2ω2 = u20 + v20x
2α
0 , ω2 = v20 A

2(α−1),

x0 = A sinα(φ) and u0 = Aω cosα(φ).
(9)

If v0 = 0 or (x0, u0) = 0, the geodesic is (x(t), y(t)) = (u0t + x0, y0) with its lift
being constant: (u(t), v(t)) = (u0, v0).

Remark 16 Since the right-hand side of the equation is continuous with respect to
the initial condition v0, the normal extremals corresponding to v0 can be obtained by
letting v0 tend to 0 in (8).

Proof The case when v0 = 0 or (x0, u0) = 0 is straightforward. We assume that
v0 �= 0 and (x0, u0) �= 0. For A, ω ∈ R \ {0} such that Aw > 0 and φ ∈ [0, 2πα), we
have

(A sinα(ωt + φ))′′ = (Aω cosα(ωt + φ))′

= −αAω2 sinα(ωt + φ)2(α−1) sinα(ωt + φ)

= −α
ω2

A2(α−1)
(A sinα(ωt + φ))2(α−1)(A sinα(ωt + φ)).

By the uniqueness of solutions to the differential equation (7), we get

{
x(t) = A sinα(ωt + φ),

u(t) = Aω cosα(ωt + φ),
(10)

where we set ω2 = v20 A
2(α−1), x0 = A sinα(φ) and u0 = Aω cosα(φ). Considering

the constant of motion u2 + v2x2α at t = 0 yields

u20 + v20x
2α
0 = (Aω cosα(φ))2 + ω2

A2(α−1)
(A sinα(φ))2α = A2ω2.

Since ẍ = −αv20x
2(α−1)x , we deduce that x2α = −x ẍ/αv20 and thus, integrating by

part, we have

∫ t

0
x2α =

∫ t

0

−x ẍ

αv20
= −1

αv20

(
[x ẋ]t0 −

∫ t

0
(ẋ)2

)
= −1

αv20

(
[xu]t0 −

∫ t

0
u2
)

.
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We use the identity u2 = A2ω2 − v2x2α to find

∫ t

0
x2α = −1

αv20

(
x(t)u(t) − x(0)u(0) −

∫ t

0
A2ω2 +

∫ t

0
v2x2α

)

= A2

αv20

(
ω2t + ω cosα(φ) sinα(φ)

−ω cosα(ωt + φ) sinα(ωt + φ) − v20

A2

∫ t

0
x2α

)
.

Finally, we isolate
∫ t
0 x

2α and integrate ẏ = v0x2α to get

y(t) = y0 + v0
A2α

(α + 1)ω2

(
ω2t + ω cosα(φ) sinα(φ)

− ω cosα(ωt + φ) sinα(ωt + φ)
)
.

It remains to prove that there is a one-to-one and continuous correspondence
between the variables (A, ω, φ) and (x0, u0, v0) via (9). Going from (A, ω, φ) to
(x0, u0, v0) is clear. The other direction is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = sgn(v0)

(
u20 + v20x

2α
0

v20

)1/2α

,

ω = v0

(
u20 + v20x

2α
0

v20

)(α−1)/2α

,

sinα(φ) = sgn(v0)x0

(
v20

u20 + v20x
2α
0

)1/2α

,

cosα(φ) = u0
(u20 + v20x

2α
0 )1/2

.

(11)

��
By differentiating the relations (9) with respect to x0, u0 and v0, we find the fol-

lowing useful identities:

Ax0 = 1 − cos2α(φ)

sinα(φ)
, Au0 = cosα(φ)

αω
, Av0 = − cos2α(φ)A

αv0
;

φx0 = cosα(φ)

A
, φu0 = − sinα(φ)

αωA
, φv0 = sinα(φ) cosα(φ)

αv0
;

ωx0 = (α − 1)
(ω

A

)(1 − cos2α(φ)

sinα(φ)

)
, ωu0 =

(
α − 1

α

)
cosα(φ)

A
,

ωv0 = ω

v0

(
1 −

(
α − 1

α

)
cos2α(φ)

)
.

(12)
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We mention here the work of Li and Chang (see [8]). They obtained the geodesics
joining every two points in theα-Grushin plane by solving the boundary value problem
corresponding to the differential equation in Theorem 15.We note that their results are
stated for α ∈ N \ {0}. However, if we carefully define sub-Riemannian manifolds of
class Ck as it was done in Sect. 2.2 and in Sect. 3.1, we can see that their conclusions
remain valid in the case α ≥ 1. In particular, their detailed study of the geodesics was
used to derive an expression for the Carnot–Carathéodory distance of Gα between
every two points.

