
Computational Statistics and Data Analysis 157 (2021) 107151

a
(
n
d
t

h
0
l

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Efficient inference for stochastic differential equation
mixed-effectsmodels using correlated particle
pseudo-marginal algorithms
Samuel Wiqvist a,∗, Andrew Golightly b, Ashleigh T. McLean b,
Umberto Picchini c
a Centre for Mathematical Sciences, Lund University, Sweden
b School of Mathematics, Statistics and Physics, Newcastle University, UK
c Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 1 March 2020
Received in revised form 22 November 2020
Accepted 25 November 2020
Available online 8 December 2020

Keywords:
Bayesian inference
Random effects
Sequential Monte Carlo
State-space model

a b s t r a c t

Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchi-
cal models that are able to account for random variability inherent in the underlying
time-dynamics, as well as the variability between experimental units and, optionally,
account for measurement error. Fully Bayesian inference for state-space SDEMEMs
is performed, using data at discrete times that may be incomplete and subject to
measurement error. However, the inference problem is complicated by the typical
intractability of the observed data likelihood which motivates the use of sampling-
based approaches such as Markov chain Monte Carlo. A Gibbs sampler is proposed
to target the marginal posterior of all parameter values of interest. The algorithm is
made computationally efficient through careful use of blocking strategies and correlated
pseudo-marginal Metropolis–Hastings steps within the Gibbs scheme. The resulting
methodology is flexible and is able to deal with a large class of SDEMEMs. The method-
ology is demonstrated on three case studies, including tumor growth dynamics and
neuronal data. The gains in terms of increased computational efficiency are model and
data dependent, but unless bespoke sampling strategies requiring analytical derivations
are possible for a given model, we generally observe an efficiency increase of one order
of magnitude when using correlated particle methods together with our blocked-Gibbs
strategy.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Stochastic differential equations (SDEs) are arguably the most used and studied stochastic dynamic models. SDEs
llow the representation of stochastic time-dynamics, and are ubiquitous in applied research, most notably in finance
Steele, 2012), systems biology (Wilkinson, 2018), pharmacokinetic/pharmacodynamic modeling (Lavielle, 2014) and
euronal modeling. SDEs extend the possibilities offered by ordinary differential equations (ODEs), by allowing random
ynamics. As such, they can in principle replace ODEs in practical applications, to offer a richer mathematical representa-
ion for complex phenomena that are intrinsically non-deterministic. However, in practice switching from ODEs to SDEs

∗ Corresponding author.
E-mail address: samuel.wiqvist@matstat.lu.se (S. Wiqvist).
ttps://doi.org/10.1016/j.csda.2020.107151
167-9473/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
icenses/by/4.0/).

https://doi.org/10.1016/j.csda.2020.107151
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2020.107151&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:samuel.wiqvist@matstat.lu.se
https://doi.org/10.1016/j.csda.2020.107151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

e
e
e
p
o
t
(
a
b
(
(
a
a

m
(
(
d
p
w
a
o
h
S
a
o
n
r
b
C
P

t
i
O
i

2

i
r
c
h
c
u
a

is usually far from trivial, due to the absence of closed form solutions to SDEs (except for the simplest toy problems),
implying the need for numerical approximation procedures (Kloeden and Platen, 1992). Numerical approximation
schemes, while useful for simulation purposes, considerably complicate statistical inference for model parameters. For
reviews of inference strategies for SDE models, see e.g. Fuchs (2013) (including Bayesian approaches) and Sørensen (2004)
(classical approaches). Generally, in the non-Bayesian framework, the literature for parametric inference approaches for
SDEs is vast, however there is no inference procedure that is applicable to general nonlinear SDEs and that is also easy
to implement on a computer. This is due to the lack of explicit transition densities for most SDE models. The problem is
particularly difficult for measurements that are observed without error, i.e. Markovian observations. On the other hand, the
Bayesian literature offers powerful solutions to the inference problem, when observations arise from state-space models.
In our case, this means that if we assume that observations are observed with error, and that the latent process is a
Markov process, then the literature based on sequential Monte Carlo (particle filters) is readily available in the form of
pseudo-marginal methods (Andrieu and Roberts, 2009), and closely related particle MCMC methods (Andrieu et al., 2010),
which we introduce in Section 4.

Our goal is to produce novel Gibbs samplers embedding special types of pseudo-marginal algorithms allowing for
xact Bayesian inference in a specific class of state-space SDE models. In this paper, we consider ‘‘repeated measurement
xperiments’’, modeled via mixed-effects, where the dynamics are Markov processes expressed via stochastic differential
quations. These dynamics are assumed directly unobservable, i.e. are only observable up to measurement error. The
ractical goal is to fit observations pertaining to several ‘‘units’’ (i.e. independent experiments, such as measurements
n different subjects) simultaneously, by formulating a state-space model having parameters randomly varying between
he several individuals. The resulting model is typically referred to as a stochastic differential equation mixed-effects model
SDEMEM). SDEMEMs are interesting because, in addition to explaining intrinsic stochasticity in the time-dynamics, they
lso take into account random variation between experimental units. The latter variation permits the understanding of
etween-subjects variability within a population. When considered in a state-space model, these two types of variability
population variation and intrinsic stochasticity) are separated from the third source of variation, namely residual variation
measurement error). Thanks to their generality, and the ability to separate the three levels of variation, SDEMEMs have
ttracted attention, see e.g. Donnet and Samson (2013a) for a review and Whitaker (2016) for a more recent account. See
lso Section 2 for a discussion on previous literature.
In the present work, we mainly focus on a general, plug-and-play approach for exact Bayesian inference in SDEMEMs,

eaning that analytic calculations are not necessary thanks to the flexibility of the underlying sequential Monte Carlo
SMC) algorithms. We also describe a non plug-and-play approach to handle specific situations. As in Picchini and Forman
2019), our random effects and measurement error can have arbitrary distributions, provided that the measurement error
ensity can be evaluated point-wise. Unlike (Picchini and Forman, 2019), we use a Gibbs sampler to target the marginal
arameter posterior. Subject specific, common and random effect population parameters are updated in separate blocks,
ith pseudo-marginal Metropolis–Hastings (PMMH) steps used to update the subject specific and common parameters,
nd Metropolis–Hastings (MH) steps used to update the random effect population parameters. We believe that, to date,
ur work results in the most general plug-and-play approach to inference for state-space SDEMEMs (a similar method
as been concurrently and independently introduced (July 25 2019 on arXiv), in Botha et al. (2020); see the discussion in
ection 6). However, the price to pay for such generality is that the use of pseudo-marginal methods guided by SMC
lgorithms is computationally consuming. In order to make pseudo-marginal methods scale better as the number of
bservations is increased, we exploit recent advances based on correlated PMMH (CPMMH). We combine CPMMH with a
ovel blocking strategy and show that it is possible to reduce considerably the number of required particles, and hence
educe the computational requirements for exact Bayesian inference. In our experiments, unless specific models admit
espoke efficient sampling strategies (e.g. Section 5.3 where it was possible to implement an advanced particle filter),
PMMH based algorithms with our novel blocking strategy are one order of magnitude more efficient than standard
MMH. Occasionally we even observed a 40-fold increase in efficiency, as in Section 5.1.
The remainder of this paper is organized as follows. Background literature is discussed in Section 2. Stochas-

ic differential mixed-effects models and the inference task are introduced in Section 3. Our proposed approach to
nference is described in Section 4. Applications are considered in Section 5, including a simulation study considering an
rnstein–Uhlenbeck SDEMEM, a tumor-growth model and finally a challenging neuronal data case-study. A discussion is
n Section 6. Julia and R codes can be found at https://github.com/SamuelWiqvist/efficient_SDEMEM.

. Background literature

Here we rapidly review key papers on inference for SDEMEMs, and refer the reader to https://umbertopicchini.github.
o/sdemem/ for a comprehensive list of publications. Early attempts at inference for SDEMEMs use methodology bor-
owed from standard (deterministic) nonlinear mixed-effects literature such as FOCE (first order conditional estimation)
ombined with the extended Kalman filter, as in Overgaard et al. (2005). This approach can only deal with SDEMEMs
aving a constant diffusion coefficient, see instead (Leander et al., 2015) for an extension to state-dependent diffusion
oefficients. The resulting inference in Overgaard et al. (2005) is approximate maximum likelihood estimation, and no
ncertainty quantification is given. Moreover, only Gaussian random effects are allowed and measurement error is also
ssumed Gaussian. Other maximum likelihood approaches are in Picchini et al. (2010), Picchini and Ditlevsen (2011),
2

https://github.com/SamuelWiqvist/efficient_SDEMEM
https://umbertopicchini.github.io/sdemem/
https://umbertopicchini.github.io/sdemem/
https://umbertopicchini.github.io/sdemem/

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

3

t
a
c

a
i
e
d
t

w
d
D
p
p
(

where a closed-form series expansion for the unknown transition density is found using the method in Ait-Sahalia (2008),
however the methodology can only be applied to reducible multivariate diffusions without measurement error. Donnet
et al. (2010) discuss inference for SDEMEMs in a Bayesian framework. They implement a Gibbs sampler when the SDE
(for each subject) has an explicit solution, and consider Gaussian random effects and Gaussian measurement error.
When no explicit solution exists, they approximate the diffusion process using the Euler–Maruyama approximation. The
approach of Donnet and Samson (2013b) is of particular interest, since it is the first attempt to employ particle filters
for inference in SDEMEMs: they construct an exact maximum likelihood strategy based on stochastic approximation
EM (SAEM), where latent trajectories are ‘‘proposed’’ via particle Markov chain Monte Carlo. The major problem with
using SAEM is the need for sufficient summary statistics for the ‘‘complete likelihood’’, which makes the methodology
essentially impractical for arbitrarily complex models. Delattre and Lavielle (2013) also use SAEM, but they avoid the
need for the (usually unavailable) summary statistics for the complete likelihood, and propose trajectories using the
extended Kalman filter instead of particle MCMC. Unlike in Donnet and Samson (2013b), the inference in Delattre and
Lavielle (2013) is approximate and measurement error and random effects are required to be Gaussian. Ruse et al. (2019)
analyze multivariate diffusions under the conditions that the random effects are Gaussian distributed and that both
fixed parameters and random effects enter linearly in the SDE. Whitaker et al. (2017) work with the Euler–Maruyama
approximation and adopt a data augmentation approach to integrate over the uncertainty associated with the latent
diffusion process, by employing carefully designed bridge constructs inside a Gibbs sampler. A linear noise approximation
(LNA) is also considered. However, the limitations are that the observation equation has to be a linear combination of
the latent states and measurement error has to be Gaussian. In addition, producing the bridge construct in the data
augmentation approach or the LNA-based likelihood requires some careful analytic derivations. Consequently, neither
approach can be regarded as a plug-and-play method (that is, a method that only requires forward simulation and
evaluation of the measurement error density). In Picchini and Forman (2019), approximate and exact Bayesian approaches
for a tumor growth study were considered: the approximate approach was based on synthetic likelihoods (Wood,
2010; Price et al., 2018), where summary statistics of the data are used for the inference, while exact inference used
pseudo-marginal methodology via an auxiliary particle filter, which is suited to target measurements observed with a
small error. It was found that using a particle approach to integrate out the random effects was very time consuming.
Even though the data set was small (comprising 5–8 subjects to fit, depending on the experimental group, and around 10
observations per subject), the number of particles required to approximate each individual likelihood was in the order of
thousands. This is very time consuming when the number of ‘‘subjects’’ (denoted M in the rest of this work) increases.

. Stochastic differential mixed-effects models

Consider the case where we have M experimental units randomly chosen from a theoretical population. Our goal is
o perform inference based on simultaneously fitting all data from the M units. Now assume that the experiment we
re analyzing consists in observing a stochastically evolving dynamic process, and that associated with each unit i is a
ontinuous-time d-dimensional Itô process {X i

t , t ≥ 0} governed by the SDE

dX i
t = α(X i

t , κ, φ
i,Di) dt +

√
β(X i

t , κ, φ
i,Di) dW i

t , X i
0 = xi0, i = 1, . . . ,M. (1)

Here, α is a d-vector of drift functions, the diffusion coefficient β is a d × d positive definite matrix with a square root
representation

√
β such that

√
β
√
β

T
= β , W i

t is a d-vector of (uncorrelated) standard Brownian motion processes and
Di are unit-specific static or time-dependent deterministic input (e.g. covariates, forcing functions), see e.g. Leander et al.
(2015). The p-vector parameter κ = (κ1, . . . , κp)T is common to all units whereas the q-vectors φi

= (φi
1, . . . , φ

i
q)

T ,
i = 1, . . . ,M , are unit-specific random effects. In the most general random effects scenario we let π (φi

|η) denote the
joint distribution of φi, parameterized by the r-vector η = (η1, . . . , ηr)T . The model defined by (1) allows for differences
between experimental units through different realizations of the Brownian motion paths W i

t and the random effects φi,
accounting for inherent stochasticity within a unit, and variation between experimental units respectively.

