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Hawking evaporation of black holes in the early Universe is expected to copiously produce all kinds of
particles, regardless of their charges under the Standard Model gauge group. For this reason, any
fundamental particle, known or otherwise, could be produced during the black hole lifetime. This certainly
includes dark matter (DM) particles. This paper improves upon previous calculations of DM production
from primordial black holes (PBH) by consistently including the greybody factors, and by meticulously
tracking a system of coupled Boltzmann equations. We show that the initial PBH densities required to
produce the observed relic abundance depend strongly on the DM spin, varying in about ∼2 orders of
magnitude between a spin-2 and a scalar DM in the case of nonrotating PBHs. For Kerr PBHs, we have
found that the expected enhancement in the production of bosons reduces the initial fraction needed to
explain the measurements. We further consider indirect production of DM by assuming the existence of
additional and unstable degrees of freedom emitted by the evaporation, which later decay into the DM. For
a minimal setup where there is only one heavy particle, we find that the final relic abundance can be
increased by at most a factor of ∼4 for a scalar heavy state and a Schwarzschild PBH, or by a factor of ∼4.3
for a spin-2 particle in the case of a Kerr PBH.

DOI: 10.1103/PhysRevD.105.015022

I. INTRODUCTION

The entire catalogue of experimental evidence for dark
matter (DM) comes only from its gravitational effects.
Despite this, the particle physics community pins many of
its hopes on discovering a DM candidate that has additional
interactions with the Standard Model (SM). The three main
reasons for this are simple: many well-motivated extensions
of the SM include DM candidates with such interactions;
there are plausible mechanisms that require interactions to
provide the correct DM abundance, and importantly, many

such mechanisms are testable by experiments. However,
the possibility remains that DM only interacts with the SM
gravitationally. If this were the case, the production of DM
in the early Universe still requires an explanation. One such
explanation is the focus of this paper, namely that some
population of primordial black holes (PBHs) were abun-
dant and energetic enough to evaporate and produce the
relic dark matter we observe today. Notably, such a scenario
relies upon particle production via Hawking radiation [1,2],
a phenomenon that does not rely on the existence of
additional and unobserved interactions. Instead, it arises
due to the ambiguity of the definition of the vacuum state in
curved spacetime. The disruption of the spacetime resulting
from the collapse of some matter generates a thermal flux of
particles. Crucially, a black hole (BH) will emanate all
existing degrees of freedom in nature, without regard to
their interactions, and thus constitutes a compelling source
of a purely gravitationally interacting DM.
One of the earliest probes of the Universe’s history

comes from the cosmic microwave background (CMB)
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[3,4]. Perhaps the most profound lesson from the CMB is
that the observable Universe is remarkably homogeneous.
The current scientific consensus is that this is achieved by
some early period of cosmic inflation, which also provides
the seeds for small matter perturbations that eventually
form galaxies. The true model of inflation is far from
determined and many of which predict the existence of
PBHs. This topic has surged in popularity recently because
of the gravitational wave measurements of solar mass black
hole binaries. It has been argued that PBHs themselves
constitute DM, where their masses are constrained by a
large and varied set of experimental searches [5,6]. The
minimum value for the PBH mass is set by the requirement
that they have not evaporated already, determined by
Hawking radiation, MPBH ≥ 5 × 1014 g [7].
Even without the requirement that PBHs constitute DM,

big bang nucleosynthesis (BBN) provides serious restric-
tions on how many PBHs existed in the early Universe for
masses 109 g ≤ MPBH ≤ 1014 g [7–9], below which PBHs
have evaporated before BBN. A lower limit on the PBH
mass comes from constraints on inflation; the Hubble scale
during inflation has an upper bound from CMB [10], which
in turn imposes the smallest possible mass to be MPBH ≳
0.1 g [7]. Let us stress that such a value is model
dependent, specifically on the details of the gravitational
collapse and on the features of inflation. One obtains such a
minimal value for the PBH mass by assuming a standard
slow-roll scenario. For simplicity, we assume such min-
imal case, and take MPBH ≳ 0.1 g [7] as the lower limit.
This window keeps alive the possibility that PBHs
dominated the early Universe and played an important
role in its evolution. The consequences of this have been
well studied since the discovery of the Hawking radiation
[11], and span many different and important aspects, for
instance, the generation of dark radiation [12–18], matter-
antimatter asymmetry production [19–27], and the impli-
cations for the production of DM through evaporation
[13,16,17,20,28–40]. Generally, DM particles produced
in this way can be very light. However, if they are too
light, such DM particles are expected to be relativistic and
their free-streaming length will be constrained by obser-
vations regarding structure formation [16,17,41,42].
This is the first paper of a two-part series, where we

return to the calculation of DM emission from PBH
evaporation to improve existing treatments. We do so by
ameliorating the analysis in two different aspects: solving,
in detail, the momentum-averaged Boltzmann equations
and including consistently the greybody factors, quantities
essential for an accurate description of the Hawking
evaporation. The code we use for this purpose has been
made publicly available.1 In addition, we also provide a
semianalytic solution that is consistent with our numerical

analysis. Furthermore, we address the possibility of having
baroque dark sectors, consistent with a large number of
degrees of freedom. Since PBH evaporation would produce
significant quantities of particles belonging to such sector,
one could imagine that, in the scenario, all but one particles
are unstable, the generation of the stable DM would be
enhanced by such indirect production. In this paper, we
assume that this dark sector is disconnected from the SM,
avoiding thermal production mechanisms such as freeze-in
(FI) or freeze-out (FO). In the companion paper [43], we
will consider the situation where there are interactions with
the SM sector. We use the infrastructure of ULYSSES [44], a
publicly available PYTHON package that has been typically
used to solve Boltzmann equations associated with lepto-
genesis, to solve the relevant Friedmann and Boltzmann
equations.
This paper is organized as follows. First, we describe the

emission properties of nonrotating (Schwarzschild) and
rotating (Kerr) black holes in Sec. II. In each case, we
consider the mass and angular momentum loss rate from
the BH, the rate of particle emission, and, when possible,
the total number of emitted particles. These characteristics
will be crucial for the analysis in the subsequent section.
Also, we consider the phase-space distribution of emitted
particles, which will be helpful to address free-streaming
constraints on DM. In Sec. III, we first establish the
Friedmann and Boltzmann equations that we solve in
the presence of evaporating PBHs. Then, we describe
our results for the cases in which the PBHs—both for
Schwarzschild and Kerr—are the only source of DM. We
then focus on the next-to-minimal case which consists of a
dark sector containing only DM together with one heavy
metastable state. Finally, we make our concluding remarks
in Sec. IV. We have included two appendixes: Appendix A
provides useful formulas related to the BH evaporation
properties and derive some specific quantities used in the
main text, and Appendix B, which contains the decay width
of scalars, vectors and massive tensors into a fermion-
antifermion pair. We use natural units where ℏ¼c¼kB¼1
throughout this manuscript.

II. BLACK HOLE EVAPORATION

Black holes were initially thought to be eternal and were
expected to increase their mass by accreting additional
matter or even other black holes. Nevertheless, when the
BH quantum properties were inspected, it was shown that
they also emit particles with a thermal spectrum related to
BH surface gravity [1,2], making the BHs lose mass and
angular momentum in the process. Hence, the properties of
the emitted particles depend only on the specific character-
istics of the BH, which, according to the no-hair conjecture,
are its mass, angular momentum, and charge. We focus here
on two distinct cases, Schwarzschild (nonrotating) and Kerr
(rotating) PBHs. Next, we discuss the emission properties
and the BH evaporation rates for each case separately.1https://github.com/earlyuniverse/ulysses.
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A. Schwarzschild black holes

Schwarzschild BHs correspond to the simplest scenario,
where the BHs are solely described by their mass,MBH. As
Hawking demonstrated in his seminal papers [1,2], the
emitted particles from the evaporation process have a
thermal spectrum with temperature related to the mass as
(G the gravitational constant)

TBH ¼ 1

8πGMBH
∼ 1.06 GeV

�
1013 g
MBH

�
: ð1Þ

The emission rate of any particle species i of mass μi, spin
si, and number of degrees of freedom gi from the
evaporation of a BH, within time dt and momentum
½p; pþ dp� interval, is given by

d2N i

dpdt
¼ gi

2π2
σsiðMBH; μi; pÞ

exp ½EiðpÞ=TBH� − ð−1Þ2si
p3

EiðpÞ
; ð2Þ

where EiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i þ p2

p
, and σsi stands for the absorp-

tion cross section. From this emission rate, we will be able
to obtain the time evolution of the BH mass and the phase-
space distribution of the different particles evaporated. The
absorption cross section σsi—or the related greybody
factor, Γsi ≡ σsip