3.2 Cut Locus of the˛-Grushin Plane

When we look at the the geodesics of Gα , we observe three types of behaviours: the
straight horizontal lines corresponding to an initial covectorwith v0 = 0; the geodesics
for which x0 = 0 (called singular or Grushin points); and those for which x0 �= 0
(called Riemannian points). In this section, we investigate the sub-Riemannian cut
loci and times of the α-Grushin plane. The techniques used here were developed in
[1, Sect. 3.2], [19, Appendix A] and [2, Sect. 13.5].

The case when v0 = 0 is trivial: the corresponding geodesic is a straight horizontal
line and is length-minimising for all times. Its cut locus is empty and its cut time is
infinite.

We now look at a geodesic γ starting from a singular point x0 = 0. Since A2ω2 =
u20 + v20x

2α
0 = u20 = κ2, where the positive parameter κ > 0 is the constant speed of

the geodesic γ , we can parametrise u0, v0 and the corresponding parameters A and ω

with respect to t ∈ R and β ∈ R \ {0}:

u0 = ±κ, v0 = β, φ = 0 or πα,

A = sgn(β)

(
κ

|β|
)1/α

and ω = β

(
κ

|β|
) α−1

α

The geodesic starting at (0, y0) can then be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x±(t, β) = ±sgn(β)

(
κ

|β|
)1/α

sinα

(
β

(
κ

|β|
) α−1

α

t

)

y(t, β) = y0 + 1

(α + 1)

(
κ

|β|
) α+1

α

[
β

(
κ

|β|
) α−1

α

t

− cosα

(
β

(
κ

|β|
) α−1

α

t

)
sinα

(
β

(
κ

|β|
) α−1

α

t

)]
(13)

and in the case β = 0, the system can be interpreted as x±(t, β) = ±κt and
y(t, β) = y0. From (13), we see that the geodesic (x+(·, β), y(·, β)) is a reflec-
tion of (x−(t, β), y(t, β)) with respect to the y-axis. Furthermore, these two intersect
at the y-axis for the first time when t = πα/|ω|. Therefore, a geodesic γ starting at a
singular point (0, y0) must lose its optimality after t = πα/|ω|. The following lemma
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guarantees the optimality of γ when t ≤ πα/|ω|. It is analogous to the case α = 1
(see [2, Sect. 13.5.2]).

Lemma 17 A geodesic γ starting at a singular point (0, y0) ∈ Gα is minimising when
t ≤ πα/|ω|.
Proof Let (x1, y1) := γ (t∗) for a fixed t∗ ∈ [0, πα/|ω|). From [8, Theorem 12], we
know that there is a finite number of geodesics joining the singular point (0, y0) to a
point (x1, y1), only one among them beingminimising.We claim that there is a unique
β ∈ R and unique t ∈ [0, πα/|ω|) such that (x±(t, β), y(t, β)) = (x1, y1). By the
symmetries of the α-Grushin and since x1 = 0 corresponds to γ being a horizontal
line, we can assume that x1 > 0 and y1 ≥ y0 without loss of generality. In particular,
this implies that β > 0 and the geodesic to consider is (x+(·, β), y(·, β)). The first
equation in (13) implies that for a solution to exist, we must have β ≤ κ/xα

1 . When
that is the case, there are two solutions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1(β) = 1

β

(
β

κ

) α−1
α

arcsinα

(
x1β1/α

κ1/α

)

t2(β) = 1

β

(
β

κ

) α−1
α
[
πα − arcsinα

(
x1β1/α

κ1/α

)]
.

(14)

The function t1(β) is increasing from x1/κ as β goes to 0, to πα/|ω| when β =
κ/xα

1 . The function t2(β) is decreasing from +∞ when β tends to 0, to πα/|ω| when
β = κ/xα

1 .We substitute these two into the second equation in (13) and use the identity
cos2α(x) = 1 − sin2αα (x). The assumption y1 ≥ y0 enables us to choose the positive
sign when taking the square root:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1(β) = y0 + (κ/β)
α+1
α

(α + 1)

[
arcsinα

(
x1β1/α

κ1/α

)
−
√
1 − x2α1 β2

κ2

x1β1/α

κ1/α

]

y2(β) = y0 + (κ/β)
α+1
α

(α + 1)

[
πα − arcsinα

(
x1β1/α

κ1/α

)
+
√
1 − x2α1 β2

κ2

x1β1/α

κ1/α

]
.

(15)
The function y1(β) is increasing (resp. y2(β) is decreasing) and behaves in the

following way. When β tends to 0, y1 goes to y0 (resp. y2 goes to +∞) and when
β = κ/xα

1 , the function y1 (resp. y2) takes the value y0+xα+1
1 πα/[2(α+1)]. Therefore,

given x1 > 0 and y1 ≥ y0, if y1 ≤ y0 + xα+1
1 πα/[2(α + 1)] (resp. y1 ≥ y0 +

xα+1
1 πα/[2(α + 1)]), we use (15) to deduce the existence of a unique β > 0 such that
y1(β) = y1 (resp. y2(β) = y1) and (14) provides the unique t = t1(β) ∈ [0, πα/|ω|)
(resp. t = t2(β)) such that (x+(t, β), y(t, β)) = (x1, y1).