We assume that each experimental unit {X i
t , t ≥ 0} cannot be observed exactly, but observations yi = (yi1, . . . , y

i
n)

T

re available. Without loss of generality, we assume units are observed at the same integer time points {1, 2, . . . , n}, that
s in the following we write n instead of, say, ni for all i. However this is only for convenience of notation, and we could
asily accommodate the possibility of different units i having different values ni and that, in turn, units are observed at
ifferent sets of times. The observations are assumed conditionally independent (given the latent process) and we link
hem to the latent process via

Y i
t = h(X i

t , S
i, ϵ it), ϵ it |ξ

indep
∼ pϵ(ξ), i = 1, . . . ,M (2)

here Y i
t is a do-vector, ϵt is a random do-vector, do ≤ d, ϵ it is the measurement noise, S i is (as Di) a unit-specific

eterministic input, and h(·) is a possibly nonlinear function of its arguments. In the applications in Section 5 we have
i
= S i = ∅, the empty set, for every i, and hence for simplicity of notation we disregard Di and S i in the rest of the

aper. However having non-empty sets does not introduce any additional complication to our methodology. Notice, the
ossibility to have d0 < d implies that we may have some coordinate of the {X i

t} system that is unobserved at some
or all) t . We denote the density linking Y i and X i by π (yi |xi , ξ). An important special case that arises from our flexible
t t t t

3

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

o
3
e

b

3

e

i
a

a

a

∫

observation model is when h(X i
t , ϵ

i
t) = F TX i

t + ϵ it for a constant matrix F and ϵ it |Σ
indep
∼ N(0,Σ), allowing for observation

f a linear combination of components of X i
t , subject to additive Gaussian noise. Notice that our methodology in Sections

.1–4.4 can be applied to an arbitrary h(·), provided this can be evaluated pointwise for any value of its arguments. For
xample, in Section 5.2 we have that h(·) is the logarithm of the sum of the components of a bivariate X i

t .
We refer to the model constituted by the system (1)–(2) as a SDEMEM. This is a state-space model, due to the Markov

property of the Itô processes {X i
t , t ≥ 0}, and the assumption of conditional independence of observations on latent

processes. The model is flexible: equation (1) explains the intrinsic stochasticity in the dynamics (via β) and the variation
etween-units (via the random effects φi), while (2) explains residual variation (measurement error, via ξ).

.1. BayesIan inference

Denote with x = (x1, . . . , xM)T the set of unobserved states collected across all M diffusion processes {X i
t} at the same

set of integer times {1, 2, . . . , n} as for data y = (y1, . . . , yM)T . Then given data y = (y1, . . . , yM)T , latent values x, the joint
posterior for the common parameters κ , fixed/random effects φ = (φ1, . . . , φM)T , hyperparameters η and measurement
rror parameters ξ is

π (κ, η, ξ, φ, x|y) ∝ π (κ, η, ξ)π (φ|η)π (x|κ, φ)π (y|x, ξ) (3)

where π (κ, η, ξ) is the joint prior density ascribed to κ , η and ξ . These three parameters may be assumed a priori
ndependent, and then we can write π (κ, η, ξ) = π (κ)π (η)π (ξ), though this need not be the case and we can easily
ssume a priori correlated parameters. In addition we have that

π (φ|η) =

M∏
i=1

π (φi
|η), (4)

π (y|x, ξ) =

M∏
i=1

n∏
j=1

π (yij|x
i
j, ξ) (5)

nd

π (x|κ, φ) =

M∏
i=1

π (xi1)
n∏

j=2

π (xij|x
i
j−1, κ, φ

i). (6)

Note that π (xij|x
i
j−1, κ, φ

i) will be typically intractable. In this case, we assume that it is possible to generate draws (up
to arbitrary accuracy) from π (xij|x

i
j−1, κ, φ

i) using a suitable numerical approximation. For example, the Euler–Maruyama
approximation of (1) is

∆X i
t ≡ X i

t+∆t − X i
t = α(X i

t , κ, φ
i)∆t +

√
β(X i

t , κ, φ
i)∆W i

t

nd therefore

X i
t+∆t = X i

t + α(X i
t , κ, φ

i)∆t +

√
β(X i

t , κ, φ
i)∆W i

t (7)

where∆W i
t ∼ N(0, Id∆t) and the time-step∆t , which need not be the inter-observation time, is chosen by the practitioner

to balance accuracy and efficiency.
In what follows, we assume that interest lies in the marginal posterior for all parameters, given by π (κ, η, ξ, φ|y) =

π (κ, η, ξ, φ, x|y)dx, where

π (κ, η, ξ, φ|y) ∝ π (κ)π (η)π (ξ)π (φ|η)π (y|κ, ξ, φ) (8)

∝ π (κ)π (η)π (ξ)
M∏
i=1

π (φi
|η)π (yi|κ, ξ, φi). (9)

This factorization suggests a Gibbs sampler with separate blocks for each parameter vector that sequentially takes draws
from the full conditionals

1. π (φ|κ, η, ξ, y) ∝
∏M

i=1 π (φ
i
|η)π (yi|κ, ξ, φi),

2. π (κ|η, ξ, φ, y) = π (κ|φ, ξ, y) ∝ π (κ)
∏M

i=1 π (y
i
|κ, ξ, φi),

3. π (ξ |κ, η, φ, y) = π (ξ |κ, φ, y) ∝ π (ξ)
∏M

i=1 π (y
i
|κ, ξ, φi),

4. π (η|κ, ξ, φ, y) = π (η|φ) ∝ π (η)
∏M

i=1 π (φ
i
|η).

Of course, in practice, the observed individual data likelihood π (yi|κ, ξ, φi) =
∫
p(yi, xi|κ, ξ, φi)dxi will be intractable. In

what follows, therefore, we consider a Metropolis-within-Gibbs strategy, and in particular introduce auxiliary variables u
to allow pseudo-marginal Metropolis–Hastings updates.
4

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

l

v
t
t
d
s
o
e

f

H
π

a

4

H
a

N

N

H
M
q

E

i
a
a

B

4. A pseudo-marginal approach

Consider again the intractable target in (8) and suppose that we can unbiasedly estimate the intractable observed data
ikelihood π (y|κ, ξ, φ) =

∫
p(y, x|κ, ξ, φ)dx. To this end let

π̂u(y|κ, ξ, φ) =

M∏
i=1

π̂ui (y
i
|κ, ξ, φi)

denote a (non-negative) unbiased estimator of π (y|κ, ξ, φ), where u = (u1, . . . , uM)T is the collection of auxiliary (vector)
ariables used to produce the corresponding estimate, with density π (u) =

∏M
i=1 g(u

i). In the context of inference for SDEs,
he u may be the collection of pseudo-random standard Gaussian draws, these being necessary to simulate increments of
he Brownian motion paths when implementing a numerical scheme such as Euler–Maruyama (Section 4.2), or produce
raws from transition densities (in the rare instances when these are known). Notice in fact that the u need not have a
pecific distribution, though in stochastic simulation we need access to pseudo-random variates that are often uniform
r Gaussian distributed (Devroye, 1986). When inference methods use particle filters, pseudo-random variates are also
mployed in the resampling step, and hence these variates can be included into u.
Now, the pseudo-marginal Metropolis–Hastings (PMMH) scheme targets

π (κ, η, ξ, φ, u|y) ∝ π (κ)π (η)π (ξ)π (φ|η)π̂u(y|κ, ξ, φ)π (u) (10)

or which it is easily checked that∫
π (κ, η, ξ, φ, u|y)du ∝ π (κ)π (η)π (ξ)π (φ|η)

∫
π̂u(y|κ, ξ, φ)π (u)du

∝ π (κ, η, ξ, φ|y).

ence, marginalizing out u gives the marginal parameter posterior in (8). Directly targeting the high dimensional posterior
(κ, η, ξ, φ, u|y) with PMMH is likely to give very small acceptance rates. The structure of the SDMEM naturally admits
Gibbs sampling strategy. We outline our novel Gibbs samplers in the next section.

.1. Gibbs sampling and blocking strategies

The form of (10) immediately suggests a Gibbs sampler that sequentially takes draws from the full conditionals.
owever, we can design two types of Gibbs samplers. Our first, novel strategy is denoted ‘‘naive Gibbs’’, where the ui

re updated with both the subject specific and common parameters.

aive Gibbs:

1. π (φi, ui
|κ, η, ξ, yi) ∝ π (φi

|η)π̂ui (yi|κ, ξ, φi)g(ui), i = 1, . . . ,M ,
2. π (κ, u|η, ξ, φ, y, u) = π (κ, u|φ, ξ, y) ∝ π (κ)

∏M
i=1 π̂ui (yi|κ, ξ, φi)g(ui),

3. π (ξ, u|κ, η, φ, y, u) = π (ξ, u|κ, φ, y) ∝ π (ξ)
∏M

i=1 π̂ui (yi|κ, ξ, φi)g(ui),
4. π (η|κ, ξ, φ, y, u) = π (η|φ) ∝ π (η)

∏M
i=1 π (φ

i
|η).

ote that step 1 consists of a set of draws of M conditionally independent random variables since

π (φ, u|κ, η, ξ, y) =

M∏
i=1

π (φi, ui
|κ, η, ξ, yi).

ence, step 1 gives a sample from π (φ, u|κ, η, ξ, y). Draws from the full conditionals in 1–3 can be obtained by using
etropolis–Hastings within Gibbs. Taking the [φi, ui

] block as an example, we use a proposal density of the form
(φi∗

|φi)g(ui∗) and accept a move from [φi, ui
] to [φi∗, ui∗

] with probability

min
{
1 ,

π (φi∗
|·)

π (φi|·)
×
π̂ui∗ (yi|φi∗, ·)
π̂ui (yi|φi, ·)

×
q(φi

|φi∗)
q(φi∗|φi)

}
.

ffectively, samples from the full conditionals in 1–3 are obtained via draws from pseudo-marginal MH kernels.
The above strategy is somewhat naive, since the auxiliary variables u need only be updated once per Gibbs iteration,

nstead in steps 1 to 3 of the naive Gibbs procedure vectors ui are simulated anew in each of the three steps (notice g(ui)
ppears in each of the first three steps). We therefore propose to update the blocks [φi, ui

], i = 1, . . . ,M in step 1 only,
nd condition on the most recent value of u in the remaining steps. We call this second, novel strategy ‘‘blocked Gibbs’’.

locked Gibbs:

1. π (φi, ui
|κ, η, ξ, yi) ∝ π (φi

|η)π̂ui (yi|κ, ξ, φi)g(ui), i = 1, . . . ,M ,
2. π (κ|η, ξ, φ, y, u) = π (κ|φ, ξ, y, u) ∝ π (κ)

∏M
π̂ (yi|κ, ξ, φi),
i=1 ui

5

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

w
E

O

3. π (ξ |κ, η, φ, y, u) = π (ξ |κ, φ, y, u) ∝ π (ξ)
∏M

i=1 π̂ui (yi|κ, ξ, φi),
4. π (η|κ, ξ, φ, y, u) = π (η|φ) ∝ π (η)

∏M
i=1 π (φ

i
|η).

The aim of blocking in this way is to reduce the variance of the acceptance probability associated with steps 2 and 3,
which involve the product of M estimates as opposed to a single estimate in each constituent part of step 1. Also, notice
g(ui) appears only in the first step. The effect of blocking in this way is explored empirically in Section 5.