2=π—is a crucial characteristic of the
Hawking emission rate as it describes the possible back-
scattering of particles due to the gravitational or centrifugal
potentials [1,2,45,46]. We note that in the literature this
factor is sometimes neglected. However, recent works such
as Refs. [17,42] provide the most comprehensive inclusion
of these greybody factors. Here, in a similar fashion, we
include these factors as consistently as possible, given the
results in the literature. For instance, we incorporate the
absorption cross section for massive fermions emitted from
Schwarzschild BHs, obtained in Refs. [47,48]. For massive
bosons, we will only include the cross section obtained by
assuming a massless field [45]. Since particle emission is
only possible when Ei ≥ μi, while the correction to the
greybody factors due to the finite mass is not large for such
values of energy [49], we do not expect a significant effect
from such an approximation. For values GMBHp ≫ 1, and
independently of the particle’s spin, the greybody factors
tend to the geometrical-optics limit, σsiðE; μÞjGO ¼
27πG2M2

BH [45,46,49,50]. Hence, it is convenient to define
the ratio of the full greybody factors to the geometrical-
optics limit2 [51]

ψ siðEÞ≡
σsiðEÞ

27πG2M2
BH

: ð3Þ

In Fig. 1 we present the reduced greybody factors, ψ siðEÞ,
for the case of massless particles and different spins, si ¼ 0
(emerald), si ¼ 1=2 (purple), si ¼ 1 (orange), si ¼ 2 (light
blue), as function of E=TBH. The oscillations present in
such quantities are related to the different contributions of
the partial waves, each having a different value of the total
angular momentum quantum number. Moreover, we
observe that the low energy contributions are suppressed
from higher particle spin values. This crucial characteristic
will play an important role in the accurate determination of
the relic abundance.
BHs lose their mass over time because of the evaporation

process. The reduction in mass can be obtained by sum-
ming Eq. (2) over the different species and integrating over
the phase space, to obtain [52,53]

dMBH

dt
≡X

i

dMBH

dt

����
i
¼ −

X
i

Z
∞

0

Ei
d2N i

dpdt
dp;

¼ −εðMBHÞ
M4

p

M2
BH

; ð4Þ

where Mp ¼ G−1=2 denotes the Planck mass. Here, we
have defined εðMBHÞ as the evaporation function which is
dependent on the BH instantaneous mass,

εðMBHÞ≡
X
i

giεiðziÞ; ð5Þ

with the functions εiðziÞ given by

εiðziÞ ¼
27

8192π5

Z
∞

zi

ψ siðxÞðx2 − z2i Þ
expðxÞ − ð−1Þ2si xdx; ð6Þ

FIG. 1. Ratio of the greybody factors to the geometric optics
limit for massless particles and different spins, si ¼ 0 (emerald),
si ¼ 1=2 (purple), si ¼ 1 (orange), si ¼ 2 (light blue), as
function of E=TBH.

2For sake of clarity, we do not write the dependence of the
absorption cross section on the particle’s mass from now on. Let
us stress, however, that for fermions emitted from nonrotating
BHs, we do include the modifications due to the finite mass [48].
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where the integration is performed over the dimensionless
parameter x ¼ Ei=TBH, and zi ¼ μi=TBH. The spin-depen-
dent expressions of εiðziÞ for massless particles, in the
geometrical-optics limit, and a fitted form obtained after
integrating over the full greybody factors are explicitly
given in the Appendix A. In Fig. 2 we present the different
contributions to the evaporation function for particles with
different spins, together with the results in the geometrical-
optics limit as function of zi. As we observe in this figure,
the geometrical-optics limits closely resembles the
expected evaporation function for scalars where for bosons
with nonzero spin, the approximated forms overestimate
the mass loss rate, while for fermions there is a under-
estimation when zi ≳ 4.
Let us determine the momentum-integrated emission

rate, ΓBH→i, and the total number of emitted particles per
BH, N i. Integrating the Hawking rate, Eq. (2), over the
momentum, we obtain

ΓBH→i ≡
Z

dp
d2N i

dpdt
;

¼ 27gi
1024π4

1

GMBH
ΨiðziÞ;

∼ 9.802 × 1029gi

�
105 g
MBH

��
ΨiðziÞ
0.897

�
s−1; ð7Þ

where

ΨiðziÞ≡
Z

∞

zi

ψ siðxÞðx2 − z2i Þ
expðxÞ − ð−1Þ2si dx:

In the massless case μi ¼ 0, Ψ simply takes a numerical
value which depends on the particle’s spin [51]

Ψið0Þ ¼

8>>><
>>>:

2.45 s ¼ 0

0.897 s ¼ 1=2

0.273 s ¼ 1

0.026 s ¼ 2

: ð8Þ

We provide useful analytic expressions for ΨiðziÞ in
Appendix A. The total number of emitted particles of
the species i during the BH existence is simply computed
by integrating the total rate over time,

N i ¼
Z

τ

0

dtΓiðMBHÞ

¼ ηiðzini Þ
gi

g⋆ðT in
BHÞ

�
Min

BH

Mp

�
2

; ð9Þ

where τ is the BH lifetime, and

ηiðzini Þ ¼
27

1024π4
g⋆ðT in

BHÞ
ðzini Þ2

Z
zini

0

ΨiðziÞP
jgjεjðmjziÞ

zidzi; ð10Þ

with zini ¼ μi=T in
BH the ratio of the particle’s mass to the

initial BH temperature, and mj ≡ μj=μi the ratio of each
existing particle mass to the mass of the species i. The
derivation of ηiðzini Þ is presented in App. A. Differently
from what has been previously done in the literature, we
have not assumed any relation between the particle mass
and the BH temperature. Instead, N i is general: the
Boltzmann suppression present when TBH < μi is auto-
matically included in it. Let us compare the total number of
emitted particles including the greybody factors to the
geometric optics limit, RN ¼ N ijw=N ijw:o. for a particle
with μi ≪ T in

BH we have

RN ¼

8>>><
>>>:

0.84 si ¼ 0

0.61 si ¼ 1=2

0.28 si ¼ 1

0.02 si ¼ 2

; ð11Þ

we therefore observe that by not including correctly the
greybody factors, there is a significant overestimation of
the number of produced particles by a BH.

B. Kerr black holes

Another possibility is that the evaporating BHs have
some nonzero angular momentum. Such rotating BHs, also
known as Kerr BHs, could have formed with some initial
spin or acquired their angular momenta via some specific
mechanisms, such as mergers [54–56]. The BH temper-
ature for the Kerr scenario is modified due to the presence
of the angular momentum,

FIG. 2. Evaporation function, GO-limit refers to the geometric
optics limit.
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TBH ¼ 1

4πGMBH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p ; ð12Þ

where the dimensionless parameter a⋆ is related to J, the
BH angular momentum, as a⋆ ¼ JM2

p=M2. Such parameter
can have values a⋆ ∈ ½0; 1�, so that for the case of close-to-
maximally rotating BHs, the temperature tends to be zero.
The spectra of emitted particles have an additional

dependence on the BH angular momentum,

d2N i

dpdt
¼ gi

2π2
X
l¼si

Xl

m¼−l

d2N ilm

dpdt
; ð13Þ

with

d2N ilm

dpdt
¼ σlmsi ðMBH; p; a⋆Þ

exp ½ðEi −mΩÞ=TBH� − ð−1Þ2si
p3

Ei
; ð14Þ

whereΩ ¼ ða⋆=2GMBHÞð1=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
ÞÞ is the angular

velocity of the horizon and l, m the total and axial angular
momentum quantum numbers, respectively. From the emis-
sion rate inEq. (13) it is clear that the absorption cross section
also depends ona⋆. Inwhat followswewill use the procedure
established in Refs. [57–59] in order to compute the cross
sections σlmsi appearing in Eq. (14) in the case of scalar,
fermion, and vector particles in the Kerr scenario.3 For the
spin-2 case [61]weuse thegreybody factors fromBlackhawk as
a numerical input when using Eq. (14). Interestingly, the
emission of higher-spin particles is enhanced for BHs with a
nonzero angular momentum. Thus, we could expect an
enhanced emission of spin-2 DM particles, such that it
would be possible to increase the relic density. This will be
explored in more detail in the next section.
Similarly to the mass depletion in the Schwarzschild

case, for Kerr black holes the angular momentum decreases
in time because of particle emission. The equation for the
angular momentum is obtained by integrating the rate
multiplied by the axial angular momentum number in
Eq. (14) [45],

dJ
dt

¼ −
X
i

Z
∞

0

X
lm

m
d2N ilm

dpdt
dp;

¼ −a⋆
M2

p

MBH
γðMBH; a⋆Þ; ð15Þ

with γðMBH; a⋆Þ ¼
P

i γiðMBH; a⋆Þ the angular momen-
tum evaporation function. Substituting the definition of a⋆

in Eq. (14), one finds the evolution equations as function of
time for both mass and spin,

dMBH

dt
¼ −εðMBH; a⋆Þ

M4
p

M2
BH

; ð16aÞ

da⋆
dt

¼ −a⋆½γðMBH; a⋆Þ − 2εðMBH; a⋆Þ�
M4

p

M3
BH

: ð16bÞ

The functions, γiðMBH; a⋆Þ and εiðMBH; a⋆Þ, for the differ-
ent spins can be parametrized in a similar fashion as in the
Schwarzschild case,