The geodesic γ is consequently minimising before t = πα/|ω|. ��
It remains to study the case of a geodesic γ starting at a Riemannian point (x0, y0),

i.e. with x0 �= 0. We will use an extended Hadamard technique, as described in [2,
Sect. 13.4]:
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Theorem 18 (Extended Hadamard technique) Let M be an ideal sub-Riemannian
manifold and q0 ∈ M be a Riemannian point (resp. a singular point). Let Cut∗(q0) ⊆
M be the conjectured cut locus and t∗q0 [λ0] ∈ [0,+∞] be the conjectured cut time at

q0 for an initial covector λ0 ∈ T∗
q0(M) ∩ H−1(1/2).

Set N as the set of covectors in T∗
q0(M) for which the corresponding geodesics are

conjectured to be optimal up to time 1.
In other words,

N := {tθ | λ0 ∈ T∗
q0(M) ∩ H−1(1/2) and t ∈ [0, t∗q0 [λ0])

(resp. t ∈ (0, t∗q0 [λ0]))}.

Assume that the set N is shown to satisfy the following conditions:

(i) expq0(N ) = M \ Cut∗(q0);
(ii) The restriction of the sub-Riemannian exponential expq0 |N is a proper map, invert-

ible at every point of N;
(iii) The set expq0(N ) is simply-connected (resp. expq0 |N is a diffeomorphism).

Then, expq0 |N is a diffeomorphism and the conjectured cut locus and cut times are the
right ones: Cut(q0) = Cut∗(q0) and tq0 = t∗q0 .

Remark 19 The restriction of T∗
q0(M) to H−1(1/2) results from considering geodesics

parametrised by arclength.

We firstly observe that

γ

(
πα

|ω|
∣∣∣∣A, ω, φ

)
= γ

(
πα

|ω|
∣∣∣∣A, ω, πα − φ

)
.

This means that the points

(
−x0, y0 + sgn(ω)

(
x0

sinα(φ)

)α+1
πα

(α + 1)

)

are joined from (x0, y0) by two distinct geodesics unless φ = πα/2 or 3πα/2 in which
case there is only one.

This leads us to conjecture that the cut time should be t∗cut(u0, v0) = πα/|ω| and
that the cut locus should be

Cut∗(x0, y0) =
{
(−x0, y) ∈ Gα | |y − y0| ≥ |x0|α+1 πα

(α + 1)

}
.

Here, the set of covectors in T∗
q0(Gα) for which the corresponding geodesics are

conjectured to be optimal up to time 1 is

N :=
{
tλ0 | λ0 ∈ T∗

(x0,y0)
(Gα) ∩ H−1(1/2), t ∈ [0, t∗cut[λ0])

}
=

{
u0dx |(x0,y0) + v0dy|(x0,y0) ∈ T∗

(x0,y0)
(Gα) | |ω| < πα

}
,

(16)

123



Distortion Coefficients of the α-Grushin Plane Page 17 of 28 78

Fig. 1 The cotangent injectivity domain is an open star-shaped region if x0 �= 0. If x0 = 0, it looks like a
star-shaped region but with the starting point and the annihilator of the distribution removed

and thus exp(x0,y0)(N ) = {(x, y) ∈ Gα | (x, y) /∈ Cut∗(q0)}.
Let us show that the equality in Eq. (16) indeed holds. When considering a covector

λ0 (resp. λ0), we write A and ω (resp. A and ω) for the corresponding coordinates
given by (11). If v0 tends to 0, then ω tends to 0 and t∗cut[λ0] = +∞which implies that
covectors with v0 = 0 belong to both sets in (16). We can now assume that v0 �= 0
(resp. v0 �= 0). If λ0 = tλ0 is a vector in N for some t ∈ [0, t∗cut[λ0]), then, with the
help of (11), we find that |ω| = t |ω| and therefore |ω| < πα . On the other hand, if λ0
is a covector such that |ω| < πα , we can express it as λ0 = tλ0 with t := Aω > 0
and λ0 := λ0/t . Using (11) again, we deduce that Aω = 1 and thus λ0 ∈ H−1(1/2).
Furthermore, the coefficient t satisfies

0 ≤ t = |A||ω| = |A||ω| = |ω|
|ω| <

πα

|ω| ,

since |ω| < πα by hypothesis.

Remark 20 The set (16) corresponds to what is called the (cotangent) injectivity
domain. If x0 = 0, the cotangent injectivity domain will be as in (16) but with H−1(0)
being removed, since this time t ∈ (0, t∗q0 [λ0]) by Theorem 18. When α = 1, the
condition defining N reduces to |v0| ≤ π . Geometrically, this is a horizontal strip
in the cotangent space. The shape of the cotangent injectivity domain for α > 1 is
different than when α = 1: see Fig. 1.