4.2. Estimating the likelihood

It remains that we can generate non-negative unbiased estimates π̂u(y|κ, ξ, φ). This can be achieved by running
a sequential Monte Carlo procedure, also known as particle filter. The simplest approach is to use the bootstrap
particle filter (Stewart and McCarty, 1992; Gordon et al., 1993) (see also Künsch, 2013) that, for a single experimental
unit, recursively draws from the filtering distribution π (xit |y

i
1:t , κ, ξ , φ

i) for each t = 1, . . . , n. Here, yi1:t denotes the
observations of experiment i for time-steps 1, . . . , t . Essentially, a sequence of importance sampling and resampling steps
are used to propagate a weighted sample {(xit,k, w(ui

t,k)), k = 1, . . . ,Ni} from the filtering distribution, where Ni is the
number of particles for unit i. Note that we let the weight depend explicitly on the tth component of the auxiliary variable
ui

= (ui
1, . . . , u

i
n), associated with experimental unit i. At time t , the particle filter uses the approximation

π̂ (xit |y
i
1:t , κ, ξ , φ

i) ∝ π (yit |x
i
t , ξ)

Ni∑
k=1

π (xit |x
i
t−1,k, κ, φ

i)w(ui
t−1,k). (11)

A simple importance sampling/resampling strategy follows, where particles are resampled (with replacement) in pro-
portion to their weights, propagated via xit,k = ft (ui

t,k) ∼ π (·|xit−1,k, κ, φ
i) and reweighted by p(yit |x

i
t,k, ξ). Here, ft (·) is a

deterministic function of ui
t,k (as well as the parameters and previous latent state, suppressed for simplicity) that gives

an explicit connection between the particles and auxiliary variables. An example of ft (·) is to take the Euler–Maruyama
approximation

ft (ui
t,k) = xit−1,k + α(xit−1,k, κ, φ

i)∆t +

√
β(xit−1,k, κ, φ

i)∆t × ui
t,k

here ui
t,k ∼ N(0, Id) and ∆t is a suitably chosen time-step. In practice, unless ∆t is sufficiently small to allow an accurate

uler–Maruyama approximation, ft (ui
t,k) will describe recursive application of the numerical approximation.

Algorithm 1 Bootstrap particle filter for experimental unit i
Input: parameters κ , φi , ξ , auxiliary variables ui , data yi and the number of particles Ni .
utput: estimate π̂ui (yi|κ, ξ, φi) of the observed data likelihood.

1. Initialization (t = 1).

(a) Sample the prior. Put xi1,k = f1(ui
1,k) ∼ π (·), k = 1, . . . ,Ni .

(b) Compute the weights. For k = 1, . . . ,Ni set

w̃(ui
1,k) = π (yi1|x

i
1,k, ξ), w(ui

1,k) =
w̃(ui

1,k)∑Ni
j=1 w̃(ui

1,j)
.

(c) Update observed data likelihood estimate. Compute π̂ui1
(yi1|κ, ξ, φ

i) =
∑Ni

k=1 w̃(ui
1,k)/Ni .

2. For times t = 2, 3, . . . , n:

(b’) (optional) Sorting. Use Euclidean sorting on particles {xit−1,1, ..., x
i
t−1,Ni

} if using CPMMH.

(b) Resample. Obtain ancestor indices akt−1 , k = 1, . . . ,Ni using systematic resampling on the collection of weights
{w(ui

t−1,1), . . . , w(ui
t−1,Ni

)}.

(c) Propagate. Put xit,k = ft (ui
t,k) ∼ π

(
· |xi

t−1,akt−1
, κ, ξ , φi

)
, k = 1, . . . ,Ni .

(d) Compute the weights. For k = 1, . . . ,Ni set

w̃(ui
t,k) = π (yit |x

i
t,k, ξ), w(ui

t,k) =
w̃(ui

t,k)∑Ni
j=1 w̃(ui

t,j)
.

(e) Update observed data likelihood estimate. Compute

π̂ui1:t
(yi1:t |κ, ξ, φ

i) = π̂ui1:t−1
(yi1:t−1|κ, ξ, φ

i)π̂uit
(yit |y

i
1:t−1, κ, ξ , φ

i)

where π̂uit
(yit |y

i
1:t−1, κ, ξ , φ

i) =
∑Ni

k=1 w̃(ui
t,k)/Ni .
6

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

H
a
e
a
t
π

O

a
b
d
c

4

I
a
i

Algorithm 1 provides a complete description of the bootstrap particle filter when applied to a single experimental unit.
owever notice the addition of a non-standard and optional sorting step 2b’, which turns useful when implementing
correlated pseudo-marginal approach, as described in Section 4.3. For the resampling step we follow (Deligiannidis
t al., 2018) among others and use systematic resampling (see e.g. Murray et al., 2016), which only requires simulating
single uniform random variable at each time point. It is straightforward to augment the auxiliary variable ui to include
he random variables used in the resampling step. As a by-product of the particle filter, the observed data likelihood
(yi|κ, ξ, φi) can be estimated via the quantity

π̂ui (y
i
|κ, ξ, φi) = N−n

i

n∏
t=1

Ni∑
k=1

w̃(ui
t,k). (12)

Moreover, the corresponding estimator can be shown to be unbiased (Del Moral, 2004; Pitt et al., 2012).
The full Gibbs sampler for generating draws from the joint posterior (10) is given by Algorithm 2. For ease of exposition,

we have blocked the updates for κ and ξ , but note that the use of separate updates for these parameters is straightforward.
The precise implementation of step 4 of the Gibbs sampler is likely to be example specific, and we anticipate that a direct
draw of η(j) ∼ π (·|φ(j)) will often be possible. For example when the components of φ are assumed to be normally
distributed and η consists of the corresponding means and precisions, for which a semi-conjugate prior specification is
possible, see Section 5.1.

Algorithm 2 Blocked Gibbs sampler
Input: Data y, initial parameter values φ, κ , ξ , η and number of iterations niters .
utput: {φ(j), κ (j), ξ (j), η(j)}

niters
j=1 .

1. Initialize φ(0)
= (φ1,(0), . . . , φM,(0)), κ (0) , ξ (0) . Draw ui,(0)

∼ g(·) and run Algorithm 1 for i = 1, . . . ,M with ui,(0) , φi,(0), κ (0), ξ (0) and yi to obtain
π̂ui,(0) (yi|κ (0), ξ (0), φi,(0)). Set the iteration counter j = 1.

2. Update subject specific parameters. For i = 1, . . . ,M:

(a) Propose ui∗
∼ g(·) and φi∗

∼ q(·|φi,(j−1)).

(b) Compute π̂ui∗ (yi|κ (j−1), ξ (j−1), φi∗) by running Algorithm 1 with ui∗ , φi∗ , κ (j−1) , ξ (j−1) and yi .

(c) With probability

min
{
1 ,

π (φi∗
|η)

π (φi,(j−1)|η)
×

π̂ui∗ (yi|κ (j−1), ξ (j−1), φi∗)
π̂ui,(j−1) (yi|κ (j−1), ξ (j−1), φi,(j−1))

×
q(φi,(j−1)

|φi∗)
q(φi∗|φi,(j−1))

}
(13)

put φi,(j)
= φi∗ and ui,(j)

= ui∗ . Otherwise, store the current values φi,(j)
= φi,(j−1) and ui,(j)

= ui,(j−1) .

3. Update common parameters.

(a) Propose (κ∗, ξ ∗) ∼ q(·|κ (j−1), ξ (j−1)).
(b) Compute π̂u(j) (y|κ∗, ξ ∗, φ(j)) =

∏M
i=1 π̂ui,(j) (yi|κ∗, ξ ∗, φi,(j)) by running Algorithm 1 for i = 1, . . . ,M with ui,(j) , φi,(j) , κ∗ , ξ ∗ and yi .

(c) With probability

min
{
1 ,

π (κ∗)π (ξ ∗)
π (κ (j−1))π (ξ (j−1))

×
π̂u(j) (y|κ∗, ξ ∗, φ(j))

π̂u(j) (y|κ (j−1), ξ (j−1), φ(j))
×

q(κ (j−1), ξ (j−1)
|κ∗, ξ ∗)

q(κ∗, ξ ∗|κ (j−1), ξ (j−1))

}
(14)

put (κ (j), ξ (j)) = (κ∗, ξ ∗). Otherwise, store the current values (κ (j), ξ (j)) = (κ (j−1), ξ (j−1)).

4. Update random effect population parameters. Draw η(j) ∼ π (·|φ(j)).

5. If j = niters , stop. Otherwise, set j := j + 1 and go to step 2.

Executing Algorithm 2 requires n
∑M

i=1 Ni draws from the transition density governing the SDE in (1) per iteration.
In scenarios where the transition density is intractable, draws of a suitable numerical approximation are required. For
example, we may use the Euler–Maruyama discretization with time step ∆t = 1/m, where m ≥ 1 is chosen to limit the
ssociated discretization bias (and typically m ≫ 1). In this case, order mn

∑M
i=1 Ni draws of (7) are required. As discussed

y Andrieu et al. (2010), the number of particles per experimental unit, Ni, should be scaled in proportion to the number of
ata points n. Consequently, the use of PMMH kernels is likely to be computationally prohibitive in practice. We therefore
onsider the adaptation of a recently proposed correlated PMMH method for our problem.

.3. A correlated pseudo-marginal approach

Consider again the task of sampling the full conditional π (φi, ui
|κ, η, ξ, yi) associated with the ith experimental unit.

n steps 2(a–c) of Algorithm 2, a (pseudo-marginal) Metropolis–Hastings step is used whereby the auxiliary variables ui

re proposed from the associated pdf g(·) (notice we could introduce a subject-specific gi(·), but we refrain from doing so
n the interest of a lighter notation). As discussed by Deligiannidis et al. (2018) (see also Dahlin et al., 2015), the proposal
7

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

I
E

p

w
c
t
o
t

C
s
d
f
t

kernel need not be restricted to the use of g(ui). The correlated PMMH (CPMMH) scheme generalizes the PMMH scheme
by generating a new ui∗ from K (ui∗

|ui) where K (·|·) satisfies the detailed balance equation

g(ui)K (ui∗
|ui) = g(ui∗)K (ui

|ui∗). (15)

t is then straightforward to show that a MH scheme with proposal kernel q(φi∗
|φi)K (ui∗

|ui) and acceptance probability
q. (13) satisfies detailed balance with respect to the target π (φi, ui

|κ, η, ξ, yi).
We take g(ui) as a standard Gaussian density and K (ui∗

|ui) as the kernel associated with a Crank–Nicolson pro-
osal (Deligiannidis et al., 2018). Hence

g(ui) = N
(
ui

; 0 , Id
)

and K (ui∗
|ui) = N

(
ui∗

; ρui ,
(
1 − ρ2) Id)

here Id is the identity matrix whose dimension d is determined by the number of elements in ui. The parameter ρ is
hosen to be close to 1, to induce strong positive correlation between π̂ui (yi|κ,Σ, φi) and π̂ui∗ (yi|κ,Σ, φi∗), thus reducing
he variance of the acceptance probability in Eq. (13), which is beneficial because it reduces the chance of accepting an
verestimation of the likelihood function. Taking ρ = 0 gives the special case that K (ui∗

|ui) = g(ui∗), which corresponds
o the standard PMMH. Iteration j of step 2 of Algorithm 2 then becomes

2. For i = 1, . . . ,M:

(a) Propose φi∗
∼ q(·|φi,(j−1)). Draw ω ∼ N(0, Id) and put ui∗

= ρui,(j−1)
+

√
1 − ρ2ω.

(b) Compute π̂ui∗ (yi|κ (j−1), ξ (j−1), φi∗) by running Algorithm 1 with ui∗, φi∗, κ (j−1), ξ (j−1) and yi.
(c) With probability given by Eq. (13) put φi,(j)

= φi∗ and ui,(j)
= ui∗. Otherwise, store the current values

φi,(j)
= φi,(j−1) and ui,(j)

= ui,(j−1).

are must be taken here when executing Algorithm 1 in Step 2(b). Upon changing φi and ui, the effect of the resampling
tep is likely to prune out different particles, thus breaking the correlation between successive estimates of observed
ata likelihood. Sorting the particles before resampling can alleviate this problem (Deligiannidis et al., 2018). We
ollow Choppala et al. (2016) (see also Golightly et al., 2019) by using a simple Euclidean sorting procedure which, for
he case of a 1-dimensional latent state (e.g. when dim(X i

t) = 1 for every t) implies, prior to resampling the particles, to
sort the particles from the smallest to the largest. This is step 2b’ in algorithm 1, denoted ‘‘optional’’ as it only applies to
CPMMH, not PMMH.

4.4. Tuning the number of particles for likelihood approximation

It remains that we can choose the number of particles Ni to be used to obtain estimates of the observed data likelihood
contributions π̂ui (yi|κ, ξ, φi). Note that we allow a different number of particles per experimental unit to accommodate
differing lengths of the yi and potential model misspecification at the level of an individual unit. In the case of PMMH, a
simple strategy is to fix φi, κ and ξ at some central posterior value (obtained from a pilot run), and choose Ni so that the
variance of the log-likelihood (denoted σ 2

Ni
) is around 2 (Doucet et al., 2015; Sherlock et al., 2015). When using a CPMMH

kernel, we follow (Tran et al., 2016a; Choppala et al., 2016) by choosing Ni so that σ 2
Ni

= 2.162/(1 − ρ2
l) where ρl is the

estimated correlation between log π̂ui (yi|κ, ξ, φi) and log π̂ui∗ (yi|κ, ξ, φi). Hence, an initial pilot run (with the number of
particles set at some conservative value) is required to determine plausible values of the parameters. This pilot run can
also be used to give estimates of var(φi

|yi), i = 1, . . . ,M , each of which can subsequently be used as the innovation
variance in a Gaussian random walk proposal for φi.