εiðzi; a⋆Þ ¼
27

8192π5

Z
∞

zi

X
lm

ψ lm
si ðx; a⋆Þðx2 − z2i Þxdx

expðx0=2fða⋆ÞÞ − ð−1Þ2si ;

ð17aÞ

γiðzi; a⋆Þ ¼
27

1024π4

Z
∞

zi

X
lm

mψ lm
si ðx; a⋆Þðx2 − z2i Þdx

expðx0=2fða⋆ÞÞ − ð−1Þ2si ;

ð17bÞ

where now x¼ 8πGMBHEi, zi¼ 8πGMBHμi, x0 ¼ x−mΩ0,
with Ω0 ¼ 8πGMBHΩ, and

fða⋆Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p :

The previous definitions were chosen in order to have a
smooth transition to the Schwarzschild case when a⋆ → 0.
We have determined fitted forms for these factors from
explicit integration of the greybody factors in the Kerr case,
see App. A. We parametrize the emission rate for spinning
BHs similarly to the Schwarzschild case,

ΓBH→iðMBH; a⋆Þ ¼
27gi

1024π4
1

GMBH
Ψiðzi; a⋆Þ; ð18Þ

where, analogously, we have

Ψiðzi; a⋆Þ≡
Z

∞

zi

X
lm

ψ lm
si ðx; a⋆Þðx2 − z2i Þ

expðx0=2fða⋆ÞÞ − ð−1Þ2si dx: ð19Þ

Obtaining a closed form for the total number of particles in
the Kerr case is not straightforward. It is not possible to take
as an independent variable the BH mass, as done in the
Schwarzschild case since the angular momentum also
changes with time.
Finally, note that in the limit of an initial a⋆ ¼ 0, one

readily recovers the Schwarzschild functions. Thus, in our
simulations, we solve the Eq. (16) in the cosmological
context and impose a⋆ ¼ 0 as an initial condition when
analyzing the specific scenario of Schwarzschild BHs.

3For consistency, we have checked that our numerical results
are similar to those contained in the code Blackhawk [60], finding
an agreement at the levels of ∼1.37% (∼0.44%) for massless
scalars, ∼1.39% (∼10%) for massless fermions, and ∼0.55%
(∼1.8%) for massless vectors in the case of a⋆ ¼ 0 (a⋆ ¼ 0.99).
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C. Phase-space distribution of evaporated particles

The phase-space distribution of particles emitted from
BHshas a significant impact on the evolutionof theUniverse.
For the simple setup explored in this study, themean free path
of DM is the quantity of most consequence, limiting the
formation of small-scale structures.
The mean free path of the emitted particles strongly

depends on the evolution of their respective phase-space
distributions. In the usual FO and FI cases, such distributions
are dictated by theBoltzmanndistributions already present in
the thermal bath. In the presence of BH evaporation, such
phase-space distributions may be significantly distorted.
Indeed, when they evaporate, BHs produce particles with
a typical momentum hpðtÞi ∼ TBHðtÞ. Because TBH is an
increasing function of time when BHs evaporate, the
momentum of the particles they produce is directly related
to the dynamics of theHawking evaporation. For a particle of
massμi, this typically leads to twomajor production regimes:

(i) μi ≲ T in
BH: most of the particles produced via evapo-

ration are relativistic, as they carry a momentum
p≳ T in

BH.
(ii) μi ≳ T in

BH: the production is statistically suppressed
until the BH temperature increases above the particle
mass. Therefore, most of the production occurs
when TBH ∼ μi producing a population of nonrela-
tivistic evaporated products.

Given the expression of evaporation rate per unit of time and
momentum in Eq. (2), we can derive the phase-space
distribution of the different particles produced through
BHs evaporation. InRef. [41] such a distributionwas derived
in the geometrical-optics limit in the case where the DM
mass, mDM, verifies mDM ≪ TBH. Note, however, that in
Refs. [17,42], the phase-space distribution was first com-
puted including the greybody factors, showing the crucial
impact of incorporating such factors correctly. We also go
beyond the geometrical-optics limit and solve those phase-
space distributions using our expressions for the greybody
factors by simply integrating Eq. (2) over time4

dN i;si

dp
¼

Z
tev

ti

d2N i;si

dpdt
dt: ð20Þ

Extending the results ofRef. [41] to themassiveDMcase, we
can compare our results to the geometrical-optics limit of
such a formula

dN i;si

dp
¼ 15giM2

p

8π5g⋆BH
p

ðp2 þ μ2i Þ2
fsi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2i

p
T in
BH

�
; ð21Þ

where the function fsi is an integral that can be computed
analytically

fsiðxÞ≡
Z

x

0

y4dy
expðyÞ − ð−1Þ2si ;

¼ 1

5ϵi
½120ðLi5½ϵi� − Li5½ϵiex�Þ

þ 20xðx2Li2½ϵiex� − 3xLi3½ϵiex� þ 6Li4½ϵiex�Þ
− x4ðx − 5 log ½1 − ex=ϵi�Þ�; ð22Þ

andLin are the polylog functions of ordern and ϵi ¼ ð−1Þ2si .
InFig. 3wedepict the phase-space distributionof a fermionic
DM particle produced by evaporation in two representative
caseswheremDM ≪ TBH (left panel) andmDM ≫ TBH (right
panel). We indicate in violet the phase-space distribution of
DMparticles that we obtain using the full greybody factors in
Eq. (2). As expected, such a distribution is peaked around the
BH temperature, similarly towhat was obtained in Ref. [41].
We compare our results with the distribution of Eq. (21)
obtained in the geometrical-optics limit and find that our
distribution is slightly shifted toward larger values of the
momenta. Such a shift is related to the suppression of the low
momenta present in the greybody factors, similar towhatwas
observed in Ref. [42]. We also indicate (dashed green line)
the corresponding Boltzmann distribution evaluated at the
temperature TBH as well as the value of the typical momen-
tum of evaporated particles (grey dashed line). In the right
panel of Fig. 3 one can see that the DM phase-space
distribution instead peaks at p ∼mDM, since BHs mainly
produce DM particles after their temperature rises above
mDM. Again we can notice a significant shift between our
findings and the geometrical-optics limit obtained using the
prescription of Ref. [41]. Finally, the authors of Ref. [41]
evaluated the Boltzmann distribution at ∼3TBH to make the
distribution peaks match.We can see that such a prescription
must bemodified to match a Boltzmann distributionwith the
full distribution we obtained because of the aforementioned
shift toward larger momenta.
An important constraint that the purely gravitational

production via Hawking evaporation is subject to corre-
sponds to the warm DM bound. From our discussion above,
we have found that the emitted particles could have a large
average momenta depending on their masses. In such a
case, the redshift resulting from the expansion of the
Universe might not be large enough to make the DM
nonrelativistic at the moment of structure formation, hence
contradicting observations. Following previous treatments
[16,17,41], we compute the average DM velocity today v0
from the expected average momentum,

v0 ¼
aev
a0

hpii
mDM

; ð23Þ

4In principle, taking into account the expansion of the Universe
during the evaporation process may slightly alter this result.
However, it was shown in Ref. [41] that such an effect is
negligible.
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with aevða0Þ the scale factors at evaporation (today). We
will impose that such a velocity should be smaller than the
maximum value allowed from Lyman-α constraints, assum-
ing all DM coming from PBH evaporation, to have a
sufficiently cold DM [41,62–64].
The average momentum of an emitted particle will be

computed for spinning BHs in a simple and general
manner. Reversing the integration order, that is, integrating
the Hawking rate first over the momentum and using the
definitions of the evaporation functions, Eq. (16), and the
momentum integrated Hawking rates, Eq. (18), and then
integrating over time, we have

hpii ¼
R
dtεiðzi; a⋆ÞM−2

BHR
dtΓBH→iðMBH; a⋆Þ

: ð24Þ

This complementary approach will be used in our numeri-
cal procedure to enforce the warm DM constrain in our
results. It it worth noting that more accurate determinations
of the WDM constraint have been undertaken by the
authors of Refs. [17,41,42] where the DM phase space
has been used as an input to the cosmic linear perturbation
solver CLASS [65–67].