We know that A2ω2 = u20 + v20x
2α
0 = κ2 = 2H(u0, v0), where the positive

parameter κ > 0 is the constant speed of the geodesic γ . We can then parametrise
u0, v0 and the corresponding parameters A and ω with respect to t ∈ [0, t∗cut(u0, v0)]
and φ ∈ (0, 2πα) \ {πα}:

u0 = κ cosα(φ), v0 = κ
sinα(φ)

x0

∣∣∣∣ sinα(φ)

x0

∣∣∣∣
α−1

, A = x0
sinα(φ)

and ω = κ
sinα(φ)

x0
.

The expression of the geodesics from Theorem 15 can thus be written as
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t, φ) = x0
sinα(φ)

sinα

(
κ
sinα(φ)

x0
t + φ

)

y(t, φ) = y0 + 1

(α + 1)

∣∣∣∣ x0
sinα(φ)

∣∣∣∣
α+1 [

κ
sinα(φ)

x0
t + cosα(φ) sinα(φ)

− cosα

(
κ
sinα(φ)

x0
t + φ

)
sinα

(
κ
sinα(φ)

x0
t + φ

)]
.

(17)

In fact, φ = 0 or πα correspond to the geodesic starting at (x0, y0)with initial covector
(κ, 0) and (−κ, 0) respectively. In that case, the geodesics are parametrised by

⎧⎪⎪⎨
⎪⎪⎩

x(t, 0) = κt + x0
x(t, πα) = −κt + x0
y(t, 0) = y0

y(t, πα) = y0

(18)

Given a constant speed κ > 0 and an initial point p := (x0, y0) with x0 �= 0, we
can compute the determinant of the differential of the corresponding exponential map
(t, φ) 
→ (x(t, φ), y(t, φ)):

D(t, φ) = κ

x0 sinα(φ)

∣∣∣∣ x0
sinα(φ)

∣∣∣∣
α+1 [

x0 sinα

(
κ
sinα(φ)

x0
t + φ

)
cosα(φ)

− sinα(φ)(x0 + κt cosα(φ)) cosα

(
κ
sinα(φ)

x0
t + φ

)]
.

(19)

One can check that lim
φ→0

D(t, φ) = lim
φ→πα

D(t, φ) = 0 unless α = 1, in which case we

have

lim
φ→0

D(t, φ) = κ4t

3x50

(
κ2t2 + 3κt x0 + 3x20

)

and

lim
φ→0

D(t, φ) = κ4t

3x50

(
κ2t2 − 3κt x0 + 3x20

)
.

We now claim that the exponential map has no singularities before t = πα/|ω|.
Indeed, we observe firstly that D(0, φ) vanishes for every φ. Secondly, with the help
of the derivative of D with respect to t ;

∂t D(t, φ) = α
κ2

x20
(x0 + κt cosα(φ))

∣∣∣∣ x0
sinα(φ)

∣∣∣∣
α+1

sinα(φ)

× sin2(α−1)
α

(
κ
sinα(φ)

x0
t + φ

)
sinα

(
κ
sinα(φ)

x0
t + φ

)
,
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we see that ∂t D(t, φ) = 0 if and only if

t = − x0
κ cosα(φ)

or t = x0
κ sinα(φ)

(lπα − φ), l ∈ Z.

The former is a local minimum that is positive while the later is a local maximum that
is also positive. Thirdly, we observe that

D(t∗cut, φ) = κ
πα

sinα(φ)

∣∣∣∣ x0
sinα(φ)

∣∣∣∣
α+1

cos2α(φ),

which is zero if and only if φ = πα/2 or 3πα/2. So, the function D is never zero on
(0, t∗cut) and the exponential map is invertible at every point of N .

Finally, we need to make some topological considerations in order to conclude.
Consider the set N forwhich the corresponding geodesics are conjectured to be optimal
up to time 1 and its image under the sub-Riemannian exponential map at (x0, y0). The
map exp(x0,y0) : N → exp(N ) is proper: if a sequence of points (ui , vi ) ∈ N escape
to infinity, we must have ui → ±∞ and therefore exp(x0,y0)(ui , vi )will also escape to
infinity. Therefore, exp |N is indeed proper, its differential is not singular at any point
and furthermore exp(N ) is simply connected.

We can conclude that exp is a diffeomorphism and the extended Hadamard tech-
nique (Theorem 18) implies that the conjectured cut loci and time are thus the true
ones.

To summarise the findings of this section, we have proved the following result:

Theorem 21 Let α ≥ 1 and γ (t) = (x(t), y(t)) be a geodesic of Gα with initial
value γ (0) = (x0, y0) and initial covector u0dx |(x0,y0) + v0dy|(x0,y0), as described in
Theorem 15.