4.5. Tuning the proposal distributions

The block structure of the Gibbs sampler (Algorithm 2) requires two proposal densities: φi∗
∼ q(·|φi,(j−1)) and

(κ∗, ξ ∗) ∼ q(·|κ (j−1), ξ (j−1)) that have to be chosen to achieve an algorithm that efficiently explores the posterior parameter
space.

In Sections 5.1 and 5.3 we employ the generalized Adaptive Metropolis (AM) algorithm (Andrieu and Thoms, 2008)
to tune the two proposal distributions. Regarding the generation of proposals φi∗, in the first step of the blocked
Gibbs scheme we tune subject-specific proposal distributions, separately for each φi∗. In addition to these M proposal
distributions we also tune a proposal distribution for (κ∗, ξ ∗). Thus, we automatically tune overall M + 1 proposal
distributions via the generalized AM algorithm. Additionally, in Sections 5.1 and 5.3 we found that the use of different
proposal distributions for each φi∗ was beneficial since random effects for the different subjects varied around very
different values.
8

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

H

o
v

a

(
u
A
t
s
t

w
c

s
p
T
r
o
c

u
(
G

w

A

s
φ
a

5. Applications

5.1. Ornstein–uhlenbeck SDEMEM

We consider the following Ornstein–Uhlenbeck (OU) SDEMEM{
Y i
t = X i

t + ϵ it , ϵ it
indep
∼ N(0, σ 2

ϵ), i = 1, . . . ,M
dX i

t = θ i1(θ
i
2 − X i

t)dt + θ i3dW
i
t .

(16)

ere θ i2 ∈ R is the stationary mean for the {X i
t} process, θ i1 > 0 is a growth rate (expressing how rapidly the system

reacts to perturbations) and θ i3 is the diffusion coefficient. The OU process is a standard toy-model in that it is completely
tractable, that is the associated SDE has a known (Gaussian) transition density, e.g. Fuchs (2013). This fact, coupled with the
assumption that the Y i

t |X
i
t are conditionally Gaussian and linear in the latent states, implies that we can apply the Kalman

filter to evaluate the likelihood function exactly. Therefore, exact inference is possible for the OU SDEMEM (both maximum
likelihood and Bayesian). For all units i we simulate n = 200 observations, with constant observational time-step ∆t . In
ur setup, all random effects (θ i1, θ

i
2, θ

i
3) are assumed strictly positive, and therefore we work with their log-transformed

ersion and set φi
= (log θ i1, log θ

i
2, log θ

i
3), where

φi
j |η

indep
∼ N(µj, τ

−1
j), j = 1, 2, 3

nd η = (µ1, µ2, µ3, τ1, τ2, τ3), with τj the precision of φi
j . The SDEMEM (16) has no parameters κ that are shared among

subjects, and the full set of parameters that we want to infer is (µ1, µ2, µ3, τ1, τ2, τ3, σϵ).
As already mentioned, we can compute the likelihood π (y|φ, σϵ) =

∏M
i=1 π (y

i
|φi, σϵ) exactly, using a Kalman filter

see Tornøe et al., 2005 and Donnet and Samson, 2013a for a description pertaining SDEMEMs). The filter can then be
sed in Algorithm 2, that is we avoid using the particle filter (Algorithm 1) and replace it with the Kalman filter in
lgorithm 2. Results from Algorithm 2 when using this approach are denoted with ‘‘Kalman’’. The transition density for
he latent state is known and therefore we do not need to use an Euler–Maruyama discretization when propagating the
tates forward in the particle filter. Instead we propagate the particles using the simulation scheme induced by the exact
ransition density:

X i
t+∆t = θ i2 + (X i

t − θ i2)e
−θ i1∆t

+

√
θ i

2
3

2θ i1
(1 − e−2θ i1∆t) × ui

t , (17)

here ui
t ∼ N(0, 1) independently for all t and all i. Clearly, the ui

t appearing in (17) are among the variates that we will
orrelate, when implementing CPMMH, in addition to the variates produced in the resampling steps.
We compare ‘‘Kalman’’ to four further methods: ‘‘naive PMMH’’, where we employ Algorithm 2 with the naive Gibbs

cheme (see Section 4.1), ‘‘PMMH’’, which is Algorithm 2, ‘‘CPMMH-099’’, which is Algorithm 2 with a Crank–Nicolson
roposal for the ui using a correlation of ρ = 0.99, and ‘‘CPMMH-0999’’ where we use a correlation of ρ = 0.999.
he number of particle used for each method was selected using the methods described in Section 4.4. All five methods
eturn exact Bayesian inference, and while this is obvious for ‘‘Kalman’’, we remind the reader that this holds also for the
ther four approaches as these are instances of the pseudo-marginal approach. Therefore, special interest is in efficiency
omparisons between the last four algorithms, ‘‘Kalman’’ being the obvious gold-standard.
We simulated data from the model in (16) with the following settings (data are in Fig. 1): M = 40 experimental

nits, n = 200 observations for each unit using a time step ∆t = 0.05, σϵ = 0.3, and η = (µ1, µ2, µ3, τ1, τ2, τ3) =

−0.7, 2.3,−0.9, 4, 10, 4). The prior for the observational noise standard deviation σϵ was set to a Gamma distribution
a(1, 0.4), and the priors for the η parameters were set to⎧⎨⎩µj|τj

indep
∼ N(µ0j ,M0jτj), j = 1, 2, 3,

τj
indep
∼ Ga(αj, βj),

(18)

here,

(µ01 ,M01 , α1, β1) = (0, 1, 2, 1),
(µ02 ,M02 , α2, β2) = (1, 1, 2, 0.5),
(µ03 ,M03 , α3, β3) = (0, 1, 2, 1).

The priors in are semi-conjugate and we can therefore use a tractable Gibbs step to sample η in step 4 of Algorithm 2.
n extended introduction to the semi-conjugate prior, including the tractable posterior can be found in Murphy (2007).
We ran all four methods for 60k iterations, considering the first 10k iterations to be the burn-in period. We set the

tarting value for σϵ at σϵ0 = 0.2, which is far from its ground truth value. The starting values for the random effects
i
j were set to their prior means. The proposal distributions were adaptively tuned using the generalized AM algorithm
nd the particle filters were implemented on a single-core computer, thus no parallelization was utilized. We used the
9

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

o
‘
a
e

f
u
i
i
b
t

r
r

Fig. 1. Simulated data from the OU-SDEMEM model.

Table 1
OU SDEMEM. Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS (mESS), minimum ESS per
minute (mESS/m) and relative minimum ESS per minute (Rel.) as compared to PMMH-naive. All results are based on
50k iterations of each scheme, and are medians over 5 independent runs of each algorithm on different data sets. We
could only produce 5 runs due to the very high computational cost of PMMH.
Algorithm ρ N CPU (m) mESS mESS/m Rel.

Kalman – – 1.23 443.27 357.61 5140.18
PMMH-naive 0 3000 4601.87 229.01 0.05 1.00
PMMH 0 3000 4086.91 232.94 0.06 1.16
CPMMH-099 0.99 100 200.37 234.54 1.17 23.58
CPMMH-0999 0.999 50 110.88 235.63 2.13 41.48

same number of particles Ni ≡ N for all units. Results are in Table 1 and Figs. 2–3. As a reference for the efficiency
f the considered samplers, we take the minimum ESS per minute (mESS/m in Table 1) as measured on PMMH-naive as
‘base/default’’ value and set it to 1 in the rightmost column of Table 1. The minimum ESS per minute for the other samplers
re relative to the PMMH-naive value. The mESS value is computed over all parameter chains (including individual random
ffects), i.e. the chains for φ, σϵ and η. From Table 1 we conclude that CPMMH is about 20 to 40 times more efficient than

PMMH in terms of mESS/m, depending on which correlation level we use. Furthermore, ‘‘Kalman’’ is about 5140 times
more efficient than PMMH. However, the latter comparison is not very interesting since the Kalman filter can be applied
only to a very restricted class of models. The marginal posteriors in Figs. 2–3 show that the several methods generate
very similar posterior inference, which is reassuring. We left out the inference results from CPMMH-0999 for reasons of
clarity. However we observed that with N = 50 CPMMH-0999 produces a slightly biased inference for σϵ , due to failing
to adequately mix over the auxiliary variable u, while inference for the remaining parameters is similar to the other
considered methods. We verified (results not shown) that using N = 100 is enough to repair this problem. From Figs. 2–3
we can conclude that all parameters, with the possible exclusion of τ2, are well inferred. Regarding τ2, this is the precision
or θ i2, the latter representing the stationary mean for a OU model. Clearly, by looking at Fig. 1, the occasional outlier in the
pper part of the Figure may contribute to underestimating the true precision of the stationary mean. To check if CPMMH
ndeed is necessary, we tried to run PMMH with 100 particles (i.e., the same number of particles as for CPMMH-099). The
nference results produced with PMMH with 100 particles gave considerable mismatch (in terms of posterior output) for
oth the η parameters and σϵ relative to that obtained from CPMMH-099, resulting from the extremely poor mixing of
he chain.

In summary, CPMMH is able to return reliable inference with a much smaller number of particles than PMMH, while
esulting in a procedure that is about 20 to 40 times more efficient than PMMH (the 40-times figure is valid if we are
eady to accept a small bias in σϵ). Again, for most models exact inference based on a closed-form expression for the
likelihood function is unavailable, therefore being able to obtain accurate inference using a computationally cheaper
version of PMMH is very appealing.

Notice that while for this simple case study PMMH-naive has the same mESS than PMMH, this is not the case for
the case study in Section 5.2, where using the blocked-Gibbs sampler produces a much larger mESS value compared to
naive-Gibbs.

5.1.1. Investigating the choice of number of particles
A crucial problem when running methods based on particle filters is the selection of the number of particles N . In this

section we investigate this problem by running CPMMH-099 and CPMMH-0999 with N = [5, 10, 20, 50, 100] particles
10

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151
Fig. 2. OU SDEMEM: marginal posterior distributions for σϵ . Solid line is Kalman, dashed line is PMMH-naive, dotted line is PMMH, dash-dotted
line is CPMMH-099, vertical line is the ground truth.

Fig. 3. OU SDEMEM: marginal posterior distributions for η = (µ1, µ2, µ3, τ1, τ2, τ3). Solid line Kalman, dashed line PMMH-naive, dotted line PMMH,
dash-dotted line CPMMH-099, vertical line ground truth.

using 25 different (simulated) data sets. We also ran the Kalman algorithm using the 25 different data sets for comparison
purposes. In this analysis, we are only interested in investigating the quality and computational efficiency of the inference.
Hence, we initialized all algorithms at the ground truth parameter values and ran each algorithm for 60k iterations, and
discarding the first 10k iterations as burnin period. We first estimated the Wasserstein distance, between the marginal
posteriors for σϵ and η from the CPMMH algorithms and the corresponding Kalman-based marginal posteriors. This
distance was computed via the POT package (Flamary and Courty, 2017) (we do not compute the Wasserstein distance
for the marginal posterior of the random effects φi, since this is not of central interest for us). All Wasserstein distances
are based on the last 5k samples of the corresponding chains. To obtain a performance measure that takes into account
both the quality of the inference and the computational effort, we multiply the Wasserstein distances by the runtimes (in
minutes) of the CPMMH algorithms, and obtain the performance measure Wasserstein distance × runtime (m); see Figs. 4
11

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

p
i
c
f
d
σ

p

C
C
o

Fig. 4. OU SDEMEM: Wasserstein distance × runtime (m) performance measure for the marginal posterior of σϵ , for several values of N and using
ρ = 0.999 (left) and ρ = 0.99 (right). The solid line represents the mean value obtained from the 25 different data sets. The dashed confidence
bands represent the 25th and 75th percentiles.

and 5. Smaller values of this measure are to be preferred as they indicate high computational efficiency and/or accurate
inference. The reason for considering this performance measure is to take the quality of the inference into account, since
for N < 20 we noticed that it is possible to obtain chains that do not indicate adequate convergence within a reasonable
time-frame.

