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Abstract
In this pedagogical review we introduce systematic approaches to deforming
integrable two-dimensional sigma models. We use the integrable principal chi-
ral model and the conformal Wess–Zumino–Witten model as our starting points
and explore their Yang–Baxter and current–current deformations. There is an
intricate web of relations between these models based on underlying algebraic
structures and worldsheet dualities, which is highlighted throughout. We finish
with a discussion of the generalisation to other symmetric integrable models,
including some original results related to ZT cosets and their deformations, and
the application to string theory. This review is based on notes written for lec-
tures delivered at the school ‘Integrability, Dualities and Deformations’, which
ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.
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1. Introduction

The goal of this pedagogical review is to introduce systematic approaches to constructing inte-
grable deformations of 2D sigma models. In order to keep the presentation pedagogical, we will
use the integrable principal chiral model, the principal chiral model plus Wess–Zumino (WZ)
term and the conformal Wess–Zumino–Witten (WZW) model as our starting points. After
introducing these models in section 2, we will start our exploration by considering different
integrable deformations of the SU(2) models in section 3. These include the trigonometric,
elliptic and Yang–Baxter (YB) deformations.

In section 4 we will investigate the generalisation of the YB deformation for general group
G. There are two classes of such models, the homogeneous and inhomogeneous deformations,
which correspond to twisting and q-deforming the symmetry algebra respectively. We will see
the close relationship between homogeneous deformations and worldsheet dualities, and study
inhomogeneous deformations based on the well-known Drinfel’d–Jimbo solution to the modi-
fied classical YB equation. Investigating the underlying algebraic structure of YB deformations
will lead us to the notion of Poisson–Lie T-duality in section 5 and current–current deforma-
tions of the WZW model, which we will explore in more detail in section 6. Finally, in section 7
we finish with an overview of the literature including references for the material presented in
this review, discuss the generalisations to other symmetric integrable models, including some
original results related to ZT cosets and their deformations, and highlight applications to string
theory.

Before we begin, let us take a moment to discuss some of the reasons why it is of inter-
est to study integrable deformations of sigma models. Due to their large hidden symmetry,
2D integrable models are amongst a small class of interacting field theories that can poten-
tially be solved exactly both classically and at a quantum level. A large toolkit of methods
and techniques has been developed that can be applied to these models. This motivates their
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classification, which, while a formidable task, has seen much progress in recent years. Con-
structing integrable deformations of known integrable sigma models is a systematic approach
that has been particularly fruitful, and allows us to investigate different corners of the space of
integrable models.

On the other hand, deformations can also provide new understanding of the structure of
known integrable models. For example, applying standard quantum field theory techniques to
many 2D sigma models is complicated by the fact that the perturbative excitations are massless.
In the principal chiral model these massless excitations are the Goldstone bosons associated to
symmetry breaking. In the quantum theory the global symmetry is restored and the elementary
degrees of freedom are actually massive. By deforming the theory, additional structure, such
as new fixed points, can be introduced. This allows alternative first-principle approaches to
be employed that may be more amenable to quantization and verifying conjectures following
from integrability.

While 2D integrable sigma models are interesting in their own right, much of the recent
motivation to study them has come from applications to string theory. Indeed, worldsheet string
theories are described by 2D sigma models. There are a number of examples of superstrings
supported by Ramond–Ramond fluxes whose worldsheet theories are integrable. This includes
the AdS5 × S5 and AdS4 × CP3 superstrings amongst others. While it is difficult to apply
traditional conformal field theory methods to these models, the toolkit of integrability methods
can be used, leading to a proposal for the exact spectrum of string energies in the free string
limit. Finding new examples of solvable string theories is always interesting, and studying
integrable deformations is one approach to achieving this. A more detailed discussion of some
of these applications together with the relevant references can be found in section 7.

2. The principal chiral model and the Wess–Zumino term

2.1. The principal chiral model

The principal chiral model (PCM) is the prototypical example of a 2D integrable sigma model.
The field content is simply a field g(t, x) valued in the Lie group G, which plays the role of the
target space. For convenience we will take this Lie group to be simple throughout this review,
and in any examples it will be SU(2) or one of its non-compact counterparts. Since the Lie
group G is simple, there is a unique invariant bilinear form, up to normalisation, on its Lie
algebra Lie(G) = g, which we denote by tr.1 This is the Killing form. We also introduce the
left- and right-invariant Maurer–Cartan forms

j = g−1 dg ∈ g, k = −dgg−1 ∈ g, (2.1)

1 Often it is convenient to take the group-valued field to be in a matrix representation of G. In order to avoid introducing
ambiguities related to the choice of representation, we define tr in the adjoint representation to be

tr (XY) =
1

2h∨ Tr (adXadY ) X, Y ∈ g,

where h∨ is the dual Coxeter number of g. In a general representation this means that

tr (XY) =
1

2χR
Tr (XY) , X, Y ∈ g,

where χR is the index of the representation and Tr is the usual matrix trace. It follows that tr is independent of the
choice of representation.
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which are the distinguished differential one-forms on the Lie group manifold G valued in the
Lie algebra g, and their pull-backs to the 2D worldsheet2

jμ = g−1∂μg ∈ g, kμ = −∂μgg−1 ∈ g, (2.2)

also valued in the Lie algebra g. Here the index μ = t, x runs over the 2D worldsheet
coordinates. The flatness of the Maurer–Cartan forms then implies that

∂μ jν − ∂ν jμ + [ jμ, jν] = 0, ∂μkν − ∂νkμ + [kμ, kν] = 0. (2.3)

The action of the PCM is

SPCM =
𝒽
2

∫
d2 x tr

(
g−1∂μgg−1∂μg

)
=

𝒽
2

∫
d2x tr

(
jμ jμ

)
=

𝒽
2

∫
d2x tr

(
kμkμ

)
. (2.4)

We assume that we are on a flat Minkowski worldsheet with metric ημν , −ηtt = ηxx = 1 and
ηtx = ηxt = 0. The parameter 𝒽 is the inverse coupling constant of the model and is propor-
tional to radius squared of the target space. In the context of worldsheet string theories it plays
the role of the string tension. The overall sign of the action (2.4) ensures that for a compact
Lie group G, which has a negative-definite Killing form, the kinetic terms are positive and the
target-space metric has Euclidean signature. For a non-compact Lie group, the kinetic terms
have mixed signs. In such examples it may be of interest to reverse the overall sign of the action
(2.4), for example to give a target-space metric with Lorentzian signature. This will be the case
for models with G = SL(2,R).

The PCM has a GL × GR global symmetry, which acts on the group-valued field as

g → gLggR, gL, gR ∈ G. (2.5)

The equations of motion of the PCM can be written as the conservation of either the right-acting
or left-acting symmetry

∂μ jμ = 0, ∂μkμ = 0. (2.6)

To see this explicitly let us consider the infinitesimal variation of the group-valued field
g → g eε ∼ g(1 + ε), where ε ∈ g. Therefore, δg = gε and δg−1 = −g−1δgg−1 = −εg−1.
Varying jμ = g−1∂μg gives

δ jμ = δ(g−1∂μg) = −εg−1∂μg + g−1∂μ(gε) = ∂με+ [g−1∂μg, ε] = ∂με+ [ jμ, ε]. (2.7)

Now varying the action (2.4) we find

δSPCM = 𝒽
∫

d2x tr
(
(∂με+ [ jμ, ε]) jμ

)
= −𝒽

∫
d2x tr

(
ε(∂μ jμ + [ jμ, jμ])

)
= −𝒽

∫
d2x tr

(
ε∂μ jμ

)
, (2.8)

where we have used integration by parts, the invariance of the bilinear form and that [ jμ, jμ] =
0. We immediately see that requiring the variation to vanish for arbitrary ε ∈ g implies that
the equation of motion is the conservation equation ∂μ jμ = 0. This also demonstrates that
the left-invariant jμ is the conserved Noether current for the right-acting symmetry. A similar

2 In this review we typically refer to the 2D space-time as the worldsheet.
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computation shows that the right-invariant kμ is the conserved Noether current for the left-
acting symmetry.

In general, we will work with light-cone coordinates on the worldsheet, which we define as

x± =
1
2

(t ± x), ∂± = ∂t ± ∂x. (2.9)

In terms of light-cone coordinates the action of the PCM (2.4) becomes

SPCM = −𝒽
2

∫
d2x tr

(
j+ j−

)
. (2.10)

The equations of motion (2.6) are given by

∂+ j− + ∂− j+ = 0, (2.11)

while the flatness condition (2.3) is

∂+ j− − ∂− j+ + [ j+, j−] = 0. (2.12)

The PCM can be written in the canonical form of a 2D sigma model3

SSM = −1
2

∫
d2x (GMN(φ)∂μφM∂μφN + εμνBMN(φ)∂μφM∂νφ

N)

=
1
2

∫
d2x (GMN(φ) + BMN(φ))∂+φ

M∂−φ
N .

(2.13)

Here φM are local coordinates on the target space, G = GMN(φ)dφM dφN is the metric on the
target space and the B-field B = 1

2 BMN(φ)dφM ∧ dφN is a target-space two-form. εμν is the
antisymmetric tensor on the worldsheet with ε01 = −ε10 = 1. Up to boundary terms, the action
(2.13) is invariant under gauge transformations

B → B + dΛ, BMN → BMN + ∂MΛN − ∂NΛM. (2.14)

We can therefore define the H-flux, a gauge-invariant closed three-form,

H = dB, HMNP = ∂MBNP + ∂NBPM + ∂PBMN . (2.15)

If the two-form B is globally well-defined then H is exact as well as closed.
To write the PCM in the form (2.13), we introduce coordinatesφM on the Lie group manifold

G, that is g(t, x) = g(φM(t, x)), and generators Ta of the Lie algebra g. We then expand jμ in
terms of left-invariant frame fields

jμ = La
M(φ)∂μφ

MTa. (2.16)

Substituting into the action (2.4) we see that it takes the form (2.13) with

GMN(φ) = −La
M(φ)Lb

N(φ)tr (TaTb) , BMN(φ) = 0. (2.17)

3 Conventionally, this action comes with an additional factor of 1
2πα′ where α′ plays the role of the loop-counting

parameter in the quantum theory. In the context of string theory this factor plays the role of the string tension. Given
that we will mostly focus on classical sigma models, we set α′ = 1

2π for convenience.
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Similarly, we can introduce right-invariant frame fields

kμ = Ra
M(φ)∂μφMTa, (2.18)

in terms of which GMN(φ) and BMN(φ) are given by

GMN(φ) = −Ra
M(φ)Rb

N(φ)tr (TaTb) , BMN(φ) = 0. (2.19)

Therefore, we indeed find a 2D sigma model whose target-space metric is the bi-invariant
metric on the Lie group G and with vanishing B-field.

The PCM is an integrable sigma model. To show this we start by constructing a Lax connec-
tion. The Lax connection depends on a spectral parameter z ∈ C and its flatness for arbitrary
z should be equivalent to the equations of motion of the model. One approach to constructing
a Lax connection, which will prove useful later, is to observe that the current j± is both con-
served and flat on-shell. When we have such a current we can always write down the following
Lax connection

L±(z) =
j±

1 ∓ z
. (2.20)

Indeed, computing the curvature we find

∂+L− − ∂−L+ + [L+,L−] =
1

1 − z2

(
(1 − z)∂+ j− − (1 + z)∂− j+ + [ j+, j−]

)
=

1
1 − z2

(
∂+ j− − ∂− j+ + [ j+, j−] − z(∂+ j− + ∂− j+)

)
.

(2.21)

We immediately see that the vanishing of the curvature for all z implies that j± is both conserved
and flat. Conversely, if j± is both conserved and flat then the Lax connection is flat. Note that we
can also construct a Lax connection starting from k±, which is also conserved and flat. The two
connections are equivalent in the sense that they are related by a formal gauge transformation,
which leaves the flatness condition

∂+L− − ∂−L+ + [L+,L−] = 0, (2.22)

invariant, and a redefinition of the spectral parameter. These formal gauge transformations do
not correspond to a gauge symmetry of the model. Explicitly, if we define

L±(z) =
g−1∂±g
1 ∓ z

, L̃±(z) = −∂±gg−1

1 ∓ z
, (2.23)

then we have that

gL±(z)g−1 − ∂±gg−1 =
∂±gg−1

1 ∓ z
− ∂±gg−1 = −∂±gg−1

1 ∓ z−1
= L̃±(z−1), (2.24)

as claimed.
Once we have a Lax connection, we can follow the usual procedure for constructing the

monodromy matrix and conserved charges. The monodromy matrix is given by

M(t; z) = P
←−
exp

(
−
∫ ∞

−∞
dx Lx(t, x; z)

)
= P

←−
exp

(
−
∫ ∞

−∞
dx

jx + z jt
1 − z2

)
, (2.25)
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where Lx(z) = 1
2 (L+ − L−) is the spatial component of the Lax connection and P

←−
exp denotes

the path-ordered exponential with greater x to the left. The flatness of the Lax connection then
implies that the monodromy matrix satisfies

∂tM(t; z) = −Lt(z)|x→∞M(t; z) +M(t; z)Lt(z)|x→−∞, (2.26)

hence is conserved if we assume suitable decaying boundary conditions at spatial infinity.
Expanding the monodromy matrix in powers of 1

z gives

M(t; z) = 1 +
1
z

∫ ∞

−∞
dx jt(t, x) +

1
z2

(∫ ∞

−∞
dx jx(t, x) +

∫ ∞

−∞
dx

∫ x

−∞
dx′ jt(t, x) jt(t, x′)

)
+ . . . .

(2.27)

At the first non-trivial order we find the Noether charges associated to the right-acting global
symmetry. At higher orders in 1

z we find non-local conserved charges, which, together with
the Noether charges, generate a classical Yangian algebra, an infinite-dimensional algebra
that underlies the integrability of the model. The non-locality of the higher conserved charges
means that this is often referred to as a hidden symmetry. It is also possible to extract an infi-
nite number of independent local conserved charges in involution from the monodromy matrix
following a procedure known as abelianisation. This involves transforming to a diagonal gauge
and expanding around the poles of the Lax connection at z = ±1.

The conserved charges found from the monodromy matrix have vanishing spin in the clas-
sical theory, where the spin is the charge under the SO+(1, 1) Lorentz symmetry of the 2D
sigma model. It turns out that the PCM also has an infinite number of independent higher-spin
local conserved charges in involution. Let us take G to be a classical simple Lie group in its
defining matrix representation. The construction of the higher-spin local conserved charges is
then based on the existence of the following conserved currents4

Jm+ = Tr( jm+), Jm− = Tr( jm−). (2.28)

For m = 2 these are proportional to the non-vanishing components of the energy–momentum
tensor

T++ ∝ Tr( j+ j+), T−− ∝ Tr( j− j−). (2.29)

The energy–momentum tensor is symmetric and, since the PCM is classically invariant under
conformal transformations, its trace vanishes, T+− = T−+ = 0.

Combining the equations of motion (2.11) and the flatness condition (2.12) we have that

∂+ j− = −1
2

[ j+, j−], ∂− j+ = −1
2

[ j−, j+]. (2.30)

Therefore,

∂−Jm+ = m Tr( jm−1
+ ∂− j+) = −m

2
Tr( jm−1

+ [ j−, j+]) =
m
2

Tr([ jm−1
+ , j+] j−) = 0, (2.31)

where we have used the cyclicity and invariance of the trace. Similarly, we can show that
∂+J−m = 0. We can then define the following local conserved charges

4 Here we work in the defining matrix representation as it is a convenient way to introduce the symmetric invariant
tensors da1 ...am = Tr(T(a1 . . . Tam)). For su(N) these are non-vanishing for all integer m � 2, while for so(N) and sp(N)
they are only non-vanishing when m is even.
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Q±s =

∫ ∞

−∞
dx J±m, (2.32)

which are labelled by their spin s = m − 1. For m = 2 these charges are integrals of compo-
nents of the energy–momentum tensor, hence they are proportional to the light-cone momenta
P± = E ± P, where E is the energy and P is the spatial momentum. We normalise such that the
light-cone momenta have spin equal to ±1. From the conserved charges (2.32) it is possible
to extract an infinite subset that are independent and in involution, thereby justifying the claim
that the PCM is indeed integrable. The existence of these conserved charges is again tied to
the existence of a Lax connection, and expressing the former in terms of the latter provides a
natural way to generalise the above construction to a larger class of integrable sigma models.

2.2. The Wess–Zumino term

Thus far, we have considered the PCM, which has GL × GR global symmetry. This is a parity-
invariant model and has vanishing B-field. Introducing a parity-odd term that manifestly pre-
serves the global symmetry is subtle, but it can be achieved by considering the WZ term. To
define the WZ term we introduce a fiducial third dimension, such that the 2D worldsheet is the
boundary of the resulting 3D bulk space. Extending the group-valued field g(t, x) away from
the boundary to the interior of the 3D bulk space5, we can write down the following WZ term

SWZ =
𝓀
6

∫
d3x εi jk tr

(
ji[ j j, jk]

)
, (2.33)

where the index i = 0, 1, 2 runs over the 3D bulk space coordinates. By construction this term
is manifestly invariant under the GL × GR global symmetry.

The WZ term (2.33) is defined in three dimensions. However, we are interested in 2D inte-
grable sigma models. Therefore, for this term to make sense it should be independent of how
we extend the group-valued field to the 3D bulk space. To show this we start by considering
infinitesimal deformations g → g eε ∼ g(1 + ε) where ε vanishes on the 2D boundary. Under
such a deformation we have

ji → e−ε ji eε + e−ε∂i eε ∼ ji + ∂iε+ [ ji, ε], (2.34)

hence

δ ji = ∂iε+ [ ji, ε]. (2.35)

Therefore,

δSWZ =
𝓀
2

∫
d3x εi jk tr

(
(∂iε+ [ ji, ε])[ j j, jk]

)
= −𝓀

2

∫
d3x εi jk tr

(
ε(∂i[ j j, jk] + [ ji, [ j j, jk])

)
(2.36)

=
𝓀
2

∫
d3x εi jk tr

(
ε∂i(∂ j jk − ∂ j jk)

)
= 0,

5 Seeing as it is not central to our discussion, here we only give a brief outline of the argument explaining why this is
possible. We first consider the Euclidean theory and compactify the worldsheet to S2, such that the 3D bulk space is the
3D ball B3. Given that the second homotopy group of a simple Lie group G is trivial, π2(G) = 0, we can always extend
a map from S2 → G to a map from B3 → G. Subject to the group-valued field satisfying suitable boundary conditions,
we may then use the stereographic projection and analytic continuation to return to a flat Minkowski worldsheet.
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where we have used integration by parts, the invariance of the bilinear form, the flatness of ji,
that partial derivatives commute and that εi jk[ ji, [ j j, jk]] = 0 by the Jacobi identity. Note that
when we integrate by parts we drop the boundary term since we take the variation ε to vanish
on the 2D boundary. It therefore follows that continuous deformations of the group-valued field
do not change the WZ term.

This is sufficient for our purposes given that we are primarily be interested in the equations
of motion of the classical theory, which follow from the variational principle. Let us note,
however, that there may be extensions of the group-valued field to the 3D bulk space that are
not related by continuous deformations. These are characterized by the third homotopy group,
π3(G), which for a compact simple Lie group is equal to Z. As a consequence, the WZ term is
strictly speaking a multi-valued functional, which could lead to an ill-defined quantum theory.
If the coupling 𝓀 is quantized as

k = 4π𝓀 ∈ Z, (2.37)

then the contribution of the potential ambiguity to the path integral is proportional to e2iπn with
n ∈ Z, hence the path integral is well-defined. The integer k is known as the level of the WZ
term.

Note that the WZ term is proportional to the integral over the pull-back of the H-flux
H ∝ tr ( j ∧ j ∧ j). This three-form is closed, dH = 0, but not exact. That is we cannot write
H = dB where B is globally well-defined and GL × GR invariant. Nevertheless, from the
discussion above we see that the WZ term defines a consistent local 2D sigma model coupling.

2.3. The PCM plus WZ term and the WZW model

Having introduced the WZ term, we are now in a position to introduce the PCM plus WZ term
(PCWZM), whose action is given by

SPCWZM = −𝒽
2

∫
d2x tr

(
j+ j−

)
+

𝓀
6

∫
d3x εi jk tr

(
ji[ j j, jk]

)
. (2.38)

Recalling that under the infinitesimal variation g → g eε ∼ g(1 + ε) we have δ ji = ∂ iε+
[ ji, ε], we can vary the action of the PCWZM (2.38) to find

δSPCWZM = −𝒽
2

∫
d2x tr

(
(∂+ε+ [ j+, ε]) j− + j+(∂−ε+ [ j−, ε])

)
+

𝓀
2

∫
d3x εi jk tr

(
(∂iε+ [ ji, ε])[ j j, jk]

)
=

𝒽
2

∫
d2x tr

(
ε(∂+ j− + [ j+, j−] + ∂− j+ + [ j−, j+])

)
+

𝓀
2

∫
d3x εi jk∂i tr

(
ε[ j j, jk]

)
− 𝓀

2

∫
d3x εi jk tr

(
ε(∂i[ j j, jk] + [ ji, [ j j, jk])

)
=

𝒽
2

∫
d2x tr

(
ε(∂+ j− + ∂− j+)

)
− 𝓀

2

∫
d2x tr

(
ε[ j+, j−]

)
9
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=
𝒽
2

∫
d2x tr

(
ε(∂+ j− + ∂− j+)

)
+

𝓀
2

∫
d2x tr

(
ε(∂+ j− − ∂− j+)

)
=

𝒽
2

∫
d2x tr

(
ε

((
1 +

𝓀
𝒽

)
∂+ j− +

(
1 − 𝓀

𝒽

)
∂− j+

))
. (2.39)

Therefore, requiring that the variation vanishes for arbitrary ε ∈ g, we find the equation of
motion (

1 +
𝓀
𝒽

)
∂+ j− +

(
1 − 𝓀

𝒽

)
∂− j+ = 0. (2.40)

Note that while we have dropped boundary terms when integrating by parts on the 2D world-
sheet, we crucially keep them when integrating by parts in the 3D bulk space. To write the
boundary term as an integral over the 2D worldsheet we use Stokes’ theorem∫

d3x εi jk∂iB jk =

∫
d2x εμνBμν , (2.41)

and that ε+− = −ε−+ = − 1
2 .

While j± is still flat, it is no longer conserved. In the presence of the WZ term the conserved
current is modified to

J± =
1
ξ

(
1 ∓ 𝓀

𝒽

)
j±, (2.42)

where ξ is a free constant. We would now like to ask if there is a choice of ξ such that J± is
also flat on-shell. We have

∂+J− − ∂−J+ + [J+, J−] =
1
ξ

(
1 +

𝓀
𝒽

)
∂+ j− − 1

ξ

(
1 − 𝓀

𝒽

)
∂− j+

+
1
ξ2

(
1 − 𝓀2

𝒽2

)
[ j+, j−]

=

(
1
ξ

(
1 +

𝓀
𝒽

)
− 1

ξ2

(
1 − 𝓀2

𝒽2

))
∂+ j−

+

(
−1
ξ

(
1 − 𝓀

𝒽

)
+

1
ξ2

(
1 − 𝓀2

𝒽2

))
∂− j+. (2.43)

If we set ξ = 1 then

∂+J− − ∂−J+ + [J+, J−] =
𝓀
𝒽

((
1 +

𝓀
𝒽

)
∂+ j− +

(
1 − 𝓀

𝒽

)
∂− j+

)
, (2.44)

which indeed vanishes on the equations of motion (2.40).
Therefore, we find that the current

J± =

(
1 ∓ 𝓀

𝒽

)
j±, (2.45)

is both conserved and flat on-shell and it follows that we can write down the following Lax
connection of the PCWZM

L± =
J±

1 ∓ z
. (2.46)

10
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Let us finish by very briefly commenting on the special point 𝒽 = 𝓀. The first thing to
notice is that the equations of motion simplify to

∂+ j− = 0, (2.47)

which can be easily solved in closed form

g(x, t) = g−(x−)g+(x+). (2.48)

That is left- and right-moving waves pass through each other without interference. This is
indicating that something special happens at this point. Indeed, the one-loop beta function for
the coupling vanishes for 𝒽 = 𝓀. It can then be argued that this is an exact result and that the
PCWZM term at 𝒽 = 𝓀 defines a conformal field theory known as the WZW model.