III. PRODUCTION OF DARK MATTER VIA
PRIMORDIAL BLACK HOLE EVAPORATION

Several mechanisms lead to the formation of PBHs in the
early Universe after inflation [7,12,68]. For simplicity, we
assume that a population of PBHs was formed with a
monochromatic mass spectrum. Let us stress that assuming
such a simple spectrum allows us to give more generic
statements, since it decouples the particle production from
the details of the PBH formation. Clearly, the PBH mass
spectrum obtained from a given mechanism will depend on

specific parameters related to the model. For instance,
PBHs formed from collapse of inhomogeneities relies upon
the critical value of the overdensities that enter the horizon
[7,12]. Other specific models, such as collapses from multi-
field inflatons, cosmic strings, bubble collisions, domain
walls, or even the PBH formation in an early matter
dominated era, will produce distinct mass spectra. Note,
however, that the assumption of a monochromatic spectrum
is not totally unrealistic, as the PBHs could have formed at
very specific time, thus having a rather narrow spectrum.
We leave the extension of our results to more realistic mass
distributions for future work. Moreover, we consider that
the initial PBH mass is proportional to the particle horizon
mass at the moment of formation in a radiation-dominated
era [12]

Min
BH ¼ 4π

3
γ
ρi
H3

i
; ð25Þ

where γ is a factor related to the gravitational collapse,
assumed here to be equal to ð1= ffiffiffi

3
p Þ3 ≈ 0.2. The initial

PBH population is characterized by the initial fraction of
the PBH energy density, ρinPBH, with respect to the total
energy density ρin, which can be expressed through the
parameter β≡ ρinPBH=ρ

in, or, more commonly, using the
definition

β0 ≡ γ1=2
�
g⋆ðT inÞ
106.75

�
−1=4 ρinPBH

ρin
; ð26Þ

where T in is the plasma temperature at the time of the PBH
formation, and the additional factors are included as the
initial PBH fraction always appears corrected by them [12].
Since the PBH energy density scales as a−3, it is possible to

FIG. 3. Phase-space distribution of dark matter particles produced via BH evaporation, in the two cases where TBH ¼ 10mDM (left)
and TBH ¼ mDM=10 (right). We compare the distribution from the full calculation (violet), with the Boltzmann distribution (green
dashed) and the geometrical-optics limit (blue dashed). We also indicate the average momentum, hpi (grey dashed) as calculated in (24).
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have a PBH-dominated era depending on the initial value of
β0. Such a possibility will play an important role when we
consider the effects of the evaporation on the DM pro-
duction. Furthermore, for the case of Kerr PBHs, we
assume a monochromatic angular momentum distribution,
similarly to the mass, such that all BHs had the same initial
value of the angular momentum. As with the mass
spectrum, this simplification allows us to remain moder-
ately independent of the PBHs formation mechanisms. For
the specific case of Kerr BHs, PBHs can acquire a non zero
spin via different models, such as mergers, accretion, or
even the formation mechanism mentioned before could
produce BHs with some spin (see, e.g., [69,70], and
Ref. [31] for a first computation of ΔNeff from dark
radiation considering an extended spin distribution).
Therefore, the early Universe will be comprised of three

different energy density components, the PBH population
plus radiation related to the SM and, possibly, a dark sector
(DS). The Hubble parameter, therefore, should take into
account these three elementary contributions,

3H2M2
p

8π
¼ ρSM þ ρDS þ ρPBH: ð27Þ

By means of Hawking evaporation, PBHs will not only
change the evolution of the Universe but also emit a large
number of particles, regardless of their possible inter-
actions. The set of produced particles will affect the
Universe’s energy budget and, as we have mentioned
before, could lead to the generation of the observed DM.
The capacity of PBHs to produce DM particles when

they evaporate strongly depends on two factors: (i) whether
the temperature of the black holes is smaller or larger than
the DM mass, and (ii) whether PBHs evaporate in a matter
or radiation dominated era [13,16,17,34–36,38,39]. In
order to track effectively the number of DM particles
produced by a PBH population in the early Universe, we
must specify how the phase-space distribution of such
states changes over time. We define for the species i5

gi
p2

2π2
∂fi
∂t

����
BH

ðt; pÞ ¼ nBH
d2N i

dpdt
; ð28Þ

where nBH is the PBH number density. Hence, it is possible
to write a Boltzmann equation for such a species in a FLRW
Universe,

∂fi
∂t −Hp

∂fi
∂p ¼ C½fi� þ

∂fi
∂t

����
BH

; ð29Þ

where we have included possible interactions via a collision
term C½fi�. In the following, however, we assume that the
DM does not interact with the SM thermal plasma, so that
such a collision term will be absent. We can obtain the usual
equation for number densities after integrating over the
phase space,

_ni þ 3Hni ¼ gi

Z ∂fi
∂t

����
BH

p2dp
2π2

;

¼ nBHΓBH→iðMBH; a⋆Þ: ð30Þ

The Friedmann equations for the ρPBH, ρSM PBH and SM
radiation energy densities, respectively, are given by

_ρSM þ 4HρSM ¼ −
1

MBH

dMBH

dt

����
SM

ρPBH; ð31aÞ

_ρPBH þ 3HρPBH ¼ 1

MBH

dMBH

dt
ρPBH; ð31bÞ

where the energy produced by the evaporation depends on
the mass loss rate since

dρev
dt

¼
X
i

Z
∞

0

Ei
∂fi
∂t

����
BH

p2dp
2π2

¼ −
ρPBH
MBH

dMBH

dt
; ð32Þ

where we used that ρPBH ¼ MBHnBH. The set of Friedmann
equations includes two different effects related to the
presence of a PBH population. First, PBHs behave as
matter, ρPBH ∝ a−3, enabling the possibility of early matter
domination, as mentioned above. Second, the evaporation
produces SM particles that reheat the Universe. Thus, to
determine the DM generation consistently, we solve the
system of equations, Eq. (31), together with the mass and
angularmomentumPBH loss rates, Eq. (16), and an equation
for the DM number density in the lines of Eq. (30). The
solution is found using the ULYSSES PYTHON package [44],
which allows for a rapid determination of the resulting DM
relic abundance, including the PBH evaporation.
Some words are in order about the numerical procedure.

In general, it is not possible to naïvely apply a differential
equation solver to the full system of equations, especially
when the DM mass is much larger than the initial PBH
temperature because of the stiffness present in the mass loss
rate. Such stiffness is a consequence of the explosive nature
of the particle emission in the final stages of the BH
lifetime. Starting with a relatively large PBH mass,
Min

BH ≫ 1 g, it is not possible to reach Mp, a value which
we aim to attain when we solve the equations, with direct
use of a numerical solver. Instead, we use a zoom-in
procedure: We iteratively solve the Boltzmann equation
on smaller and smaller time scales until the PBH mass
reaches the Planck mass, Mp. We have checked that the
solutions are stable and correctly account for the case when

5We include in the definition the factor of p2=ð2π2Þ because
the integration of the Hawking rate over momentum and time
directly gives the total number of emitted particles.
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the particle emission only occurs during the final moments
of the BH existence.
Once our coupled equations have reached a stable point,

where the Universe is radiation dominated and there is no
longer any production of DM, we can use the temperature
at which the evaporation occurs, Tev and entropy con-
servation to obtain today’s dark matter density parameter
(T0 is the present temperature),

ΩDM ¼ 1

ρ0crit

g⋆sðT0ÞT3
0

g⋆sðTevÞT3
ev
ρsimDM: ð33Þ

We present in Fig 4 prototypical solutions of the Friedmann-
Boltzmann equations for mDM ¼ 0.1 GeV, β0 ¼ 10−7 and
Min

BH ¼ 106 g Schwarzschild (left) and Kerr (right) PBHs.
The time evolution of ρia3 is displayed for the SM, PBH and
DMenergy densities. Thevalue of the relic abundance is also
shown.Weobserve in both cases, PBHsmodify the evolution
of the Universe and generate DM. After a radiation-
dominated phase, the PBH density, in this case, leads to
an early matter dominated era, which ends when the PBHs
evaporate. During the final states of the evaporation, a large
entropy injection into the SM takes place, while DM
production is accelerated. Such entropy injection is modified
if the PBHs had a nonzero a⋆. We will return to these
solutions in more detail in the next subsections.
Similarly to our semi-analytic expression inEq. (9), for the

total number of DM particles produced per Schwarzschild
BH, N DM, we can obtain the same parameter,

ΩDM ¼ 1

ρ0crit

g⋆sðT0ÞT3
0

g⋆sðTevÞT3
ev
nevaBHN DMmDM; ð34Þ

where nevBH is the BH number density at the evaporation,
which for a monochromatic mass spectrum can be related to

the initial number density ninBH by nevBHðaevÞ3 ¼ ninBHðainÞ3
and thus

ΩDM ¼ 1

ρ0crit

gs⋆ðT0ÞT3
0

gs⋆ðTevÞT3
ev

�
ain

aev

�
3 ρinBH
Min

BH
N DMmDM: ð35Þ

In general, it is difficult to get a good approximation for
all the above values at evaporation (see, however, [43]).
Nevertheless, in the case where the populations of PBHs
remain a negligible component of the Universe’s energy
density, entropy conservation can be assumed, leading to the
simpler form of the relic density

ΩDM ¼ 1

ρ0crit

g⋆SðT0ÞT3
0

g⋆sðT inÞT3
in

ρinBH
Min

BH
N DMmDM; ð36Þ

which is fully calculable using Eq. (9) and the initial
conditions, Eq. (25)–(26), leading to