We can conclude that, on average, results for different correlation levels are similar. However, for σϵ we obtain a better
erformance when using more particles (lower Wasserstein distance × runtime (m) value), this resulting from inaccurate
nference for σϵ when using too few (N < 50) particles, leading to a large Wasserstein distance. However, this is not the
ase for η since Fig. 5 shows that the performance is better with fewer particles, a result that we obtain since the inference
or η is good even when using few particles (though not reported, in our analyses we observed that the Wasserstein
istances for η are similar across all attempted values of N). Thus, if we want to infer the measurement noise parameter
ϵ accurately, in this case we will have to use N ≥ 50 particles, while the inference for η is satisfactory, even with fewer
articles.
Another issue that we analyze is the variability of mESS for the different data sets, based on 50k iterations of

PMMH. To investigate this we computed the 25th and 75th percentiles of mESS for CPMMH-099 with N = 100 and
PMMH-0999 with N = 50 based on the inference results on all unknown parameters from 25 simulated data sets. We
btain that the 25th and 75th percentiles of mESS for CPMMH-099 (N = 100) are [227, 240], and for CPMMH-0999

(N = 50) are [227, 252]. Given that the several mESS are computed on different datasets, some degree of variation in the
measure is expected and we conclude that the observed mESS variability is fairly small.

5.2. Tumor growth SDEMEM

We consider a stochastic differential mixed effects model that has been used to describe the tumor volume dynamics
in mice receiving a treatment. Here we study a simplified version of the model in Picchini and Forman (2019), and is
given by

dX i
1,t =

(
β i

+ (γ i)2/2
)
X i
1,tdt + γ iX i

1,tdW
i
1,t

dX i
2,t =

(
−δi + (ψ i)2/2

)
X i
2,tdt + ψ iX i

2,tdW
i
2,t (19)

for experimental units i = 1, . . . ,M . Here, W1,t and W2,t are uncorrelated Brownian motion processes, X i
1,t and X i

2,t are
respectively the volume of surviving tumor cells and volume of cells killed by a treatment for mouse i. Let V i

t = X i
1,t +X i

2,t
denote the total tumor volume at time t in mouse i. The observation model is given by

Y i
= log V i

+ ϵ i, ϵ i
indep
∼ N(0, σ 2). (20)
t t t t e

12

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

ρ

b

L

s

w
S

a
c
s
2
f

c
i

Fig. 5. OU SDEMEM: Wasserstein distance × runtime (m) performance measure for the marginal posterior of η, for several values of N and using
= 0.999 (left) and ρ = 0.99 (right). The solid line represents the mean value obtained from the 25 different data sets. The dashed confidence

ands represent the 25th and 75th percentiles.

et φi
= (logβ i, log γ i, log δi, logψ i). We complete the SDEMEM specification via the assumption that

φi
j |η

indep
∼ N(µj, τ

−1
j), j = 1, . . . , 4 (21)

o that η = (µ1, . . . , µ4, τ1, . . . , τ4).
We recognize that X i

1,t and X i
2,t are geometric Brownian motion processes and (19) can be solved analytically to give

X i
1,t |X

i
1,0 = xi1,0 ∼ logN

(
log(xi1,0) + β it , (γ i)2t

)
X i
2,t |X

i
2,0 = xi2,0 ∼ logN

(
log(xi2,0) − δit , (ψ i)2t

)
(22)

here logN(·, ·) denotes the log-Normal distribution. Despite the availability of a closed form solution to the underlying
DE model, the observed data likelihood is intractable, due to the nonlinear form of (20) as a function of log(X i

1,t + X i
2,t).

Nevertheless, a tractable approximation can be found, by linearizing log V i
t . The resulting linear noise approximation (LNA)

is derived in B, and in what follows, we compare inference under the gold standard PMMH to that obtained under the
LNA.

We mimicked the real data application in Picchini and Forman (2019) by generating 21 observations at integer times
for M = 10 replicates. We took

η = (log 0.29, log 0.25, log 0.09, log 0.34, 10, 10, 10, 10)

and sampled φi
j |η using (21). The latent SDE process was then generated using (22) with an initial condition of xi0 =

(75, 75)T (assumed known for all units), and each observation was corrupted according to (20) with σ 2
e = 0.2. The

resulting data traces are consistent with the observations on total tumor volume of those subjects receiving chemo therapy
in Picchini and Forman (2019) and can be seen in Fig. 6. We adopted semi conjugate, independent N(−2, 1) and Ga(2, 0.2)
priors for the µj and τj respectively. We took log σe ∼ N(0, 1) to complete the prior specification. Given the use of synthetic
data of equal length for each experimental unit, we pragmatically took the number of particles as Ni = N , i = 1, . . . , 10.
Our choice of N was guided by the tuning advice of Section 4.4. For example, with CPMMH we obtain typical ρL values
of around 0.75, when parameter values are fixed at an estimate of the posterior mean. This gives σ 2

N = 10.6 which is
chieved with N = 7 particles. To avoid potentially sticky behavior of the chain in the posterior tails, we choose the
onservative value N = 10. We compare four approaches: naive PMMH (where the ui are updated with both the subject
pecific and common parameters), PMMH (where the ui are only updated with the subject specific parameters – Algorithm
), CPMMH (Algorithm 2 with a Crank–Nicolson proposal on the ui) and the LNA based approach. We ran each scheme
or 500k iterations. The results are summarized in Table 2 and Fig. 7.

Fig. 7 shows marginal posterior densities of the components of η. We see that inferences for these parameters are
onsistent with the true values that generated the data (with similar results obtained for the other parameters) and that
nference via CPMMH is consistent with that from the gold-standard PMMH. Similar results are obtained for σ (not shown
ϵ

13

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

t
p
a
p

5

I
a
t

w
a
f

Fig. 6. Simulated data from the tumor growth model.

Table 2
Tumor model. Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS (mESS), minimum ESS
per minute (mESS/m) and relative minimum ESS per minute (Rel.) as compared to PMMH-naive. All results are based
on 500k iterations of each scheme.
Algorithm ρ N CPU (m) mESS mESS/m Rel.

LNA – – 1286 3676 2.858 13
PMMH - naive 0 30 3098 665 0.215 1
PMMH 0 30 2963 2559 0.864 4
CPMMH 0.999 10 957 2311 2.415 11

for brevity). At the same time, from Table 2 we note that CPMMH with ρ = 0.999 is about 11 times more efficient than
he naive PMMH and almost 3 times more efficient than PMMH with additional blocking. Finally, the LNA-based approach
rovides an accurate alternative to PMMH, except for τ4. However, everything considered, CPMMH is to be preferred here
s its computational efficiency is comparable to LNA, but unlike the latter, CPMMH provides accurate inference for all
arameters, and unlike LNA the CPMMH approach is plug-and-play.

.2.1. Use of the Euler–maruyama approximation
We anticipate that for many applications of interest, an analytic solution of the underlying SDE will not be available.

t is common place to use a numerical approximation in place of an intractable analytic solution. The simplest such
pproximation is the Euler–Maruyama (E–M) approximation. In this section, we investigate the effect of the E–M on
he performance of PMMH and CPMMH for the tumor growth model.

The Euler–Maruyama approximation of (19) is

∆X i
1,t =

(
β i

+ (γ i)2/2
)
X i
1,t∆t + γ iX i

1,t∆W i
1,t

∆X i
2,t =

(
−δi + (ψ i)2/2

)
X i
2,t∆t + ψ iX i

2,t∆W i
2,t

here, for example, ∆X i
1,t = X i

1,t+∆t − X i
1,t and ∆W i

1,t ∼ N(0,∆t), with other terms defined similarly. To allow arbitrary
ccuracy of E–M, the inter-observation time length ∆t is replaced by a stepsize ∆t = 1/L for the numerical integration,
or integer L ≥ 1. We find that using L = 5 (giving 4 intermediate times between observation instants) allows sufficient
14

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

a

a
t

s
i
r
p

Fig. 7. Marginal posterior distributions for µi and τi , i = 1, . . . , 4. Dotted line shows results from LNA scheme, solid line is from the CPMMH scheme
nd dashed line is the PMMH Scheme.

ccuracy (compared to the analytic solution) to permit use of the same tuning choices when re-running PMMH (including
he naive scheme) and CPMMH. Our findings are summarized by Table 3.

Unsurprisingly, inspection of Table 3 reveals that relative performance between the three computing pseudo-marginal
chemes is similar to that obtained when using the analytic solution; CPMMH provides almost an order of magnitude
ncrease in terms of mESS/m over a naive PMMH approach. We note that use of the Euler–Maruyama approximation
equires computation and storage of an additional 1/∆t innovations per SDE component, inter-observation interval,
article and subject, thus accounting for the increase in CPU time compared to when using the analytic solution.
15

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

d

f
o

T

(
o

Table 3
Tumor model (Euler–Maruyama). Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS (mESS),
minimum ESS per minute (mESS/m) and relative minimum ESS per minute (Rel.) as compared to PMMH-naive. All
results are based on 500k iterations of each scheme.
Algorithm ρ N CPU (m) mESS mESS/m Rel.

PMMH - naive 0 30 7947 990 0.123 1
PMMH 0 30 7651 2240 0.293 2.4
CPMMH 0.999 10 1893 2172 1.15 9.2

Nevertheless, we find that our proposed approach is able to accommodate an intractable SDE scenario and provides a
worthwhile increase in performance over competing approaches.

5.2.2. Comparison with ODEMEM
To highlight the potential issues that arise by ignoring inherent stochasticity, we consider inference for an ordinary

ifferential equation mixed effects model (ODEMEM) of tumor growth. We take the SDEMEM in (19) and set γ i
= ψ i

= 0
to give

dxi1,t = β ixi1,tdt,

dxi2,t = −δixi2,tdt (23)

or i = 1, . . . ,M . The observation model and random effects distributions remain unchanged from (20) and (21) upon
mitting log γ i and logψ i from φi. The ODE system in (23) can be solved to give

xi1,t = xi1,0 exp{β it}, xi1,t = xi1,0 exp{δit}.

he likelihood associated with each experimental unit is then obtained simply as

π (yi|φi, σe) =

21∏
t=1

N
(
yit; log(x

i
1,t + xi2,t), σ

2
e

)
.

Fitting the ODEMEM to the synthetic data set from Section 5.2 is straightforward, via a Metropolis-within-Gibbs scheme.
Figs. 8 and 9 summarize our findings. Unsurprisingly, since the ODEMEM is unable to account for intrinsic stochasticity, the
observation standard deviation is massively over-estimated. Fig. 8 shows little agreement between the marginal posteriors
under the ODEMEM and SDEMEM for this parameter. In terms of model fit, both the observation (Y 1

t) and latent process
X1
t = log V 1

t) predictive distributions for unit 1 are over concentrated for the ODEMEM. Similar results (not shown) are
btained for the other experimental units. Notably, from Fig. 9, around half of the actual simulated Xt values lie outside

of the 95% credible interval under the ODEMEM.

5.3. Neuronal data

Here we consider a much more challenging problem: modeling a large number of observations pertaining neuronal
data. In particular, we are interested in modeling the neuronal membrane potential across inter-spike intervals (ISIs).
The problem of modeling the membrane potential from ISIs measurements using SDEs has already been considered
numerous times, also using SDEMEMs, see Picchini et al. (2008). In fact here we analyze the same data considered
in Lansky et al. (2006) and Picchini et al. (2008), or actually a subset thereof, due to computational constraints. The
‘‘leaky integrate-and-fire’’ appears to be one of the most common models, in both artificial neural network applications
and descriptions of biological systems. Deterministic and stochastic implementations of the model are possible. In the
stochastic version, under specific assumptions (Lanski, 1984), it coincides with the Ornstein–Uhlenbeck stochastic process
and has been extensively investigated in the neuronal context, for instance in Ditlevsen and Lansky (2005). Consider
Fig. 10 as an illustrative example, reporting values of neuronal membrane depolarization studied in Höpfner (2007).
Inter-spike-intervals are the observations considered between ‘‘firing’’ times of the neuron, the latter being represented
by the spikes appearing in Fig. 10 (notice these are not the data we analyzed. This figure is only used for illustration).
Data corresponding to the near-deterministic spikes are removed, and what is left constitutes data from several ISIs. As
in Picchini et al. (2008), we consider data from different ISIs as independent. Hence, M is the number of considered ISIs.
These are 312 in total, however, because of computational limitations, we will only analyze a subset of 100 ISIs, hence
our results are based on M = 100 and a total of 162,610 observations. A challenge is posed by the fact that some ISIs
are much longer than others (in our case they vary between 600 and 2,500 observations), meaning that longer ISIs could
typically require a larger N to avoid particle depletion, but using the same large N to approximate all M likelihood terms
would be a waste of computational resources. This is why CPMMH comes particularly useful, as it allows to keep a small
N across all units while still avoiding sticky behavior in the MCMC chains. Data from the 100 ISIs are plotted on a common
time-scale in Fig. 11 (after some translation to let each ISI start approximately at zero value at time zero). These consist
16

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

C

Fig. 8. Marginal posterior distributions for the (logged) subject specific parameters logβ1 , log δ1 , and the observation standard deviation log σe .
Dashed line shows results from ODEMEM, solid line is from SDEMEM.

of membrane potentials measured every 0.15 msec intracellularly from the auditory system of a guinea pig (for details
on data acquisition and processing, see Yu et al., 2004).