2.4. The SU(2) PCM and PCWZM

To gain a better understanding of the PCM and PCWZM let us consider the case G = SU(2).
We start by explicitly constructing the target-space metric. To do so we introduce the familiar
matrix representation of su(2)

T1 =

(
0 i
i 0

)
, T2 =

(
0 1
−1 0

)
, T3 =

(
i 0
0 −i

)
. (2.49)

In this representation tr = Tr, where Tr is the standard matrix trace6. Therefore, we have

tr (TaTb) = −2δab, [Ta, Tb] = −2εab
cTc, (2.50)

where the index a = 1, 2, 3 is lowered and raised with the Kronecker delta δab and its inverse
δab, and ε123 = 1 is completely antisymmetric.

If we now parametrise the group-valued field as

g = exp

(
ϕ+ φ

2
T3

)
exp (θT1) exp

(
ϕ− φ

2
T3

)
, (2.51)

and substitute into the PCM action (2.10) we find

SSU(2)−PCM = 𝒽
∫

d2x
(
∂+θ∂−θ + cos2 θ∂+ϕ∂−ϕ+ sin2 θ∂+φ∂−φ

)
. (2.52)

We can then read off the explicit form of target-space metric in local coordinates

G = 2𝒽(dθ2 + cos2 θ dϕ2 + sin2 θ dφ2). (2.53)

6 This follows from the definition of the invariant bilinear form in footnote 1 since the index of the fundamental
representation of su(N) is χ = 1

2 .

11
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As expected, we recover the bi-invariant (round) metric on SU(2) ∼= S3 with radius squared
2𝒽.7

To construct the PCWZM let us compute the WZ term for G = SU(2). Extending the group-
valued field (2.51) to the 3D bulk space and substituting into the WZ term (2.33), we find

SSU(2)−WZ = −𝓀
∫

d3 x εi jk∂i cos 2θ∂ jϕ∂kφ = −𝓀
∫

d3x εi jk∂i(cos 2θ∂ jϕ∂kφ). (2.54)

Here we see explicitly that when we write the action in terms of local coordinates the integrand
of the WZ term becomes a total derivative. Therefore, we can use Stokes’ theorem to write

SSU(2)−WZ = −𝓀
∫

d2x εμν cos 2θ∂μϕ∂νφ =
𝓀
2

∫
d2x cos 2θ(∂+ϕ∂−φ− ∂−ϕ∂+φ).

(2.55)

From this expression we can read off the target-space B-field

B = 𝓀 cos 2θ dϕ ∧ dφ. (2.56)

As expected, this B-field is not globally well-defined or invariant under the SU(2)L × SU(2)R

global symmetry. On the other hand, the target space H-flux

H = −2𝓀 sin 2θ dθ ∧ dϕ ∧ dφ, (2.57)

is globally well-defined and invariant under the global symmetry. One way to see this is to
simply note that the three-form H is proportional to the volume form of S3. To show it explicitly,
we observe that under infinitesimal global symmetry transformations the local coordinates ϕ,
φ and θ transform as

δϕ = χ3
L + χ3

R + tan θ(χ1
L sin ϕ+ + χ1

R sin ϕ− + χ2
L cos ϕ+ − χ2

R cos ϕ−),

δφ = χ3
L − χ3

R − cot θ(χ1
L sin ϕ+ − χ1

R sin ϕ− + χ2
L cos ϕ+ + χ2

R cos ϕ−),

δθ = χ1
L cos ϕ+ + χ1

R cos ϕ− − χ2
L sin ϕ+ + χ2

R sin ϕ−,

(2.58)

where χa
L and χa

R are infinitesimal parameters and we have introduced ϕ± = ϕ± φ. Defining
the components of the vielbein

eϕ = cos θ dϕ, eφ = sin θ dφ, eθ = dθ, (2.59)

7 S3 with unit radius can be defined as the locus of all points (X1, X2, X3, X4) ∈ R4 satisfying X2
1 + X2

2 + X2
3 + X2

4 = 1.
Solving this equation by setting

X1 + iX2 = cos θ eiϕ, X3 + iX4 = sin θ eiφ,

the induced metric on S3 is given by

G = dX2
1 + dX2

2 + dX2
3 + dX2

4

= (− sin θ dθ + i cos θ dϕ)eiϕ(− sin θ dθ − i cos θ dϕ)e−iϕ + (cos θ dθ + i sin θ dφ)eiφ(cos θ dθ − i sin θ dφ)e−iφ

= sin2 θ dθ2 + cos2 θ dϕ2 + cos2 θ dθ2 + sin2 θ dφ2

= dθ2 + cos2 θ dϕ2 + sin2 θ dφ2.

12
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their variations are given by

δeϕ = − sin θδθ + cos θ dδϕ = eφ(χ1
L cos ϕ+ − χ1

R cos ϕ− − χ2
L sin ϕ+ − χ2

R sin ϕ−)

+ eθ sec θ(χ1
L sin ϕ+ + χ1

R sin ϕ− + χ2
L cos ϕ+ − χ2

R cos ϕ−),

δeφ = cos θδθ + sin θ dδφ = −eϕ(χ1
L cos ϕ+ − χ1

R cos ϕ− − χ2
L sin ϕ+ − χ2

R sin ϕ−)

+ eθ csc θ(χ1
L sin ϕ+ − χ1

R sin ϕ− + χ2
L cos ϕ+ + χ2

R cos ϕ−),

δeθ = dδθ = −eϕ sec θ(χ1
L sin ϕ+ + χ1

R sin ϕ− + χ2
L cos ϕ+ − χ2

R cos ϕ−)

− eφ csc θ(χ1
L sin ϕ+ − χ1

R sin ϕ− + χ2
L cos ϕ+ + χ2

R cos ϕ−). (2.60)

It is then straightforward to see that, since

G = 2𝒽(e2
ϕ + e2

φ + e2
θ), H = −4𝓀eθ ∧ eϕ ∧ eφ, (2.61)

we have

δG = 4𝒽(eϕδeϕ + eφδeφ + eθδeθ) = 0, (2.62)

and

δH = −4𝓀(δeθ ∧ eϕ ∧ eφ + eθ ∧ δeϕ ∧ eφ + eθ ∧ eϕ ∧ δeφ) = 0, (2.63)

that is the metric and H-flux are indeed invariant. Similarly, it is also possible to explicitly
show that δB = dΛ, that is the B-field is only invariant up to a gauge transformation, with

Λ = 𝓀
(
χ1

L(csc 2θ sin ϕ+ dϕ− − 2 cot2 2θ cos ϕ+ dθ)

− χ1
R(csc 2θ sin ϕ− dϕ+ − 2 cot2 2θ cos ϕ− dθ)

+ χ2
L(csc 2θ cos ϕ+ dϕ− + 2 cot2 2θ sin ϕ+ dθ)

+ χ2
R(csc 2θ cos ϕ− dϕ+ + 2 cot2 2θ sin ϕ− dθ)

)
,

(2.64)

where ϕ± = ϕ± φ.

3. Integrable deformations of the SU(2) PCM and PCWZM

Now that we have introduced the PCM, the PCWZM and the WZW model, we turn to the main
aim of this review, which is to explore their integrable deformations. Before we investigate
integrable deformations for general Lie group G, let us first see what we can learn by studying
the example of G = SU(2). We begin by writing the right-invariant Maurer–Cartan form k±
(2.2) as

k± = ka
±Ta, (3.1)

where Ta, a = 1, 2, 3, are the generators (2.49) of su(2). In terms of ka
± the PCM action for

G = SU(2) can be written as

SSU(2)−PCM = 𝒽
∫

d2 x
∑

a

ka
+ka

−. (3.2)

13
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We can deform this model by introducing coefficients αa breaking the left-acting SU(2) global
symmetry

Sαa = 𝒽
∫

d2x
∑

a

α−1
a ka

+ka
−. (3.3)

Setting αa = 1 we recover the action of the SU(2) PCM. Note that only two of the three param-
eters αa are genuine deformation parameters since an overall factor can be absorbed into 𝒽.
Rather than working in terms of components, it is often easier to work with linear operators that
map from the algebra to itself. To this end, we introduce the constant invertible linear operator
A�α : su(2) → su(2) defined such that

A�αTa = α−1
a Ta. (3.4)

This map is symmetric with respect to the invariant bilinear form, that is

tr (XA�αY) = tr ((A�αX)Y) , X, Y ∈ su(2). (3.5)

The deformed action (3.3) can then be written as

S�α = −𝒽
2

∫
d2x tr

(
k+A�αk−

)
. (3.6)

Under the infinitesimal variation g → e−εg ∼ (1 − ε)g we have

δk± = ∂±ε+ [k±, ε]. (3.7)

Varying the deformed action (3.6) leads to the following equations of motion

∂+k− + ∂−k+ +A−1
�α [k+,A�αk−] +A−1

�α [k−,A�αk+] = 0. (3.8)

Combining these with the flatness condition for k± (2.3) we find

∂+k− = −1
2

(
[k+, k−] +A−1

�α [k+,A�αk−] −A−1
�α [A�αk+, k−]

)
,

∂−k+ = −1
2

(
[k−, k+] +A−1

�α [k−,A�αk+] −A−1
�α [A�αk−, k+]

)
.

(3.9)

3.1. The trigonometric and elliptic deformations of the SU(2) PCM

First let us study the caseα1 = α2 = 1 andα3 = α, for which we writeS�α = Sα andA�α = Aα.
This deformation does not completely break the left-acting SU(2) global symmetry. It preserves
a U(1) subgroup, which acts as

g → eχLT3g. (3.10)

This is a consequence of the identity

Aα(eχLT3X e−χLT3 ) = eχLT3 (AαX)e−χLT3 , X ∈ su(2), (3.11)

14
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which states that the adjoint action of the U(1) subgroup commutes with the action of Aα.8

Therefore, the global symmetry of the deformed model is U(1)L × SU(2)R. Parametrising g
as in (2.51) and substituting into the action of the deformed model (3.6), we can read off the
explicit form of the deformed target-space metric in local coordinates

G = 2𝒽
(
dθ2 + cos2 θ(sin2 θ + α cos2 θ)dϕ2 + sin2 θ(cos2 θ + α sin2 θ)dϕ2

+ 2(1 − α)sin2 θ cos2 θ dϕ dφ
)
. (3.12)

Recalling the Lax connection of the undeformed model

L̃±(z) =
k±

1 ∓ z
, (3.13)

and given the unbroken U(1) symmetry, it is natural to consider the following ansatz for the
Lax connection of the deformed model

L̃α±(z) = F±(z,α)k±, (3.14)

where the linear operators F±(z,α) act as

F±(z,α)T1 = f±(z,α)T1, F±(z,α)T2 = f±(z,α)T2, F±(z,α)T3 = f̃±(z,α)T3. (3.15)

Computing the curvature of L̃α±(z) and eliminating the derivatives of k± using equation (3.9)
we find

∂+L̃α− − ∂−L̃α+ + [L̃α+, L̃α−]

= −1
2

(F+ + F−)[k+, k−]

+
1
2

(F+ −F−)(A−1
α [k+,Aαk−] −A−1

α [Aαk+, k−]) + [F+k+,F−k−]. (3.16)

Demanding that this expression vanishes leads to following three equations for the four
functions f±(z,α) and f̃±(z,α)

f− − f+ − 2α f−(1 − f̃+) = 0, f− − f+ + 2α f+(1 − f̃−) = 0, f̃− + f̃+ − 2 f+ f− = 0.

(3.17)

The freedom in solving this system of equations allows us to introduce the spectral parameter
z. One way to do this is to set

f±(z,α) =
sinh ν

sinh(ν(1 ∓ z))
, f̃±(z,α) =

tanh ν

tanh(ν(1 ∓ z))
, α = cosh2 ν. (3.18)

8 Given that both the adjoint action and Aα are linear operators on su(2), it is sufficient to check this identity for each
of the generators Ta. Noting that

eχLT3 T1 e−χLT3 = cos 2χLT1 − sin 2χLT2, eχLT3 T2 e−χLT3 = cos 2χLT2 + sin 2χLT1,

that is the adjoint action of the U(1) subgroup rotates T1 and T2, and using that AαT1 = T1 and AαT2 = T2, it
immediately follows that the identity holds for T1 and T2. For T3 we have Aα(eχLT3 T3 e−χLT3 ) = AαT3 = α−1T3

and eχLT3 (AαT3)e−χLT3 = α−1 eχLT3 T3 e−χLT3 = α−1T3.
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This solution covers the regime α > 1. The regime α < 1 can be covered by analytically con-
tinuing ν → iν. The form of the deformed Lax connection explains why this model is often
referred to as the trigonometric deformation of the SU(2) PCM. The Lax connection (3.13) of
the undeformed model is recovered in the rational limit, which is given by ν → 0.

Now turning to the general deformed model (3.6), we consider the following ansatz for the
Lax connection

L̃�α±(z) = F±(z, �α)k±, (3.19)

where the linear operators F±(z, �α) act as

F±(z, �α)T1 = f1±(z, �α)T1, F±(z, �α)T2 = f2±(z, �α)T2, F±(z, �α)T3 = f3±(z, �α)T3. (3.20)

Computing the curvature of L̃�α±(z) and eliminating the derivatives of k± using (3.9) we find

∂+L̃�α− − ∂−L̃�α+ + [L̃�α+, L̃�α−]

= −1
2

(F+ + F−)[k+, k−] +
1
2

(F+ −F−)

× (A−1
�α [k+,A�αk−] −A−1

�α [A�αk+, k−]) + [F+k+,F−k−]. (3.21)

Demanding that this expression vanishes leads to the following six equations for the functions
fa±(z, �α)

f1− + f1+ ± ( f1− − f1+)

(
α1

α2
− α1

α3

)
− 2 f2∓ f3± = 0,

f2− + f2+ ± ( f2− − f2+)

(
α2

α3
− α2

α1

)
− 2 f3∓ f1± = 0,

f3− + f3+ ± ( f3− − f3+)

(
α3

α1
− α3

α2

)
− 2 f1∓ f2± = 0.

(3.22)

These equations are not all independent and they can be solved introducing a spectral parameter
z. Indeed, they are solved by9

f1± =
sc(ν, k2)

sc(ν(1 ∓ z), k2)
, f2± =

sd(ν, k2)
sd(ν(1 ∓ z), k2)

, f3± =
sn(ν, k2)

sn(ν(1 ∓ z), k2)
, (3.23)

9 To show this we use the identities

sn(x + y, k2) =
sn(x, k2)cn(y, k2)dn(y, k2) + sn(y, k2)cn(x, k2)dn(x, k2)

1 − k2sn2(x, k2)sn2(y, k2)
,

cn(x + y, k2) =
cn(x, k2)cn(y, k2) − sn(x, k2)sn(y, k2)dn(x, k2)dn(y, k2)

1 − k2sn2(x, k2)sn2(y, k2)
,

dn(x + y, k2) =
dn(x, k2)dn(y, k2) − k2 sn(x, k2)sn(y, k2)cn(x, k2)cn(y, k2)

1 − k2sn2(x, k2)sn2(y, k2)
,

and

cn2(x, k2) = 1 − sn2(x, k2), dn2(x, k2) = 1 − k2 sn2(x, k2).
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with

cn2(ν, k2) =
α1

α3
, dn2(ν, k2) =

α2

α3
, cd2(ν, k2) =

α1

α2
, k2 =

α3 − α2

α3 − α1
. (3.24)

Here k is the elliptic modulus, sn(x, k2), cn(x, k2) and dn(x, k2) are the usual Jacobi elliptic
functions and

sc(x, k2) =
sn(x, k2)
cn(x, k2)

, sd(x, k2) =
sn(x, k2)
dn(x, k2)

, cd(x, k2) =
cn(x, k2)
dn(x, k2)

. (3.25)

This model is often referred to as the elliptic deformation of the SU(2) PCM with the
trigonometric limit (α1 = α2) given by k → 1.

3.2. The Yang–Baxter deformation of the SU(2) PCM

The approach used above to construct Lax connections of the trigonometric and elliptic defor-
mations highlights the appealing hierarchy of these models. However, it turns out to be non-
trivial to generalise this to general Lie group G. Given this, we now explore an alternative
method that can be used to construct a Lax connection of the one-parameter deformation SU(2)
PCM. This is based on the approach introduced in section 2, which is to construct a current
that is both conserved and flat on-shell.

Using the invariance of the bilinear form, we start by writing the deformed action (3.6) with
α1 = α2 = 1 and α3 = α as

Sα = −𝒽
2

∫
d2 x tr

(
j+Aαg j−

)
, (3.26)

where

Aαg = Ad−1
g AαAdg. (3.27)

As usual, the adjoint action is given by AdgX = gXg−1 and it defines a linear operator on su(2)
satisfying tr

(
XAdgY

)
= tr

(
(Ad−1

g X)Y
)
. Since Aα is symmetric (3.5), it follows that Aαg is

also

tr
(
XAαgY

)
= tr

(
(AαgX)Y

)
, X, Y ∈ su(2). (3.28)

It will also be convenient to introduce the index ā = 1, 2 such that

AαTā = Tā, AαT3 = α−1T3, (3.29)

and

[Tā, Tb̄] = −2εāb̄T3, [Tā, T3] = 2εā
b̄Tb̄, (3.30)

where ε12 = −ε21 = 1, ε11 = ε22 = 0 and we lower and raise the index ā with the Kronecker
delta δāb̄ and its inverse δāb̄.

Given that the model is invariant under an SU(2) global symmetry acting as g → ggR,
there is an associated conserved current. To compute this conserved current we consider the
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infinitesimal variation g → g eε ∼ g(1 + ε), under which10

δ j± = ∂±ε+ [ j±, ε], δOg = [Og, adε], (3.31)

where Og is defined in terms of a constant linear operator O : su(2) → su(2)

Og = Ad−1
g OAdg, (3.32)

and, as usual, adεX = [ε, X]. The resulting equations of motion indeed take the form of a
conservation equation

∂+JA− + ∂−JA+ = 0, JA± =
1
ξ
Aαg j±, (3.33)

where we have used that Aαg is symmetric (3.28) and ξ is again a free constant.
Using that

∂±Og = [Og, ad j±], (3.34)

for a constant linear operator O : su(2) → su(2), and the flatness of j± (2.12), we can compute

∂+JA− − ∂−JA+ + [JA−, JA+]

=
1
ξ
Aαg[ j+, j−] − 1

ξ
[ j+,Aαg j−] − 1

ξ
[Aαg j+, j−] +

1
ξ2

[Aαg j+,Aαg j−].
(3.35)

We would now like to ask if there is a choice of ξ such that JA± is also flat on-shell. This is
equivalent to demanding11

1
ξ
Aα[X, Y] − 1

ξ
[X,AαY] − 1

ξ
[AαX, Y] +

1
ξ2

[AαX,AαY] = 0, X, Y ∈ su(2). (3.36)

This relation is antisymmetric upon interchanging X and Y , therefore we can simply check
whether it holds for the two cases: (i) X = Tā, Y = Tb̄ and (ii) X = Tā, Y = T3, which leads to
the following equations for ξ

1
αξ

− 2
ξ
+

1
ξ2

= 0, − 1
αξ

(
1 − 1

ξ

)
= 0. (3.37)

10 For general Lie group G and constant linear operator O : g→ g we can consider an arbitrary variation g → g + δg
of the adjoint action of g on X ∈ g

δAdgX = δ(gXg−1) = δgXg−1 − gXg−1δgg−1 = Adg[g−1δg, X] = Adgadg−1δgX,

where we do not vary X, that is we treat it as a constant. Therefore, we can write δAdg = Adgadg−1δg. From this it also
follows that δAd−1

g = −Ad−1
g Adgadg−1δgAd−1

g = −adg−1δgAd−1
g . Therefore, we have that

δOg = δ(Ad−1
g OAdg) = −adg−1δgAd−1

g OAdg + Ad−1
g OAdgadg−1δg = [Og, adg−1δg].

For the infinitesimal variation g → g eε ∼ g(1 + ε) we see that g−1δg = ε, hence δOg = [Og, adε]. On the other hand,
setting δ = ∂± gives ∂±Og = [Og, ad j± ].
11 Note that, as we vary g over SU(2), the pull-backs of the Maurer–Cartan forms j± and k± cover the whole of su(2).
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These two equations clearly have no solution for ξ if α 
= 1. It therefore appears that we have
reached an impasse. There is no choice of ξ for which JA± is both conserved and flat on-shell.

To circumvent this, we observe that there is a second linear operator on su(2) that commutes
with the adjoint action of the U(1) subgroup. This is given by12

RTā = εā
b̄Tb̄, RT3 = 0. (3.38)

The map R is antisymmetric with respect to the invariant bilinear form, that is

tr (XRY) = −tr ((RX)Y) , X, Y ∈ su(2). (3.39)

Defining

JR± = ∓Rg j±, Rg = Ad−1
g RAdg, (3.40)

we can compute

∂+JR− + ∂−JR+ = Rg∂+ j− + [Rg, ad j+ ] j− −Rg∂− j+ − [Rg, ad j− ] j+

= Rg[ j+, j−] − [ j+,Rg j−] − [Rg j+, j−] = 0,
(3.41)

where we have used the flatness of j± (2.12) and the identity13

R[X, Y] − [X,RY] − [RX, Y] = 0, X, Y ∈ su(2). (3.42)

Therefore, we see that JR± is conserved without using the equations of motion. In particular,
the Hodge dual of the one-form JR is closed. Moreover, it is also exact since it can be written in
the form JR± = ±∂±( 1

2 Ad−1
g T3). Therefore, its conservation can be found via the variational

12 Recalling that eχLT3 Tā e−χLT3 = cos 2χLTā − sin 2χLεā
b̄Tb̄ and eχLT3 T3 e−χLT3 = T3 we have

R(eχLT3 Tā e−χLT3 ) = cos 2χLεā
b̄Tb̄ − sin 2χLεā

b̄εb̄
c̄Tc̄ = εā

b̄eχLT3
Tb̄ e−χLT3 = eχLT3 (RTā)e−χLT3 ,

R(eχLT3 T3 e−χLT3 ) = RT3 = 0 = eχLT3 (RT3)e−χLT3 .

Therefore R(eχLT3 X e−χLT3 ) = eχLT3 (RX)e−χLT3 , X ∈ su(2), and we see that R indeed commutes with the adjoint
action of the U(1) subgroup.
13 Since this identity is antisymmetric upon interchanging X and Y , to prove it we can simply check it for the two
cases: (i) X = Tā, Y = Tb̄ and (ii) X = Tā, Y = T3, as follows

R[Tā, Tb̄] − [Tā,RTb̄] − [RTā, Tb̄] = −2εāb̄RT3 − εc̄
b̄[Tā, Tc̄] − εc̄

ā[Tc̄, Tb̄]

= 2εb̄c̄εā̄cT3 + 2εāc̄εc̄̄bT3 = 0,

R[Tā, T3] − [Tā,RT3] − [RTā, T3] = 2εāb̄RTb̄ − εb̄
ā[Tb̄, T3] = 2εā

c̄εb̄
c̄Tc̄ − 2εā

b̄εb̄
c̄Tc̄ = 0.
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principle from the following boundary term14

SR = −𝒽
2

∫
d2x tr

(
j+Rg j−

)
, (3.43)

the integrand of which is a total derivative, hence the target-space B-field is closed and exact.
We can use the existence of this off-shell current to construct a more general conserved

current

J± = JA± +
η

ξ
JR± =

1
ξ

(Aαg ∓ ηRg) j±, (3.44)

and ask if we can now choose ξ and η such that J± is also flat on-shell. To this end, we compute
∂+J− − ∂−J+ + [J+, J−] and use the conservation of JA± on-shell to replace ∂+ j− + ∂− j+
by A−1

αg

(
[ j+,Aαg j−] − [Aαg j+, j−]

)
. Demanding that J± is flat implies

1
ξ

(
Aα[X, Y] + ηRA−1

α ([X,AαY] − [AαX, Y]) − [X, (Aα + ηR)Y]

− [(Aα − ηR)X, Y] +
1
ξ

[(Aα − ηR)X, (Aα + ηR)Y]

)
= 0, X, Y ∈ su(2). (3.45)

Substituting in the four cases: (i) X = Tā, Y = Tb̄; (ii) X = Tā, Y = T3, (iii) X = T3, Y = Tā

and (iv) X = T3, Y = T3, we find the following equations for ξ and η

η(1 − ξ)
ξ2

= 0,
η(1 − ξ)
αξ2

= 0,
1 − ξ

αξ2
= 0,

1
αξ

− 2
ξ
+

1
ξ2

=
η2

ξ2
. (3.46)

14 To see that this is a boundary term we start by recalling the identity (3.42)

R[X, Y] − [X,RY] − [RX, Y] = 0, X, Y ∈ su(2).

This identity implies that ρ (X, Y) = tr (XRY) is a closed two-cocycle in the Lie algebra cohomology of su(2) since

(dρ) (X, Y , Z) = ρ ([X, Y], Z) + ρ ([Y , Z], X) + ρ ([Z, X], Y)

= tr ([X, Y]RZ + [Y , Z]RX + [Z, X]RY)

= −tr (Z(R[X, Y] − [X,RY] − [RX, Y])) = 0, X, Y , Z ∈ su(2).