If v0 = 0, there are no singularities along γ ,

tcut[γ ] = +∞ and Cut(x0, y0) = ∅.

If v0 �= 0, then the cut time is

tcut[γ ] = πα

|ω| ,

while the cut locus is

Cut(x0, y0) =
{
(−x0, y) ∈ Gα | |y − y0| ≥ |x0|α+1 πα

(α + 1)

}
.

The cut loci and geodesics of Gα are illustrated in Fig. 2. With this in mind, we
now turn to the analysis of the distortion coefficients of the α-Grushin plane.
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Fig. 2 Geometry of Gα . Illustration of the geodesics of the α-Grushin plane from a singular point (on the
left) and from a Riemannian point (on the right). The shaded area represents a ball around the starting point
and the thick line is the cut locus

4 Distortion Coefficients of the˛-Grushin Plane

4.1 Computation of the Distortion Coefficients

We present here our main result: an explicit computation of the distortion coefficient
of Gα . To this aim, we use the techniques established by Balogh, Kristály and Sipos
in [3] and generalised by Barilari and Rizzi in [4]. In the latter, the authors prove
interpolation inequalities of optimal transport for ideal sub-Riemannian manifolds.
They are expressed in terms of the distortion coefficients for which the expression is
obtained through a fine analysis of sub-Riemannian Jacobi fields.

Theorem 22 Let q, q0 ∈ Gα such that q /∈ Cut(q0). Assume that q and q0 do not lie on
the same horizontal line. Under the correspondence of Theorem 15 and the relations
(11), we have

βt (q, q0) = J(t, A, ω, φ)

J(1, A, ω, φ)
for all t ∈ [0, 1],

where

J(t, A, ω, φ) = t
[
sinα(ωt+φ) cosα(φ)−cosα(ωt+φ)

(
sinα(φ)+ωt cosα(φ)

)]
. (20)

Remark 23 We consider geodesics parametrised by constant speed on [0, 1]. Conse-
quently, since Theorem 21 states that tcut = πα/|ω|, we always have |ω| ≤ πα when
q /∈ Cut(q0).

Proof We let λ0 = u0dx |q0 + v0dy|q0 ∈ T∗
q0(Gα) be the covector corresponding

to the unique minimising geodesic joining q0 = (x0, y0) to q = (x, y) in Gα . The
assumption that q and q0 do not lie on the same horizontal line means that v0 �= 0.

By choosing the global Darboux frame induced by the sections of T(T∗(Gα));
E1 = ∂u, E2 = ∂v, F1 = ∂x , F2 = ∂y , Lemma 44 in [4] yields that βt (q, q0) =
J (t)/J (1) where the function J is the determinant of the exponential map (u, v) →
exp(x0,y0)(u, v) in these coordinates, computed at (u0, v0).
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Taking the derivatives of (8), we find

xu0(t) = Au0 sinα(ωt + φ) + A
(
ωu0 t + φu0

)
cosα(ωt + φ);

xv0(t) = Av0 sinα(ωt + φ) + A
(
ωv0 t + φv0

)
cosα(ωt + φ),

and

yu0(t) = v0A2(α−1)A

(α + 1)ω2

[
αωt

(
2Au0ω + Aωu0

)

+Aω(α + 1)(φu0 cos
2
α(φ) − (

ωu0 t + φu0

)
cos2α(ωt + φ))

+(
2αAu0ω − Aωu0

)
×(

sinα(φ) cosα(φ) − sinα(ωt + φ) cosα(ωt + φ)
)];

yv0(t) = v0A2(α−1)A

(α + 1)ω2

[
ωt
(
2αv0ωAv0 + A(ω + αv0ωv0)

)

+Aωv0(α + 1)(φu0 cos
2
α(φ) − (

ωv0 t + φv0

)
cos2α(ωt + φ))

+(
2αωv0Av0 + A(ω − v0ωv0)

)
×(

sinα(φ) cosα(φ) − sinα(ωt + φ) cosα(ωt + φ)
)]

.

To make things clearer, set [ f , g] := fu0gv0 − fv0gu0 and we obtain

[x, y](t) = A2α

(α + 1)ω2

[
sin2α(ωt + φ) cosα(φ)

(
v[A, ω] − ωAu0

)

+αv0ω sin2αα (ωt + φ) sinα(ωt + φ)
([A, ω]t + [A, φ])

+ sinα(ωt + φ)
(
sinα(φ) cosα(φ)(ωAu0 − v0[A, ω])

−αv0ω sin2αα (φ)[A, φ] + ω(ωAu0 t + v0 cos
2
α(φ)[A, φ])

)

+ sinα(ωt + φ) cos2α(ωt + φ)
(
t
(
(2α − 1)v0ω[A, ω] − Aωωu0

)

+(2α − 1)v0ω[A, φ] + Av0[φ,ω] − Aωφu0

)

+ cosα(ωt + φ)
(
sinα(φ) cosα(φ)(Aωφu0 + 2αv0ω[φ, A] + Av0[ω, φ])

+ω2t2(2αv0[ω, A] + Aωu0)

−ωt(sinα(φ) cosα(φ)(2αv0[A, ω]) − Aωu0)

+ω(2αv0[A, φ]) − Aφu0 + αv0A sin2αα (φ)[ω, φ] + αv0 cos
2
α(φ)[φ,ω]

)]
.