Outside the mixed-effects context, if we denote the neuronal input with ν, and if the neuron is supposed to operate
in a stationary state during some time of interest, then ν would be assumed constant during this period. Picchini et al.
(2008) generalize by assuming that in addition to ν there is a random component changing from one ISI to the next,
which could be caused by the naturally occurring variations of environment signaling, by experimental irregularities or
by other sources of noise not included in the model. This fact can then be modeled by assuming that each ISI has its own
input ν i, and Picchini et al. (2008) specifically assume that the ν i are iid Gaussian distributed with mean ν. An extension
of the model in Picchini et al. (2008) is the following state-space type SDEMEM{

Y i
t = X i

t + ϵ it , ϵ it
indep
∼ N(0, σ 2

ϵ), i = 1, . . . ,M,
dX i

t = (−λiX i
t + ν i)dt + σ idW i

t .
(24)

where the diffusion process {X i
t; t ≥ 0} models the membrane potential [mV] in the ith ISI, with input ν i[mV/msec]. The

spontaneous voltage decay (in the absence of input) for the ith ISI is (λi)−1
[msec], which means that the stationary mean

for {X i
t} is ν i/λi, see e.g. Ditlevsen and Lansky (2005) for details. The diffusion coefficients σ i have unit [mV/

√
msec].

learly, we assume that we are unable to observe {X i
} directly, and instead can only observe a noisy realization from
t

17

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151
Fig. 9. Posterior predictive mean (black) and 95% credible intervals (gray) for the observed process Y 1
t (circles, left panel) and the latent process

X1
t = log V 1

t (circles, right panel). Dashed line shows results from ODEMEM, solid line is from SDEMEM.

Fig. 10. An exemplificative plot of depolarization [mV] vs time [sec].
Source: Data from Höpfner (2007).

{Yt; t ≥ 0}. Differences with the SDEMEM in Picchini et al. (2008) are that: (i) their observations were assumed unaffected
by measurement noise, i.e. observations were directly available from {X i

t; t ≥ 0}, i = 1, . . . ,M , which is a convenient
assumption easing calculations towards obtaining exact maximum likelihood estimation, but that it is generally possible
to argue against; (ii) in Picchini et al. (2008) the only random effect was ν i, and remaining parameters were fixed-effects,
while in the present case we have random effects λi and σ i in addition to ν i. Of course here we also need to estimate σϵ ,
which was not done in Picchini et al. (2008) since no measurement error was assumed.
18

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151
Fig. 11. Observations from 100 ISIs.

As in Section 5.1 the random effects are constrained to be positive and we therefore define φi
= (φi

1, φ
i
2, φ

i
3) =

(log λi, log ν i, log σ i), where

φi
j |η

indep
∼ N(µj, τ

−1
j), j = 1, 2, 3,

and η = (µ1, µ2, µ3, τ1, τ2, τ3), with τj the precision of φi
j . Since we here have a similar setting as in Section 5.1, we

employ the same semi-conjugate priors with hyperparameters

(µ01 ,M01 , α1, β1) = (log(0.1), 1, 2, 1),
(µ02 ,M02 , α2, β2) = (log(1.5), 1, 2, 1),
(µ03 ,M03 , α3, β3) = (log(0.5), 1, 2, 1).

The considered data are measured with techniques ensuring high precision, and we assume the following prior log σϵ ∼

N(−1, 1). Because of the small measurement noise, we expect that a bootstrap filter will perform poorly, leading to a very
noisy approximation of the likelihood π (y|φ, σϵ) =

∏M
i=1 π (y

i
|φi, σϵ). To be able to obtain a good approximation of the

likelihood, we instead use the bridge particle filter found in Golightly and Wilkinson (2011), since, as explained below,
the bootstrap filter is statistically inadequate for this experiment (moreover, it is also computationally inadequate, since it
would require a too large number of particles, which was impossible to handle with the limited memory of our computer).
In A, we derive the bridge filter for the model in (24), and we also compare the forward propagation of the particles that
we obtain using the bootstrap filter and the bridge filter. In A.2 we see that the likelihood approximation obtained from
the bootstrap filter is very inaccurate, which is due to its inability to handle measurements with small observational
noise. Consequently, the number of particles required to give likelihood estimates with low variance is computationally
prohibitive. Therefore, for this example, we only report results based on the bridge filter (which is not a plug-and-play
method).

We use the following four algorithms already defined in Section 5.1: Kalman, which obviously here is the gold-standard
method; PMMH, using the bridge filter with N = 1 particle; CPMMH-0999 using the bridge filter also with 1 particle,
and CPMMH-09 using the bridge filter with 1 particle. We find that, due to propagating particles conditional on the next
observation, using a single particle was enough to give likelihood estimates with low variance. We ran all algorithms
for 100k iterations, considering the first 20k iterations as burn-in. The starting value for σϵ was set far away from the
posterior mean that we obtained from a pilot run of the Kalman algorithm, and the starting values for the random effects φi

j
were set to their prior means. For all algorithms, the proposal distributions were tuned adaptively using the generalized
AM algorithm as described in Section 4.5. We ran the algorithms on a single-core computer so no parallelization was
utilized. Posterior marginals in Figs. 12–13 show that inference results for all algorithms are very similar, except for
CPMMH-0999, for which posterior samples of σϵ are inconsistent with the output from the other competing schemes. We
note that the case of N = 1 can be seen to correspond to a joint update of the parameters and latent process x. Inducing
strong positive correlation between successive values of u therefore results in extremely slow mixing over the latent
process and in turn, the parameters. This is particularly evident for σϵ , whose update requires calculation of likelihood
estimates over all experimental units. Reducing ρ to 0.9 appears to alleviate this problem. Runtimes and ESS values are
in Table 4. As expected, Kalman is the most efficient algorithm, being 19 times more efficient than PMMH is terms of
ESS/min. However, here PMMH and CPMMH have the same efficiency in terms of ESS/min. Thus, CPMMH does not seem
to produce any efficiency improvement for this case study. This is due to the efficiency of the bridge filter in guiding state
proposals towards the next observation, and therefore allowing us to run PMMH with very few particles, thus making
the potential improvement brought by CPMMH essentially null.
19

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151
Fig. 12. Neuronal model: marginal posterior distributions for log σϵ . Solid line is Kalman, dashed line is PMMH, dotted line is CPMMH-0999,
dash-dotted line CPMMH-09.

Fig. 13. Neuronal model: marginal posterior distributions for η = (µ1, µ2, µ3, τ1, τ2, τ3). Solid line is Kalman, dashed line is PMMH, dotted line is
CPMMH-0999, dash-dotted line CPMMH-09.

We compare our results with those in Picchini et al. (2008). Since we have assumed that the random effects φi
=

(φi
1, φ

i
2, φ

i
3) = (log λi, log ν i, log σ i) are Gaussian, then the (λi, ν i, σ i) are log-Normal distributed with means (λ, ν, σ)

and standard deviations (σλ, σν, σσ) respectively. By plugging the posterior means for (log λi, log ν i, log σ i) as returned
by ‘‘Kalman’’ into the formulas for the mean and standard deviation of a lognormal distribution, we obtain that λ =

0.036(σλ = 0.009) [1/msec], ν = 0.406(σν = 0.105) [mV/msec], and σ = 0.433, (σσ = 0.072). In Picchini et al. (2008) we
used a maximum likelihood approach, which is a fast enough procedure for Markovian data (there we did not assume a
state-space model) that allowed us to obtain point estimates using all 312 ISIs (instead of 100 ISIs as in this case), but still
slow enough to not permit bootstrapped confidence intervals to be obtained. Therefore, there we reported intervals based
on asymptotic normality. There we had point estimates ν̂ = 0.494 and σ̂ν = 0.072, which are similar to our Bayesian
estimation. It makes sense that the inferences are not very different, as in the end our estimation of σ is very small,
ϵ

20

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

l
m
a
m
t
m
o
n

e
p
n
f
f
s
b
t
n
i
t
p
f
a
t
w

Table 4
Neuronal model. Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS (mESS), minimum ESS
per minute (mESS/m), and relative minimum ESS per minute (Rel.) as compared to PMMH. All results are based on
100k iterations of each scheme.
Algorithm ρ N CPU (m) mESS mESS/m Rel.

Kalman – – 56 630 11.30 18.9
PMMH – 1 479 287 0.6 1.0
CPMMH-09 0.9 1 655 400 0.61 1.0
CPMMH-0999 0.999 1 653 372 0.57 1.0

meaning that we could assume nearly Markovian data. However here we have also inferences for random effects λi and
σ i, whereas in Picchini et al. (2008) these were assumed fixed (unknown) effects with maximum likelihood estimates
λ̂ = 0.047 [1/msec] (it can be obtained from Table 1 in Picchini et al. (2008) via 1/0.021 = 47.62 [1/sec]) and σ̂ = 0.427
[mV/

√
msec] (it can be obtained from Table 1 in Picchini et al. (2008) by converting 0.0135 [V/

√
sec] into [mV/

√
msec]).

We appreciate how close our posterior means based on 100 ISIs are to the maximum likelihood estimates using 312 ISIs.

6. Discussion

We have constructed an efficient and general inference methodology for the parameters of stochastic differential
equation mixed-effects models (SDEMEMs). While SDEMEMs are a flexible class of models for ‘‘population estimation’’,
their use has been limited by technical difficulties that make the execution of inference algorithms (both classic and
Bayesian) computationally intensive. Our work proposed strategies to both (i) produce Bayesian inference for very general
SDEMEMs, without the limitations of previous methods; (ii) alleviate the computational requirements induced by the
generality of our methods. The SDEMEMs we considered are general in the sense that the underlying SDEs can be
nonlinear in the states and in the parameters; the random parameters can have any distribution (not restricted to the
Gaussian family); the observations equation does not have to be a linear combination of the latent states. We produced a
Metropolis-within-Gibbs algorithm (hereafter Gibbs sampler, Algorithm 2) with carefully constructed blocking strategies,
where the technically difficult approximation to the unavailable likelihood function is efficiently handled via correlated
particle filters. The use of correlated particle filters brings in the well-known benefit of requiring fewer particles compared
to the particle marginal Metropolis–Hastings (PMMH) algorithm. In our experiments, the novel blocked-Gibbs sampler
embedding a correlated PMMH (CPMMH) shows that it is possible to considerably reduce the number of required particles
while still obtaining a value of the effective sample size (ESS) that is comparable to using standard PMMH in the Gibbs
sampler. This means that the Gibbs sampler with embedded CPMMH is computationally efficient and on two out of three
examples of increasing complexity we found that our algorithm is much more efficient than a similar algorithm using the
standard PMMH, sometimes even 40 times more efficient. Some care must be taken when choosing ρ, which governs the
evel of correlation between successive likelihood estimates. Taking ρ ≈ 1 can result in the sampler failing to adequately
ix over the auxiliary variables. We found that this problem was exacerbated when using relatively few particles (such
s N = 1), but can be overcome by reducing ρ. The fact that our approach is an instance of the pseudo-marginal
ethodology of Andrieu and Roberts (2009) implies that we produce exact (simulation-based) Bayesian inference for

he parameters of our SDEMEMs, regardless the number of particles used. We mostly focus on producing ‘‘plug-and-play’’
ethodology (but see below for exceptions), meaning that no preliminary analytic calculations should be required to run
ur methods, and forward simulation from the SDEs simulator should be enough. Instead, what is necessary to set is the
umber of particles N and, when correlated particles filters are used (CPMMH), the correlation parameter ρ (however

this one is easily set within the interval [0.90, 0.999]). Finally, the usual settings for the MCMC proposal distribution
should be decided (covariance matrix of the proposal function q(·)). However, for the neuronal data example we had to
mploy a bridge filter, since the observational noise is very low for this case study, causing the bootstrap filter to perform
oorly. The bridge filter is not plug-and-play (as discussed below), however in this paper we have decided to include a
on-plug-and-play method to show how to analyze complex case studies with existing state-of-art sequential Monte Carlo
ilters. When considering a plug-and-play approach, our proposed methodology relies on the use of the bootstrap particle
ilter, within which particles are propagated according to the SDE solution or an approximation thereof. We note that in
cenarios where the observations are particularly informative (e.g. the neuronal data case study in Section 5.3), it may be
eneficial to propagate particles conditional on the observations, by using a carefully chosen bridge construct. We refer
he reader to Golightly et al. (2019) for details on the use of such constructs within a CPMMH scheme for SDEs. However,
otice that in order to use the constructs in Golightly et al. (2019) the conditional distribution of observations (i.e. (2)
n our context) must be Gaussian. This is the underlying assumption that is exploited in Botha et al. (2020) to enable
he use of bridge constructs in inference for SDEMEMs. In Botha et al. (2020) they also use methods based on correlated
article filters, in a work which has been proposed independently and concurrently to ours (July 25 2019 on arXiv). See
or example their ‘‘component-wise pseudo-marginal’’ (CWPM) method, which is similar to the naive Gibbs strategy we
lso propose, and they found that CWPM was the best strategy among a battery of explored methods. In order to correlate
he particles, Botha et al. (2020) advocate the use of the blockwise pseudo-marginal strategy of Tran et al. (2016b): this

ay, at each iteration of a CPMMH algorithm they randomly pick a unit in the set {1, . . . ,M}, and only for that unit