Moreover, it turns out that ρ is also exact, that is

ρ (X, Y) = (dρ̃) (X, Y) = ρ̃ ([X, Y]) , X, Y ∈ su(2),

where

ρ̃ (X) =
1
2

tr (XT3) , X ∈ su(2).

It then follows that

tr
(

j+Rg j−
)
= tr

(
k+Rk−

)
= ρ

(
k+, k−

)
= ρ̃

(
[k+ , k−]

)
= ρ̃

(
−∂+k− + ∂−k+

)
= ρ̃

(
2εμν∂μkν

)
= εμν∂μρ̃ (2kν ) ,

where we have used the flatness condition for k± (2.3). Therefore, we see explicitly that SR is indeed a boundary term.
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These equations can be solved for general α by setting

ξ = 1, η =

√
1 − α

α
. (3.47)

A second solution is given by taking η to be the negative square root.
It therefore follows that if we modify the deformed action (3.26) by a boundary term such

that15

SYB = −𝒽
2

∫
d2x tr

(
j+(αAαg +

√
α(1 − α)Rg) j−

)
, (3.48)

then the conserved current associated to the right-acting SU(2) global symmetry

J± =

(
Aαg ∓

√
1 − α

α
Rg

)
j±, (3.49)

is flat on-shell. Therefore, we can write down the following Lax connection of this model

L±(z) =
J±

1 ∓ z
. (3.50)

For reasons that will become clear in section 4 this model is known as the YB deformation of
the SU(2) PCM. In contrast to the trigonometric deformation, the action and Lax connection
of the YB deformation are only real for α � 1.

Noting that

αAα = 1 + (1 − α)R2, R3 = −R, RAα = AαR = R, (3.51)

we observe that we can write

αAα +
√
α(1 − α)R =

1
γ0 + γ1R+ γ2R2

, (3.52)

where, acting on both sides with γ0 + γ1R+ γ2R2, the parameters γ0, γ1 and γ2 are
determined to be

γ0 = 1, γ1 = −
√

1 − α

α
= −η, γ2 = 0. (3.53)

Therefore, the YB deformation of the SU(2) PCM (3.48) can be written in the form

SYB = −𝒽
2

∫
d2x tr

(
j+

1
1 − ηRg

j−

)
. (3.54)

The range α ∈ [1, 0) corresponds to η ∈ [0,∞). Allowing η to take negative values we can
simultaneously cover the second solution to equation (3.46). As we will see in section 4, this
form of the action is particularly natural for studying integrable deformations of the PCM for
general simple Lie group G.

15 We have also rescaled 𝒽→ α𝒽 in order to match with the conventions used in the following sections.
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3.3. The Yang–Baxter deformation of the SU(2) PCWZM

A similar approach can be used to construct the YB deformation of the SU(2) PCWZM starting
from the ansatz

SYB−PCWZM = −𝒽
2

∫
d2x tr

(
j+(αAαg + αηRg) j−

)
+

𝓀
6

∫
d3x εi jk tr

(
ji[ j j, jk]

)
. (3.55)

Given that the model is invariant under an SU(2) global symmetry acting as g → ggR, there
is an associated conserved current, which we can compute by considering the infinitesimal
variation g → g eε ∼ g(1 + ε). As expected, the resulting equations of motion take the form of
a conservation equation

∂+J− + ∂−J+ = 0, J± =
1
ξ

(
Aαg ∓ ηRg ∓

𝓀
α𝒽

)
j±, (3.56)

where ξ is again a free constant. Since JR± = ∓Rg j± is conserved off-shell for G = SU(2),

it follows that JA± = J± − η
ξ
JR± = 1

ξ

(
Aαg ∓ 𝓀

α𝒽

)
j± is also conserved on-shell. Now com-

puting ∂+J− − ∂−J+ + [J+, J−], and using the conservation of JA± on-shell and the flatness
of j± to replace ∂+ j− + ∂− j+ by A−1

αg ([ j+,Aαg j−] − [Aαg j+, j−] + 𝓀
α𝒽 [ j+, j−]), we find that

J± is flat if

1
ξ

(
Aα[X, Y] +

(
ηR+

𝓀
α𝒽

)
A−1

α

(
[X,AαY] − [AαX, Y] +

𝓀
α𝒽

[X, Y]

)
− [X, (Aα + ηR)Y] − [(Aα − ηR)X, Y]

+
1
ξ

[(
Aα − ηR− 𝓀

α𝒽

)
X,

(
Aα + ηR+

𝓀
α𝒽

)
Y

])
= 0, X, Y ∈ su(2). (3.57)

Substituting in the four cases: (i) X = Tā, Y = Tb̄; (ii) X = Tā, Y = T3, (iii) X = T3, Y = Tā

and (iv) X = T3, Y = T3, the resulting set of equations can be solved for ξ and η by setting

ξ = 1, η =

√
1 − α

α

(
1 − 𝓀2

α𝒽2

)
. (3.58)

A second solution is given by taking η to be the negative square root. Therefore, for ξ and
η given by equation (3.58), the conserved current (3.56) associated to the right-acting SU(2)
global symmetry of the deformed action (3.55) is flat on-shell and we can write down the Lax
connection of this model.

Introducing the parameters χ and ρ in place of 𝒽 and α

𝒽 = 𝓀 coth
χ

2
, α =

cosh χ− 1
cosh χ− cos ρ

, η =

√
1 − α

α

(
1 − 𝓀2

α𝒽2

)
=

sin ρ

sinh χ
,

(3.59)
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and again using the identities (3.51), we can show that16

𝒽(αAα + αηR) = 𝓀
eχ + eρR

eχ − eρR
. (3.60)

Therefore, the YB deformation of the SU(2) PCWZM (3.55) can be written in the form

SYB−PCWZM = −𝓀
2

∫
d2x tr

(
j+

eχ + eρRg

eχ − eρRg
j−

)
+

𝓀
6

∫
d3x εi jk tr

(
ji[ j j, jk]

)
. (3.61)

It turns out that this form is particularly natural for studying integrable deformations of the
PCWZM for general simple Lie group G.

4. The Yang–Baxter deformation of the PCM

Now that we have explored integrable deformations of the SU(2) PCM and PCWZM in some
detail, we generalise to a general simple Lie group G. From this point on we will restrict
ourselves to those integrable deformations for which the Lax connection can be built from
a conserved and flat current. This means that the methods for constructing conserved charges
discussed in section 2 can be straightforwardly applied to these models.

Motivated by our discussion of the YB deformation of the SU(2) PCM we consider the
following action as our starting point

SYB = −𝒽
2

∫
d2x tr

(
j+

1
1 − ηRg

j−

)
, Rg = Ad−1

g RAdg, (4.1)

where R is a general constant linear operator on g. For now we do not assume that R satis-
fies any particular symmetry properties. However, we do assume that the operator 1 − ηR is
invertible on g for all η. This may not always be the case, and typically leads to singularities
in the target-space metric and B-field.

The action (4.1) defines a deformation of the PCM with the undeformed limit given by
η → 0. The deformation preserves the right-acting G global symmetry, but breaks the left-
acting symmetry to the subgroup G0 of G that commutes with the operator R

Ad−1
g0
RAdg0 = R, g0 ∈ G0. (4.2)

16 The operator eρR satisfies the following differential equation and boundary condition

d
dρ

eρR = R eρR, eρR
∣∣
ρ=0

= 1.

Substituting in eρR = γ0 + γ1R+ γ2R2 and using R3 = −R we find

dγ0

dρ
= 0,

dγ1

dρ
= γ0 − γ2,

dγ2

dρ
= γ1, γ0|ρ=0 = 1, γ1|ρ=0 = 0, γ2|ρ=0 = 0,

which is solved by

γ1 = 1, γ2 = sin ρ, γ3 = 1 − cos ρ.

Using this expansion of eρR it is then straightforward to check that

𝓀 eχ + eρR

eχ − eρR
= 𝓀 coth

χ

2
+

𝓀 sin ρ

cosh χ− cos ρ
R+𝓀 coth

χ

2
1 − cos ρ

cosh χ− cos ρ
R2 =𝒽(αAα + αηR).
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We say that elements of G0 are symmetries of the operator R.
The equations of motion for the action (4.1) can be written as the conservation equation

associated to the right-acting G global symmetry. Considering the infinitesimal variation
g → g eε ∼ g(1 + ε) we find

∂+J− + ∂−J+ = 0, J− =
1
ξ

1
1 − ηRg

j−, J+ =
1
ξ

1
1 − ηRt

g
j+, (4.3)

where Rt is the transpose of R with respect to the invariant bilinear form, that is

tr (XRY) = tr
(
(RtX)Y

)
, X, Y ∈ g, (4.4)

and ξ is a free parameter. In order to construct integrable deformations of the PCM, we follow
the strategy of requiring that the conserved current J± is also flat on-shell. While this will lead
to a large class of integrable deformations known as the YB deformations, it should be noted
that not all integrable deformations of sigma models, for example, the elliptic deformation of
the SU(2) PCM, are of this type.

From equation (4.3) we have

j− = ξ(1 − ηRg)J−, j+ = ξ(1 − ηRt
g)J+. (4.5)

Substituting into the flatness condition (2.12) we find

0 = ξ∂+((1 − ηRg)J−) − ξ∂−((1 − ηRt
g)J+)

+ ξ2[(1 − ηRt
g)J+, (1 − ηRg)J−]

= ξ(∂+J− − ∂−J+) − ξ2η(Rg +Rt
g)[J+, J−]

− ξ2η2([Rt
gJ+,RgJ−] −Rt

g[J+,RgJ−] −Rg[Rt
gJ+, J−]) + ξ2[J+, J−], (4.6)

where we have used that the current J± is conserved. It therefore follows that J± is also flat
on-shell if the operator R satisfies

ξη(R+Rt)[X, Y] + ξη2([RtX,RY] −Rt[X,RY] −R[RtX, Y])

+ (1 − ξ)[X, Y] = 0, X, Y ∈ g. (4.7)

It is possible to show with some simple manipulations that R+Rt, that is the symmetric
part of R, must be proportional to the identity operator17. Redefining 𝒽 and η in (4.1) we can
always remove a term proportional to the identity in R. Combining these two facts, we take the

17 To show this we first note that equation (4.7) is equivalent to

tr
(
Z(ξη(R+Rt)[X, Y] + ξη2([RtX,RY] −Rt[X,RY] −R[RtX, Y]) + (1 − ξ)[X, Y])

)
= 0, X, Y , Z ∈ g.

Using the invariance of the bilinear form this can be rewritten as

tr
(
(ξη[Y , (R+Rt)] + ξη2(R[RY , Z] − [RY ,RZ] −R[Y ,RtZ]) + (1 − ξ)[Y , Z])X

)
= 0, X, Y , Z ∈ g.

Adding this equation to itself with Y and Z interchanged we arrive at

ξη(1 − ηR)([Y , (R+Rt)Z] − [(R+Rt)Y , Z]) = 0, Y , Z ∈ g.

Given that we assume 1 − ηR is invertible and that g is a simple Lie algebra, it follows from Schur’s lemma that
R+Rt is proportional to the identity operator.
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symmetric part of R to vanish without loss of generality. We are then left with the following
two equations for R

[RX,RY] −R[X,RY] −R[RX, Y] + c2[X, Y] = 0,

tr (XRY) + tr ((RX)Y) = 0, X, Y ∈ g, (4.8)

where we have set

ξ =
1

1 − c2η2
. (4.9)

The first of these equations is known as the (modified) classical YB equation ((m)cYBe), where
modified refers to the case c 
= 0. That the operator R is required to satisfy this equation is the
reason why these models are named YB deformations.

To summarise, we have found that the action (4.1) defines an integrable deformation of the
PCM for simple Lie group G when the constant linear operatorR is an antisymmetric solution
to the (m)cYBe (4.8). In particular, the current

J± =
1 − c2η2

1 ± ηRg
j±, (4.10)

is both conserved and flat on-shell. Therefore, the Lax connection is given by

L± =
J±

1 ∓ z
. (4.11)

Given that R always appears with the real deformation parameter η, we have the freedom to
rescale R by a real number. Noting that we have c2 ∈ R, we can use this freedom to fix c to
take one of the following three values:

• c = 0: this is known as the homogeneous case and R satisfies the cYBe.
• c = i: this is known as the non-split inhomogeneous case and R satisfies the non-split

mcYBe;
• c = 1: this is known as the split inhomogeneous case and R satisfies the split mcYBe.

Before we explore each of these three cases in more detail, let us relate the operator form of
the (m)cYBe (4.8) to its more familiar matrix form. Any antisymmetric constant linear operator
R on g can be defined in terms of a matrix r ∈ g ∧ g

r + P(r) = 0, RX = tr2(r(1 ⊗ X)), X ∈ g, (4.12)

known as the r-matrix, where the subscript indicates that the trace is taken over the second
entry in the tensor product and P permutes the entries in the tensor product. In terms of the
r-matrix, the (m)cYBe is given by the following equation in g ∧ g ∧ g

[r12, r13] + [r12, r23] + [r13, r23] + c2Ω = 0, (4.13)

where r12 = r ⊗ 1, r13 = P23(r12), r23 = P12(r13) andΩ is the canonical invariant three-form in
g ∧ g ∧ g.18 Here Pij permutes entries i and j in the tensor product. Acting with equation (4.13)

18 Let us introduce generators Ta, a = 1, . . . , dim g, of the Lie algebra g with [Ta, Tb] = fc
abTc, tr (TaTb) = κab and

κabκbc = δa
c . Using κab and its inverse κab to lower and raise indices, we have Ω = f abcTa ⊗ Tb ⊗ Tc. Ω is valued in

g ∧ g ∧ g since the structure constants with all indices raised are totally antisymmetric.
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on 1 ⊗ X ⊗ Y and taking the trace over the second and third entries in the tensor product we
find the (m)cYBe in its operator form (4.8).

4.1. Homogeneous YB deformations

Let us start by analysing the case of homogeneous YB deformations. In this case the
antisymmetric operator R satisfies the cYBe

[RX,RY] −R[X,RY] −R[RX, Y] = 0, tr (XRY) + tr ((RX)Y) = 0, X, Y ∈ g.

(4.14)

When discussing solutions of the cYBe, it is often more convenient to work in terms of the
r-matrix, which satisfies

[r12, r13] + [r12, r23] + [r13, r23] = 0, r + P(r) = 0. (4.15)

We also introduce generators Ta, a = 1, . . . , dim g, of the Lie algebra g.
Abelian r-matrices and TsT transformations. An important class of solutions of the cYBe

(4.15) are the abelian r-matrices, which take the form

r = T1 ∧ T2, [T1, T2] = 0. (4.16)

Given that T1 and T2 commute it immediately follows that such r-matrices satisfy (4.15). To
explore the resulting deformed models, let us assume that

tr (TaTb) = −δab, a = 1, . . . , dim g, (4.17)

so that

RTā = εā
b̄Tb̄, RTâ = 0, (4.18)

where the index ā = 1, 2 and the index â runs over the remaining generators of the Lie algebra
g. Under these assumptions we have that R3 = −R and therefore

1
1 − ηR = (1 +R2) +

η

1 + η2
R− 1

1 + η2
R2, (4.19)

where

R2Tā = −Tā, (1 +R2)Tā = 0,

R2Tâ = 0, (1 +R2)Tâ = Tâ.
(4.20)

Now writing

k± = −∂±gg−1 = kā
±Tā + k⊥±, k⊥± = kâ

±Tâ, (4.21)

the action of the YB deformation (4.1) for such abelian r-matrices becomes

SYB =
𝒽
2

∫
d2x

(
−tr

(
k⊥+k⊥−

)
+

1
1 + η2

δāb̄kā
+kb̄

− − η

1 + η2
εāb̄kā

+kb̄
−

)
. (4.22)
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It turns out that this is nothing but the well-known TsT transformation of the PCM. In a model
with two commuting isometries, we can always choose coordinates on the target space such
that these isometries are realised as shift symmetries

Θā →Θā + γ ā. (4.23)

A TsT transformation then amounts to first T-dualising Θ1 → Θ̃1, shifting Θ2 →Θ2 − ηΘ̃1

and finally T-dualising back Θ̃1 →Θ1. Given that T-dualising twice is the identity map, for
η = 0 the TsT transformation has no effect, hence for η 
= 0 it defines a deformation of the
original model. Since T-duality is a canonical transformation on phase space, it preserves the
integrability of a model, in agreement with the fact that the YB deformations are integrable
deformations of the PCM.

To see the relation to TsT transformations, we use the same simplifying assumptions as in
equation (4.17) and parametrise

g = e−Θg̃, Θ = ΘāTā. (4.24)

It follows that

k± = −∂±gg−1 = e−Θ(k̃± + ∂±Θ)eΘ, k̃± = −∂±g̃g̃−1, (4.25)

where we have used that Θ commutes with itself and its derivatives. Let us also denote

k̃± = k̃ā
±Tā + k̃⊥±, k̃⊥± = k̃â

±Tâ. (4.26)

Substituting into the action of the PCM (2.10) gives

SPCM =
𝒽
2

∫
d2x

(
−tr

(
k̃⊥+k̃⊥−

)
+ (k̃1

+ + ∂+Θ
1)(k̃1

− + ∂−Θ
1)

+ (k̃2
+ + ∂+Θ

2)(k̃2
− + ∂−Θ

2)
)
. (4.27)

To T-dualise inΘ1 we first gauge the shift symmetryΘ1 →Θ1 + γ1, add a Lagrange multiplier
Θ̃1 enforcing that the field strength of the abelian gauge field is zero, and gauge fix Θ1 = 0

STD−INT−PCM =
𝒽
2

∫
d2x

(
−tr

(
k̃⊥+k̃⊥−

)
+ (k̃1

+ + A+)(k̃1
− + A−)

+ (k̃2
+ + ∂+Θ

2)(k̃2
− + ∂−Θ

2) + Θ̃1(∂+A− − ∂−A+)
)
. (4.28)

The T-dual model is then given by integrating out the gauge field A±

STD−PCM =
𝒽
2

∫
d2x

(
−tr

(
k̃⊥+k̃⊥−

)
+ ∂+Θ̃1∂−Θ̃1 − k̃1

+∂−Θ̃1

+ ∂+Θ̃1k̃1
− + (k̃2

+ + ∂+Θ
2)(k̃2

− + ∂−Θ
2)
)
. (4.29)

We next shift Θ2 →Θ2 − ηΘ̃1 in the T-dual model

STD−PCM =
𝒽
2

∫
d2x

(
−tr

(
k̃⊥+k̃⊥−

)
+ ∂+Θ̃1∂−Θ̃1 − k̃1

+∂−Θ̃1 + ∂+Θ̃1k̃1
−

+ (k̃2
+ + ∂+Θ

2 − η∂+Θ̃1)(k̃2
− + ∂−Θ

2 − η∂−Θ̃1)
)

, (4.30)
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and T-dualise in Θ̃1 to find the TsT transformation of the PCM

STsT−PCM =
𝒽
2

∫
d2x

(
−tr

(
k̃⊥+k̃⊥−

)
+

1
1 + η2

δāb̄(k̃ā
+ + ∂+Θ

ā)(k̃b̄
− + ∂−Θ

b̄)

− η

1 + η2
εāb̄(k̃ā

+ + ∂+Θ
ā)(k̃b̄

− + ∂−Θ
b̄)

)
= −𝒽

2

∫
d2x tr

(
(k̃+ + ∂+Θ)

1
1 − ηR (k̃− + ∂−Θ)

)
, (4.31)

where we have used the identity (4.19). Finally, using that

Ade−ΘRAdeΘ = R,

that is T1 and T2 are symmetries of the operator R, which can be seen from the equivalent
form

(Ade−Θ ⊗ Ade−Θ )r = r,

we can replace k̃± + ∂±Θ by e−Θ(k̃± + ∂±Θ)eΘ = k±. Therefore, we indeed find that the TsT
transformation of the PCM takes the form of the YB deformation constructed from an abelian
r-matrix

STsT−PCM = −𝒽
2

∫
d2x tr

(
k+

1
1 − ηRk−

)
= −𝒽

2

∫
d2x tr

(
j+

1
1 − ηRg

j−

)
= SYB.

(4.32)

This result holds in full generality, without the simplifying assumptions in equation (4.17). That
is, any YB deformation constructed from an abelian r-matrix is equivalent to a TsT transfor-
mation. This is our first encounter of the close relationship between integrability, deformations
and dualities.

General r-matrices and non-abelian T-duality. The classification of homogeneous r-
matrices for a given Lie algebra g can be a rather involved exercise. We can make progress
by noting that the image of the operator R is a subalgebra of g. We denote h = imR. This can
be easily seen by writing the cYBe (4.14) as

[RX,RY] = R([X,RY] + [RX, Y]), X, Y ∈ g, (4.33)

that is, the commutator of two elements of h is in the image of R, hence is also an element of
h. It follows that the r-matrix is valued in h ∧ h. Moreover, writing

r = rāb̄Tā ∧ Tb̄, rāb̄ = −rb̄ā, (4.34)

where Tā are generators of h, rāb̄ is invertible as a dim h× dim h matrix. Denoting the inverse
by ωāb̄, we can use it to define a two-cochain on h

ω
(
Tā, Tb̄

)
= ωāb̄, ωāb̄ = −ωb̄ā. (4.35)

An r-matrix solving the cYBe (4.15) is then equivalent to ω being a two-cocycle, that is a
closed two-cochain

ω (X, [Y, Z]) + ω (Y, [Z, X]) + ω (Z, [X, Y]) = 0, X, Y, Z ∈ h. (4.36)
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To see this explicitly, we note that for the r-matrix (4.34) the cYBe (4.15) can be written as

rāb̄rc̄d̄
(
[Tā, Tc̄] ∧ Tb̄ ∧ Td̄ + Tā ∧ [Tb̄, Tc̄] ∧ Td̄ + Tā ∧ Tc̄ ∧ [Tb̄, Td̄]

)
= 0, (4.37)

which implies (
f d̄ē

ārb̄d̄rc̄ē + f d̄ē
b̄rc̄d̄rāē + f d̄ē

c̄rād̄rb̄ē
)

Tā ∧ Tb̄ ∧ Tc̄ = 0, (4.38)

or equivalently

f d̄ē
ārb̄d̄ d̄rc̄̄e + f d̄ē

b̄rc̄d̄rāē + f d̄ē
c̄rād̄rb̄ē = 0. (4.39)

Contracting this identity with ω f̄ āωḡb̄ωh̄c̄ and using that ω f̄ ārād̄ = δd̄
f̄ we find

ω f̄ ā f ḡh̄ā + ωḡb̄ f h̄ f̄ b̄ + ωh̄c̄ f f̄ḡc̄ = 0. (4.40)

It is then straightforward to see that this is equivalent to the closure of the two-cochain (4.35)

ω
(
T f̄ , [Tḡ, Th̄]

)
+ ω

(
Tḡ, [Th̄, T f̄ ]

)
+ ω

(
Th̄, [T f̄ , Tḡ]

)
= 0. (4.41)

It follows that h is a quasi-Frobenius subalgebra of g, that is a subalgebra equipped with a
non-degenerate two-cocycle ω. When ω is also exact

ω (X, Y) = ω̃ ([X, Y]) , X, Y ∈ h, (4.42)

the subalgebra h is Frobenius. Therefore, the classification of homogeneous r-matrices for
a given Lie algebra g is equivalent to the classification of quasi-Frobenius subalgebras and
non-degenerate two-cocycles.

It turns out that all homogeneous YB deformations can be related to duality transformations.
As an example of this we consider the following simplified setup. We assume that we have a
basis of generators Ta, a = 1, . . . , dim g, of g that we split into Tā, ā = 1, . . . , dim h, which
are generators of h, and Tâ, â = dim h+ 1, . . . , dim g, such that κab = tr (TaTb) is block diag-
onal, that is κāb̂ = κâb̄ = 0. In particular, this means that κāb̄ = tr

(
TāTb̄

)
is invertible, with the

inverse denoted by κāb̄, and we can use the invariant bilinear form to identify the dual of h with
itself. While this is quite a severe restriction, the following construction can be generalised to
any homogeneous YB deformation.