Using the identities sin2αα (x) + cos2α(x) = 1 and (12), we find that [ω, φ] = sinα(φ)
αv0A

,

[A, ω] = cosα(φ)
αv0

, and [A, φ] = 0.
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Consequently, we have

[x, y](t) = t
A2α

αω

[
sinα(ωt + φ) cosα(φ) − cosα(ωt + φ)

(
sinα(φ) + ωt cosα(φ)

)]
.

(21)
Wefinally obtain thedesired expressionbyperformingβt (q, q0) = [x, y](t)/[x, y](1).

��

We can transform (20) from the set of coordinates A, ω and φ to x0, u0 and v0 via
the identities (11). This leads to (1) and concludes the proof of Theorem 1.

It is interesting to look at the limit of (1) when α tends to 1. In this case, the α-
Grushin plane is the traditional Grushin plane while sinα and cosα are the usual sine
and cosine functions. The formula (21) simplifies to

[x, y](t) = t
A2

ω

[
sin(ωt + φ) cos(φ) − cos(ωt + φ)

(
sin(φ) + ωt cos(φ)

)]

= t
(u20 + tu0v20x0 + v20x

2
0 ) sin(tv0) − tu20v0 cos(tv0)

v30
,

and thus, we find what was already established in [4, Proposition 61]: the distortion
coefficients of the usual Grushin plane are

βt (q, q0) = t
(u20 + tu0v20x0 + v20x

2
0 ) sin(tv0) − tu20v0 cos(tv0)

(u20 + u0v20x0 + v20x
2
0 ) sin(v0) − u20v0 cos(v0)

, for all t ∈ [0, 1].

We now want to investigate the behaviour of βt (q0, q) when q0 and q do lie on the
same horizontal line, that is to say, when v0 tends to 0.

Proposition 24 In the same setting of Theorem 22, when two points q and q0 of Gα

are on the same horizontal line, we have

βt (q0, q) = t
(u0t + x0)2α(u0t + x0) − x2α0 x0
(u0 + x0)2α(u0 + x0) − x2α0 x0

, for all t ∈ [0, 1].

Remark 25 Considering q0 and q on the same horizontal line corresponds to starting
from q0 with an initial covector u0dx |q0 + v0dy|q0 such that v0 = 0. By continuity
with respect to initial conditions, the distortion coefficient in Proposition 24 is the
limit of (1) when v0 tends to 0. In particular, the parameter u0 cannot vanish. Indeed,
we would otherwise have a trivial (constant) geodesic since v0 = 0. Furthermore, this
implies that the denominator in the expression above is also never vanishing.

Proof We aim to perform limv0→0 J(t)
/
J(1), where J is defined by (1). We already

know from Theorem 15 that limv0→0 u(t) = u0 and limv0→0 x(t) = u0t + x0. Let us

123



Distortion Coefficients of the α-Grushin Plane Page 23 of 28 78

make the following preliminary calculations:

uv0(t) = −αAω(ωv0 t + φv0) sin
2(α−1)
α (ωt + φ) sinα(ωt + φ)

+ cosα(ωt + φ)(ωAv0 + Aωv0)

= Aω

α

[
sin2(α−1)

α (ωt + φ) sinα(ωt + φ)

×
(
ωt((α − 1) cos2α(φ) − α) − sinα(φ) cosα(φ)

)
cosα(ωt + φ)

+ (1 − cos2α(φ))
]

= v0
x2α0 · u(t) − [

t(u20 + αv20x
2α
0 ) + u0x0

] · x(t)2(α−1)x(t)

(u20 + v20x
2α
0 )

,

and also

xv0(t) = Av0 sinα(ωt + φ) + A
(
ωv0 t + φv0

)
cosα(ωt + φ)

= A

αv0

[
cosα(ωt + φ)

(
sinα(φ) cosα(φ) + ωt

(
α − (α − 1) cos2α(φ)

))

− sinα(ωt + φ) cos2α(φ)
]

=
[
t(u20 + αv20x

2α
0 ) + u0x0

] · u(t) + u20 · x(t)
αv0(u20 + v20x

2α
0 )

.