ΩDMh2 ¼
π2

30

�
45

16π3

�
1=4

�
g⋆SðT0ÞT3

0

ρ0crith
−2

��
Mp

Min
BH

�
3=2

× β0N DMmDM

≃ 1.595

�
γ

0.2

�
1=2

�
g⋆ðT in

BHÞ
106.75

�−1=4� 1g
Min

BH

�
3=2

×

�
mDM

1 GeV

�
βN DM: ð37Þ

Where we apply this method, we find agreement with the
fully numerical method to the level below 1%. In the case
where PBHs play a much greater role in the cosmological
evolution, we use the approximations in [43] and obtain
values that agree up to some Oð1Þ multiplicative factor.
This gives us a high degree of confidence in the accuracy of
our calculation. By numerically solving the Boltzmann

FIG. 4. Solutions of the Friedmann-Boltzmann equations for mDM ¼ 0.1 GeV, β0 ¼ 10−7 andMin
BH ¼ 106 g Schwarzschild (left) and

Kerr (right) PBHs. We present ρia3 as function ofmDM=T for the SM radiation (blue), PBH (black), and DM (green) energy densities. In
each case, we record the final relic abundance.
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equations and including the greybody factors as accurately
as possible, we believe that this work constitutes a step
forward in the work connecting DM production and PBHs.
As previously mentioned, Refs. [17,42] take great care in
consistently using the greybody factors but use approximate
analytic solutions to obtain ΩDMh2. These approximations
are most appropriate when the PBH population does not
affect the thermal history of the universe as seen in our
validation of the code. Moving to the numerical framework
for solving these systems allows for a more sophisticated
analysis to be performed, where dark sectors for have
nongravitational interactions with the Standard Model.
Next, we describe our results regarding the DM pro-

duction from Schwarzschild and Kerr PBHs, and then we
analyze the effects of having a baroque dark sector
composed of a large number of particles, whose lightest
particle is stable and thus constitutes the perfect candidate
to be the DM present in the Universe.

A. Direct production

In the case where PBHs are the only source of DM, the
values of β and Min

BH leading to the correct relic abundance
are indicated in Fig. 5 for various values of the DM mass.
For any of those masses, a point above the corresponding
colored contours leads to an overproduction of DM
(Ωh2 > 0.11) while DM is underproduced in points below
the colored contour.
In the limit where Min

BH → 0, the Hawking temperature
T in
BH ∝ ðMin

BHÞ−1 is always larger than the DM mass.
Therefore PBHs produce DM particles during the entire

evaporation process. In that limit, the relic density of DM
particles produced from of evaporation is linearly related to
the fraction of PBHs β. A too-large value of this fraction
leads to an overabundance of DM, which sets an upper
bound on β. For larger PBH masses, T in

BH might be smaller
than the DM mass while PBHs still evaporate during a
radiation-dominated era (this is typically the case for DM
masses above 109 GeV). In that case, the larger Min

BH, the
fewer DM particles are being produced during evaporation,
which explains why the relic density contours go up after
crossing the T in

BH ¼ mDM line in Fig. 5. For even larger
Min

BH, PBHs dominate the universe energy density before
they evaporate and reheat the SM bath at a temperature Tev.
This is the case if their energy fraction β at the time of PBH
formation T ¼ T in is larger than βc ≡ Tev=T in. In that case,
the relic abundance of DM particles does not depend on the
PBH fraction anymore but rather only on the PBH mass,
this is reflected by the contours being vertical past the line
β ¼ βc. Interestingly, on the right of those vertical lines,
PBHs can significantly reheat the Universe, and therefore
modify the evolution of the SM thermal bath while not
overproducing DM particles. Note that in most of the
previous works, the contours depicted in Fig. 5 were
derived analytically, ignoring the greybody factors [36]
and/or fully tracking the Boltzmann equations, we indicate
such a result with dashed lines. Our studies used the
evaporation rates, including the full greybody factors,
leading to significantly shifted contours toward larger
PBH masses (plain colored lines), assuming the DM to
be fermionic. Since the Hawking rate departs from being a
full blackbody spectrum because of the absorption prob-
abilities, the number of emitted particles is larger than
expected in the approximated purely-Planckian form.
Moreover, the evaporation temperature is greater when
including the greybody factors. Thus, we observe that
smaller values of β are required to give the correct relic
abundance.
Let us notice that our results coincide qualitatively with

those from Ref. [42] for the case of a PBH dominated
Universe, when fully including the greybody factors for the
different spins. For a Universe where there was not PBH
domination, but the BHs constitute an important contribu-
tion to the energy budget of the Universe, our results differ
from those in Ref. [42]. Such a difference arises because in
our code we always include the PBH contribution to the
evolution of the Universe, which can alter the final relic
density.
Yet another effect of including the greybody factors

correctly is that the relic abundance depends on the spin of
the DM particle. In the top panel of Fig. 6, we show such
dependence for several values of the DM mass and for spin
si ¼ 0; 1=2, 1, 2. For lighter DM masses relative to the
initial BH mass, T in

BH ≳mDM, we observe that larger values
of β are required to produce the correctΩh2 for larger spins.
Similar conclusions were found in Refs. [34,42] and it is a

FIG. 5. PBH energy fraction β as a function of the PBH mass
leading to the observed relic abundance Ωh2 ¼ 0.11 for different
values of the DM mass (in GeV). The dashed contours show the
analytical estimations derived in previous works in the geometric
optics limit, specifically from Ref. [36], whereas the plain lines
were derived in this work, including the full greybody factors. We
assume the DM to be a fermion.
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direct result of the suppression of the number of emitted
particles for higher spins due to the greybody factors, see
Eq. (8) and Fig. 1. On the other hand, when T in

BH ≲mDM,
the cutoff induced by the nonzero mass affects the scalar
case especially, such that the number of emitted particles is
reduced in comparison to the case where the PBH temper-
ature is higher than the DMmass. Hence, the required value
of β necessary to obtain the observed Ωh2 is larger and
becomes similar to the values needed in the case of a vector
DM. As specified in the previous section, we have applied
the warm dark matter constraint in the same figure. We
indicate where the DM would violate the cold dark matter
condition by marking the line with yellow. From this, we
observe that for light masses, mDM ≲ 10 GeV for

Min
BH ≳ 104 g, the DM particles emitted from the evapo-

ration are too hot, thus in tension with the observations
[16,36,41]. We find that our method proves to be more
conservative than is reported in Refs. [16,36,41,42]. It is
true that our procedure described in Sec. II C is certainly
more approximate than that of Refs. [41,42] and we leave
the implementation of such methods in our code to future
work. The warm dark matter constraint becomes less
relevant for heavier masses, and for mDM ≳ 100 GeV,
the full parameter space would obey such a limit.

B. Effect of the BH spin

As mentioned in Sec. II B, Kerr PBHs could have a
unique impact on the DM generation given the peculiar
features present in such a case. Specifically, the enhanced
emission of spin-2 particles that can compensate for the
large initial fractions required to account for all the DM. In
Fig. 6, bottom panel, we present the energy fraction β as a
function of the initial PBHmass for theKerr case, assuming a
value of a⋆ ¼ 0.99. Interestingly, we observe that, when
T in
BH ≳mDM is valid in all the parameter space, the values of β

that give the correct relic abundance coincide for scalars,
fermions and vectors. Such agreement is related to the
increase of high-spin emission reflected in the greybody
factors. Moreover, the initial PBH fraction that gives the
correct relic abundance for spin-2 DM is reduced by ∼2
orders of magnitude with respect to the Schwarzschild case.
For the case where T in

BH ≲mDM, a similar behavior to the
nonrotating case is present; the emissioncutoff due to theDM
mass diminishes the overall particle production, specifically
for scalars and fermions. Nevertheless, for tensor DM, there
is an interesting effect when T in

BH ≲mDM. Even though a
large Boltzmann suppression is still present, the enhanced
emission of tensor particles [71] is a significant counter-
vailing effect, which leads to enhanced particle production.
In Fig. 6, such amplification is responsible for the structure
observable for mDM ¼ 107 GeVð1015 GeVÞ for BH masses
ofMin

BH ∼ 1–10 gð108–109 gÞ. Such an effect is also present
for scalars, fermions, and vectors, although much less
conspicuously.6 Reference [17] also investigated the affect
of Kerr BHs on DM production, focusing predominantly on
light mDM, however one can observe the amplification of
tensor particle production at high a⋆ in their Fig. 10. Finally,
regarding the warm DM constraint, we observe that the BH
spin increases the parameter space that is excluded by such a
limit in comparison to the nonrotating case, this is also in
agreement with Ref. [17]. Still, we have demonstrated that
the DM production from Kerr BHs has many compelling
features not encountered before.

FIG. 6. Similar to Fig. 5 but now showing only the results from
the full numerical evaluation of the coupled Boltzmann equa-
tions. We show the results for four different intrinsic spins of the
DM. Upper panel assumes all PBHs are Schwarzchild, a⋆ ¼ 0.
Lower panel assumes all PBHs are Kerr and approaching the
maximal angular momentum, a⋆ ¼ 0.99. Parameters that do not
fulfill structure formation constraints are indicated by marking
the line with yellow.

6In the first version of this manuscript the tensor results saw a
larger deviation. This was due to an numerical error which has
been corrected.