For the r-matrix (4.34), we find that in this setup

RTā = Rb̄
āTb̄ = 2rb̄̄cκc̄āTb̄, RTâ = 0. (4.43)

It follows that the restriction ofR to h is invertible. We can also use the two-cocycleω to define
an antisymmetric map Ω : h→ h as

ω (X, Y) = 2 tr (XΩY) = −2 tr ((ΩX)Y) , X, Y ∈ h, (4.44)

such that

ωāb̄ = 2κā̄cΩ
c̄b̄. (4.45)

Given that ωāb̄ is the inverse of rāb̄, it follows that Ω is the inverse of the restriction of R to h.
It is also useful to note that in terms of Ω the closure of the two-cocycle ω is

Ω[X, Y] = [X,ΩY] + [ΩX, Y], X, Y ∈ h, (4.46)
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that is Ω acts as a derivation on commutators of h.
Let us parametrise the group-valued field of the PCM as

g = hg̃, h ∈ H, g̃ ∈ G, (4.47)

where Lie H = h, such that

j± = g−1∂±g = g̃−1(h−1∂±h − k̃±)g̃, k̃± = −∂±g̃g̃−1. (4.48)

Given that h−1∂±h ∈ h, we can consider the following modification of the PCM

SPCMζ
= −𝒽

2

∫
d2x tr

(
j+ j−

)
+

𝒽ζ

4

∫
d2x ω

(
h−1∂+h, h−1∂−h

)
. (4.49)

Since ω is a two-cocycle on h, hence it is closed, it follows that locally ω
(
h−1∂+h, h−1∂−h

)
is a total derivative. Therefore, adding this term does not change the equations of motion. We
will call such a term a closed term.

We now claim that, up to a closed term, the non-abelian T-dual of the modified action (4.49)
gives the YB deformation of the PCM (4.1). To perform the non-abelian T-duality transforma-
tion we start by substituting in for j± using equation (4.48) in the modified action (4.49). We
then gauge the left-acting global H symmetry, h → hLh, gauge-fix h = 1, and add a Lagrange
multiplier v ∈ h enforcing that the gauge field is flat. After doing this we find

SINTζ
= −𝒽

2

∫
d2x tr

(
(A+ − k̃+)(A− − k̃−)

)
+

𝒽ζ

4

∫
d2xω

(
A+, A−

)
− 𝒽

2

∫
d2x tr

(
v(∂+A− − ∂−A+ + [A+, A−])

)
, v, A± ∈ h.

(4.50)

The non-abelian T-dual model is then given by integrating out the gauge field A±

SNATDζ
= −𝒽

2

∫
d2x tr

(
(∂+v + Pk̃+)

1
1 − ζΩ− adv

(∂−v − Pk̃−) + k̃+k̃−

)
, (4.51)

where P is the orthogonal projector onto h, that is

PTā = Tā, PTâ = 0. (4.52)

In order to show that this is equivalent to the YB deformation up to a closed term, we substitute
the parametrisation (4.47) into the action (4.1) to give

SYB = −𝒽
2

∫
d2x tr

(
(h−1∂+h − k̃+)

1
1 − ηRh

(h−1∂−h − k̃−)

)
,

Rh = Ad−1
h RAdh. (4.53)

Comparing the actions (4.51) and (4.53) we would like to solve the following equations

1 − P
1

1 − ζΩ− adv
P =

1
1 − ηRh

, ± 1
1 ± ζΩ± adv

∂±v =
1

1 ± ηRh
h−1∂±h. (4.54)

Rearranging and using that, restricted to h, R−1 = Ω, we find

adv = η−1Ωh − ζΩ, ∂±v = η−1Ωh(h−1∂±h), Ωh = Ad−1
h ΩAdh, (4.55)
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where the first equation should be understood as an equation on h. It is natural to expect that
h = 1 is equivalent to v = 0, in which case the first equation tells us that ζ = η−1. The equations
can then be solved by setting

h = ev̄ , v = η−1 1 − e−adv̄

adv̄
Ωv̄, v̄ ∈ h. (4.56)

This follows from the fact that Ω acts as a derivation on commutators of h (4.46).19

Finally, having solved equation (4.54), we observe that

∂+v
1

1 − ζΩ− adv
∂−v = h−1∂+h

1
1 − ηRh

h−1∂−h + η−1h−1∂+hΩhh−1∂−h, (4.57)

hence

SNATDζ
= SYB − 𝒽η−1

4

∫
d2x ω

(
∂+hh−1, ∂−hh−1

)
. (4.58)

Therefore, we indeed find that the non-abelian T-dual of the modified action (4.51) gives the
YB deformation of the PCM up to a closed term. As mentioned above, this construction can
be generalised to any homogeneous YB deformation. That is, up to a closed term, any homo-
geneous YB deformation is the non-abelian T-dual of the PCM modified by a closed term. It
is interesting to note that when ω is exact the closed terms become boundary terms and the
parameter η can be eliminated by a coordinate redefinition. Therefore, in these cases the YB
deformation is not strictly speaking a deformation.

Examples based on SL(2). We finish our discussion of homogeneous deformations with
an explicit example of a non-abelian r-matrix. It turns out there is no solution to the cYBe
on su(2). Therefore, we instead consider the non-compact real form sl(2,R) and the PCM

19 For any derivation δ of the universal enveloping algebra of h

h−1δh =
1 − e−adv̄

adv̄

δv̄, δhh−1 =
eadv̄ − 1

adv̄

δv̄,

where h = ev̄ . Moreover, if we have two such derivations δ1 and δ2 that commute then

δ1(h−1δ2h) − δ2(h−1δ1h) + [h−1δ1h, h−1δ2h] = 0,

δ1(δ2hh−1) − δ2(δ1hh−1) − [h−1δ1h, h−1δ2h] = 0.

To solve the first equation in equation (4.55), we observe that Ad−1
h δAdh − δ = adh−1δh. Indeed, acting with the left-

hand side on X ∈ h we find h−1δ(hXh−1)h − δX = h−1δhX + δX − Xh−1δh − δX = [h−1δh, X]. Therefore, setting
δ = Ω and assuming that Ω can be extended to a derivation of the universal enveloping algebra of h, it follows that
the first equation in equation (4.55) is solved by

v = η−1(h−1Ωh) = η−1 1 − e−adv̄

adv̄

Ωv̄,

as claimed. It remains to show that the second equation in equation (4.55) is solved by this expression for v. Using
that ∂± and Ω commute, we have

∂±v = η−1∂±(h−1Ωh) = η−1Ω(h−1∂±h) + η−1[h−1Ωh, h−1∂±h]

= η−1(Ω+ adh−1Ωh)h−1∂±h = η−1Ωh(h−1∂±h),

as required.
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for SL(2,R) ∼= AdS3. Recall that for G = SL(2,R) we reverse the overall sign of the action
to ensure that the target-space metric has Lorentzian signature. We use the following matrix
representation of sl(2,R)

S0 =

(
1 0
0 −1

)
, S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
. (4.59)

In this representation we take tr = Tr, where Tr is the standard matrix trace. Therefore, we
have

tr
(
S2

0

)
= 2, tr

(
S+S−

)
= 1, [S0, S±] = ±2S±, [S+, S−] = S0. (4.60)

Parametrising the group-valued field as

g = exp
(
y+S+

)
exp (log zS0) exp (y−S−) , (4.61)

and substituting into the PCM action (2.10) with the overall sign reversed, we find

SSL(2,R)−PCM = 𝒽
∫

d2x

(
2∂+z∂−z + ∂+y+∂−y− + ∂+y−∂−y+

2z2

)
. (4.62)

The explicit form of the target-space metric in local coordinates is thus

G = 2𝒽
(

dz2 + dy+ dy−
z2

)
, (4.63)

which is the familiar Poincaré metric for AdS3.
Up to automorphisms, there is only one solution to the cYBe on sl(2,R). This is the

Jordanian solution and is given by

r = S0 ∧ S+. (4.64)

In terms of the operator R we have

RS− = S0, RS0 = −2S+, RS+ = 0. (4.65)

Therefore, R3 = 0 and

1
1 − ηR = 1 + ηR+ η2R2. (4.66)

Parametrising g as in (4.61) and substituting into the action of the deformed model (4.1) with
the overall sign reversed, we can read off the explicit form of the deformed target-space metric
and B-field in local coordinates

G = 2𝒽
(

dz2 + dy+ dy− − η2z2 dy2
−

z2

)
, B = 2𝒽η

dz
z3

∧ dy−. (4.67)

Let us note that strictly speaking this is not a deformation since we can always set η = 1 by
rescaling

y± → η±1y±. (4.68)

32



J. Phys. A: Math. Theor. 55 (2022) 093001 Topical Review

In this example, the Lie algebra h is generated by S0 and S+, and the two-cocycle ω is given
by

ω
(
S0, S+

)
= −ω

(
S+, S0

)
= 2. (4.69)

This two-cocycle is exact since ω (X, Y) can be written as ω̃ ([X, Y]) where

ω̃ (S0) = 0, ω̃
(
S+

)
= 1. (4.70)

4.2. Inhomogeneous YB deformations

Let us now turn to the case of inhomogeneous YB deformations. In this case the antisymmetric
operator R satisfies the mcYBe

[RX,RY] −R[X,RY] −R[RX, Y] + c2[X, Y] = 0,

tr (XRY) + tr ((RX)Y) = 0, X, Y ∈ g. (4.71)

The mcYBe can be rewritten as

[(R± c)X, (R± c)Y] = (R± c)([X,RY] + [RX, Y]), X, Y ∈ g, (4.72)

from which we see that the vector spaces h± = im(R± c) are Lie algebras.
The Drinfel’d–Jimbo solution. Antisymmetric solutions to the mcYBe, that is with c 
= 0,

have been classified for simple Lie algebras over the complex numbers. Here we focus on
the simplest, Drinfel’d–Jimbo, solution to the mcYBe. To define this solution we introduce
a Cartan–Weyl basis for the complexified Lie algebra gC. We denote the Cartan generators
by Hi, i = 1, . . . rank gC, and the positive and negative roots by Eα and Fα respectively, α =
1, . . . , 1

2 (dimC g
C − rank gC). In operator form, the Drinfel’d–Jimbo solution to the mcYBe is

then given by20

RHi = 0, REα = −cEα, RFα = cFα. (4.73)

20 Using that the Cartan generators Hi commute, that [Hi, Eα] and [Eα, Eβ] are sums of positive roots, and that [Hi, Fα]
and [Fα, Fβ] are sums of negative roots, working through the various cases we have

[RHi,RH j] −R[Hi,RH j] −R[RHi, H j] + c2[Hi, H j] = 0,

[REα,REβ] −R[Eα,REβ] −R[REα, Eβ]

+ c2[Eα, Eβ] = c2[Eα, Eβ] + 2cR[Eα, Eβ] + c2[Eα, Eβ ] = 0,

[RFα,RFβ] −R[Fα,RFβ] −R[RFα, Fβ]

+ c2[Fα, Fβ] = c2[Fα, Fβ] − 2cR[Fα , Fβ] + c2[Fα, Fβ] = 0,

[RHi,REα] −R[Hi,REα] −R[RHi, Eα]

+ c2[Hi, Eα] = −R[Hi,REα] + c2[Hi, Eα]

= −c2[Hi, Eα] + c2[Hi, Eα] = 0,

[RHi,RFα] −R[Hi,RFα] −R[RHi, Fα] + c2[Hi, Fα]

= −R[Hi,RFα] + c2[Hi, Fα] = −c2[Hi, Fα] + c2[Hi, Fα] = 0,

[REα,RFβ] −R[Eα,RFβ] −R[REα, Fβ] + c2[Eα, Fβ]

= −c2[Eα, Fβ] −R(c[Eα, Fβ] − c[Eα, Fβ]) + c2[Eα, Fβ] = 0.
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It is also useful to introduce the operator

Π = 1 − c−2R2, (4.74)

which projects onto the Cartan subalgebra

ΠHi = Hi, ΠEα = 0, ΠFα = 0, (4.75)

and satisfies the identity21

Π([X,RY] + [RX, Y]) = 0, X, Y ∈ g. (4.76)

When we consider real forms of the complexified Lie algebra gC we require that c2 ∈ R,
and the distinction between non-split, c = i, and split, c = 1, becomes relevant. For a given
real form there may be no, one or more than one inequivalent Drinfel’d–Jimbo solutions to
the non-split or split mcYBe. Typically, a careful analysis of the particular Lie algebra under
consideration is needed to classify these. Nevertheless, we can still make some universal state-
ments. In particular, let us focus on two real forms that can be defined for every simple Lie
algebra. These are the compact and split real forms. The compact real form is generated
by {iHi, i(Eα + Fα), (Eα − Fα)}, while the split real form is generated by {Hi, Eα, Fα}. For
example, for gC = sl(N,C) the compact real form is su(N), while the split real form is sl(N,R).

The Drinfel’d–Jimbo solution (4.73) allows us to write down solutions to the mcYBe with
c = i and c = 1

c = i, RHi = 0, REα = −iEα, RFα = iFα, (4.77)

c = 1, RHi = 0, REα = −Eα, RFα = Fα. (4.78)

We would now like to ask whether these solutions preserve the compact and split real forms,
that is whether the image of R restricted to the real form is also valued in the real form. It is
straightforward to check that the c = i solution preserves the compact real form, hence we have
a solution to the non-split mcYBe, while the c = 1 solution preserves the split real form and
we have a solution to the split mcYBe.

The Drinfel’d–Jimbo solution to the mcYBe (4.73) can be extended to include
1
2 rank g(rank g− 1) free parameters by setting

RHi = β j
iH j, REα = −cEα, RFα = cFα, β j

iκ
ik = −βk

iκ
i j, (4.79)

where κi j = tr
(
HiH j

)
and κi jκ jk = δi

k. To preserve the compact and split real forms the param-
eters β ji should be real. More generally, the reality conditions on the parameters β ji are
determined by the particular real form being considered. Since the Cartan generators com-
mute, this extension can be understood as combining an abelian solution to the cYBe with the
Drinfel’d–Jimbo solution to the mcYBe. Indeed, the Cartan subgroup of GC generated by Hi

is the symmetry of both the Drinfel’d–Jimbo solution (4.73) and its extension (4.79)

adHi R = R adHi , (4.80)

21 Working through the various cases we have

Π([Hi,RH j] + [RHi, H j]) = 0, Π([Hi,REα] + [RHi, Eα]) = Π[Hi,REα] = −cΠ[Hi, Eα] = 0,

Π([Eα,REβ ] + [REα, Eβ ]) = −2cΠ[Eα, Eβ] = 0, Π([Hi,RFα] + [RHi, Fα]) = Π[Hi,RFα] = cΠ[Hi, Fα] = 0,

Π([Fα,RFβ ] + [RFα, Fβ ]) = 2cΠ[Fα, Fβ ] = 0, Π([Eα,RFβ ] + [REα, Fβ ]) = Π(c[Eα , Fβ] − c[Eα, Fβ]) = 0.
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which is the infinitesimal version of equation (4.2). This means that the Cartan subgroup of
the left-acting G global symmetry is preserved by YB deformations based on Drinfel’d–Jimbo
solutions. The extension (4.79) is then equivalent to performing additional TsT transformations
in the corresponding coordinates on target space.

Note that, apart from the case of the rank one algebra sl(2,C), the extended Drinfel’d–Jimbo
solution (4.79) is not the unique solution to the mcYBe for simple Lie algebras over C. How-
ever, for the compact real form it is the only solution to the non-split mcYBe and there is no
solution to the split mcYBe. For the split real form, and for non-compact real forms more gen-
erally, the situation is typically more complicated. Indeed, as we will see shortly, the split real
form sl(2,R) has a solution to both the split and non-split mcYBe.

Examples based on SL(2). Let us now give a few explicit examples of inhomogeneous
YB deformations of the PCM based on different real forms of G = SL(2,C). We identify the
Cartan generator H with S0, the positive root E with S+ and the negative root F with S− where
S0, S± are the generators of the split real form sl(2,R) defined in equation (4.59). This then
implies that iH = T3, i(E + F) = T1 and E − F = T2 where T1, T2 and T3 are the generators
of the compact real form su(2) defined in equation (2.49).

We start by considering inhomogeneous YB deformations of the SU(2) PCM. Since su(2) is
a compact real form it has a solution (4.77) to the non-split mcYBe. In terms of the generators
T1, T2 and T3 this is given by

RT1 = T2, RT2 = −T1, RT3 = 0. (4.81)

This precisely coincides with the operator R that we encountered previously in section 3 in
equation (3.38). Therefore, the deformed target-space metric will be given by equation (3.12)
and the deformed B-field is closed. Noting that R3 = −R we have

1
1 − ηR = 1 +

η

1 + η2
R+

η2

1 + η2
R2. (4.82)

Parametrising g as in (2.51) and substituting into the action of the deformed model (4.1) with
tr = Tr, we can read off the explicit form of the deformed target-space metric and B-field in
local coordinates

G =
2𝒽

1 + η2

(
dθ2 + cos2 θ(1 + η2 cos2 θ)dϕ2

+ sin2 θ(1 + η2 sin2 θ)dφ2 + 2η2 sin2 θ cos2 θ dϕ dφ
)

,

B = − 2𝒽η
1 + η2

sin θ cos θ dθ ∧ d(ϕ− φ). (4.83)

We now turn to inhomogeneous YB deformations of the SL(2,R) PCM. Recall that for
G = SL(2,R) we reverse the overall sign of the action to ensure that the target-space met-
ric has Lorentzian signature. Given that sl(2,R) is a split real form it has a solution (4.78) to
the split mcYBe. In terms of the generators S0 and S± this is given by

RS0 = 0, RS± = ∓S±. (4.84)

Noting that R3 = R we have

1
1 − ηR = 1 +

η

1 − η2
R+

η2

1 − η2
R2. (4.85)
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Parametrising the group-valued field as

g = exp

(
y1 + y0

2
S0

)
exp

(
u(S+ + S−)

)
exp

(
y1 − y0

2
S0

)
, (4.86)

and substituting into the action of the deformed model (4.1) with tr = Tr and the overall
sign reversed, we find that the deformed target-space metric and B-field are given by

G =
2𝒽

1 − η2

(
du2 − sinh2 u(1 + η2 sinh2 u)dy2

0

+ cosh2 u(1 − η2 cosh2 u)dy2
1 + 2η2 sinh2 u cosh2 u dy0 dy1

)
,

B =
2𝒽η

1 − η2
sinh u cosh u du ∧ d(y1 − y0). (4.87)

This deformed background has a singularity at η = 1, which is related to the fact that the
operator 1 − ηR is not invertible at this point. For our purposes, it will be sufficient to restrict η
to lie in the range [0, 1). It is interesting to observe that if we consider the coordinate redefinition

u = log(γz), y0 →−γ(y+ − y−), y1 →−γ(y+ + y−), (4.88)

where γ is a constant parameter, redefine η → 2γη and take γ → 0, then this deformed back-
ground becomes that of the homogeneous YB deformation (4.67). This is not an accident.
Indeed, let us consider the field redefinition

g → gLggR, gL = exp
(π

4
(S+ − S−)

)
exp

(
−1

2
log γ (S+ + S−)

)
,

gR = exp

(
−1

2
log γ (S+ + S−)

)
exp

(
−π

4
(S+ − S−)

)
,

(4.89)

together with the coordinate redefinition (4.88) in the action (4.1). The form of the action is the
same except that the operator R is replaced by the operator AdgLRAd−1

gL
. We can now check

that

lim
γ→0

(
gL exp

(
−γy+S0

)
g−1

L

)
= exp

(
y+S+

)
,

lim
γ→0

(
gL exp

(
log(γz)(S+ + S−)

)
gR

)
= exp (log z S0) ,

lim
γ→0

(
g−1

R exp (−γy−S0) gR

)
= exp (y−S−) ,

(4.90)

while 2γηAdgLRAd−1
gL

becomes (4.65) in the limit γ → 0.
We now turn to our final example of an inhomogeneous YB deformation. Even though

sl(2,R) is a split real form, it also has a solution to the non-split mcYBe, which is given by

RS0 = S+ + S−, RS± = −1
2

S0. (4.91)
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This solution takes the form (4.77) if we use the isomorphism sl(2,R) ∼= su(1, 1).22 Note that
the solution (4.84) to the split mcYBe satisfies R3 = R and annihilates the non-compact gen-
erator S0, while the solution (4.91) to the non-split mcYBe satisfies R3 = −R and annihilates
the compact generator S+ − S−, the same as for the solution (4.81) to the non-split mcYBe on
su(2). Parametrising the group-valued field as

g = exp

(
t + ψ

2
(S+ − S−)

)
exp (ρS0) exp

(
t − ψ

2
(S+ − S−)

)
, (4.92)

and substituting into the action of the deformed model (4.1) with tr = Tr and the overall
sign reversed, we find that the deformed target-space metric and B-field are given by

G =
2𝒽

1 + η2

(
dρ2 − cosh2 ρ(1 + η2 cosh2 ρ)dt2

+ sinh2 ρ(1 − η2 sinh2 ρ)dψ2 + 2η2 sinh2 ρ cosh2 ρ dt dψ
)

,

B = − 2𝒽η
1 + η2

sinh ρ cosh ρ dρ ∧ d(t − ψ). (4.93)

It is worth clarifying that we have used three different coordinate systems for SL(2,R) ∼=
AdS3, based on the three parametrisations (4.61), (4.86) and (4.92). The corresponding metrics
are23

G = 2𝒽
(

dz2 + dy+dy−

z2

)
,

G = 2𝒽
(
du2 − sinh2 u dy2

0 + cosh2 u dy2
1

)
,

G = 2𝒽
(
dρ2 − cosh2 ρ dt2 + sinh2 ρ dψ2

)
.

(4.94)

The first set are known as Poincaré coordinates, which cover the Poincaré patch of AdS3. The

second set also only cover a patch of AdS3, while the third set are known as global coordinates
and cover the whole of AdS3. The reason for introducing three different coordinate systems is
that they are each adapted to the YB deformation for which we used them. In particular, the
isometries preserved by the deformation are manifest.

22 Explicitly, we can take S̃1 = iT2 = i(E − F), S̃2 = −iT1 = E + F and S̃3 = T3 = iH as generators of su(1, 1). The
solution (4.77) then takes the form

RS̃1 = S̃2, RS̃2 = −S̃1, RS̃3 = 0.

Using the isomorphism su(1, 1) ∼= sl(2,R) given by S̃1 → S0, S̃2 → S+ + S− and S̃3 → S+ − S−, we see that this
solution is equivalent to the solution (4.91).
23 In terms of embedding coordinates we have that AdS3 with unit radius is given by the locus of all points
(Z0, Z1, Z2, Z3) ∈ R2,2 satisfying −Z2

0 + Z2
1 + Z2

2 − Z2
3 = −1. Solving this constraint equation by setting

Z0 =
y+ − y−

2z
, Z1 =

y+ + y−
2z

, Z2 =
z
2
− 1

2z
(1 − y+y−), Z3 =

z
2
+

1
2z

(1 + y+y−),

Z0 = sinh u sinh y0, Z1 = cosh u sinh y1, Z2 = sinh u cosh y0, Z3 = cosh u cosh y1,

Z0 = cosh ρ cos t, Z1 = sinh ρ cos ψ, Z2 = sinh ρ sin ψ, Z3 = cosh ρ sin t,

and substituting into the metric on R2,2, G = −dZ2
0 + dZ2

1 + dZ2
2 − dZ2

3 , the induced metrics on AdS3 are given by
(4.94) up to the factor of 2𝒽.
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5. Drinfel’d doubles, the E-model and Poisson–Lie T-duality

Thus far in our discussion of YB deformations we have used the fact that the right-acting G
global symmetry is preserved and exploited the existence of an associated conserved current
to construct a Lax connection. It is also instructive to explore what happens to the broken left-
acting symmetry. Recalling that R is an antisymmetric solution to the (m)cYBe, varying the
action (4.1) under the infinitesimal variation g → e−εg ∼ (1 − ε)g we find the equations of
motion

∂+K− + ∂−K+ + η[K+, K−]R = 0, K± =
1

1 ± ηRk±, (5.1)

where

[X, Y]R = [X,RY] + [RX, Y], X, Y ∈ g, (5.2)

is known as the R-bracket and defines a second Lie bracket on the vector space g.24 We denote
the corresponding Lie algebra by gR. Note that in the undeformed η → 0 limit we recover the
conservation equation associated to the left-acting G global symmetry.

5.1. Drinfel’d doubles and the E-model

The appearance of the R-bracket is our first glimpse of a deeper underlying algebraic structure.
In addition to g, let us introduce a vector space g̃ such that dim g̃ = dim g, their direct sum (as
vector spaces)

d = g � g̃, (5.3)

and an invertible linear map σ : g→ g̃. We denote an element of d by X + σY , X, Y ∈ g. Given
an antisymmetric solution to the (m)cYBe (4.8), we can define the following Lie bracket [[·, ·]]
on the vector space d

[[X1 + σY1, X2 + σY2]] = [X1, X2] + [X1,RY2] −R[X1, Y2] + [RY1, X2] −R[Y1, X2]

+ σ([Y1, Y2]R + [X1, Y2] + [Y1, X2]), (5.4)

which satisfies the Jacobi identity as a consequence of the (m)cYBe. The two subalgebras g and
g̃ ∼= gR, where gR is the Lie algebra whose Lie bracket is the R-bracket (5.2), are maximally

24 Using the fact that R satisfies the (m)cYBE we have

[X, [Y , Z]R]R = [RX, [Y , Z]R] + [X,R[Y , Z]R] = [RX, [Y ,RZ]]

+ [RX, [RY , Z]] + [X, [RY ,RZ]] + c2[X, [Y , Z]].