Since simply replacing v0 with 0 in βt (q0, q) will lead to 0/0, we use L’Hôpital’s rule
as many times as needed, and we find:

βt (q0, q) = lim
v0→0

J(t, x0, u0, v0)

J(1, x0, u0, v0)
= lim

v0→0

∂v0 J(t, x0, u0, v0)

∂v0 J(1, x0, u0, v0)

= lim
v0→0

∂2v0J(t, x0, u0, v0)

∂2v0J(1, x0, u0, v0)
= t

(u0t + x0)2α(u0t + x0) − x2α0 x0
(u0 + x0)2α(u0 + x0) − x2α0 x0

.

��

4.2 Relevant Curvature-Dimension Estimates

Now that we have the expressions for the distortion coefficients, we would like to find
appropriate bounds for them. In [15], Juillet proved that a sub-Riemannian manifold
never satisfies the CD(K , N ) condition when rank(Dp) < dim(M) for all p ∈ M .
This result does not apply directly to α-Grushin as its distribution has full rank away
from the singular set. However, a variant of the technique [14] presented in [12] is
valid here and we can still conclude that Gα does not satisfy the CD condition. There
is a possibility that the weaker measure contraction property MCP(K , N ) can hold
for the α-Grushin plane.
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In particular, the traditional Grushin plane, equivalent to Gα when α = 1, is
MCP(K , N ) if and only if N ≥ 5 and K ≤ 0. We expect the α-Grushin plane to
satisfy the MCP property for a minimal value of N that would depend on α. Accord-
ing to Theorem 14, the related bound on the distortion coefficients should be of the
form βt (q0, q) ≥ t N .

In this section, we provide a bound in the case where q0 and q lie on the same
horizontal line andwhenq0 is aGrushin point. Inwhat follows,wewill still parametrise
the geodesics of the α-Grushin plane by constant speed and on the interval [0, 1].

For α ≥ 1, let mα ∈ [−3,−2] be the unique non-zero solution of

(m + 1)2α(m + 1) − ((2α + 1)m + 1) = 0.

If α = 1, the value of the root is m = −3.

Proposition 26 Let q0 := (x0, y0) ∈ Gα with x0 �= 0 and q ∈ Gα lying on the same
horizontal line. We have that

βt (q0, q) ≥ t N for all t ∈ [0, 1]

if and only if

N ≥ 2

[
(α + 1)mα + 1

mα + 1

]
.

Proof We are looking for the optimal N ∈ [1,+∞] such that

(u0t + x0)2α(u0t + x0) − x2α0 x0
(u0 + x0)2α(u0 + x0) − x2α0 x0

≥ t N−1 (22)

for all t ∈ [0, 1] and x0, u0 ∈ R. The function fx0(z) := (z + x0)2α(z + x0) − x2α0 x0
is positive (resp. negative) when z > 0 (resp. z < 0) and fx0(0) = 0. Therefore, the
left-hand side of (22) is always non-negative. If we take the logarithm of the above,
we find that the inequality is equivalent to

∫ u0

u0t

d

dz
log

∣∣ fx0(z)∣∣dz ≤ (N − 1)
∫ u0

u0t

d

dz
log |z|dz.

Since this must hold for every t ∈ [0, 1], it is equivalent to the same inequality for the
integrands:

± (2α + 1)(z + x0)2α

(z + x0)2α(z + x0) − x2α0 x0
≤ ±(N − 1)

1

z
, when ± z > 0.

Consequently, Equation (22) is equivalent to

N ≥ z
(2α + 1)(z + x0)2α

(z + x0)2α(z + x0) − x2α0 x0
+ 1.

123



Distortion Coefficients of the α-Grushin Plane Page 25 of 28 78

for all z ∈ R and all x0 ∈ R \ {0}. When z → 0, we find that since x0 �= 0,

(2α + 1)(z + x0)2α

(z + x0)2α(z + x0) − x2α0 x0
→ 1.

We are therefore looking for the global maximum of the map

f : (R \ {0}) × R −→ R

(x, y) 
−→ x
(2α + 1)(x + y)2α

(x + y)2α(x + y) − y2α y
+ 1.

We use polar coordinates: for r > 0 and θ ∈ [0, 2π) \ {π/2,−3π/2}, we have

f (r cos(θ), r sin(θ)) = (2α + 1) cos(θ)
[
cos(θ) + sin(θ)

]2α
(
cos(θ) + sin(θ)

)[
cos(θ) + sin(θ)

]2α − sin(θ)2α sin(θ)
+ 1,

which does not depend on r . In particular, the limit of f when (x, y) → (0, 0) does
not exist.

Firstly, let us compute the critical points of θ 
→ f (r cos(θ), r sin(θ)). We find that
∂
∂θ

f (r cos(θ), r sin(θ)) is given by

(2α + 1)
(
cos(θ) + sin(θ)

)[
cos(θ) + sin(θ)

]2(α−1)

[(
cos(θ) + sin(θ)

)[
cos(θ) + sin(θ)

]2α − sin(θ)2α sin(θ)
]2

×
[
sin2α(θ)

(
(2α + 1) cos(θ) + sin(θ)

)

− (
cos(θ) + sin(θ)

)[
cos(θ) + sin(θ)

]2α]
,

which vanishes when cos(θ) + sin(θ) = 0, i.e. θ = 3π/4, 7π/4, or when

sin2α(θ) ((2α + 1) cos(θ) + sin(θ)) = (cos(θ) + sin(θ)) [cos(θ) + sin(θ)]2α .