PRIMORDIAL BLACK HOLE …. I. SOLELY HAWKING RADIATION PHYS. REV. D 105, 015022 (2022)

015022-11



C. Indirect production: Presence of additional dark
sector particles

The DM could be part of a much larger dark sector,
containing a large quantity of particles. Such a baroque
scenario should not be inconceivable from what we have
learnt about the SM sector. Indeed, supersymmetric
(SUSY) models constitute the perfect example of UV
complete scenarios that are expected to contain many
additional degrees of freedom [30]. Let us assume that
the DM particle belongs to an extended sector that does not
interact with the SM. Moreover, for simplicity, let us
consider that just one particle is stable, just like the lightest
superpartner in SUSY with some R-parity. Suppose that
there are i copies of X particles, where X ¼ fS; F; V;Gg
indicates whether the particles are scalars, fermions, vectors
or tensors, respectively. The total number of final DM
particles produced via PBH evaporation Ntot

DM will be the
sum of all emitted particles

N tot
DM ¼ N DM þ

X
i

X
X

nXi→DMN Xi
; ð38Þ

being nXi→DM the number of DM particles resulting from
the decay of Xi, such that nXi→DM ≥ 2. Following our
previous analytical estimation of the final relic abundance,
we can examine the enhancement ofΩh2 with respect to the
case where there is just the DM particles,

ΩDMh2jDMþXi

ΩDMh2jDM
¼ g⋆SðTevÞ

g⋆SðTt
evÞ

�
Tevaev
Tt
evatev

�
3N tot

DM

N DM
; ð39Þ

where Tt
ev; atev are the Universe temperature and scale

factor at evaporation in the extended dark sector case.
From this, we observe that the effect of having additional
dark sector particles is twofold. First, the increase of DM
particles evidently enlarges the final relic density. Second,
since the emission of the additional particles affects the BH
lifetime, the Universe properties when the PBHs evaporate
are changed, and thus Ωh2.
Let us be more specific and consider the situation in

which the dark sector is only composed by the DM particle
and a heavier state X, assuming for simplicity one decay
channel, X → DMþ DM, such that nX→DM ¼ 2. In order
to be consistent in our treatment, we solve the same set of
Eqs. (31), plus the following equations for the number
density of X and DM including the exchange terms

_nDM þ 3HnDM ¼ nBHΓBH→DM þ 2hΓX→DMievnX; ð40aÞ

_nX þ 3HnX ¼ −hΓX→DMievnX þ nBHΓBH→X; ð40bÞ

with the thermally averaged decay width of X given by

hΓX→DMiev ¼ ΓX→DM

�
mX

EX

�
ev
; ð41Þ

where “ev” indicates that the average is taken with respect
to the BH temperature, and ΓX→DM the decay width of X in
vacuum7 (for further details, see the companion paper [43]).
In Fig. 7, we presentΩh2 for a fermionicDMas a function

of the mass of X. We show the result for different types
of X, scalar (emerald), vector (light blue), and massive
tensor (orange), for mDM ¼ 105 GeV, β0 ¼ 10−17.75, and
Min

BH ¼ 106 g.Without accounting for greybody factors, one
could expect that Ωh2 should increase by a factor of 3 since
theXwould decay into twoDMparticles.However, themore
accurate calculation leads to enhancements of∼3.7,∼1.9 and
∼1.3 for a scalar, vector or tensorX respectively. Oncemore,
we are seeing the greybody factors affect the emission of
higher spin particles more significantly, reducing the con-
tribution of X to the total. We note thatMin

BH ¼ 106 g means
that T in

BH ∼ 107 GeV, suggesting that the suppression of X
particle emission should occur whenmX ≳ 107 GeV. This is
corroborated byFig. 7 andwe see that bymX ∼ 2 × 108 GeV
enhancements ofΩh2 from X decay is negligible. Of course
this suppression is independent of the particle’s spin, so we
see the behavior across the three cases in the figure.
Interestingly, once there is a large enough separation of

scales between X and DM, the warm DM bounds need to be
considered once more. Unlike previously, we now can have
a mix of cold and warm DM from Hawking emission and

FIG. 7. Relic abundance as a function of the mass of an
additional X heavy state decaying into DM for different assumed
values of the spin of such particle, scalar (emerald), vector
(light blue), and massive tensor (orange). We assume
Min

BH ¼ 106 g; mDM ¼ 105 GeV, and β0 ¼ 10−17.75. The horizon-
tal dashed line indicates the observed value of Ωh2.

7Clearly, the decay width depends on the particle nature
of X, that is, on whether it is a scalar, vector or massive tensor.
We provide the specific decay widths assumed here in the
Appendix B.
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dark sector decay respectively. According to Refs. [42,64]
when the fraction of warm/cold DM is less than ∼0.2,
constraints from structure formation do not apply. Despite
this, even when the parent dark sector particles do not
contribute much, such as the X ¼ G, Schwarzschild PBHs
case, the fraction of DM particles which could be warm is
sufficiently large ∼0.3. This has implications for the
coexistence of dark sectors that contain a dark matter
candidate as its lightest member and PBHs. For the decay
products, the average momentum is given by

hpdec:prod:
DM i ¼

�
m2

X þ hpXi2
n2
Xi→DM

−mDM

�
1=2

ð42Þ

where hpXi is calculated following Eq. (24) but for the
parent particle. Plugging Eq. (42) into Eq. (23) gives the
velocity today which can be compared with Lyman-α
constraints[41,64]. By taking the setup in Fig. 7, we find
thatmX would have to be above 1010 GeV to producewarm
dark matter with mass 105 GeV. At which point, the
constraint would be irrelevant because the contribution
decayed DM has on the relic abundance is negligible. The
scale separation that leads to a heavy warm dark matter
component is highly dependent on the time of BH
evaporation, the later evaporation occurs the less the
particles will redshift. For example, taking the Fig. 7 setup
but Min

PBH ¼ 108 g, now mX ≥ 108 GeV produces warm
DM when mDM ¼ 105 GeV.
If the PBH population had an initial nonzero angular

momentum, we find that the spin of X plays a crucial role in
the final Ωh2. We present the relic abundance as a function
of mX in Fig. 8 for three different values of a⋆ ¼
f0; 0.5; 0.99999g corresponding to full, dashed and dotted
lines, respectively, assuming the heavier state to be a vector

and considering the same parameters as in Fig. 7. We find
two different effects at play here; when the particle X is
kinematically accessible by the evaporation, the indirect
DM production is largely enhanced because of the PBH
spin. Meanwhile, the relic density is decreased when mX ≳
T in
BH in comparison to the Schwarzschild case since Kerr

PBHs inject much more entropy to the early Universe due
to the amplified production of SM boson states. From such
effects, we have that the increase in the final relic density is
∼f1.9; 2.0; 2.2g for a⋆ ¼ f0; 0.5; 0.99999g with reference
to the Schwarzschild value without any additional state,
respectively. Such an augmentation is more stringent if the
X particle has a spin of 2, reaching a value of ∼4.3 for
a⋆ ¼ 0.99999. Thus, one can see how having a rich dark
sector at high masses can quickly overclose the Universe
even if there is a tiny number of PBHs in the early Universe.

IV. CONCLUSIONS

Black holes are one of the most fascinating objects
predicted by general relativity. Initially thought to be
everlasting, we have learnt that they instead evaporate
by emitting a thermal flux of particles, losing simulta-
neously their mass and angular momentum. Such evapo-
ration in the early Universe could have critical
consequences on our understanding of how the Universe
came to be what we observe. In particular, since the
Hawking radiation is democratic in nature, i. e., BHs emit
all existing degrees of freedom in nature, the observed relic
abundance could be the result of the evaporation of PBHs,
even in the case that the DM only interacts gravitationally.
In this paper, we have addressed distinct effects that

impact the DM production by PBHs in the purely gravi-
tationally interacting scenario thoroughly. We have solved
the system of Friedmann—Boltzmann equations, and
investigated systematically the distinct features present in
this scenario for both Schwarzschild and Kerr PBHs.
Especially, after including consistently the greybody fac-
tors in the description, we have demonstrated how the DM
relic abundance can depend on the particle’s spin, in such a
way that the initial PBH fraction necessary to obtain the
observed values is ∼2 orders of magnitude larger for
massive tensors than for scalar DM. Besides, by correctly
including the mass cutoff due to Boltzmann suppression,
we have identified the modifications of the required
fractions when the initial PBH temperature is smaller than
the DM mass. In such a case, the emission only occurs in
the last stages of the BH lifetime. Regarding the warm DM
bounds that affect this scenario, we have computed the
average momenta of the emitted particles, finding it to be
larger than estimated before because of the energy depend-
ence present in the greybody factors. Light DM masses are
thus in tension with small scale structure measurements,
similarly to the previous results present in the literature. We
have also illustrated the properties of DM production in the
case that PBHs had an initial nonzero angular momentum.