Combining this equation with its cyclic permutations we find

[X, [Y , Z]R]R + [Y , [Z, X]R]R + [Z, [X, Y]R]R

= [RX, [Y ,RZ]] + [RX, [RY , Z]] + [X, [RY ,RZ]] + c2[X, [Y , Z]]

+ [RY , [Z,RX]] + [RY , [RZ, X]] + [Y , [RZ,RX]] + c2[Y , [Z, X]]

+ [RZ, [X,RY]] + [RZ, [RX, Y]] + [Z, [RX,RY]] + c2[Z, [X, Y]] = 0,

which vanishes by the Jacobi identity for the Lie bracket [X, Y]. Therefore, the R-bracket also satisfies the Jacobi
identity, hence defines a Lie bracket.
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isotropic or Lagrangian with respect to the following invariant bilinear form

〈〈X1 + σY1, X2 + σY2〉〉 = tr (X1Y2) + tr (Y1X2) . (5.5)

The invariance of this bilinear form follows from the antisymmetry ofR. Altogether, this means
that d has the structure of a Drinfel’d double. A Drinfel’d double is an even-dimensional Lie
algebra d that admits a Manin triple {g, g̃, 〈〈·, ·〉〉}. A Manin triple is comprised of two subal-
gebras g and g̃ of d, such that d = g � g̃, together with an invariant bilinear form 〈〈·, ·〉〉 with
respect to which these two subalgebras are Lagrangian.

If we define the injective map ι : g→ d that acts as ιX = σX −RX, X ∈ g, then X + σY =
X′ + ιY , where X, Y ∈ g and X′ = X +RY ∈ g. Therefore, an element of d can be equivalently
written in the form X + ιY , X, Y ∈ g. In this basis, the Lie bracket (5.4) and invariant bilinear
form (5.5) are then given by

[[X1 + ιY1, X2 + ιY2]] = [X1, X2] + c2[Y1, Y2] + ι([X1, Y2] + [Y1, X2]),

〈〈X1 + ιY1, X2 + ιY2〉〉 = tr (X1Y2) + tr (Y1X2) , (5.6)

where we have used that R is an antisymmetric solution to the (m)cYBe. Therefore, we find
that d is isomorphic to the real double g⊕ g, the complex double gC, or the semi-abelian
double g� gab, for c = 1, c = i and c = 0 respectively. Explicitly, given X + ιY ∈ d, we have
that (X − Y, X + Y) ∈ g⊕ g, X − iY ∈ gC and (X,−Y) ∈ g� gab, for c = 1, c = i and c = 0
respectively.

The YB deformation (4.1) can be rewritten as a first-order model, that is first-order in time
derivatives, on the Drinfel’d double. This model takes the form of an E-model and its action is
given by

SE = N

(∫
d2 x

〈〈
𝕘−1∂t𝕘,𝕘−1∂x𝕘

〉〉
+

1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉
−
∫

d2x
〈〈
𝕘−1∂x𝕘, E𝕘−1∂x𝕘

〉〉)
. (5.7)

Here ∂ is a field valued in the Drinfel’d double D where Lie D = d and 〈〈·, ·〉〉 is the invariant
bilinear form on d.25 N is an overall normalisation to be fixed later and E : d→ d is a constant
linear operator that squares to the identity, E2 = 1, and satisfies

〈〈EX , Y 〉〉 = 〈〈X , EY 〉〉 , X , Y ∈ d, (5.8)

or equivalently E t = E . Let us take any Lagrangian subalgebra of d, which we denote b, that
is dim b = 1

2 dim d and 〈〈b, b〉〉 = 0. Redefining

𝕘→ b𝕘, b ∈ B, (5.9)

where Lie B = b, in the action (5.7) we find

SE = N

(∫
d2x

(〈〈
𝕘−1∂t𝕘,𝕘−1∂x𝕘

〉〉
+
〈〈

Ad−1
𝕘 b−1∂tb,𝕘−1∂x𝕘

〉〉
+
〈〈

Ad−1
𝕘 b−1∂xb,𝕘−1∂t𝕘

〉〉)
+

1
6

∫
d3x εi jk

(〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉
25 Note that the invariant bilinear form 〈〈·, ·〉〉 could be replaced by any invariant bilinear form on d. In particular, it does
not need part of a Manin triple. However, we do require that d has at least one Lagrangian subalgebra with respect to
this bilinear form in order to integrate out the corresponding degrees of freedom and recover a relativistic second-order
model.
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− 6∂i

〈〈
Ad−1

𝕘 b−1∂ jb,𝕘−1∂k𝕘
〉〉)

−
∫

d2x
〈〈

(Ad−1
𝕘 b−1∂xb + 𝕘−1∂x𝕘), E(Ad−1

𝕘 b−1∂xb + 𝕘−1∂x𝕘)
〉〉)

= N

(∫
d2x

(〈〈
𝕘−1∂t𝕘,𝕘−1∂x𝕘

〉〉
+
〈〈

Ad−1
𝕘 b−1∂tb,𝕘−1∂x𝕘

〉〉
+
〈〈

Ad−1
𝕘 b−1∂xb,𝕘−1∂t𝕘

〉〉)
−
∫

d2x
(〈〈

Ad−1
𝕘 b−1∂tb,𝕘−1∂x𝕘

〉〉
−
〈〈

Ad−1
𝕘 b−1∂xb,𝕘−1∂t𝕘

〉〉)
−
∫

d2x
〈〈

(Ad−1
𝕘 b−1∂xb + 𝕘−1∂x𝕘), E(Ad−1

𝕘 b−1∂xb + 𝕘−1∂x𝕘)
〉〉

+
1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉)
= N

(∫
d2x

(〈〈
𝕘−1∂t𝕘, E𝕘−1∂t𝕘

〉〉
−
〈〈
𝕘−1∂t𝕘,𝕘−1∂x𝕘

〉〉)
−
∫

d2x
〈〈

(Ad−1
𝕘 b−1∂xb + 𝕘−1∂x𝕘− E𝕘−1∂t𝕘), E(Ad−1

𝕘 b−1∂xb + 𝕘−1∂x𝕘− E𝕘−1∂t𝕘)
〉〉

+
1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉)
, (5.10)

where we have used E2 = 1 and E t = E , and that b is a Lagrangian subalgebra, hence〈〈
b−1∂tb, b−1∂xb

〉〉
=

〈〈
b−1∂ib, [[b−1∂ jb, b−1∂kb]]

〉〉
= 0. (5.11)

Therefore, we find that the action (5.7) only depends on b through b−1∂xb ∈ b.
If E is such that Ad−1

𝕘 b and EAd−1
𝕘 b have trivial intersection, then we can integrate out

the degrees of freedom in b. To this end, we introduce the projector P with imP = EAd−1
𝕘 b

and ker P = Ad−1
𝕘 b. The projector 1 − P therefore has im(1 − P) = ker P = Ad−1

𝕘 b and
ker(1 − P) = imP = EAd−1

𝕘 b. These projectors also satisfy

〈〈PX ,PY 〉〉 = 〈〈(1 − P)X , (1 − P)Y 〉〉 = 0, X , Y ∈ d, (5.12)

which follows from E2 = 1, E t = E , the invariance of the bilinear form 〈〈·, ·〉〉 and the fact that
b is a Lagrangian subalgebra. Defining B = Ad−1

𝕘 b−1∂xb + (1 − P)(𝕘−1∂x𝕘− E𝕘−1∂t𝕘) ∈
Ad−1

𝕘 b, we have

〈〈
(Ad−1

𝕘 b−1∂xb + 𝕘−1∂x𝕘− E𝕘−1∂t𝕘), E(Ad−1
𝕘 b−1∂xb + 𝕘−1∂x𝕘− E𝕘−1∂t𝕘)

〉〉
=

〈〈
B + P(𝕘−1∂x𝕘− E𝕘−1∂t𝕘), E(B + P(𝕘−1∂x𝕘− E𝕘−1∂t𝕘))

〉〉
= 〈〈B, EB〉〉+

〈〈
P(𝕘−1∂x𝕘− E𝕘−1∂t𝕘), EP(𝕘−1∂x𝕘− E𝕘−1∂t𝕘)

〉〉
, (5.13)

where we have used that EP(𝕘−1∂x𝕘− E𝕘−1∂t𝕘) ∈ Ad−1
𝕘 b, hence〈〈

B, E (P(𝕘−1∂x𝕘− E𝕘−1∂t𝕘)
〉〉

= 0. Integrating out the degrees of freedom in b is
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then equivalent to integrating out B, which gives the action

SEB = N

(∫
d2x

(〈〈
𝕘−1∂t𝕘, E𝕘−1∂t𝕘

〉〉
−
〈〈
𝕘−1∂t𝕘,𝕘−1∂x𝕘

〉〉)
−
∫

d2x
〈〈
P(𝕘−1∂x𝕘− E𝕘−1∂t𝕘), EP(𝕘−1∂x𝕘− E𝕘−1∂t𝕘)

〉〉
+

1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉)
= N

(
1
4

∫
d2x

(〈〈
𝕘−1∂+𝕘, ((E − 1) − (E − 1)P tEP(E − 1))𝕘−1∂+𝕘

〉〉
+
〈〈
𝕘−1∂−𝕘, ((E + 1) − (E + 1)P tEP(E + 1))𝕘−1∂−𝕘

〉〉
+
〈〈
𝕘−1∂+𝕘, ((E + 1) − (E − 1)P tEP(E + 1))𝕘−1∂−𝕘

〉〉
+
〈〈
𝕘−1∂−𝕘, ((E − 1) − (E + 1)P tEP(E − 1))𝕘−1∂+𝕘

〉〉)
+

1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉)
, (5.14)

where

〈〈P tX , Y 〉〉 = 〈〈X ,PY 〉〉 , X , Y ∈ d,

and ∂−1∂±∂ = ∂−1∂ t∂ ± ∂−1∂x∂. From 〈〈PX ,PY 〉〉 = 0 we have P tP = 0. In addition,
since E2 = 1, (EPE)2 = EPE , with ker EPE = imP and im EPE = ker P , which implies
that the projector EPE = 1 − P . Combining these identities, and using E2 = 1 and E t = E , it
is straightforward to show that

(E ± 1) − (E ± 1)P tEP(E ± 1) = 0,

(E ± 1) − (E ∓ 1)P tEP(E ± 1) = ±2EP(E ± 1).

Substituting into the action (5.14) we arrive at the relativistic second-order action

SEB = N

(
1
2

∫
d2x

(〈〈
𝕘−1∂+𝕘, EP(E + 1)𝕘−1∂−𝕘

〉〉
−
〈〈
𝕘−1∂−𝕘, EP(E − 1)𝕘−1∂+𝕘

〉〉)
+

1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉)
. (5.15)

The operators EP(E ± 1) are projectors with im EP(E ± 1) = Ad−1
𝕘 b and ker EP(E ± 1) =

e∓ where e± are the eigenspaces of E with eigenvalues ±1. To compensate the additional
degrees of freedom that the redefinition (5.9) introduces, the action (5.15) has a B gauge
symmetry

𝕘→ b𝕘, b(t, x) ∈ B, (5.16)

hence describes a relativistic second-order model on B\D.
To show that the YB deformation (4.1) can be written as an E-model we set

B = G̃, b = g̃ ∼= gR, (5.17)
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and, writing a general element of the Drinfel’d doubled as X + ιY , X, Y ∈ g, define the operator
E to act as

E(X + ιY) = −η−1Y − ηιX, X, Y ∈ g. (5.18)

Assuming that the decomposition (5.3) lifts to the group, that is the quotient G̃\D can be
identified with G, we parametrise

𝕘 = g̃g, g̃ ∈ G̃, g ∈ G, (5.19)

and use the gauge symmetry (5.16) to fix g̃ = 1 so that

𝕘 = g ∈ G. (5.20)

We now determine the action of the projectors EP(E ± 1), which are defined by their image
and kernel. In the current setup we have im EP(E ± 1) = Ad−1

g g̃ and ker EP(E ± 1) = e∓.
Observing that general elements of e∓ take the form X ± ηιX, X ∈ g, we consider the ansatz

EP(E ± 1)(X + ιY) = (ι+Rg) f±(Rg)(Y ∓ ηX), X, Y ∈ g, (5.21)

which ensures that e∓ lies in the kernel. Furthermore, recalling that ι+R = σ : g→ g̃ and
noting that the commutation relations (5.6) imply that Adg commutes with ι, we also have that
the image is contained in Adgg̃. Demanding that EP(E ± 1) are projectors with the required
image and kernel we find

f±(Rg) =
1

1 ∓ ηRg
, (5.22)

and we arrive at the following expression for their action

EP(E ± 1)(X + ιY) = (ι+Rg)
1

1 ∓ ηRg
(Y ∓ ηX), X, Y ∈ g. (5.23)

To conclude, we fix the gauge (5.20) in the action (5.15). Using the action of the projectors in
equation (5.23) and the invariant bilinear form (5.6) we find

SE
˜G
= N

(
1
2

∫
d2x

(〈〈
g−1∂+g, ι

−η

1 − ηRg
g−1∂−g

〉〉
−
〈〈

g−1∂−g, ι
η

1 + ηRg
g−1∂+g

〉〉))
= N

(
1
2

∫
d2x tr

(
g−1∂+g

−η

1 − ηRg
g−1∂−g − g−1∂−g

η

1 + ηRg
g−1∂+g

))
= −𝒽

2

∫
d2xtr

(
g−1∂+g

1
1 − ηRg

g−1∂−g

)
= SYB, (5.24)

where we have set

N =
𝒽
2η

, (5.25)
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and used that g is a Lagrangian subalgebra with respect to the bilinear form 〈〈·, ·〉〉, hence〈〈
g−1∂ig, [[g−1∂ jg, g−1∂kg]]

〉〉
= 0, (5.26)

along with the antisymmetry of the operator R. We have therefore recovered the action of the
YB deformation of the PCM (4.1) as claimed.

5.2. Poisson–Lie T-duality

The first-order formalism allows us to introduce the notion of Poisson–Lie T-duality. For our
purposes, Poisson–Lie T-dual models are found by integrating out the degrees of freedom asso-
ciated to different Lagrangian subalgebras in the E-model (5.7). For example, rather than inte-
grating out the degrees of freedom associated to g̃ ∼= gR, we could instead choose to integrate
out those associated to the Lagrangian subalgebra g to define a relativistic second-order model
on G\D. Often there are many inequivalent Lagrangian subalgebras, leading to different Pois-
son–Lie T-dual models. Poisson–Lie T-duality is a generalisation of T-duality and non-abelian
T-duality to models without manifest global symmetries, but whose equations of motion can
be written in the form of a non-commutative conservation law, such as in equation (5.1). More-
over, all of these worldsheet dualities can be understood as canonical transformations on phase
space, hence they preserve classical integrability.

As we have seen, starting from the E-model (5.7) with E defined in (5.18), we can recover
the YB deformation by integrating out the degrees of freedom associated to the Lagrangian
subalgebra g̃ ∼= gR. As a particular example of a Poisson–Lie T-dual model, let us instead
integrate out the degrees of freedom associated to the Lagrangian subalgebra g, that is we set

B = G, b = g. (5.27)

We focus here on the c = 1 case, for which the Drinfel’d double is isomorphic to the real double
d ∼= g⊕ g. While the following construction goes through for any real form g, if this real form
admits a solution to the split mcYBe then the model we find is Poisson–Lie T-dual to the
corresponding YB deformation. If not, then the resulting model is simply not the Poisson–Lie
T-dual of a YB deformation. Analogous statements also hold for the c = i case, for which the
Drinfel’d double is isomorphic to the complex double d ∼= gC. The model that results from
integrating out the degrees of freedom associated to the Lagrangian subalgebra g is an analytic
continuation of the model we find starting from the real double. When the real form g admits
a solution to the non-split mcYBe this model is Poisson–Lie T-dual to the corresponding YB
deformation. If not, then again the resulting model is simply not the Poisson–Lie T-dual of a
YB deformation.

We start by writing an element of the real double d = g⊕ g as

(X, Y) ∈ d, X, Y ∈ g, (5.28)

where the Lagrangian subalgebra g is generated by the diagonal elements (X, X) and the map
ι : g→ d acts as ι (X, X) = (X,−X). The Lie bracket and invariant bilinear form (5.6) are given
by

[[(X1, Y1) , (X2, Y2)]] = ([X1, X2], [Y1, Y2]) ,

〈〈(X1, Y1) , (X2, Y2)〉〉 = 1
2

tr (X1X2) − 1
2

tr (Y1Y2) .
(5.29)
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The action of the operator E (5.18) is then given by

E (X, Y) =

(
− (λ−1 + λ)X − 2Y

λ−1 − λ
,

(λ−1 + λ)Y − 2X
λ−1 − λ

)
, X, Y ∈ g, (5.30)

where we have introduced

λ =
1 − η

1 + η
. (5.31)

It will also be convenient to introduce the subalgebras g+ ∼= g and g− ∼= g generated by ele-
ments of the form (X, 0) and (0, X) respectively, along with the associated Lie groups G+

∼= G
and G− ∼= G. We now parametrise

𝕘 =
(
g′, g′) (g, 1) ,

(
g′, g′) ∈ G, (g, 1) ∈ G+, (5.32)

and use the gauge symmetry (5.16) to fix
(
g′, g′) = (1, 1) so that

𝕘 = (g, 1) ∈ G+. (5.33)

It remains to determine the action of the projectorsEP(E ± 1), which are defined by their image
and kernel. In the current setup we have im EP(E ± 1) = Ad−1

(g,1)g and ker EP(E ± 1) = e∓.
Observing that general elements of e∓ take the form

(
X,λ±1X

)
, X ∈ g, we consider the ansatz

EP(E ± 1) (X, Y) =
(
Ad−1

g f±(Ad−1
g )(Y − λ±1X), f±(Ad−1

g )(Y − λ±1X)
)

, X, Y ∈ g,

(5.34)

which ensures that e∓ lies in the kernel and the image is contained in Ad−1
(g,1)g. Demanding that

EP(E ± 1) are projectors with the required image and kernel we find

f±(Ad−1
g ) =

1
1 − λ±1Ad−1

g

, (5.35)

and we arrive at the following expression for their action

EP(E ± 1) (X, Y) =

(
Ad−1

g

1 − λ±1Ad−1
g

(Y − λ±1X),
1

1 − λ±1Ad−1
g

(Y − λ±1X)

)
, X, Y ∈ g.

(5.36)

To conclude, we fix the gauge (5.33) in the action (5.15). Using the action of the projectors in
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equation (5.36) and the invariant bilinear form (5.29) we find

SEG = N

(
1
2

∫
d2x

(〈〈(
g−1∂+g, 0

)
,

(
−λAd−1

g

1 − λAd−1
g

,
−λ

1 − λAd−1
g

)(
g−1∂−g, g−1∂−g

)〉〉

−
〈〈(

g−1∂−g, 0
)

,

(
−λ−1Ad−1

g

1 − λ−1Ad−1
g

,
−λ−1

1 − λ−1Ad−1
g

) (
g−1∂+g, g−1∂+g

)〉〉)

+
1
6

∫
d3x εi jk

〈〈(
g−1∂ig, 0

)
, [[

(
g−1∂ jg, 0

)
,
(
g−1∂kg, 0

)
]]
〉〉)

= N

(
1
4

∫
d2x tr

(
g−1∂+g

−λAd−1
g

1 − λAd−1
g

g−1∂−g − g−1∂−g
−λ−1Ad−1

g

1 − λ−1Ad−1
g

g−1∂+g

)

+
1
12

∫
d3x εi jk tr

(
g−1∂ig

[(
g−1∂ jg, g−1∂kg

]))

= −𝓀
2

∫
d2x tr

(
g−1∂+g

1 + λAd−1
g

1 − λAd−1
g

g−1∂−g

)
+
𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)

= SΛ,

(5.37)

where we have set26

N = 2𝓀. (5.38)

Sendingλ→ 0, or equivalently η → 1, we see that this action becomes that of the WZW model,
which is given by equation (2.38) with 𝒽 = 𝓀. Moreover, expanding the action (5.37) around
λ = 0 we find

SΛ = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
− 𝓀λ

∫
d2x tr

(
∂+gg−1g−1∂−g

)
+ O(λ2).

(5.39)

Recalling that the equations of motion of the WZW model are

∂+(g−1∂−g) = ∂−(∂+gg−1) = 0, (5.40)

we see that the first subleading term in (5.39) can be understood as a current–current
perturbation.

6. Current–current deformations of the WZW model

We finish this review with a discussion of current–current deformations of the WZW model.
These are deformations that take the form

Sjj̄ = SWZW − 𝓀λ
∫

d2x tr
(
∂+gg−1Og−1∂−g

)
+ O(λ2), (6.1)

26 The parameters (𝓀,λ) are thus related to the parameters (𝒽, η) as

𝓀 =
𝒽
4η

, λ =
1 − η

1 + η
.
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where O : g→ g is a constant linear operator. We will focus on two examples of such defor-
mations. The first is the isotropic current–current deformation (5.39), which has O = 1, hence
isotropic, and preserves integrability. The second is the abelian current–current deformation,
which preserves conformal invariance. These are two examples of a wider class of such defor-
mations whose integrability, scale invariance and conformality depend on the properties of the
operator O.

6.1. Isotropic current–current deformation

We start by considering the particular current–current deformation (5.37) introduced at the end
of section 5.

Gauged WZW formulation and integrability. An alternative construction of the model
(5.37) starts from the G/G gauged WZW model

SgWZW = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − A+A−

)
,

(6.2)

where the group-valued field g ∈ G and the gauge field A± ∈ g. This action is invariant under
the gauge transformations

g → ḡ−1gḡ, A± → ḡ−1A±ḡ + ḡ−1∂±ḡ, ḡ(t, x) ∈ G. (6.3)

Due to the G gauge symmetry there are no dynamical degrees of freedom. Therefore, we
consider the following modification of the action (6.2)

SΛ = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − λ−1A+A−

)
.