In the first case, we simply get f (r cos(θ), r sin(θ)) = 1. The second case implies
that sin(θ) �= 0, and thus, setting m = cot(θ), we obtain

(m + 1)2α(m + 1) − ((2α + 1)m + 1) = 0. (23)

Equation (23) has two roots: m = 0, which we reject since it corresponds to θ =
π/2, 3π/2 and another root in the interval [−3,−2], denoted by mα . With a second
derivative test, it is easy to see that the θ ∈ [0, 2π) \ {π/2, 3π/2} such that cot−1 θ =
mα gives the local maximums of θ 
→ f (r cos(θ), r sin(θ)): at these points, we have
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f (r cos(θ), r sin(θ)) = (2α + 1) cos(θ) ((2α + 1) cos(θ) + sin(θ))

(cos(θ) + sin(θ)) [((2α + 1) cos(θ) + sin(θ)) − sin(θ)]
+ 1

= (mα + 1)2α(2(α + 1)mα + 1) − 1

(mα + 1)2α(mα + 1) − 1

= 2

[
(α + 1)mα + 1

mα + 1

]
.

They are in fact global maximums because f (r cos(θ), r sin(θ)) → 1 when θ → π/2
or 3π/2. Since f (r cos(θ), r sin(θ)) does not depend on r , this upper bound will not
be exceeded either when r escapes to +∞ or when r approaches 0. We have therefore
established that

max
(x,y)∈

(
R\{0}

)
×R

(2(α + 1)x + y)(x + y)2α − yy2α

(x + y)(x + y)2α − yy2α
= 2

[
(α + 1)mα + 1

mα + 1

]
.

This maximum provides the desired optimal N in the inequality (22). ��
It seems that the Grushin structures behave in such a way that points q0 and q lying

on the same horizontal line (with x0 �= 0) provide the sharpest N whereβt (q0, q) ≥ t N

holds for all t ∈ [0, 1]. This is also what happens when α = 1 (see [4, Proposition
62.] and [19, Theorem 8.] for Grushin half-planes).

We thus expect that the optimal N obtained in Proposition 26 is sharp. We are able
to verify this intuition for singular points, i.e. when q0 = (0, y0).

Proposition 27 Let q0 = (x0, y0) ∈ Gα with x0 = 0 and q /∈ Cut(q0). The inequality

βt (q, q0) ≥ t N

holds for all t ∈ [0, 1] and every N ≥ 2

[
(α + 1)mα + 1

mα + 1

]
.

Proof We firstly observe that

Nα := 2

[
(α + 1)mα + 1

mα + 1

]
≥ 2(α + 1), (24)

since α ≥ 1 > 0.
If x0 = 0 and v0 = 0, the formula of the distortion coefficients in Proposition 24

and Eq. (24) yield βt (q0, q) = t2(α+1) ≥ t Nα .
Assume now that x0 = 0 and v0 �= 0, i.e. φ = 0 or φ = πα , the Jacobian

determinant (21) is given by

[x, y](t) = t
A2α

αω

[
sinα(ωt) − ωt cosα(ωt)

]
. (25)

It follows from (25) that
βt (q, q0) = t

g(ωt)

g(ω)
(26)
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where we have set g(z) = sinα(z) − z cosα(z). We first note that g(0) = 0. Then, we
compute

g′(z) = αz sin2(α−1)
α (z) sinα(z)

to find that g′(z) > 0 for every z ∈ (0, πα) and α ≥ 1. Therefore, the functions g is
strictly increasing and positive.

We want to prove that (26) is greater than t Nα . In the same way as in the proof of
Proposition 26, we know that the desired inequality holds if and only if we have

G(z) := (Nα − 1)g(z) − zg′(z) ≥ 0 for all z ∈ [0, πα].

We can see that G(0) = 0, and

G ′(z) = αz sin2(α−1)
α (z) [(N − 3) sinα(z) − (2α − 1)z cosα(z)] .

From Equation (24), we deduce that

G ′(z) ≥ α(2α − 1)z sin2(α−1)
α (z) [sinα(z) − z cosα(z)] .

Therefore, G ′(z) is non-negative and so is G(z), for all ∈ [0, πα]. ��
By analysing in more detail and looking at the graph of the distortion coefficients

(20), it would indeed seem to us that the relevant condition is also satisfied when
x0 �= 0. We therefore propose Conjecture 3. A proof of this could require further
work, potentially requiring a more comprehensive study of the (2, 2α)-trigonometric
functions.
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