FIG. 8. Relic abundance as a function of the mass of an
additional heavy vector X decaying into DM for different
assumed values of the PBH spin parameter, a⋆ ¼ 0. (full),
a⋆ ¼ 0.5 (dashed), and a⋆ ¼ 0.99999 (dotted). We assume
Min

BH ¼ 106 g; mDM ¼ 105 GeV, and β0 ¼ 10−17.75. The horizon-
tal dashed line indicates the observed value of Ωh2.
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The enhancement of the emission expected for bosons,
particularly for spin-2 particles, reduces the initial fractions
needed to generate the observed DM. Interestingly, we have
identified the regions in the parameter space where the
enhanced Hawking emission due to the BH spin plays a
significant role in the particle production.
Finally, we have analyzed the impact of having a large

dark sector containing a unique stable particle, the DM
candidate. For such models, PBHs would also emit the
additional unstable particles of the dark sector during its
evaporation, will would produce an additional surplus of
DM particles. Such indirect production alters not only the
number of DM particles during the PBH evaporation but
also the PBH lifetime and impacts the Universe’s evolution
via entropy injection. We scrutinized a minimal scenario
where there exist just one additional heavier particle that
decays into the DM. In this case, we found that the increase
on the relic abundance can be as large as a factor ∼4 in the
case that the heavy particle is a scalar. For other types of
spins, the factor is smaller. This dependence on the spins is
simply understood as the effect due to the greybody factors.
In this regard, we also investigated the indirect mechanisms
for Kerr PBHs, finding, as expected, an enhancement by a
factor of ∼4.3 for the tensor case when the PBHs initially
had a close-to-maximal angular momentum. Assuredly, an
extended dark sector can lead to a rich phenomenology.
Moreover, if we assume the existence of interactions with
the SM, there could be significant modifications to the
results presented here. Such a treatment is left for the
second part of this series [43].
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APPENDIX A: ANALYTIC DERIVATION OF PBH
EMISSION PROPERTIES

1. Schwarzschild case

Herewe go through the analytic derivation of the emission
rates and total number of particles of Schwarzschild BHs

including greybody factors. The Hawking spectrum, for a
given particle species, i is parametrized as

d½2�N i

dEdt
¼ 27giG2M2

BH

2π

ψ siðEÞðE2 − μ2i Þ
expðE=TBHÞ − ð−1Þ2si ; ðA1Þ

where gi is the internal d.o.f, si is the spin and ψ siðEÞ is the
absorption cross section normalized to the geometric optics
limit, and G andMBH are the gravitational constant and the
mass of the BH respectively. Introducing the dimensionless
parameters x≡ E=TBH and zi ¼ μi=TBH, the total emission
rate per particle species is

ΓBH→i ¼
27gs

1024π4
1

GMBH

Z
∞

zi

ψ siðxÞðx2 − z2i Þ
expðxÞ − ð−1Þ2si dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΨiðziÞ

; ðA2Þ

where for now we simply take the integral result unspecified
as ΨiðziÞ. An assumption that is often made is that
ψðx; zÞ ¼ 1, that is, take the greybody factors equal to the
geometrical-optics limit, which allows one to perform the
integral analytically,

ΨiðzÞ ¼ 2ϵi½zLi2ðϵie−zÞ þ Li3ðϵie−zÞ�; ðA3Þ

being Lin the polylog functions of order n, and ϵi ¼ ð−1Þ2si .
We then have

ΓBH→i ¼
27gs
512π4

ϵi
GMBH

½zLi2ðϵie−zÞ þ Li3ðϵie−zÞ�: ðA4Þ

Therefore, under this assumption and taking μi ¼ 0

ΓBH→i ¼
27gs
32π3

ζð3Þ
	
1 for Bosons:

3=2 for Fermions
; ðA5Þ

this allowsone tomake a comparisonbetween the calculation
with the full greybody factors in the massless limit.
We can carry out a similar procedure for the evaporation

function εiðziÞ per particle species, defined by

εiðziÞ≡ −
M2

BH

M4
p

dMBH

dt
;

¼ 27gi
8192π5

Z
∞

zi

ψ siðx2 − z2Þ
expðxÞ − ð−1Þ2si xdx; ðA6Þ

where we now have defined the function εiðziÞ in a similar
fashion to ΨiðzÞ. Its fairly straightforward to obtain the
massless geometric optics limit for εið0Þ,

εið0Þ ¼
27gi

8192π5

(
π4

15
for Bosons

7π4

120
for Fermions;

ðA7Þ
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so

dM
dt

¼ −
27

4

1

30720π

M4
p

M2
g⋆ðTBHÞ; ðA8Þ

in agreement with Ref. [41].
To find the total number of emitted particle, we need to

integrate over the lifetime, τ of the BH.

N i ¼
Z

τ

0

dt
dN i

dt
; ðA9Þ

where we have chosen the time the BHs are formed to be
t ¼ tin ¼ 0. Using the mass loss rate Eq. (4) we can make a
change of variables

N i ¼
27gs

1024π4
G
Z

Min
BH

0

ΨiðzÞ
εðMÞMdM; ðA10Þ

where ε≡P
i gsiεðMBHÞ. For z ¼ 0, and taking the geo-

metric optics limits,

Ψið0Þ ¼ 2ζð3Þ; εðMÞ ¼ 27

4

1

30720π
g⋆ðTÞ; ðA11Þ

one recovers the results from Refs. [36,41]

N i ¼
120ζð3Þ

π3
gs

g⋆ðT in
BHÞ

�
Min

BH

Mp

�
2

: ðA12Þ

To keep the greybody factors in the equation we can rewrite
εðMBHÞ as

εðMBHÞ¼
X
j

gsiεj

�
μj
TBH

�
¼
X
j

gsjεj

�
μj
μi|{z}
mi

μi
TBH

�
: ðA13Þ

Writing εðziÞ¼
P

jgsjεjðmjziÞ and using that zi¼8πGMμi,
we obtain

N i ¼ ηðzini Þ
gs

g⋆ðT in
BHÞ

�
Min

BH

Mp

�
2

; ðA14Þ

where

ηðzini Þ ¼
27

1024π4
1

ðzini Þ2
g⋆ðT in

BHÞ
Z

zin

0

ΨðzÞP
igjεjðmjzÞ

zdz:

ðA15Þ

In order to obtain a semianalytic approximation all func-
tions, ΨiðzÞ and εiðzÞ have been fitted to a generalized
logistic form

Asf1 − ð1þ expf−Bs log10ðzÞ þ CsgÞ−νsg; ðA16Þ

where the parameters fAs; Bs; Cs; νsg depend on the spin of
the particle. We give such parameters in Table I, and we
present an example for the fit function for ΓBH→i for all
particle types together with the values obtained by direct
integration in Fig. 9.

2. Kerr case

For initially rotating BHs we can perform a similar
analysis. The Hawking rate is modified because of the
presence of the nonzero angular momentum,

d2N i

dEidt
¼ 27giG2M2

BH

2π

X
l¼si

Xl

m¼−l

×
ψ lm
si ðMBH; p; a⋆ÞðE2

i − μ2i Þ
exp ½ðEi −mΩÞ=TBH� − ð−1Þ2si ; ðA17Þ

being ψ lm
si ðMBH; p; a⋆Þ the greybody factor dependent

associated to the partial wave with quantum numbers l,
m, and normalized to 27π2G2M2

BH. The total emission rate,
obtained after integration over the energy, is

ΓBH→i ¼
27gi

1024π4
1

GMBH
Ψiðzi; a⋆Þ; ðA18Þ

being

TABLE I. Fitting parameters for our analytical form, Eq. (A16), in the Schwarzschild case.

Ψi εs

As Bs Cs νs As Bs Cs νs

Scalar 2.457 7.50218 2.9437 0.4208 7.61 × 10−5 7.79884 3.80742 0.4885
Fermion 0.897 12.3573 8.7436 0.3045 4.12 × 10−5 13.0496 9.91178 0.3292
Vector 0.2736 13.465 9.8134 0.3049 1.68 × 10−5 14.0361 10.7138 0.3072
Graviton 0.0259 22.325 21.232 0.1207 1.93 × 10−6 21.5094 20.5135 0.1734
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Ψiðzi; a⋆Þ ¼
Z

∞

zi

X
lm

ψ lm
si ðx; a⋆Þðx2 − z2i Þ

exp½ðxð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
Þ − 4πma⋆Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
� − ð−1Þ2si

dx; ðA19Þ

where x ¼ Ei=TS
BH and zi ¼ μi=TS

BH, being T
S
BH ¼ ð8πGMBHÞ−1 the temperature for Schwarzschild BHs. After considering

the greybody factors for each spin type, and integrating numerically, we have performed a fit to Ψiðzi; a⋆Þ in the form