(6.4)

Away from the point λ = 1, the action (6.4) is no longer invariant under the gauge symmetry
(6.3) and there are dim G dynamical degrees of freedom. Moreover, in the limit λ→ 0 we
recover the standard WZW model27. It is natural to take the parameter λ to lie in the range
[0, 1], with λ→ 1 corresponding to the non-abelian T-dual limit, which, as we will see, is
given by taking λ→ 1 and g → 1 such that g−1

λ−1 remains finite. The global part of the G gauge
symmetry survives the deformation, hence the model has a G global symmetry acting as

g → g−1
D ggD, A± → g−1

D A±gD, gD ∈ G. (6.5)

Since the fields A± enter the action (6.4) algebraically they can be easily integrated out. Their
equations of motion are

(λ−1 − Adg)A+ = −∂+gg−1, (λ−1 − Ad−1
g )A− = g−1∂−g. (6.6)

27 To take this limit we first rescale, for example, A± →
√
λA± such that after taking λ→ 0 the fields A± decouple and

we are just left with the WZW model.
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Substituting back into the action (6.4) we find

SΛ = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
− 𝓀

∫
d2x tr

(
g−1∂+g

Ad−1
g

λ−1 − Ad−1
g

g−1∂−g

)

= −𝓀
2

∫
d2x tr

(
g−1∂+g

1 + λAd−1
g

1 − λAd−1
g

g−1∂−g

)

+
𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
,

(6.7)

and we indeed recover the isotropic current–current deformation of the WZW model (5.37).
Writing the action in the form (6.4) has the advantage of making the integrability of the

model more transparent. In addition to the equations of motion for A± (6.6), we also have the
equation of motion for the group-valued field, which is

∂+(g−1∂−g + g−1A−g) − ∂−A+ + [A+, g−1∂−g + g−1A−g] = 0, (6.8)

or equivalently

∂−(−∂+gg−1 + gA+g−1) − ∂+A− + [A−,−∂+gg−1 + gA+g−1] = 0. (6.9)

When A± are given by their on-shell expressions (6.6) we can rewrite these two equations as

λ−1∂+A− − ∂−A+ + λ−1[A+, A−] = 0, λ−1∂−A+ − ∂+A− + λ−1[A−, A+] = 0. (6.10)

Taking their sum and difference we find

∂+J− + ∂−J+ = 0, ∂+J− − ∂−J+ + [J+, J−] = 0, (6.11)

where

J± =
2

1 + λ
A±. (6.12)

Therefore, J± is a conserved and flat current, which allows us to write down the following Lax
connection of the isotropic current–current deformation of the WZW model

L±(z) =
J±

1 ∓ z
. (6.13)

Non-abelian T-dual limit. Finally, let us return to the λ→ 1 limit of the action (6.4).
According to the map between the parameters (5.31) this corresponds to the undeformed limit
of the YB deformation (4.1), in which the GL × GR global symmetry is restored. Therefore, we
might expect the Poisson–Lie T-dual model to become the non-abelian T-dual of the PCM. This
is indeed the case, although the limit needs to be taken with care. Specifically, we parametrise

g = exp

(
− 𝒽

2𝓀
v

)
, λ = exp

(
− 𝒽

2𝓀

)
, v ∈ g, (6.14)
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and take 𝓀→∞. Taking this limit in the action (6.4) gives28

SNATD−INT−PCM = −𝒽
2

∫
d2x tr

(
v(∂+A− − ∂−A+ + [A+, A−]) + A+A−

)
. (6.15)

This is the first-order action that we find by gauging the left-acting G global symmetry of the
PCM (2.10), g → gLg, gauge-fixing g = 1, and adding a Lagrange multiplier v ∈ g enforcing
that the gauge field is flat. Note that integrating out the Lagrange multiplier field v in the action
(6.15) we recover the PCM. On the other hand, integrating out A± we find the non-abelian
T-dual of the PCM

SNATD−PCM = −𝒽
2

∫
d2x tr

(
∂+v

1
1 − adv

∂−v

)
. (6.16)

We can also find the action (6.16) directly by taking the 𝓀→∞ limit in the action (6.7).29

Examples based on SL(2). As for the YB deformation, it is instructive to look at explicit
examples based on real forms of G = SL(2,C). We start by considering the isotropic cur-
rent–current deformation of the SU(2) WZW model. Recalling the generators T1, T2 and T3

of the compact real form defined in (2.49), we parametrise

g = exp (φ1(cos φ2T3 + sin φ2(cos φ3T1 + sin φ3T2))) . (6.17)

Substituting into the action (6.7) with tr = Tr, we find that the deformed target-space metric
and H-flux are given by

G = 2𝓀
(

1 + λ

1 − λ
dφ2

1 +
(1 − λ2)sin2 φ1

(1 − λ)2 + 4λ sin2 φ1
(dφ2

2 + sin2 φ2 dφ2
3)

)
,

H = −4𝓀
(1 − λ2)2 + 2λ((1 − λ)2 + 4λ sin2 φ1)

((1 − λ)2 + 4λ sin2 φ1)2
sin2 φ1 sin φ2 dφ1 ∧ dφ2 ∧ dφ3.

(6.18)

28 We have g−1∂±g = − 𝒽
2𝓀∂±v + O( 1

𝓀2 ), ∂±gg−1 = − 𝒽
2𝓀∂±v + O( 1

𝓀2 ) and λ−1 = 1 + 𝒽
2𝓀 + O( 1

𝓀2 ). Therefore,

the two terms in the first line of the action (6.4) are of order 1
𝓀 and 1

𝓀2 , hence drop out in the limit 𝓀→∞. Expanding

the second line of the action (6.4) at large 𝓀 and integrating by parts we find

SΛ = 𝓀
∫

d2x tr

(
− 𝒽

2𝓀
A+∂−v +

𝒽
2𝓀

A−∂+v + A+A−

+
𝒽
2𝓀

A+[v, A−] − A+A− − 𝒽
2𝓀

A+A− + O

(
1

𝓀2

))

= −𝒽
2

∫
d2x tr

(
A+∂−v − A−∂+v − A+[v, A−] + A+A−

)
+ O

(
1

𝓀

)

= −𝒽
2

∫
d2x tr

(
v(∂+A− − ∂−A+ + [A+, A−]) + A+A−

)
+ O

(
1

𝓀

)
.

29 Again using the parametrisation (6.14) we have λAd−1
g = 1 − 𝒽

2𝓀 + 𝒽
2𝓀 adv + O( 1

𝓀2 ), hence

1 + λAd−1
g

1 − λAd−1
g

=
4𝓀
𝒽

1
1 − adv

+ O(1).

Therefore, expanding the action (6.7) at large 𝓀, we find

SΛ = −𝒽
2

∫
d2x tr

(
∂+v

1
1 − adv

∂−v

)
+ O

(
1

𝓀

)
.
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The non-abelian T-dual limit is then given by setting λ = exp
(
− 𝒽

2𝓀

)
, rescaling φ1 →− 𝒽

2𝓀φ1

and taking 𝓀→∞. Taking this limit in the deformed target-space metric and H-flux we find

G = 2𝒽
(

dφ2
1 +

φ2
1

1 + 4φ2
1

(dφ2
2 + sin2 φ2 dφ2

3)

)
,

H = 4𝒽
3 + 4φ2

1

(1 + 4φ2
1)2

φ2
1 sin φ2 dφ1 ∧ dφ2 ∧ dφ3.

(6.19)

We now consider the isotropic current–current deformation of the SL(2,R) WZW model.
Recall that for G = SL(2,R) we reverse the overall sign of the action to ensure that the target-
space metric has Lorentzian signature. Taking the generators S0, S+ and S− of the split real
form defined in (4.59), we parametrise

h = exp
(
ψ1(cos ψ2S0 + sin ψ2(eτS+ + e−τS−))

)
. (6.20)

Substituting into the action (6.7) with tr = Tr and the overall sign reversed, we find that the
deformed target-space metric and H-flux are given by30

G = 2𝓀
(

1 + λ

1 − λ
dψ2

1 +
(1 − λ2)sinh2 ψ1

(1 − λ)2 − 4λ sinh2 ψ1
(dψ2

2 − sin2 ψ2 dτ 2)

)
,

H = −4𝓀
(1 − λ2)2 + 2λ((1 − λ)2 − 4λ sinh2 ψ1)

((1 − λ)2 − 4λ sinh2 ψ1)2
sinh2 ψ1 sin ψ2 dψ1 ∧ dψ2 ∧ dτ.

(6.21)

Note that this deformed background has a singularity at

sinh2 ψ1 =
(1 − λ)2

4λ
, (6.22)

which is related to the fact that the operator 1 − λAd−1
h is not invertible at this point. We

will not address this singularity in detail, suffice to say that it defines for us two regions.
These are the region ‘inside’ the singularity with sinh2 ψ1 < (1−λ)2

4λ , which is connected to

the undeformed limit λ→ 0, and the region ‘outside’ the singularity with sinh2 ψ1 >
(1−λ)2

4λ .
Inside the singularity ψ1 and ψ2 are spacelike, while τ is timelike. Outside the singularity ψ2

becomes timelike, while τ becomes spacelike. The non-abelian T-dual limit is again given by

setting λ = exp
(
− 𝒽

2𝓀

)
, rescaling ψ1 →− 𝒽

2𝓀ψ1 and taking𝓀→∞, resulting in the following

30 Solving the AdS3 constraint equation −Z2
0 + Z2

1 + Z2
2 − Z2

3 = −1 by setting

Z0 = cosh ψ1, Z1 = sinh ψ1 cos ψ2, Z2 = sinh ψ1 sin ψ2 cosh τ , Z3 = sinh ψ1 sin ψ2 sinh τ ,

and substituting into the metric on R2,2, G = −dZ2
0 + dZ2

1 + dZ2
2 − dZ2

3 , the induced metric on AdS3 is given by

G = dψ2
1 + sinh2 ψ1(dψ2

2 − sin2 ψ2 dτ 2),

which agrees with the metric in equation (6.21) for λ = 0 and 𝓀 = 1
2 . Furthermore, for λ = 0 the H-flux in

equation (6.21) is proportional to the volume form of AdS3 as expected.
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target-space metric and H-flux

G = 2𝒽
(

dψ2
1 +

ψ2
1

1 − 4ψ2
1

(dψ2
2 − sin2 ψ2 dτ 2)

)
,

H = 4𝒽
3 − 4ψ2

1

(1 − 4ψ2
1)2

ψ2
1 sin ψ2 dψ1 ∧ dψ2 ∧ dτ.

(6.23)

A second interesting limit is given by setting ψ1 = ψ1 + γ and taking γ →∞ in
equation (6.21). This should be understood as a formal limit in the sense that it requires us
to be ‘outside’ the singularity (6.22). Doing so we find

G = 2𝓀
(

1 + λ

1 − λ
dψ2

1 +
1 − λ2

4λ
(−dψ2

2 + sin2 ψ2 dτ 2)

)
,

H = 2𝓀 sin ψ2 dψ1 ∧ dψ2 ∧ dτ.

(6.24)

In this limit we find that the deformed model gains an additional symmetry corresponding to
shifts of ψ1. Writing the deformed B-field as

B = 2𝓀 cos ψ2 dψ1 ∧ dτ , (6.25)

and T-dualising in ψ1, the resulting background has vanishing B-field, while the T-dual
deformed metric is given by

G = 2𝓀
(

1 − λ

1 + λ
(dψ̃1 + cos ψ2 dτ )2 +

1 − λ2

4λ
(−dψ2

2 + sin2 ψ2 dτ 2)

)
. (6.26)

Setting

ψ̃1 = z1 − z2, τ = z1 + z2, ψ2 = 2z0, λ =
1 − η

1 + η
, 𝓀 =

𝒽
4η

, (6.27)

this metric becomes

G =
2𝒽

1 − η2

(
−dz2

0 + cos2 z0(1 − η2 cos2 z0)dz2
1 + sin2 z0(1 − η2 sin z2

0)dz2
2

+ 2η2 sin2 z0 cos2 z0 dz1 dz2
)
. (6.28)

This is reminiscent of the deformed backgrounds of the inhomogeneous YB deformations con-
structed in section 4. In fact, it is precisely the deformed metric of the inhomogeneous YB
deformation of the SL(2,R) PCM based on the Drinfel’d–Jimbo solution to the split mcYBe
(4.84). To see this explicitly we parametrise the group-valued field of the YB deformation as

g = exp

(
z1 − z2

2
S0

)
exp

(
z0(S+ − S−)

)
exp

(
z1 + z2

2
S0

)
. (6.29)

Furthermore, the deformed B-field is closed. Therefore, in this limit the isotropic cur-
rent–current deformation of the SL(2,R) WZW model becomes the T-dual of the split
inhomogeneous YB deformation of the SL(2,R) PCM up to a closed term.

This observation has an algebraic interpretation. Recall that both the split inhomogeneous
YB deformation of the SL(2,R) PCM and the isotropic current–current deformation of the
SL(2,R) WZW model follow from the E-model (5.7) on the real double sl(2,R) ⊕ sl(2,R).
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They are found by integrating out the degrees of freedom associated to different Lagrangian
subalgebras. Taking

{(H, 0), (E, 0), (F, 0), (0, H), (0, E), (0, F)}, (6.30)

as a basis for the real double, these Lagrangian subalgebras are g̃ ∼= gR and g respectively,
which are generated by31

g̃ = span{(H,−H), (0, E), (F, 0)}, g = span{(H, H), (E, E), (F, F)}. (6.31)

The limit of interest is a limit of the isotropic current-current deformation and correspondingly
can be related to the following contraction of the Lie algebra g

lim
γ→∞

Adelog γ(−H,H){(H, H), γ−2(E, E), γ−2(F, F)} = {(H, H), (0, E), (F, 0)}. (6.32)

The only difference between this contracted Lie algebra and g̃ is the linear combination
of Cartan generators, (H, H) versus (H,−H), which can be shown to amount to a T-duality
transformation.

6.2. Abelian current–current deformations and TsT transformations

As our final example of a deformed sigma model we consider the abelian current–current
deformation of the WZW model. In this case we deform by U(1) currents. It turns out that this
deformation can be understood as a TsT transformation of the WZW model, hence it preserves
conformal invariance.

We can define the model in a similar way to the isotropic deformation by deforming the
G/U(1) gauged WZW model

SΛab = −𝓀
2

∫
d2 x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − λ−1A+A−

)
,

(6.33)

where, as before, the group-valued field g ∈ G, but now the field A± ∈ u(1) ⊂ g. This model
interpolates between the WZW model in the limit λ→ 0, the vectorially gauged WZW model
in the limit λ→ 1 and the axially gauged WZW model in the limit λ→−1. The vectorially
gauged WZW model is invariant under the gauge transformations

g → h̄−1gh̄, A± → A± + h̄−1∂±h̄, h̄(t, x) ∈ U(1). (6.34)

Since U(1) is abelian we have h̄−1A±h̄ = A± and h̄−1∂±h̄ = ∂±h̄h̄−1. On the other hand, the
gauge symmetry of the axially gauged WZW model is given by

g → h̄gh̄, A± → A± ± h̄−1∂±h̄, h̄(t, x) ∈ U(1). (6.35)

Away from the pointsλ = ±1 the action (6.33) is no longer invariant under the gauge symmetry
and has dim G dynamical degrees of freedom. Again the global part of the gauge symmetry
survives, hence the model has at least a U(1) × U(1) global symmetry acting as

g → hLghR, A± → A±, hL, hR ∈ U(1). (6.36)

31 Recall that g is generated by the diagonal elements (X, X) and from equation (4.78) we haveR(H, H) = 0,R(E, E) =
(−E,−E) and R(F, F) = (F, F). Elements of g̃ ∼= gR take the form ι(X, X) +R(X, X) where ι(X, X) = (X,−X).
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Assuming that the u(1) subalgebra is not null, that is tr
(
T2

)

= 0 where T is the u(1) gener-

ator, we can introduce the orthogonal projector P : g→ u(1) and the equations of the motion
for the fields A± are

(λ−1 − PAdg)A+ = −P∂+gg−1, (λ−1 − PAd−1
g )A− = Pg−1∂−g. (6.37)

Substituting back into the action (6.33) we find

SΛab = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
− 𝓀

∫
d2x tr

(
∂+gg−1P

1

λ−1 − Ad−1
g P

g−1∂−g

)
. (6.38)

Expanding this action around λ = 0 gives

SΛab = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
− 𝓀λ

∫
d2x tr

(
∂+gg−1Pg−1∂−g

)
+ O(λ2),

(6.39)

and we see that the first subleading term can be understood as an abelian current–current
perturbation.

To show that the abelian current–current deformation (6.38) can also be found as a TsT
transformation of the WZW model up to closed terms we parametrise

g = eΘ
1
g̃ eΘ

2
, Θ1,Θ2 ∈ u(1), (6.40)

T-dualise Θ1 → Θ̃1, then shift Θ2 →Θ2 − γΘ̃1 and finally T-dualise Θ̃1 →Θ1. Explicitly,
setting g = eΘ

1
g̃ eΘ

2
in the WZW model gives

SWZW = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
= −𝓀

2

∫
d2x tr

(
g̃−1∂+g̃g̃−1∂−g̃

)
+

𝓀
6

∫
d3x εi jk tr

(
g̃−1∂ig̃[g̃−1∂ jg̃, g̃−1∂kg̃]

)
− 𝓀

∫
d2x tr

(
1
2
∂+Θ

1∂−Θ
1 +

1
2
∂+Θ

2∂−Θ
2

+ ∂−Θ
1∂+g̃g̃−1 + ∂+Θ

2g̃−1∂−g̃ + g̃−1∂−Θ
1g̃∂+Θ

2

)
,

(6.41)

where we have used that u(1) is abelian. T-dualising Θ1 → Θ̃1, shifting Θ2 →Θ2 − γΘ̃1, T-
dualising Θ̃1 →Θ1, and finally redefining Θ1 →Θ1 + γΘ2 and Θ2 →Θ2 + γΘ1, the TsT
transformed action takes the form

STsT−WZW =

− 𝓀
2

∫
d2x tr

(
g̃−1∂+g̃g̃−1∂−g̃

)
+
𝓀
6

∫
d3x εi jk tr

(
g̃−1∂i g̃[g̃−1∂ jg̃, g̃−1∂kg̃]

)

−𝓀
∫

d2x tr

(
1
2
∂+Θ1∂−Θ

1 +
1
2
∂+Θ2∂−Θ

2 + ∂−Θ
1∂+g̃g̃−1 + ∂+Θ2g̃−1∂−g̃ + g̃−1∂−Θ

1g̃∂+Θ2

)
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−𝓀
∫

d2x tr

(
(∂+Θ1 + ∂+g̃g̃−1 + Adg̃∂+Θ2)P

1

λ−1 − Ad−1
g̃ P

(∂−Θ
2 + g̃−1∂−g̃ + Ad−1

g̃ ∂−Θ
1

)

+
𝓀γ

2

∫
d2x tr

(
∂+Θ1∂−Θ

2 − ∂+Θ2∂−Θ
1
)

, (6.42)

where

λ =
2γ

1 + γ2
. (6.43)

On the other hand, if we set g = eΘ
1
g̃ eΘ

2
in the action of the abelian current–current

perturbation of the WZW model (6.38) we find

SΛab = STsT−WZW − 𝓀γ
2

∫
d2x tr

(
∂+Θ

1∂−Θ
2 − ∂+Θ

2∂−Θ
1
)

, (6.44)

where we have used that AdeΘP = P = PAdeΘ for Θ ∈ u(1), which follows from the fact that
P is an orthogonal projector. Therefore, the two actions are equal up to closed terms.

Examples based on SL(2). We finish by briefly studying the abelian current–current defor-
mation of the SU(2) WZW model. Using the generators T1, T2 and T3 of the compact real form
(2.49) we parametrise

g = exp

(
ϕ+ φ

2
T3

)
exp (θT1) exp

(
ϕ− φ

2
T3

)
, (6.45)

and take the u(1) subalgebra to be generated by T3. Substituting into the action (6.38) with
tr = Tr, we find that the deformed target-space metric and H-flux are given by

G = 2𝓀
(

dθ2 +
(1 + λ)cos2 θ

1 − λ cos 2θ
dϕ2 +

(1 − λ)sin2 θ

1 − λ cos 2 θ
dφ2

)
,

H = −2𝓀
(1 − λ2) sin 2θ
(1 − λ cos 2θ)2

dθ ∧ dϕ ∧ dφ,

(6.46)

such that for λ = 0 we recover the background of the SU(2) WZW model. If we take the degen-
erate limits λ→±1 then the H-flux vanishes and the background metric becomes that of the
SU(2)/U(1) vectorially or axially gauged WZW models for λ = 1 and λ = −1 respectively.

Note that if we first rescale ϕ→
√

2
1+λϕ and φ→

√
2

1−λφ then the deformed background

becomes

G = 2𝓀
(

dθ2 +
2 cos2 θ

1 − λ cos 2θ
dϕ2 +

2 sin2 θ

1 − λ cos 2θ
dφ2

)
,

H = −4𝓀

√
1 − λ2 sin 2θ

(1 − λ cos 2θ)2
dθ ∧ dϕ ∧ dφ,

(6.47)

and the λ→±1 limits become non-degenerate. The H-flux still vanishes, while for λ→ 1 the
metric becomes

G = 2𝓀
(
dθ2 + cot2 θ dϕ2 + dφ2

)
, (6.48)

corresponding to the SU(2)/U(1) vectorially gauged WZW model plus a free boson, and for
λ→−1 it becomes

G = 2𝓀
(
dθ2 + tan2 θ dφ2 + dϕ2

)
, (6.49)
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corresponding to the SU(2)/U(1) axially gauged WZW model plus a free boson.

7. Bibliography and generalisations

In this pedagogical review we have focused on the PCM, the PCWZM and the WZW model for
simple Lie group G and some of their integrable deformations and dualities. This has allowed
us to explore these models and the underlying algebraic structures in more detail, but it has
also meant that we have only discussed a small corner of the space of integrable sigma models.
There is a large landscape of integrable sigma models and their classification continues to be
an active area of study.

7.1. Symmetric integrable sigma models

In addition to the PCM [1, 2] and the PCWZM [3, 4], another well-known integrable sigma
model is the symmetric space sigma model (SSSM) [5]. The PCM, PCWZM and SSSM have
a long history and much is understood about their classical and quantum physics [6, 7]. A
recent review can be found in [8]. The SSSM describes sigma models whose target space is a
symmetric space. This includes, for example, spheres and anti de Sitter spaces

Sn ∼=
SO(n + 1)

SO(n)
, AdSn

∼=
SO(2, n − 1)
SO(1, n − 1)

. (7.1)

Symmetric spaces can be realised as Z2 cosets

G
H
. (7.2)

Defining g = Lie G and h = Lie H, the Z2 grading implies that

g = h � p, [h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ p. (7.3)

Indeed, these commutation relations imply that the Lie algebra g admits the Z2 automorphism
σ(h) = h, σ(p) = −p, whose fixed points are elements of h. Moreover, they imply that the
decomposition g = h � p is orthogonal with respect to the Killing form, that is tr (hp) = 0.
The action of the SSSM is

SSSSM = −𝒽
2

∫
d2 x tr

(
j+P1 j−

)
, (7.4)

where j± = g−1∂±g is the pull-back of the left-invariant Maurer–Cartan form for the group-
valued field g ∈ G and we denote the orthogonal projectors onto h and p by P0 and P1

respectively. The Lax connection of the SSSM is given by

L±(z) = P0 j± + z±1P1 j±. (7.5)

The SSSM can be generalised to ZT cosets (7.2), for which

g = h �
(

T−1
�

k=1
pk

)
, [pk, pl] ⊂ pk+l mod T , tr (pkpl) = 0 if k + l 
= 0 mod T, (7.6)

where we define p0 = h. In this case the complexified Lie algebra gC admits the ZT automor-
phism σ(pk) = e

2iπk
T pk, whose fixed points are again elements of h. Denoting the projectors
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onto pk in the decomposition (7.6) by Pk, the action

SZT = −𝒽
2

∫
d2x tr

(
j+P− j−

)
, P± =

T−1∑
k=1

kP T
2 ±( T

2 −k), (7.7)

on a ZT coset admits the Lax connection

L±(z) = P0 j± +

T−1∑
k=1

z±kP T
2 ±( T

2 −k) j±. (7.8)

This action and its Lax connection were constructed in [9–11] for T = 4 and generalised to
arbitrary T in [12]. This is not the unique classically integrable sigma model on a ZT coset.
Indeed, an alternative is given by

S′
ZT

= −𝒽
2

∫
d2x tr

(
j+Q− j−

)
,

Q± =

� T
2 �∑

k=1

kP T
2 ±( T

2 −k) −
T−1∑

k=� T
2 �+1

(T − k)P T
2 ±( T

2 −k), (7.9)

which admits the Lax connection

L±(z) = P0 j± +

� T
2 �∑

k=1

z±kP T
2 ±( T

2 −k) j± +
T−1∑

k=� T
2 �+1

z∓(T−k)P T
2 ±( T

2 −k) j±. (7.10)

The action (7.9) and its Lax connection were constructed in [13–16] for T = 4 and generalised
to the case when 4 divides T in [17]. The most general case is, to the best of our knowledge,
a new result. For T = 2, both SZT and S′

ZT
coincide with the SSSM (7.4), and for T � 3 they

have a non-vanishing B-field, which is needed to ensure their classical integrability.
By construction, the projectors Pk commute with the adjoint action of h ∈ H. It follows

that the SSSM (7.4) and the ZT coset models (7.7) and (7.9) are invariant under the H gauge
symmetry

g → gh, h(t, x) ∈ H. (7.11)

To better understand the structure of these models, let us parametrise the group-valued field
g = exp(X) with X ∈ �T−1

k=1pk, where we have fixed the H gauge symmetry by setting P0X = 0.
Expanding the actions (7.7) and (7.9) to quadratic order in X we find

SZT = −𝒽
2

∫
d2x tr

⎛⎝ � T
2 �∑

k=1

k∂+XPk∂−X +

� T−1
2 �∑

k=1

(T − k)∂+XPk∂−X

⎞⎠+ O(X3),

S′
ZT

= −𝒽
2

∫
d2x tr

⎛⎝ � T
2 �∑

k=1

k∂+XPk∂−X −
� T−1

2 �∑
k=1

k∂+XPk∂−X

⎞⎠+ O(X3).

(7.12)

For the action SZT all dim G − dim H components of X have a canonical kinetic term and can
be interpreted as physical degrees of freedom. On the other hand, for S′

ZT
with even T, only
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those components in P T
2
X have a canonical kinetic term, while for odd T there are no com-

ponents with a canonical kinetic term. Moreover, for odd T , the target-space metric vanishes
and the model is purely topological, while for even T with T � 3, the target-space metric is
degenerate32. This degenerate structure may be indicating that these models have additional
local symmetries and their proper interpretation remains to be understood.