21

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

v
b
n

w
a
S
t
s

f
i
c
v

A

R
a
a
f

A

A

b
s
(
n
j
a

5

T

they update the corresponding auxiliary variates, whereas for the remaining M − 1 units they reuse the same auxiliary
ariates ui as employed in the last accepted likelihood approximation. This approach implies an estimated correlation
etween log-likelihoods of around 1 − 1/M , which also implies that the correlation level is completely guided by the
umber of units. This means that for a small M (e.g. M = 5 or 10, implying a correlation of 0.80 and 0.90 respectively) a

blockwise pseudo-marginal strategy might not be as effective as it could be. On the other hand, assuming a very efficient
and scalable implementation allowing measurements from M = 10,000 units, the blockwise pseudo-marginal approach
ould produce highly correlated particles, which can sometimes be detrimental by not allowing enough variety in the
uxiliary variates, and ultimately producing long-term correlations in the parameter chains, as we have documented in
ection 5.3 when using a low number of particles N . We therefore think it is advantageous to use a method that allows
he statistician to decide on the amount of injected correlation: even though this means having one more parameter to
et (ρ in our treatment), we find this decision to be rather straightforward, as mentioned above.
We hope this work can push forward the use of SDEMEMs in applied research, as even though inference methods

or SDEMEMs have been available from around 2005, the limitation of theoretical or computational possibilities has
mplied that only specific SDEMEMs could be efficiently handled, while other SDEMEMs needed ad-hoc solutions or
omputationally very intensive algorithms. We believe our work is promising as a showcase of the possibility to employ
ery general SDEMEMs for practical applications.

cknowledgments

SW was supported by the Swedish Research Council (Vetenskapsrådet 2013-05167). UP was supported by the Swedish
esearch Council (Vetenskapsrådet 2019-03924). We thank the staff at the Center for Scientific and Technical Computing
t Lund University (LUNARC) for help in setting up the computer environment used for the computations in Sections 5.1
nd 5.3. We thank J. F. He for making the neuronal data available. We thank the editor and three anonymous reviewers
or useful and insightful comments on this paper.

ppendix A. Bridge particle filter

.1. Deriving the bridge filter

This section is not strictly pertaining mixed-effects modeling, hence we disregard the subject’s index. We consider the
ridge particle filter proposed in Golightly and Wilkinson (2011), with the exception that there an SDE was numerically
olved using the Euler–Maruyama scheme. Here we provide the bridge particle filter for the special case where the exact
Gaussian) transition density is available, as considered for case studies in Sections 5.1 and 5.3 . Since we do not require
umerical discretization, in terms of the notation established in Golightly and Wilkinson (2011) we have that m = 1 and
= 0. Furthermore, we let ∆obs denote the step-length for the observational times grid. Thus we have that ∆t = ∆obs
nd ∆j = 0 = ∆obs.
Here the bridge filter is derived for the example in Section 5.3. The analytical transition density for the Xt process in

.3 is

Xt+∆t |Xt = xt ∼ N
(
xte−λ∆t

+
ν

λ
(1 − e−λ∆t),

σ 2

2λ
(1 − e−2λ∆t)

)
.

he joint density for Xt+∆t and Yt+∆t , conditional on Xt , is(
Xt+∆t
Yt+∆t

)
|Xt = xt ∼ N

{(
α0
α0

)
,

(
β0 β0
β0 β0 + σ 2

ϵ

)}
where α0 = xte−λ∆t

+
ν
λ
(1 − e−λ∆t), and β0 =

σ2

2λ (1 − e−2λ∆t). The conditional distribution used as proposal distribution
in the bridge filter is

π̂ (xt+∆t |xt , yt+∆t) = N(xt+∆t;µ,Σ), (A.1)

where µ = α0 + β0(β0 + σ 2
ϵ)

−1(yt+∆t − α0), Σ = β0(1 − [β0 + σ 2
ϵ]

−1β0).
Eq. (A.1) can be used to propagate particles forward, which is a much more efficient approach than in the bootstrap

filter case, where the sampler is myopic to the next observation, while (A.1) is able to look-ahead towards the next
observation yt+∆t . Thus, the bridge filter is similar in structure to Algorithm 1 with the difference that here the particles
propagation step consists in sampling from (A.1), and the weights are given by

w̃t+∆t,k =
π (yt+∆t |xt+∆t,k, σ

2
ϵ)π (xt+∆t,k|xt,k)

π̂ (xt+∆t,k|xt,k, yt+∆t)
, wt+∆t,k =

w̃t+∆t,k∑N
j=1 w̃t+∆t,j

, k = 1, . . . ,N.
22

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

p
p
i
i
o
t
r
o
f
h

f
t
0
F
r
T
M
t
i
(

Fig. A.14. Neuronal model: forward propagation of the particles for bootstrap and bridge filter for one ISI (chosen at random; this ISI contained
1817 data points). Leftmost panel: observed data for that ISI. Central panel: forward propagation of the particles from the bootstrap filter. Rightmost
panel: forward propagation of the particles from the bridge filter.

Table A.5
Comparing 100 log-likelihood estimations for the bootstrap and bridge filter.

Log-likelihood Std. Dev. Runtime (s)

Kalman 62091 – 0.012
Bootstrap −2594152 119905 21.51
Bridge 62291 0.34 27.50

A.2. Comparing the bootstrap filter and the bridge particle filter

To compare the performance of the bootstrap and the bridge filter, we run both filters with the same number of
articles (500 particles for each subject) using the 100 ISIs neuronal data from Section 5.3. Parameters are set at the
osterior means obtained from the Kalman algorithm. The comparison is interesting since it illustrates the well known
ssue of running particle filters when the observational error is small (here we have that σϵ ≈ 0.001), and hence it
s expected that the bootstrap filter will produce sub-optimal results. This is due to its inability to ‘‘target’’ the next
bservation, thus producing very small weights due to the small σϵ . In Fig. A.14, we compare the forward propagation of
he particles for one ISI chosen at random. It is evident that the bridge filter follows the data more closely. Furthermore, we
un each filter independently for 100 times and compare the averages of the log-likelihood values, the standard deviation
f the 100 log-likelihood estimations, and the runtimes, see Table A.5. We can easily notice the superiority of the bridge
ilter returning an averaged log-likelihood value very close to the one provided by the Kalman filter. In particular, notice
ow the log-likelihood estimation is very unreliable (due to the small observation error).
We now compare the inference results for CPMMH when using the bridge filter and the bootstrap filter. We ran

our algorithms: Kalman, PMMH with N = 1 particles using the bridge filter, CPMMH-09 with N = 1 particles using
he bridge filter, CPMMH-099 with N = 100 particles using the bootstrap filter. We ran, Kalman, PMMH, and CPMMH-
9 for 100k iterations, and ran CPMMH-099 for only 35k iterations, as this case is computationally more intensive. In
ig. A.15 we see that when using the bootstrap filter driven inference scheme, the σϵ chain fails to adequately explore
egions of high posterior density. We emphasize that this is due to using too few particles (N = 100). It is clear from
able A.5 that the number of particles required to match the efficiency of the bridge filter is computationally infeasible.
arginal posteriors for the remaining parameters (not shown) are however similar for all algorithms. The reason why

he population parameters η appear to be unaffected by these issues, unlike σϵ , is that step 4 of the Gibbs algorithms
n Section 4.1 (both versions, naive and blocked one) does not depend on the approximated likelihood, whereas step 2
which samples σ) does depend on it.
ϵ

23

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

i
C

A

i
W
A

B

d
o

w

W
s

a

a

Fig. A.15. Neuronal model: marginal posterior distributions for log σϵ . Solid line is Kalman, dashed line is PMMH using the bridge filter, dotted line
s CPMMH-09 using the bridge filter, dash-dotted line is CPMMH-099 using the bootstrap filter. The marginal posteriors for Kalman, PMMH, and
PMMH-09 have been multiplied by a factor 40 for pictorial reasons.

ppendix B. Tumor growth — linear noise approximation

The linear noise approximation (LNA) can be derived in a number of more or less formal ways. We present a brief
nformal derivation here and refer the reader to Fearnhead et al. (2014) and the references therein for further details.
e remark that the LNA is not a necessary feature of our general plug-and-play methodology outlined in Section 4 and
lgorithm 2.

.1. Setup

Consider the tumor growth model in (19), (20) and (21) and a single experimental unit so that the superscript i can be
ropped from the notation. To obtain a tractable observed data likelihood, we construct the linear noise approximation
f log Vt = log(X1,t + X2,t).
Let Zt = (Z1,t , Z2,t , Z3,t)T = (log Vt , log X1,t , log X2,t)T . The SDE satisfied by Zt can be found using the Itô formula, for

hich we obtain

dZt = α(Zt , φ)dt +

√
β(Zt , φ)dWt

where

α(Zt , φ) =

⎛⎝{
β + 0.5γ 2

}
eZ2,t−Z1,t +

{
−δ + 0.5τ 2

}
eZ3,t−Z1,t − 0.5

{
γ 2e2(Z2,t−Z1,t) + ψ2e2(Z3,t−Z1,t)

}
β

−δ

⎞⎠

β(Zt , φ) =

⎛⎝γ 2e2(Z2,t−Z1,t) + τ 2e2(Z3,t−X1,t) γ 2e2(Z2,t−Z1,t) ψ2e2(Z3,t−Z1,t)

γ 2e2(Z2,t−Z1,t) γ 2 0
ψ2e2(Z3,t−Z1,t) 0 ψ2

⎞⎠ .

e apply the linear noise approximation (LNA) by partitioning Zt as Zt = mt + Rt where mt is a deterministic process
atisfying

dmt

dt
= α(mt , φ) (B.1)

nd {Rt , t ≥ 0} is a residual stochastic process satisfying

dRt = {α(Zt , φ) − α(mt , φ)} dt +

√
β(Zt , φ)dWt .

By Taylor expanding α and β about the deterministic process mt and retaining the first two terms in the expansion of α,
nd the first term in the expansion of β , we obtain an approximate residual stochastic process {R̃t , t ≥ 0} satisfying

dR̃ = J R̃ dt +

√
β(m , φ)dW
t t t t t

24

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

B

w
a
m

w
u

where Jt is the Jacobian matrix with (i, j)th element (Jt)i,j = ∂αi(mt , φ)/∂mj,t . Assuming initial values m0 = z0 and R̃0 = 0,
the approximating distribution of Zt is given by

Zt |Z0 = z0 ≈ N(mt ,Ht) (B.2)

where mt satisfies (B.1) and, after several calculations which we omit for brevity, Ht is the solution to
dHt

dt
= Ht JTt + β(mt , φ) + JtHt . (B.3)

.2. Inference

Note that the observation model in (20) can be written as

Yt = PTZt + ϵt , ϵt
indep
∼ N(0, σ 2

e). (B.4)

here P is a 3 × 1 ‘observation vector’ with first entry 1 and zeros elsewhere. The linearity of (B.2) and (B.4) yields
tractable approximation to the marginal likelihood π (y|φ, σe), which we denote by πLNA(y|φ, σe). The approximate
arginal likelihood πLNA(y|φ, σe) can be factorized as

πLNA(y|φ, σe) = πLNA(y1|φ, σe)
n∏

i=2

πLNA(yi|y1:i−1, φ, σe) (B.5)

here y1:i−1 = (y1, . . . , yi−1)T . Suppose that Z1 ∼ N(a, C) a priori, for some constants a and C . The marginal likelihood
nder the LNA, πLNA(y1:n|φ, σe) := πLNA(y|φ, σe) can be obtained via a forward filter, which is given in Algorithm 3.

Algorithm 3 Forward filter
Input: Data y, parameter values φ and σe .
Output: Observed data likelihood πLNA(y|φ, σe).