Asða⋆Þf1 − ð1þ expfBsða⋆Þ log10ðzi=8πÞ þ Csða⋆ÞgÞ−νsða⋆Þg; ðA20Þ

where now Asða⋆Þ; Bsða⋆Þ; Csða⋆Þ; νsða⋆Þ are functions of
a⋆, and are fitted according to the functions,

log10 Asða⋆Þ ¼
αs5a

2⋆
ða2⋆ − 1.025Þ2 þ

X4
j¼0

αsja
j⋆; ðA21aÞ

Bsða⋆Þ ¼
βs5a

2⋆
ða2⋆ − 1.025Þ2 þ

X4
j¼0

βsja
j⋆; ðA21bÞ

log10 Csða⋆Þ ¼
ηs5a

2⋆
ða2⋆ − 1.025Þ2 þ

X4
j¼0

ηsja
j⋆; ðA21cÞ

log10 νsða⋆Þ ¼
δs5a

2⋆
ða2⋆ − 1.025Þ2 þ

X4
j¼0

δsja
j⋆: ðA21dÞ

The fitting parameters fαsj; βsj; ηsj; δsjg, j ¼ 1;…; 5 for each
spin are given in Tables II–V.We present an example for the
fit function for ΓBH→i for all particle types together with the
values obtained by direct integration in Fig. 10.
The mass εiðzi; a⋆Þ and angular momentum γiðzi; a⋆Þ

evaporation functions per spin defined by

εiðzi; a⋆Þ≡ −
M2

BH

M4
p

dMBH

dt
; ðA22aÞ

γiðzi; a⋆Þ≡ −
1

a⋆
MBH

M2
p

dJ
dt

; ðA22bÞ

FIG. 9. Total emission rate as function of GMμi for the different types of particles, scalars, fermions, vectors and spin-2 for a
Schwarzschild BH. The red points correspond to the values obtained directly by integration of Eq. (A2), while the blue lines are our
fitted forms.
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being J the BH angular momentum. These evaporation functions are parametrized as

εiðzi; a⋆Þ ¼
27

8192π5

Z
∞

zi

X
lm

ψ lm
si ðx; a⋆Þðx2 − z2i Þ

exp½ðxð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
Þ − 4πma⋆Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
� − ð−1Þ2si

xdx; ðA23aÞ

γiðzi; a⋆Þ ¼
27

1024π4

Z
∞

zi

X
lm

mψ lm
si ðx; a⋆Þðx2 − z2i Þdx

exp½ðxð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
Þ − 4πma⋆Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
� − ð−1Þ2si

; ðA23bÞ

with x and zi defined as before. Similar to the particle emission rate, we fit these evaporation parameters according to a
general logistic form, Eq. (A20), where the parameters are also given in Tables II–V.

TABLE III. Fitting parameters of our parametrized from
Eqs. (A20), (A21) for Fermions.

(a) Asða⋆Þ
Ψ ε γ

α0 −0.040863 −4.38503 −3.51098
α1 −0.01122 −0.01683 −0.05455
α2 0.79019 1.18529 0.81172
α3 −0.80843 −1.212644 −1.62004
α4 0.53561 0.80341 1.23503
α5 0.00017 0.00026 0.00015

(b) Bsða⋆Þ
Ψ ε γ

β0 1.02775 1.05952 1.00516
β1 0.25174 −0.54908 −0.30863
β2 −1.91938 3.00617 1.35856
β3 3.71237 −6.69030 −3.82659
β4 −2.57412 3.97656 2.60927
β5 0.00020 0.00010 0.00007

(c) Csða⋆Þ
Ψ ε γ

η0 8.64208 8.19678 7.50414
η1 0.64604 2.07543 1.55438
η2 −11.8172 −19.0044 −18.3266
η3 18.2938 22.0031 23.8847
η4 −13.6375 −12.3065 −12.7473
η5 −0.00101 −0.00102 −0.00084

(d) νsða⋆Þ
Ψ ε γ

δ0 −0.49451 −0.47427 −0.43234
δ1 −0.16979 1.15307 0.31938
δ2 1.60784 −6.77883 −1.43802
δ3 −2.20497 15.0118 5.66093
δ4 1.33059 −9.39296 −4.65577
δ5 −0.00039 −1.40672 × 10−6 0.00004

TABLE II. Fitting parameters of our parametrized from
Eqs. (A20), (A21) for scalars.

(a) Asða⋆Þ
Ψ ε γ

α0 3.89166 −4.11848 −4.04521
α1 −0.03924 −0.41827 −0.25175
α2 0.59957 2.58436 2.31410
α3 −2.30988 −5.76425 −3.47358
α4 1.55282 4.01628 2.20081
α5 0.00023 0.00008 0.00007

(b) Bsða⋆Þ
Ψ ε γ

β0 0.90067 0.86256 1.14795
β1 −0.28757 1.06174 −0.18821
β2 2.06242 −6.40438 0.95797
β3 −6.0310 10.38130 −2.36396
β4 4.34910 −5.12991 1.16129
β5 0.00020 0.00011 0.00014

(c) Csða⋆Þ
Ψ ε γ

η0 7.68412 7.02688 8.02772
η1 −1.19450 2.99615 0.80777
η2 3.42557 −25.1091 −10.13620
η3 −19.2999 31.0490 3.33735
η4 11.6408 −14.56991 −0.49068
η5 −0.00076 −0.00145 0.00141

(d) νsða⋆Þ
Ψ ε γ

δ0 −0.43895 −0.28079 −0.55216
δ1 −0.57066 −1.87129 0.47187
δ2 2.32570 11.5739 −2.55669
δ3 −0.98160 −20.6905 5.12681
δ4 −0.97489 11.1745 −2.65038
δ5 0.00035 −0.00024 −0.00022
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APPENDIX B: DECAY WIDTHS

In this appendix we quote the decay widths of scalars,
vectors and massive tensors into a fermion-antifermion
pair, used in the subsection III C. For X having a mass mX
and a coupling gD with the fermions χ, we have

ΓS
X→DM ¼ mX

8π
g2D

�
1 −

4m2
DM

m2
X

�3
2

; ðB1Þ

for X being a scalar. In the case that X is a massive vector,
we have

ΓV
X→DM ¼ mX

12π
g2D

�
1þ 2m2

DM

m2
X

��
1 −

4m2
DM

m2
X

�1
2

; ðB2Þ

and, finally, for a massive spin-2 particle [72–74]

ΓG
X→DM ¼ mX

160π
g2D

�
1þ 8

3

m2
DM

m2
X

��
1 −

4m2
DM

m2
X

�3
2

: ðB3Þ

TABLE IV. Fitting parameters of our parametrized from
Eqs. (A20), (A21) for vectors.

(a) Asða⋆Þ
Ψ ε γ

α0 −0.55674 −4.77544 −3.63003
α1 −0.19425 0.06299 0.26289
α2 3.85503 3.15186 0.08464
α3 −4.67469 −3.52187 0.61410
α4 2.56983 1.99381 0.00797
α5 0.00019 0.00019 0.00018

(b) Bsða⋆Þ
Ψ ε γ

β0 1.12764 1.14383 1.12718
β1 −0.00975 −0.00734 0.00040
β2 0.17278 −0.05991 −0.02018
β3 −0.15243 0.13639 −0.26672
β4 −0.36279 −0.57533 −0.18571
β5 −0.00006 0.00010 0.00007

(c) Csða⋆Þ
Ψ ε γ

η0 8.99996 8.88373 8.61971
η1 −1.07481 −1.45578 −0.00904
η2 3.30235 2.35702 −3.23898
η3 −12.0108 −14.6024 −7.78225
η4 3.96199 7.09857 4.85716
η5 −0.00060 −0.00111 −0.00109

(d) νsða⋆Þ
Ψ ε γ

δ0 −0.52989 −0.51754 −0.52112
δ1 −0.00885 0.03176 0.09238
δ2 0.02979 0.07427 −0.47192
δ3 −0.67753 −0.40853 0.81145
δ4 1.14249 0.94323 0.16319
δ5 −0.00004 −0.00026 −0.00022

TABLE V. Fitting parameters of our parametrized from
Eqs. (A20), (A21) for spin-2 particles.

(a) Asða⋆Þ
Ψ ε γ

α0 −1.71000 −5.71338 −4.26363
α1 0.60445 0.55086 −0.08493
α2 5.87217 7.51779 5.63412
α3 −6.26968 −9.50996 −6.57782
α4 3.33794 5.34276 3.89968
α5 0.00025 0.00033 0.00028

(b) Bsða⋆Þ
Ψ ε γ

β0 1.27648 1.29608 1.27466
β1 0.23464 0.06644 0.481525
β2 −0.96709 −0.07557 −2.48397
β3 1.59757 0.06767 4.3418
β4 −1.05198 −0.30298 −2.68619
β5 −0.00010 −0.00006 0.000005

(c) Csða⋆Þ
Ψ ε γ

η0 9.06958 9.06618 8.91067
η1 2.94595 1.29693 2.77640
η2 −25.4011 −16.2621 −21.98310
η3 39.1391 21.5632 28.0939
η4 −24.1023 −14.4600 −16.1920
η5 −0.00125 −0.00051 −0.000732

(d) νsða⋆Þ
Ψ ε γ

δ0 −0.64634 −0.64402 −0.63890
δ1 −0.05947 −0.25035 −0.39021
δ2 0.01428 1.23193 1.97792
δ3 −0.01704 −2.46744 −3.60446
δ4 0.25369 1.85603 2.40479
δ5 0.00009 0.00002 −1.06 × 10−6
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