The SSSM (7.4) and the ZT coset models (7.7) and (7.9) have a G global symmetry, which
acts as g → gLg. Just as for the PCM and the PCWZM, the conserved current of the SSSM
can be normalised such that it is also flat on-shell. Therefore, it can be used to construct a
Lax connection and an infinite number of local conserved charges in involution [6, 7, 18–21],
as required for classical integrability. More generally, such charges can be constructed if the
Poisson bracket of the Lax matrix, that is the spatial component of the Lax connectionLx , with
itself satisfies a Maillet bracket [22–24] with twist function [25, 26]. This construction does
not require the existence of a conserved and flat current, hence can be applied to the ZT coset
models [26–29] and is also useful when studying integrable deformations that break the global
symmetry. As in the case of the PCM, there is evidence that the coset models, in particular the
SSSM, also have a hidden symmetry that takes the form of a classical Yangian algebra. An
introduction to classical integrability is given in the accompanying review article. ‘Introduction
to classical and quantum integrability’ by Retore [30] and a more in depth exposition can be
found in [18], while comprehensive reviews on Yangians include [31–33].

Let us now briefly discuss some of the quantum properties of these models. The one-loop
renormalisability of the 2D sigma model (2.13) with the factor of 1

2πα′ restored is well-known
to be governed by the Ricci flow equation [34, 35]

ĠMN + ḂMN = α′R̂MN + . . . , (7.13)

where the derivative is with respect to the log of the renormalisation group (RG) mass scale,
R̂M

NPQ is the Riemannian curvature of the generalised connection Γ̂M
NP = ΓM

NP − 1
2 HM

NP

and the additional terms correspond to contributions from wavefunction renormalisation,
α′LZ(GMN + BMN) where LZ denotes the Lie derivative with respect to an arbitrary vector Z,
and boundary terms, α′(dY)MN where Y is an arbitrary one-form. The running of the coupling
𝒽 at one loop in the PCM, PCWZM and SSSM is proportional to the dual Coxeter number h∨

of the group G. It is a well-established result that for the PCM (2.10) and SSSM (7.4) we have

𝒽̇ =
1

2π
h∨

2
,

𝒽̇ =
1

2π
h∨,

(7.14)

while for the PCWZM (2.38)

𝒽̇ =
1

2π
h∨

2

(
1 − 𝓀2

𝒽2

)
, 𝓀̇ = 0. (7.15)

Moreover, based on their global symmetries we can argue that these models are renormalisable
to all loops. Less is known about the one-loop renormalisability of the ZT coset models (7.7)
and (7.9) since the global symmetries do not constrain the coefficients in the sums of projectors

32 A related model is given by taking the WZ term (2.33) as an action in its own right. The equations of motion are
given by ∂+ j− − ∂− j+ = −[ j+, j−] = 0, which are encoded by the Lax connection L± = z j±.
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P± and Q±. Based on low-dimensional examples, a natural conjecture for the running of the
coupling 𝒽 at one loop in the ZT coset model (7.7) is

𝒽̇ =
1

2π
2h∨

T
. (7.16)

For theZT coset model (7.9) the situation is more subtle since the degeneracy of the target-space
metric means that the Ricci flow equation (7.13) cannot be used straightforwardly. Instead, an
alternative approach, such as the background field method [36–39] can be used, see [40] for
an introductory review.

Recalling that𝒽 is the inverse coupling constant, these one-loop RG equations imply that the
PCM, SSSM and PCWZM are all asymptotically free in the UV. The PCM and SSSM become
strongly coupled in the IR, while the PCWZM flows to the fixed point 𝒽 = 𝓀, corresponding
to the WZW model. Note that if we reverse the sign of the action, as we did when considering
G = SL(2,R), then the sign of the β function is also reversed and the UV and IR behaviour
is modified accordingly. For compact Lie groups the PCM and SSSM exhibit dynamical mass
generation in the IR and the quantum theory is described by a massive S-matrix [41].

For all the symmetric integrable models we have discussed we can also take the Lie groups
G and H to be supergroups and the property of classical integrability still holds with the Lax
connections taking the same form. The analogue of taking the Lie group G to be simple is to
take the Lie supergroup G to be basic. As an example, we may consider sigma models whose
target space is given by the supersphere

Sn|m ∼=
OSp(n + 1|2m)

OSp(n|2m)
,

which is a symmetric space. For T = 4 both the actions (7.7) [9–11] and (7.9) [13–16] are
of interest in string theory. Whether a classical 2D sigma model describes a worldsheet string
theory depends on the quantum properties of the model. If G is a supergroup with vanishing
dual Coxeter number then 𝒽̇ = 0 and the models are scale-invariant at one loop, see [38, 42]
and references therein33. Furthermore, if the Z4 coset also has one-loop central charge less
than or equal to 26, these models may describe sectors of string theories on semi-symmetric
spaces in the pure-spinor and Green–Schwarz formalisms respectively. This is a non-trivial
result and additional considerations and properties, such as ghosts and BRST symmetry in the
pure-spinor formalism and κ-symmetry in the Green–Schwarz formalism, need to be taken
into account or verified to ensure unitarity. In addition both scale invariance and the stronger
property of Weyl invariance should hold exactly.

The most well-known example of such a Z4 coset is PSU(2,2|4)
S(2,2)×S(4) , which describes the max-

imally supersymmetric AdS5 × S5 type IIB superstring. Other examples include OSp(6|4)
U(3)×SL(2,C) ,

PSU(1,1|2)
SO(1,1)×SO(2) and D(2,1;α)

SO(1,1)×SO(2)×SO(2) , which describe sectors of string theories on AdS4 × CP3,
AdS2 × S2 × T6 and AdS2 × S2 × S2 × T4 respectively. For all these examples the Lie super-
group G is basic and a general classification can be found in [38, 43]. These worldsheet string
theories are also of interest in the context of the AdS/CFT correspondence, for example, the
maximally supersymmetric AdS5 × S5 type IIB superstring is the holographic dual of N = 4
super-Yang–Mills theory in 4 dimensions. The integrability of these models in the free string,
gs = 0, or planar limit has proven to be a powerful tool, leading to a proposal for the exact
spectrum of string energies. For further references see the review articles [44–47].

33 Note that for supergroups with vanishing dual Coxeter number the Killing form vanishes, hence tr should be taken
to be a suitable invariant bilinear form, such as the matrix supertrace in the defining representation.
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7.2. Yang–Baxter deformations

The trigonometric and elliptic deformations of the SU(2) PCM [48] were some of the earliest
studied integrable deformations of sigma models. Other early examples of integrable defor-
mations of the SU(2) PCM and the SU(2)/U(1) SSSM were constructed in [49–51] although
their classical integrability was only established later in [52]. In section 3 we saw that if we add
a boundary term to the trigonometric deformation of the SU(2) PCM, the conserved current
associated to the right-acting G global symmetry is also flat on-shell [53]. This construction
can be further generalised to include a non-vanishing WZ term [54]. The resulting models coin-
cide with the YB deformations of the SU(2) PCM and PCWZM based on the Drinfel’d–Jimbo
solution to the mcYBe. The deformed models of [49–51] also turn out to be related to YB
deformations in a similar way [55].

It is interesting to note that, even though they only differ by a boundary term, the natu-
ral algebraic structures of the trigonometric and YB deformations of the SU(2) PCM differ.
For example, the Lax connection of the YB deformation is valued in the homogeneous gra-
dation of the affinization of su(2), while for the trigonometric deformation it is valued in the
principal gradation [56]. Furthermore, the conserved charges that come from expanding the
monodromy matrix generate the classical affine q-deformed algebra in the homogeneous and
principal gradations respectively [56–58].

The YB deformation of the PCM for general group G (4.1) was constructed in [59] and
the existence of a Lax connection encoding its equations of motion was shown in [60]. YB
deformations are so called since they depend on a solution to the (m)cYBe. While the full clas-
sification of such solutions is rather involved, antisymmetric solutions to the mcYBe have been
classified for simple Lie algebras over C [61, 62]. Classifications of antisymmetric solutions
to the cYBe have also been carried out for low-rank simple Lie algebras over C, including,
for example, sl(2,C) and sl(3,C) [63, 64]. YB deformations based on the Drinfel’d–Jimbo
solution [65, 66] of the mcYBe (4.73) are often called η deformations in the literature.

The YB deformation of the PCM can be generalised to include the WZ term to give
the YB deformation of the PCWZM for general group G. First constructed in [67] for the
Drinfel’d–Jimbo solution to the mcYBe, in [68] the model was written in the compact form

SYB−PCWZM = −𝓀
2

∫
d2x tr

(
j+

eχ + eρRg

eχ − eρRg
j−

)
+

𝓀
6

∫
d3x εi jk tr

(
ji[ j j, jk]

)
. (7.17)

It was shown in [69] that this action defines an integrable deformation of the PCWZM for any
antisymmetric operator R that satisfies the (m)cYBe if the Lie algebras h± ≡ im(R± c) are
solvable. It turns out that not all antisymmetric solutions of the (m)cYBe can be used to deform
the PCWZM and an additional cohomological condition needs to be satisfied. While solvable
h± is sufficient for this to be the case, it has not been proven that it is also necessary. The Lax
connection of the YB deformation of the PCWZM (7.17) is

L±(z) =
J±

1 ∓ z
, J± = ±2(cosh χ− cosh cρ)

sinh χ(e±χ eρRg − 1)
g−1∂±g. (7.18)

The limit in which the WZ term vanishes and we recover the YB deformation of the PCM (4.1)
is given by setting

χ =
2𝓀
𝒽

, ρ =
2η𝓀
𝒽

, (7.19)
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and taking 𝓀→ 0. To recover the PCWZM (2.38) we take the deformation parameter ρ→ 0
and set coth χ

2 = 𝒽
𝓀 .

It is also possible to construct the YB deformation of the SSSM (7.4) [70, 71], the action of
which is

SYB−SSSM = −𝒽
2

∫
d2x tr

(
j+P1

1
1 − ηRgP1

j−

)
. (7.20)

The Lax connection of the model is given by

L±(z) = P0J± + z±1
√

1 − c2η2P1J±, J± =
1

1 ± ηRgP1
j±. (7.21)

Defining

η̃ =
1 − cη
1 + cη

, (7.22)

the YB deformation of the action (7.7) on a ZT coset is

SYB−ZT = −𝒽
2

∫
d2x tr

(
j+Pη

−
1

1 − ηRgPη
−

j−

)
,

Pη
± =

T−1∑
k=1

1 + η̃

1 − η̃

1 − η̃k

1 + η̃k
P T

2 ±( T
2 −k),

(7.23)

with the Lax connection

L±(z) = P0J± +

T−1∑
k=1

2z±k

η̃
k
2 + η̃−

k
2

P T
2 ±( T

2 −k)J±,

J± =
1

1 ± ηRgPη
±

j±.

(7.24)

Similarly, the YB deformation of the action (7.9) is

S′
YB−ZT

= −𝒽
2

∫
d2x tr

(
j+Qη

−
1

1 − ηRgQη
−

j−

)
,

Qη
± =

� T
2 �∑

k=1

1 + η̃

1 − η̃

1 − η̃k

1 + η̃k
P T

2 ±( T
2 −k) −

T−1∑
k=� T

2 �+1

1 + η̃

1 − η̃

1 − η̃T−k

1 + η̃T−k
P T

2 ±( T
2 −k),

(7.25)

with the Lax connection

L±(z) = P0J± +

� T
2 �∑

k=1

2z±k

η̃
k
2 + η̃−

k
2

P T
2 ±( T

2 −k)J± +

T−1∑
k=� T

2 �+1

2z∓(T−k)

η̃
T−k

2 + η̃−
T−k

2
P T

2 ±( T
2 −k)J±,

J± =
1

1 ± ηRgQη
±

j±. (7.26)

Both these YB deformations coincide with that of the SSSM (7.20) for T = 2. The deformed
actions (7.20), (7.23) and (7.25) are still invariant under the H gauge symmetry (7.11), ensuring
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that they have the same number of degrees of freedom as the undeformed models, while the
left-acting G global symmetry is broken to a subgroup depending on R.

That these deformations exist follows from the affine Gaudin model formalism [26, 72].
However, apart from certain special cases, including SYB−ZT with T = 4, c = 0 [73], and
S′

YB−ZT
with T = 4, c = i [74], T = 4, c = 0 [75] and when 4 divides T with c = 0 [76], for

T � 3 these deformed actions and their Lax connections are, to the best of our knowledge, new
results. A complementary and related line of investigation is the study of sigma models on flag
manifolds and their deformations [77], which has been recently reviewed in [78].

The construction of an infinite number of conserved charges in involution for YB deforma-
tions follows from the fact that the Poisson bracket of the Lax matrix Lx with itself satisfies
a Maillet bracket with twist function [25, 26]. This ensures the classical integrability of these
models. There is extensive evidence that the YB deformations also have a hidden symmetry that
takes the form of twists of the classical Yangian algebra for homogeneousdeformations [71, 79]
and the classical q-deformed algebra for inhomogeneous deformations [70, 80, 81]. For split,
c = 1, and non-split, c = i, inhomogeneous YB deformations the q-deformation parameter is
the exponential of a phase and real respectively. More precisely, the classical q-deformation
parameter is given by q̂ = q𝒽 where

q = exp

(
icη
𝒽

)
. (7.27)

At this point it is worth emphasising that while the YB deformations describe a large class
of integrable deformations of symmetric sigma models, they do not describe all such deforma-
tions. For example, the elliptic deformation of the SU(2) PCM does not take the form of the
YB deformation, and, strictly speaking, the same is also true of the trigonometric deformation.
Recent work exploring generalisations of the latter to higher-rank Lie groups includes [82, 83].

Even though the YB deformations lead to non-trivial deformations of the background fields,
the resulting 2D sigma models remain renormalisable at one loop. This has been established
for the deformed PCM (4.1), SSSM (7.20) and PCWZM (7.17), see, for example, [68, 84–86].
For the deformed PCM and SSSM we have

𝒽̇ =
1

2π
h∨

2
(1 − c2η2)2, (η𝒽−1)· = 0,

𝒽̇ =
1

2π
h∨(1 − c2η2), (η𝒽−1)· = 0,

(7.28)

while for the deformed PCWZM

χ̇ = − 1
2π

h∨(cosh χ− cosh cρ)2

𝓀 sinh2 χ
, ρ̇ = 0, 𝓀̇ = 0. (7.29)

Again, less is known about the one-loop renormalisability of the deformed ZT coset models
(7.23) and (7.25), however, based on low-dimensional examples, a natural conjecture for the
model (7.23) is

𝒽̇ =
1

2π
2h∨

T
(1 − c2η2), (η𝒽−1)· = 0. (7.30)

As in the undeformed case, an alternative approach is needed to analyse the model (7.25) due
to the degeneracy of the target-space metric.

For c = 0 the RG equations do not depend on the deformation parameters η and ρ and the
RG behaviour is the same as for the undeformed models. More generally, the deformation
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does not affect the IR behaviour, that is both the deformed PCM and SSSM become strongly
coupled, while the deformed PCWZM flows to the WZW model. On the other hand, the UV
behaviour is modified. If c = 1 all three deformed models flow to the η = 1 or ρ = χ fixed
point. If c = i, the RG flow is cyclic and does not have a well-defined UV behaviour. Conse-
quently, it has been posited that these deformations may only exist as effective field theories
[87]. Again, we note that if we reverse the sign of the action then the sign of the β function is
also reversed.

As discussed above, the case T = 4 is of interest in string theory. These YB deformations
have been constructed in [73] in the pure-spinor formalism for c = 0, including analyses of
ghosts and BRST symmetry, and in [74, 75, 80] in the Green–Schwarz formalism, including
the demonstration of κ-symmetry. For those models whose undeformed counterparts describe
worldsheet string theories, this raises the important question of whether one-loop Weyl invari-
ance is preserved by the deformation. While scale invariance is in general preserved [88–90],
whether Weyl invariance is preserved or not depends on the properties of R. A sufficient con-
dition for Weyl invariance at one loop is that the trace of the structure constants of gR, that
is the Lie algebra whose Lie bracket is the R-bracket (5.2), vanishes [90]. However, it should
be noted that a full analysis turns out to be more subtle [91]. For the AdS5 × S5 superstring,
homogeneous YB deformations with this property were explored in [90, 92], while inhomo-
geneous YB deformations have been investigated in [93]. For recent reviews discussing these
models in more detail see [94, 95].

7.3. Dualities and current–current deformations

The relation between deformations and dualities dates back to early work on TsT transforma-
tions [96, 97]. In a model with two commuting isometries these deformations are constructed
by first T-dualising [98–100] Θ1 → Θ̃1, then shifting Θ2 →Θ2 − ηΘ̃1 and finally T-dualising
back Θ̃1 →Θ1. Abelian homogeneous YB deformations are equivalent to TsT transforma-
tions [101, 102], while homogeneous YB deformations more generally are closely related to
non-abelian T-dual models [103–105]. Non-abelian T-duality [106] generalises T-duality to
models with non-abelian global symmetry groups. Both T-duality and non-abelian T-duality
preserve one-loop renormalisability. However, non-abelian T-duality may introduce a Weyl
anomaly if the structure constants of the algebra with respect to which we are T-dualising have
non-vanishing trace [107, 108].

Poisson–Lie T-duality [109, 110] further generalises non-abelian T-duality to models with-
out manifest global symmetries, but whose equations of motion can be written in the form of
a non-commutative conservation law

∂+K− + ∂−K+ + [K+, K−]′ = 0. (7.31)

Here K± are valued in the Lie algebra g and [·, ·]′ is the Lie bracket of a dual Lie algebra g′.
The two Lie brackets [·, ·] and [·, ·]′ satisfy a compatibility condition such that the vector space
direct sum d = g � g′ has the structure of a Drinfel’d double. We say that the model has a G
global Poisson–Lie symmetry with respect to G′. This construction includes models with G
global symmetry, in which case G′ is abelian. YB deformations are examples of Poisson–Lie
symmetric models. The dual Lie algebra is given by gR, the Lie algebra whose Lie bracket is
the R-bracket (5.2). Poisson–Lie T-duality is a canonical transformation, which implies that it
preserves the property of classical integrability. Furthermore, Poisson–Lie symmetric models
are renormalisable at one loop, a property that is also preserved by Poisson–Lie T-duality [68,
111–115]. For recent reviews on T-duality and its generalisations see [116, 117].
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Current–current deformations of the WZW model preserving scale and conformal invari-
ance, and their relation to TsT transformations and homogeneous YB deformations have
been extensively studied, see, for example, [91] and references therein. The isotropic cur-
rent–current deformation of the WZW model (6.4), which in general does not preserve scale or
conformal invariance, is related to the non-abelian Thirring model [118, 119]. The all-order in
deformation parameter action was first constructed in [120]. This model and its generalisations
are often called λ deformations in the literature.

It was later shown that the isotropic current–current deformation of the WZW model is
related by Poisson–Lie T-duality to split inhomogeneous YB deformations for suitable real
forms g [79]. It can also be related to non-split inhomogeneous YB deformations by combining
Poisson–Lie T-duality with analytic continuation [85, 121, 122]. There also exist analogous
deformations of gauged WZW models that are Poisson–Lie T-dual to split inhomogeneous YB
deformations of the SSSM (7.20) and the ZT coset models (7.23) and (7.25). As for the PCM,
the resulting deformations can be considered for any real form g, including the compact real
form. The actions of the deformed models are

SΛ−SSSM = −𝓀
2

∫
d2 x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − A+(P0 + λP1)−1A−

)
,

(7.32)

for the SSSM [120, 123],

SΛ−ZT = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − A+(P0 + Pλ

−)−1A−
)

,

Pλ
± =

T−1∑
k=1

λkP T
2 ±( T

2 −k), (7.33)

for the ZT coset model (7.7), and

S′
Λ−ZT

= −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − A+(P0 +Qλ

−)−1A−
)

,

Qλ
± =

� T
2 �∑

k=1

λkP T
2 ±( T

2 −k) +
T−1∑

k=� T
2 �+1

λk−TP T
2 ±( T

2 −k), (7.34)

for the ZT coset model (7.9), where we recall that the group-valued field g ∈ G and A± ∈ g.
Again the two actions (7.33) and (7.34) both coincide with the action (7.32) for T = 2. All of
these models have a H gauge symmetry acting as

g → h−1gh, A± → h−1A±h + h−1∂±h, h(t, x) ∈ H, (7.35)
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hence they have the same number of degrees of freedom as their Poisson–Lie T-dual coun-
terparts. Typically they have no global symmetries. The Lax connections for these models are

L±(z) = P0A± + z±1λ− 1
2 P1A±, (7.36)

L±(z) = P0A± +

T−1∑
k=1

z±kλ− k
2 P T

2 ±( T
2 −k)A±, (7.37)

and

L±(z) = P0A± +

� T
2 �∑

k=1

z±kλ− k
2 P T

2 ±( T
2 −k)A± +

T−1∑
k=� T

2 �+1

z±(k−T)λ
T−k

2 P T
2 ±( T

2 −k)A±, (7.38)

respectively, where A± are given in terms of g by their on-shell expressions. For T � 3, and
apart from the case T = 4 [124], these deformations and their Lax connections are, to the best
of our knowledge, new results.

The fields A± enter the actions (7.32)–(7.34) algebraically, hence can be easily integrated
out to give

SΛ−SSSM = −𝓀
2

∫
d2x tr

(
g−1∂+g

1 + Ad−1
g (P0 + λP1)

1 − Ad−1
g (P0 + λP1)

g−1∂−g

)

+
𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
,

(7.39)

SΛ−ZT = −𝓀
2

∫
d2x tr

(
g−1∂+g

1 + Ad−1
g (P0 + Pλ

−)

1 − Ad−1
g (P0 + Pλ

−)
g−1∂−g

)

+
𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
,

(7.40)

and

S′
Λ−ZT

= −𝓀
2

∫
d2x tr

(
g−1∂+g

1 + Ad−1
g (P0 +Qλ

−)

1 − Ad−1
g (P0 +Qλ

−)
g−1∂−g

)

+
𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
.

(7.41)

These are the analogues of the action (6.7) of the isotropic current–current deformation of the
WZW model. Observing that all these actions, including equation (6.7), take the general form

− 𝓀
2

∫
d2x tr

(
g−1∂+g

1 + Ad−1
g O(λ)

1 − Ad−1
g O(λ)

g−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
,

(7.42)

where O(λ−1) = O(λ)−1, it follows that they are invariant under the following Z2 transforma-
tion [119, 121, 125, 126]

g → g−1, λ→ λ−1, 𝓀→−𝓀. (7.43)

63



J. Phys. A: Math. Theor. 55 (2022) 093001 Topical Review

This invariance has been particularly useful in the study of anomalous dimensions and
correlation functions exact in the deformation parameter λ at large 𝓀 [127, 128].

Simply taking λ→ 1, the three models (7.32)–(7.34) all limit to the G/G gauged WZW
model, the same as for the isotropic current–current deformation of the WZW model (6.4).
Taking λ→ 0 in the actions (7.32) and (7.33) we end up with the G/H gauged WZW model.
In particular, it has been argued that SΛ−SSSM can be understood as a parafermion–parafermion
deformation of this gauged WZW model [120]. On the other hand, taking λ→ 0 in the action
(7.34) is more subtle, at least for T � 3. We find that PkA− = PT−kA+ = 0 for k = 1, . . . , � T

2 �
and the action becomes

lim
λ→0

S′
Λ−ZT

= −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − A+P0A−

)
,

(7.44)

where A+ ∈ h �
(

�� T−1
2 �

k=1 pk

)
and A− ∈ h �

(
�T−1

k=� T
2 �+1

pk

)
.

The non-abelian T-dual limit is given by parametrising the group-valued field g and λ as in
equation (6.14) and taking 𝓀→∞. Integrating out the Lagrange multiplier field v we recover
the SSSM (7.4) and the ZT coset models (7.7) and (7.9), while integrating out A± we find their
non-abelian T-duals, whose actions are given by

SNATD−SSSM = −𝒽
2

∫
d2x tr

(
∂+v

1
P1 − adv

∂−v

)
, (7.45)

SNATD−ZT = −𝒽
2

∫
d2x tr

(
∂+v

1
P− − adv

∂−v

)
, (7.46)

and

S′
NATD−ZT

= −𝒽
2

∫
d2x tr

(
∂+v

1
Q− − adv

∂−v

)
, (7.47)

with P− and Q− defined in equations (7.7) and (7.9) respectively.
In models with global symmetries we can often non-abelian T-dualise with respect to sub-

groups of the global symmetry group, treating the remaining fields as spectators. It is also
possible to Poisson–Lie T-dualise YB deformations with respect to ‘subgroups’ of the global
Poisson–Lie symmetry. However, not every non-abelian T-duality transformation of the unde-
formed model can be extended a Poisson–Lie T-duality transformation of the YB deforma-
tion [129–131]. When it is possible to Poisson–Lie T-dualise, this leads to new examples of
integrable sigma models.