1. Initialization. Compute

πLNA(y1|φ, σe) = N
(
y1 ; PT a , PTCP + σ 2

e

)
where N(· ; a , C) denotes the Gaussian density with mean vector a and variance matrix C . The posterior at time t = 1 is therefore
Z1|y1 ∼ N(a1, C1) where

a1 = a + CP
(
PTCP + σ 2

e

)−1 (
y1 − PT a

)
C1 = C − CP

(
PTCP + σ 2

e

)−1
PTC .

2. For i = 1, 2, . . . , n − 1,

(a) Prior at i + 1. Initialize the LNA with mi = ai and Hi = Ci . Integrate the ODEs (Eq. (B.1)) and (Eq. (B.3)) forward to i + 1 to obtain mi+1
and Hi+1 . Hence

Zi+1|y1:i ∼ N(mi+1,Hi+1) .

(b) One step forecast. Using the observation equation, we have that

Yi+1|y1:i ∼ N
(
PTmi+1, PTHi+1P + σ 2

e

)
.

Compute

πLNA(y1:i+1|φ, σe) = πLNA(y1:i|φ, σe)πLNA(yi+1|y1:i, φ, σe)

= πLNA(y1:i|φ, σe)N
(
yi+1 ; PTmi+1 , PTHi+1P + σ 2

e

)
.

(c) Posterior at i + 1. Combining the distributions in (a) and (b) gives the joint distribution of Zi+1 and Yi+1 (conditional on y1:i and φ) as(
Zi+1
Yi+1

)
∼ N

{(
mi+1

PTmi+1

)
,

(
Hi+1 Hi+1P

PTHi+1 PTHi+1P + σ 2
e

)}
and therefore Zi+1|y1:i+1 ∼ N(ai+1, Ci+1) where

ai+1 = mi+1 + Hi+1P
(
PTHi+1P + σ 2

e

)−1 (
yi+1 − PTmi+1

)
Ci+1 = Hi+1 − Hi+1P

(
PTHi+1P + σ 2

e

)−1
PTHi+1 .

Inference for the SDEMEM defined by (19), (20) and (21) may be performed via a Gibbs sampler that draws from the
following full conditionals

1. πLNA(φ|η, σe, y) ∝
∏M

i=1 π (φ
i
|η)πLNA(yi|σe, φi),

2. πLNA(σe|η, φ, y) ∝ π (σe)
∏M

i=1 πLNA(yi|σe, φi),
3. π (η|σe, φ, y) ∝ π (η)

∏M
i=1 π (φ

i
|η).
25

S. Wiqvist, A. Golightly, A.T. McLean et al. Computational Statistics and Data Analysis 157 (2021) 107151

A
A
B

C

D

D
D

D
D
D
D

D

D

D

F
F
F
G

G

G
H
K
K
L
L
L
L

M
M
O

P
P

P

P

P

P
R

S

S
S
S

T

T
T
W
W
W
W
Y

References

Ait-Sahalia, Y., 2008. Closed-form likelihood expansions for multivariate diffusions. Ann. Statist. 36 (2), 906–937.
Andrieu, C., Doucet, A., Holenstein, R., 2010. Particle Markov chain Monte Carlo methods (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 72

(3), 1–269.
ndrieu, C., Roberts, G.O., 2009. The pseudo-marginal approach for efficient computation. Ann. Statist. 37, 697–725.
ndrieu, C., Thoms, J., 2008. A tutorial on adaptive MCMC. Statist. Comput. 18 (4), 343–373.
otha, I., Kohn, R., Drovandi, C., 2020. Particle methods for stochastic differential equation mixed effects models. Bayesian Anal. http://dx.doi.org/10.

1214/20-BA1216.
hoppala, P., Gunawan, D., Chen, J., Tran, M.-N., Kohn, R., 2016. Bayesian inference for state space models using block and correlated pseudo marginal

methods. Available from http://arxiv.org/abs/1311.3606.
ahlin, J., Lindsten, F., Kronander, J., Schon, T.B., 2015. Accelerating pseudo-marginal Metropolis–Hastings by correlating auxiliary variables. Available

from https://arxiv.1511.05483v1.
el Moral, P., 2004. Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York.
elattre, M., Lavielle, M., 2013. Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects

diffusion models. Stat. Interface 6 (4), 519–532.
eligiannidis, G., Doucet, A., Pitt, M.K., 2018. The correlated pseudo-marginal method. J. R. Stat. Soc. Ser. B Stat. Methodol. 80, 839–870.
evroye, L., 1986. Non-Uniform Random Variate Generation. Springer-Verlag, New York.
itlevsen, S., Lansky, P., 2005. Estimation of the input parameters in the Ornstein–Uhlenbeck neuronal model. Phys. Rev. E 71 (1), 011907.
onnet, S., Foulley, J.-L., Samson, A., 2010. Bayesian analysis of growth curves using mixed models defined by stochastic differential equations.

Biometrics 66 (3), 733–741.
onnet, S., Samson, A., 2013a. A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models. Adv. Drug

Deliv. Rev. 65 (7), 929–939.
onnet, S., Samson, A., 2013b. Using PMCMC in EM algorithm for stochastic mixed models: theoretical and practical issues. J. Soc. Fr. Stat. 155 (1),

49–72.
oucet, A., Pitt, M.K., Kohn, R., 2015. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika

102, 295–313.
earnhead, P., Giagos, V., Sherlock, C., 2014. Inference for reaction networks using the linear noise approximation. Biometrics 70 (2), 457–466.
lamary, R., Courty, N., 2017. POT Python Optimal Transport library. URL https://github.com/rflamary/POT.
uchs, C., 2013. Inference for Diffusion Processes with Applications in Life Sciences. Springer.
olightly, A., Bradley, E., Lowe, T., Gillespie, C.S., 2019. Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models.

Computational Statistics & Data Analysis 136, 92–107.
olightly, A., Wilkinson, D.J., 2011. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte

Carlo. Interface Focus 1 (6), 807–820.
ordon, N.J., Salmond, D.J., Smith, A.F.M., 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140, 107–113.
öpfner, R., 2007. On a set of data for the membrane potential in a neuron. Math. Biosci. 207 (2), 275–301.
loeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic Differential Equations. Springer.
ünsch, H.R., 2013. Particle filters. Bernoulli 19, 1391–1403.
anski, P., 1984. On approximations of Stein’s neuronal model. J. Theoret. Biol. 107 (4), 631–647.
ansky, P., Sanda, P., He, J., 2006. The parameters of the stochastic leaky integrate-and-fire neuronal model. J. Comput. Neurosci. 21 (2), 211–223.
avielle, M., 2014. Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools. Chapman and Hall/CRC.
eander, J., Almquist, J., Ahlström, C., Gabrielsson, J., Jirstrand, M., 2015. Mixed effects modeling using stochastic differential equations: illustrated by

pharmacokinetic data of nicotinic acid in obese Zucker rats. AAPS J. 17 (3), 586–596.
urphy, K.P., 2007. Conjugate bayesian analysis of the gaussian distribution. https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf.
urray, L., Lee, A., Jacob, P.E., 2016. Parallel resampling in the particle filter. J. Comput. Graph. Statist. 25 (3), 789–805.
vergaard, R.V., Jonsson, N., Tornøe, C.W., Madsen, H., 2005. Non-linear mixed-effects models with stochastic differential equations: implementation

of an estimation algorithm. J. Pharmacokinet. Pharmacodyn. 32 (1), 85–107.
icchini, U., De Gaetano, A., Ditlevsen, S., 2010. Stochastic differential mixed-effects models. Scand. J. Stat. 37 (1), 67–90.
icchini, U., Ditlevsen, S., 2011. Practical estimation of high dimensional stochastic differential mixed-effects models. Comput. Statist. Data Anal. 55

(3), 1426–1444.
icchini, U., Ditlevsen, S., De Gaetano, A., Lansky, P., 2008. Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating

signal. Neural Comput. 20 (11), 2696–2714.
icchini, U., Forman, J.L., 2019. Bayesian inference for stochastic differential equation mixed effects models of a tumor xenography study. J. R. Stat.

Soc. Ser. C. Appl. Stat. 68 (4), 887–913.
itt, M.K., dos Santos Silva, R., Giordani, P., Kohn, R., 2012. On some properties of Markov chain Monte Carlo simulation methods based on the

particle filter. J. Econometrics 171 (2), 134–151.
rice, L.F., Drovandi, C.C., Lee, A., Nott, D.J., 2018. Bayesian synthetic likelihood. J. Comput. Graph. Statist. 27 (1), 1–11.
use, M.G., Samson, A., Ditlevsen, S., 2019. Inference for biomedical data by using diffusion models with covariates and mixed effects. J. R. Stat. Soc.

Ser. C. Appl. Stat. http://dx.doi.org/10.1111/rssc.12386.
herlock, C., Thiery, A., Roberts, G.O., Rosenthal, J.S., 2015. On the effciency of pseudo-marginal random walk Metropolis algorithms. Ann. Statist. 43

(1), 238–275.
ørensen, H., 2004. Parametric inference for diffusion processes observed at discrete points in time. Internat. Statist. Rev. 72 (3), 337–354.
teele, J.M., 2012. Stochastic Calculus and Financial Applications, Vol. 45. Springer Science & Business Media.
tewart, L., McCarty, Jr., P., 1992. Use of Bayesian belief networks to fuse continuous and discrete information for target recognition, tracking, and

situation assessment. In: Proc. SPIE Signal Processing, Sensor Fusion and Target Recognition, Vol. 1699, pp. 177–185.
ornøe, C.W., Overgaard, R.V., Agersø, H., Nielsen, H.A., Madsen, H., Jonsson, E.N., 2005. Stochastic differential equations in NONMEM R⃝:

implementation, application, and comparison with ordinary differential equations. Pharm. Res. 22 (8), 1247–1258.
ran, M.-N., Kohn, R., Quiroz, M., Villani, M., 2016a. The block pseudo-marginal sampler. arXiv:1603.02485.
ran, M.-N., Kohn, R., Quiroz, M., Villani, M., 2016b. Block-wise pseudo-marginal Metropolis-Hastings. arXiv:1603.02485.
hitaker, G.A., 2016. Bayesian Inference for Stochastic Differential Mixed-Effects Models (Ph.D. thesis). Newcastle University.
hitaker, G.A., Golightly, A., Boys, R.J., Sherlock, C., 2017. Bayesian inference for diffusion driven mixed-effects models. Bayesian Anal. 12, 435–463.
ilkinson, D.J., 2018. Stochastic Modelling for Systems Biology, third ed. Chapman & Hall/CRC Press, Boca Raton, Florida.
ood, S.N., 2010. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466 (7310), 1102–1104.
u, Y.-Q., Xiong, Y., Chan, Y.-S., He, J., 2004. Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J.

Neurosci. 24 (12), 3060–3069.
26

http://refhub.elsevier.com/S0167-9473(20)30242-5/sb1
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb2
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb2
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb2
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb3
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb4
http://dx.doi.org/10.1214/20-BA1216
http://dx.doi.org/10.1214/20-BA1216
http://dx.doi.org/10.1214/20-BA1216
http://arxiv.org/abs/1311.3606
https://arxiv.1511.05483v1
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb8
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb9
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb9
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb9
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb10
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb11
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb12
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb13
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb13
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb13
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb14
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb14
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb14
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb15
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb15
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb15
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb16
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb16
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb16
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb17
https://github.com/rflamary/POT
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb19
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb20
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb20
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb20
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb21
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb21
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb21
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb22
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb23
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb24
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb25
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb26
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb27
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb28
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb29
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb29
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb29
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb31
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb32
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb32
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb32
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb33
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb34
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb34
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb34
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb35
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb35
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb35
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb36
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb36
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb36
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb37
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb37
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb37
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb38
http://dx.doi.org/10.1111/rssc.12386
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb40
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb40
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb40
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb41
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb42
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb44
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb44
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb44
http://arxiv.org/abs/1603.02485
http://arxiv.org/abs/1603.02485
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb47
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb48
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb49
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb50
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb51
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb51
http://refhub.elsevier.com/S0167-9473(20)30242-5/sb51

	Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms
	Introduction
	Background literature
	Stochastic differential mixed-effects models
	BayesIan inference

	A pseudo-marginal approach
	Gibbs sampling and blocking strategies
	Estimating the likelihood
	A correlated pseudo-marginal approach
	Tuning the number of particles for likelihood approximation
	Tuning the proposal distributions

	Applications
	Ornstein–uhlenbeck SDEMEM
	Investigating the choice of number of particles

	Tumor growth SDEMEM
	Use of the Euler–maruyama approximation
	Comparison with ODEMEM

	Neuronal data

	Discussion
	Acknowledgments
	Appendix A. Bridge particle filter
	Deriving the bridge filter
	Comparing the bootstrap filter and the bridge particle filter

	Appendix B. Tumor growth — Linear noise approximation
	Setup
	Inference

	References