The classical integrability of the isotropic current–current deformation of the WZW model
(6.4) and its generalisations to Z2 and ZT cosets (7.32)–(7.34), including the existence of
an infinite number of conserved charges in involution, follows from the fact that the Poisson
bracket of the Lax matrix Lx with itself again satisfies a Maillet bracket with twist function
[25, 26]. This can also be understood as a consequence of their relation to split inhomogeneous
YB deformations by Poisson–Lie T-duality for suitable real forms g. Similarly, there is evi-
dence that these deformed models have a hidden symmetry that takes the form of a classical
q-deformed algebra where the q-deformation parameter is the exponential of a phase [132].
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Using the relation between the parameters (𝓀,λ) and (𝒽, η)

𝓀 =
𝒽
4η

, λ =
1 − η

1 + η
, (7.48)

and setting c = 1, the q-deformation parameter (7.27) is

q = exp

(
i

4𝓀

)
= exp

(
iπ
k

)
, (7.49)

where k is the level of the WZ term. When k is integer-valued we see that q is a root of unity.
Analytic continuations of the models (6.7) and (7.39)–(7.41) also exist, which coincide with
Poisson–Lie T-duals of non-split YB deformations for suitable real forms g. They are also
classically integrable and have a hidden symmetry that takes the form of a classical q-deformed
algebra with real q-deformation parameter.

The deformed models (6.4) and (7.32) are renormalisable at one loop [125, 133]. Further-
more, the RG equations are the same as for the YB deformations (7.28) with c = 1 and the
parameters related as in (7.48). This again follows from the fact that the models are related by
Poisson–Lie T-duality, hence the same should also be true of the deformed models (7.33) and
(7.34). As expected, we find that 𝓀̇ = 0, hence the level of the WZ term does not run. Note
that the UV fixed point, η = 1, corresponds to λ = 0, that is the WZW and gauged WZW
models. We can again ask if the deformed models (7.33) and (7.34) with T = 4 can be used to
describe worldsheet string theories in the pure spinor and Green–Schwarz formalisms respec-
tively. In the Green–Schwarz case this is indeed possible with invariance under κ-symmetry
shown in [124], where this action was first constructed, and scale and Weyl invariance at one
loop demonstrated in [39, 90] respectively.

7.4. E-models

In section 5 we saw that the YB deformation of the PCM (4.1) and the isotropic current–current
deformation of the WZW model (6.7) can both be found from a first-order model on a Drinfel’d
double (5.7). In general, this first-order model leads to different Poisson–Lie T-dual models
upon integrating out the degrees of freedom associated to different Lagrangian subalgebras.
Such first-order models were first introduced in [134, 135], generalising earlier models on
doubled space-times found in the context of T-duality [136], and in the modern literature are
often termed E-models. One appealing feature of E-models is that the one-loop renormalis-
ability of the different Poisson–Lie T-dual models following from the same E-model is simply
characterised by a flow equation for the constant linear operator E [68, 113–115].

For the YB deformation of the PCM the Drinfel’d double d is isomorphic to the real dou-
ble g⊕ g, the complex double gC, or the semi-abelian double g� gab, for c = 1, c = i and
c = 0 respectively. The invariant bilinear form on d and the linear operator E are defined
in equations (5.6) and (5.18) respectively. To recover the YB deformation of the PCM (4.1)
from the E-model (5.7) we integrate out the degrees of freedom associated to the Lagrangian
subalgebra g̃ ∼= gR

g̃ = {(ι+R)X : X ∈ g}. (7.50)

The isotropic current–current deformation of the WZW model (6.7) follows from the same
E-model on the real double upon integrating out the degrees of freedom associated to the
Lagrangian subalgebra g for any real form g. Therefore, for those real forms g that admit a
solution to the split mcYBe the model is Poisson–Lie T-dual to the corresponding YB defor-
mation. It is also possible to integrate out the degrees of freedom associated to the Lagrangian
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subalgebra g starting from the E-model on the complex double. The resulting model is an
analytic continuation of the isotropic current–current deformation of the WZW model and
when the real form g admits a solution to the non-split mcYBe it is Poisson–Lie T-dual to the
corresponding YB deformation.

The YB deformation of the PCWZM (7.17) can also be recovered from an E-model. The
Drinfel’d double is still isomorphic to the real double g⊕ g, the complex double gC, or the
semi-abelian double g� gab, for c = 1, c = i and c = 0 respectively. To introduce the WZ
term we deform the invariant bilinear form on d and modify the operator E accordingly
[69, 137]. The deformed invariant bilinear form is given by

〈〈X1 + ιY1, X2 + ιY2〉〉ρ = cosh cρ (tr (X1Y2) + tr (Y1X2))

+
sinh cρ

c

(
tr (X1X2) + c2tr (Y1Y2)

)
, (7.51)

while the operator E is modified to Eρ, which acts as

Eρ(X + ιY) =

(
cosh cρ− cosh χ

sinh χ
X +

c(cosh cρ− eχ)(cosh cρ− e−χ)
sinh cρ sinh χ

Y

)
− ι

(
sinh cρ
c sinh χ

X +
cosh cρ− cosh χ

sinh χ
Y

)
, X, Y ∈ g.

(7.52)

This operator still squares to the identity,E2
ρ = 1, and is symmetric with respect to the deformed

invariant bilinear form

〈〈EρX , Y 〉〉ρ = 〈〈X , EρY 〉〉ρ, X , Y ∈ d. (7.53)

If we parametrise χ and ρ in terms of 𝒽, η and 𝓀 as in equation (7.19) and take 𝓀→ 0, then
〈〈·, ·〉〉ρ → 〈〈·, ·〉〉 as defined in equation (5.6), and Eρ →E as defined in equation (5.18).

For an antisymmetric operatorR that satisfies the (m)cYBe with solvable h± ≡ im(R± c),
the operator R̂ : g→ g defined as

R̂ =
c

sinh cρ
(eρR − cosh cρ) = R+ O(ρ), (7.54)

also solves the (m)cYBe, although it is not antisymmetric. It then follows that the subspace

g̃ρ = {(ι+ R̂)X : X ∈ g}, (7.55)

is a Lagrangian subalgebra of d with respect to the deformed invariant bilinear form (7.51).
Moreover, as 𝓀→ 0 we have that g̃ρ → g̃ ∼= gR.

Starting from the E-model (5.7) with the deformed invariant bilinear form (7.51) and
modified operator Eρ (7.52), we can integrate out the degrees of freedom associated to the
Lagrangian subalgebra g̃ρ. Doing so, we arrive at the relativistic second-order model on B\D
(5.15) with B = G̃ρ and b = g̃ρ, still with the deformed invariant bilinear form (7.51) and mod-
ified operator Eρ (7.52). Assuming that the decomposition d = g � g̃ρ lifts to the group, we
parametrise 𝕘 = g̃ρg, g̃ρ ∈ G̃ρ, g ∈ G, and use the gauge symmetry (5.16) to fix g̃ρ = 1 so that
∂ = g ∈ G. The action of the projectors EρP(Eρ ± 1) is then given by

EρP(Eρ ± 1)(X + ιY) = (ι+ R̂g)
1

1 + sinh cρ
c(cosh cρ−e±χ)R̂g

×
(

Y +
sinh cρ

c(cosh cρ− e±χ)
X

)
, X, Y ∈ g, (7.56)
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where R̂g = Ad−1
g R̂Adg. Finally, we fix the gauge ∂ = g ∈ G in the action (5.15). Using the

action of the projectors in equation (7.56), the deformed invariant bilinear form (7.51), and the
definition of R̂ (7.54), we recover the YB deformation of the PCWZM (7.17) when we set

N =
𝓀c

sinh cρ
. (7.57)

In order to describe the coset models using E-models we need to account for the gauge symme-
try. One approach to doing this is to gauge the symmetry directly in the action (5.7) following
[68]. We take a subgroup H of D where Lie H = h such that

EAd−1
h X = Ad−1

h EX , h ∈ H, X ∈ d, (7.58)

and

〈〈X, Y〉〉 = 0, X, Y ∈ h. (7.59)

The first condition (7.58) ensures that 𝕘→ 𝕘h is a global symmetry that can be gauged, while
the second condition (7.59) ensures that this gauging is not anomalous [138]. After gauging
the symmetry we find the action

SE = N

(∫
d2x

〈〈
𝕘−1∂t𝕘,𝕘−1∂x𝕘

〉〉
+

1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉
− 2

∫
d2x

〈〈
At,𝕘−1∂x𝕘

〉〉
−
∫

d2x
〈〈

(𝕘−1∂x𝕘− Ax), E(𝕘−1∂x𝕘− Ax)
〉〉)

,

(7.60)

where 𝕘 is still valued in the Drinfel’d double D and Aμ is a gauge field valued in the Lie
algebra h. This action is invariant under the following gauge transformations

𝕘→ 𝕘h, Aμ → h−1Aμh + h−1∂μh, h(t, x) ∈ H, (7.61)

hence defines a first-order model on the coset D/H. The operator E is still required to satisfy
E2 = 1 and E t = E . Assuming that the bilinear form 〈〈·, E·〉〉 is non-degenerate on h, the degen-
erate E-models of [139–141] are recovered upon integrating out the gauge field Aμ ∈ h. Here,
we will continue to work with the action (7.60) and only integrate out the gauge field at the
final stage.

As in the ungauged construction, we can take any Lagrangian subalgebra b of d and redefine
𝕘→ b𝕘, b ∈ B. The action (7.60) then only depends on b through b−1∂xb ∈ b. If Ad−1

𝕘 b and
EAd−1

𝕘 b have trivial intersection, we can integrate out the degrees of freedom in b to obtain the
action

SEB = N

(
1
2

∫
d2x

(〈〈
(𝕘−1∂+𝕘− A+), EP(E + 1)(𝕘−1∂−𝕘− A−)

〉〉
−
〈〈

(𝕘−1∂−𝕘− A−), EP(E − 1)(𝕘−1∂+𝕘− A+)
〉〉)

+

∫
d2x εμν

〈〈
𝕘−1∂μ𝕘, Aν

〉〉
+

1
6

∫
d3x εi jk

〈〈
𝕘−1∂i𝕘, [[𝕘−1∂ j𝕘,𝕘−1∂k𝕘]]

〉〉)
,

(7.62)

where A± = At ± Ax and, as before, P is the projector with imP = EAd−1
𝕘 b and ker P =

Ad−1
𝕘 b. This means that the operators EP(E ± 1) are projectors with im EP(E ± 1) = Ad−1

𝕘 b
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and ker EP(E ± 1) = e∓ where e± are the eigenspaces of E with eigenvalues ±1. The full
gauge symmetry of the action (7.62) is

𝕘→ b𝕘h, A± → h−1A±h + h−1∂±h, b(t, x) ∈ B, h(t, x) ∈ H, (7.63)

hence SEB describes a relativistic second-order model on B\D/H.
To show that the YB deformations of the SSSM (7.20) and ZT coset models (7.23) and

(7.25) can be written as E-models we take the Drinfel’d double to be the real double g⊕ g, the
complex double gC, or the semi-abelian double g� gab, for c = 1, c = i and c = 0 respectively.
The invariant bilinear form is still given by (5.6) and h is taken to be the subalgebra of the
Lagrangian subalgebra g spanned by the fixed points of the Z2 or ZT automorphism. This
ensures that the condition (7.59) is satisfied. We take the operator E to act on an element of the
Drinfel’d double as

E(X + ιY) = −
(
(Pη

G)−1Y − (Pη
G)−1Pη

BX
)

− ι
(
(Pη

G − Pη
B(Pη

G)−1Pη
B)X + Pη

B(Pη
G)−1Y

)
, X, Y ∈ g,

Pη
G = ηP0 +

η

2
(Pη

− + Pη
+), Pη

B =
η

2
(Pη

− − Pη
+).

(7.64)

for the coset model (7.23), and the same with Pη
± replaced by Qη

± for the coset model (7.25).
Recall that these two models both coincide with the SSSM for T = 2 and Pη

± and Qη
± are

defined in equations (7.23) and (7.25) respectively. The condition (7.58) is also satisfied since E
is built from the projectors Pk and ι, which commute with Ad−1

h , h ∈ H, by construction. Taking
B = G̃, b = g̃ ∼= gR, we parametrise𝕘 = g̃g, g̃ ∈ G̃, g ∈ G, and use the gauge symmetry (7.63)
to fix g̃ = 1 so that ∂ = g ∈ G. The residual H gauge symmetry preserving this gauge choice
acts as

𝕘→ 𝕘h, g → gh, h(t, x) ∈ H, (7.65)

which coincides with the gauge transformations (7.11). The action of the projectors EP(E ± 1)
is then given by

EP(E ± 1)(X + ιY) = (ι+Rg)
1

1 ∓ η(P0 + Pη
∓)Rg

(Y ∓ η(P0 + Pη
∓)X), X, Y ∈ g. (7.66)

Fixing the gauge ∂ = g ∈ G in the action (7.62), and using the action of the projectors in
equation (7.66) together with the invariant bilinear form (5.6), we find

SE
˜G
= −Nη

∫
d2x tr

(
(g−1∂+g − A+)(P0 + Pη

−)
1

1 − ηRg(P0 + Pη
−)

(g−1∂−g − A−)

)
.

(7.67)

After integrating out the gauge field A± ∈ h and setting N = 𝒽
2η , we recover theZT coset model

(7.23). Similarly, theZT coset model (7.25) follows from the same derivation with Pη
± replaced

by Qη
±.

Starting from the same E-models on the real double, we can also find the coset models
(7.39)–(7.41). Writing an element of the real double as (X, Y) ∈ d, X, Y ∈ g, the action of the
operator E (7.64) is given by
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E (X, Y) =

(
−
(

(P̃λ
+)−1 − P̃λ

−

)−1
((

(P̃λ
+)−1 + P̃λ

−

)
X − 2Y

)
,

×
(

(P̃λ
−)−1 − P̃λ

+

)−1 ((
(P̃λ

−)−1 + P̃λ
+

)
Y − 2X

)
, X, Y ∈ g,

P̃λ
± = λP0 + Pλ

±. (7.68)

Similarly, the operator E (7.64) with Pη
± replaced by Qη

± is given by the expression (7.68) with
Pλ

± replaced by Qλ
±. Here Pλ

± and Qλ
± are defined in (7.33) and (7.34) and we recall that

λ =
1 − η

1 + η
. (7.69)

Taking B = G, b = g, we parametrise 𝕘 =
(
g′, g′) (g, 1),

(
g′, g′) ∈ G, (g, 1) ∈ G+, and use the

gauge symmetry (7.63) to fix
(
g′, g′) = (1, 1) so that 𝕘 = (g, 1) ∈ G+. The residual H gauge

symmetry that preserves this gauge choice acts as

𝕘→
(
h−1, h−1

)
𝕘 (h, h) , g → h−1gh, h(t, x) ∈ H, (7.70)

which coincides with the gauge transformations (7.35). The action of the projectors EP(E ± 1)
is then given by

EP(E ± 1) (X, Y) =

(
Ad−1

g
1

1 − (λP0 + Pλ
∓)±1Ad−1

g

,
1

1 − (λP0 + Pλ
∓)±1Ad−1

g

)
(
Y − (λP0 + Pλ

∓)±1X, Y − (λP0 + Pλ
∓)±1X

)
, X, Y ∈ g.

(7.71)

Fixing the gauge 𝕘 = (g, 1) ∈ G+ in the action (7.62), and using the action of the projectors
in equation (7.71) together with the invariant bilinear form (5.29), we find

SEG = −N
4

∫
d2x

(
(g−1∂+g − A+ + g−1A+g)

1 + Ad−1
g (λP0 + Pλ

−)

1 − Ad−1
g (λP0 + Pλ

−)
(g−1∂−g − A− + g−1A−g)

)

+
N
4

∫
d2x tr

(
A+(g−1∂−g + ∂−gg−1) − A−(∂+gg−1 + g−1∂+g) + A+g−1A−g − A+gA−g−1

)

+
N
12

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
.

(7.72)

After integrating out the gauge field A± ∈ h and setting N = 2𝓀, we recover the ZT coset
model (7.40). Similarly, the ZT coset model (7.41) follows from the same derivation with Pλ

±
replaced by Qλ

±. Recall that the actions of these two models both coincide with the action
(7.39) for T = 2. Finally, we note that analytic continuations of the deformed models (6.7)
and (7.39)–(7.41), which are Poisson–Lie T-duals of non-split YB deformations for suitable
real forms g, are found by starting from the complex double and integrating out the degrees of
freedom associated to the Lagrangian subalgebra g.

7.5. More general deformations

Before we conclude, we would like to emphasise that there are many more integrable defor-
mations of sigma models than those that we have discussed up to this point. We have largely
focused on deformations that deform a simple Lie group (or basic Lie supergroup) G. How-
ever, it is also possible to consider deformations of semi-simple or non-semi-simple symmetry
groups. The YB deformation of the PCM discussed in section 4 preserves the right-acting
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G global symmetry by construction. It can be generalised such that both the left- and right-
acting symmetries are independently deformed. This model is known as the bi-YB deformation
[60, 142] and its action is given by

SbiYB = −𝒽
2

∫
d2x tr

(
j+

1

1 − ηLRg − ηRR̃
j−

)
,

where both R and R̃ are antisymmetric solutions of the (m)cYBe, and ηL and ηR control
the breaking of the left-acting and right-acting symmetries respectively. It is also possible to
construct Poisson–Lie T-duals of the bi-YB deformation. For example, if R solves the split
mcYBe, we can Poisson–Lie T-dualise with respect to the left-acting G global Poisson–Lie
symmetry to give [85]

SΛYB = −𝓀
2

∫
d2x tr

(
g−1∂+gg−1∂−g

)
+

𝓀
6

∫
d3x εi jk tr

(
g−1∂ig[g−1∂ jg, g−1∂kg]

)
+ 𝓀

∫
d2x tr

(
A+g−1∂−g − A−∂+gg−1 + A+g−1A−g − λ−1

L A+
1

1 − ηRR̃
A−

)
.

(7.73)

This action can then be considered for any real form g with R̃ an antisymmetric solution of
the (m)cYBe on g.

The bi-YB deformation of the PCWZM with both operators R given by the same
Drinfel’d–Jimbo solution to the mcYBe was initially constructed in [143]. In [68] this model
was rewritten in the compact form

SbiYB−PCWZM = −𝓀
2

∫
d2x tr

(
j+

eχ + eρLRg eρRR̃

eχ − eρLRg eρRR̃
j−

)
+

𝓀
6

∫
d3x εi jk tr

(
ji[ j j, jk]

)
, (7.74)

with R̃ = R. The limit in which the WZ term vanishes is given by setting

χ =
2𝓀
𝒽

, ρL =
2ηL𝓀
𝒽

, ρR =
2ηR𝓀
𝒽

, (7.75)

and taking 𝓀→ 0. It is natural to expect that, as for the YB deformation of the PCWZM (7.17),
the action (7.74) is classically integrable for independent antisymmetric solutions R and R̃ of
the (m)cYBe, so long as the Lie algebras h± ≡ im(R± c) and h̃± ≡ im(R̃ ± c̃) are solvable.

The PCM and PCWZM can also be deformed in a way that mixes the left- and right-acting
symmetries. A simple example of this would be to implement a TsT transformation in two
coordinates whose shifts are associated to the action of generators of GL and GR [143]. More
generally, the Lie group G can be understood as a Z2 coset G×G

G where the gauge group is the
diagonal subgroup. We can then consider deformations of the corresponding SSSM. Doing
so puts these models in a form that allows us to Poisson–Lie T-dualise with respect to the
GL × GR global Poisson–Lie symmetry. It is worth noting that in this case the direct product
structure of the symmetry group and the existence of a second invariant bilinear form allows a
WZ term to be added to the SSSM, such that after gauge fixing the PCWZM is recovered.

In the context of worldsheet string theories, the Z4 cosets PSU(1,1|2)×PSU(1,1|2)
SU(1,1)×SU(2) and

D(2,1;α)×D(2,1;α)
SU(1,1)×SU(2)×SU(2) describe sectors of string theories on AdS3 × S3 × T4 and AdS3 × S3 × S3 ×
S1 respectively. The direct product structure of the symmetry group and the existence of a sec-
ond invariant bilinear form again means that a WZ term, which cannot be written as a globally
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well-defined and invariant integral over the 2D worldsheet, can be added to the Z4 coset actions
(7.7) and (7.9) while preserving classical integrability [144]. In the context of string theory this
corresponds to supporting the AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1 backgrounds with a
mix of Ramond–Ramond and Neveu–Schwarz–Neveu–Schwarz fluxes. The bi-YB deforma-
tion of this model with both operators R given by the same Drinfel’d–Jimbo solution to the
mcYBe has also been constructed in [145, 146] and the Weyl invariance of these models has
been investigated in [147].

More generally, if we have a ZT coset G
H then we can consider models on

G×N

H
, (7.76)

where H is again diagonally embedded and we formally include H = G as the case T = 1.
In general, the structure of these cosets and their automorphisms is more involved than those
based on a simple Lie group (or basic Lie supergroup) G. This additional structure means that
these models admit a richer variety of integrable couplings and deformations, see, for example,
[148–152].

7.6. Outlook

In this pedagogical review we have explored integrable deformations of sigma models that
preserve the sigma model form, that is the couplings of the model are all classically marginal.
While beyond the scope of this review, it is important to note that there are other classes of
interesting integrable deformations of sigma models found by perturbing by relevant or irrel-
evant operators. For example, massive perturbations of conformal field theories [153] or TT̄
deformations and their generalisations [154, 155].

In this final section we have outlined some of the many generalisations of the PCM,
the PCWZM and the WZW model, their deformations and their duals. A full classification
of all integrable sigma models remains an open problem, with more modern formalisms
such as those based on affine Gaudin models and higher-dimensional Chern–Simons theories
[72, 156–158] providing new insights and promising avenues to explore, as discussed in the
accompanying review article ‘four-dimensional Chern–Simons theory and integrable field
theories’ by Lacroix [159]. Such new formalisms also have the potential to help investigate
the quantum physics of these models, about which much remains to be understood.

Possibly the most successful approach to quantizing integrable sigma models has been exact
S-matrix theory [41, 160]. This employs the bootstrap principle to conjecture exact results and
uses a toolkit of associated methods, including the Bethe ansatz and its generalisations, to com-
pute observables. Reviews on exact S-matrices include [8, 161, 162]. In spite of this success,
due to non-ultralocal terms in the Maillet bracket, a first-principles canonical quantization of
integrable sigma models remains a challenging goal. For certain models it is possible to find
a formal gauge transformation of the Lax connection that removes the non-ultralocal terms in
the Maillet bracket, a direction that has been explored in [163–166].

An alternative approach to quantization is the construction of dual integrable massive mod-
els [49–51, 167, 168]. This is based on first deforming the integrable sigma model introducing
a UV fixed point. The dual model is then constructed by perturbing the UV conformal field the-
ory by relevant operators that preserve the same symmetry as the original deformation. This
approach has the advantage that for classically integrable sigma models that are anomalous
[169], quantum integrability can be restored by introducing additional degrees of freedom that
decouple in the classical limit [170, 171]. Corresponding developments for sigma models on
flag manifolds have been reviewed in [78].
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A related question is the precise relationship between integrability and renormalisability.
It has long been known that there is a connection between classical integrability and one-
loop renormalisability. In particular, for all known examples, the space of integrable models is
closed under one-loop RG flow. Understanding the deeper origins of this, for example, if Ward
identities for hidden symmetries constrain the RG flow, remains an interesting open problem.
Recent work has shown that the renormalisability of these models persists to higher loops
[172–175] subject to the addition of h̄ corrections, which are related to h̄ corrections to Pois-
son–Lie T-duality transformations [176–178]. A systematic and universal explanation of these
h̄ corrections remains to be found.

Finally, the search for new instances of solvable string theories has been one of the main
driving forces behind many of the recent developments in the field. As we pursue the goal
of classifying integrable sigma models it is likely that we will come across new candidates
for such theories. While the application of integrability methods to the free-string limit of the
AdS5 × S5 superstring has undoubtedly been one of the great success stories in high-energy
theoretical physics over the last 25 years, the generalisation to other integrable worldsheet
string theories, their deformations and their duals has highlighted that much remains to be
understood about how integrability works in these models. Moreover, the status of any holo-
graphic interpretation for many of these worldsheet string theories remains to be determined,
see, for example [179, 180], and references therein. A truly universal application of integra-
bility methods to worldsheet string theories, together with a proof of quantum integrability,
remains an open challenge.
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