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Abstract
In this paper we generalize the j-invariant criterion for the semistable reduction type of an
elliptic curve to superelliptic curves X given by yn = f (x). We first define a set of tropical
invariants for f (x) using symmetrized Plücker coordinates and we show that these invariants
determine the tree associated to f (x). This tree then completely determines the reduction
type of X for n that are not divisible by the residue characteristic. The conditions on the
tropical invariants that distinguish between the different types are given by half-spaces as
in the elliptic curve case. These half-spaces arise naturally as the moduli spaces of certain
Newton polygon configurations. We give a procedure to write down their equations and we
illustrate this by giving the half-spaces for polynomials of degree d ≤ 5.

Mathematics Subject Classification 14G22 · 11G30 · 14T05

1 Introduction

Let X be a smooth, proper, irreducible curve over a complete algebraically closed non-
archimedean field K . The Berkovich analytification X an of X then contains a canonical
subgraph known as the minimal skeleton of X . For elliptic curves, there are two possibilities
for the minimal skeleton: it is either a cycle or a vertex of genus 1. These two options are
characterized by the j-invariant of the elliptic curve E , in the sense that Ean has a cycle if and
only if val( j) < 0. Furthermore, if Ean has a cycle then the length of this cycle is −val( j).
Our goal in this paper is to give similar criteria for superelliptic curves, which are given by
equations of the form yn = f (x). We will assume for simplicity that f (x) is separable. Also,
we will assume that n is coprime to the residue characteristic, since we can then express the
skeleton in terms of the tree associated to f (x).

To find the skeleton, we first study the combinatorics behind the roots of f (x). These roots
determine a tree in the Berkovich analytification P

1,an (see Sect. 2.1) and it is well known
that this tree is completely determined by its affine tropical Plücker coordinates. That is, if
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we write αi for the roots of f (x) then the tree is determined by the matrix D = (di, j ), where
di, j = val(αi − α j ). Our first goal is to express this tree more invariantly in terms of the
coefficients of f (x). To that end, we introduce a set of tropical invariants for f (x), which
are the valuations of certain symmetric functions in the αi − α j , see Sect. 2.2. Our first main
theorem is as follows.

Theorem 1.1 Let f (x) and g(x) be two separable polynomials of degree d in K [x]. Then the
trees corresponding to f (x) and g(x) are isomorphic if and only if their tropical invariants
are equivalent.

Here two sets of tropical invariants are equivalent if the Newton polygons of their generating
polynomials are the same, see Sect. 2.3. Using this theorem, we now find that we can com-
pletely recover the isomorphism class of the tree of a polynomial from its tropical invariants.
The proof of Theorem1.1 moreover shows that we need only only finitely many invariants
to reconstruct the tree. We illustrate Theorem1.1 in Sect. 2.6 by determining the trees of all
polynomials of degree d ≤ 5. For d = 5 for instance, there are 18 different cases to consider,
giving 12 different marked phylogenetic types. The conditions on the tropical invariants are
given by rational half-spaces as in the case of elliptic curves. They arise in this paper as
equations that describe moduli of Newton polygons, see Sect. 2.5.

As an application of Theorem1.1, we then obtain that the tropical invariants of f (x)
determine the semistable reduction type of the superelliptic curve yn = f (x).

Theorem 1.2 Let Xn, f be the superelliptic curve defined by yn = f (x), where f (x) is a
separable polynomial. Then for any n satisfying gcd(n, char(k)) = 1, the minimal weighted
metric graph �(Xn, f ) of Xn, f is completely determined by the tropical invariants of f (x).

The structure of the paper is as follows. We start by defining marked tree filtrations,
which give a function-theoretic way of looking at metric trees. We then define the tropical
invariants in Sect. 2.2 using the concept of edge-weighted graphs. In Sect. 2.4, we assign a
set of invariants to certain subtrees and we show that we can predict their valuations. We
then use this to give our proof of Theorem1.1. In Sect. 2.5, we give polyhedral equations for
various moduli of marked tree filtrations. We write these down explicitly for polynomials
of degree d = 3, 4, 5. In Sect. 3, we study superelliptic curves and their skeleta. We prove
Theorem1.2 and we give a criterion for (potential) good reduction. We finish the paper by
classifying the skeleta of superelliptic curves defined by yn = f (x) for deg( f (x)) = 3, 4, 5.

1.1 Connections to the existing literature

The criterion using val( j) for the semistability of elliptic curves has been known for quite
some time, it goes back at least to the work of André Néron, see [23, P. 100]. For curves
of genus two, a criterion in terms of Igusa invariants was given in [19], this is generalized
using the results in this paper to arbitrary complete non-archimedean fields in [15]. The fact
that the reduction type of a superelliptic curve defined by yn = f (x) is related (in residue
characteristics not dividing n) to the roots of f (x) seems to have been known for some time.
For instance, in [19, Remarque 1] we find the following statement:

Pour une courbe C sur K définie par une équation yn = P(x), la connaissance des
racines (avec multiplicité) de P(x) détermine la courbe Cs , si car(k) ne divise pas n
(voir [Bo] pour le cas n = 2). Mais dans la pratique, il n’est pas toujours aisé de trouver
ces racines.
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The main contribution of this paper is that this “connaissance des racines” is removed using
tropical invariants. Explicitly, the invariants determine the marked tree filtration associated
to f (x) up to isomorphism and this determines the structure of Cs . A weaker result appears
in [11] and [9]. There it was shown that the structure of Cs (in the discretely valued case)
can be determined from the completely marked tree associated to f (x). The latter is in turn
determined by the relative valuations of the roots di, j = val(αi −α j ). In this paper we show
that we can find symmetric analogues of the di, j , the tropical invariants of f (x), that recover
the marked tree filtration associated to f (x) up to isomorphism.

In the meantime (partial) generalizations of the elliptic curve and Igusa criteria have been
obtained by various authors; we give a short list here. In [18], reduction types of smooth
quartics were studied using Dixmier-Ohno invariants. This for instance gives a criterion for
the potential good reduction of non-hyperelliptic genus 3 curves. In [7], a similar criterion
for the potential good reduction of Picard curves (which are of the form y3 = f (x) with f
separable) is given. For curves C of genus 3 that admit a Galois morphism C → P

1 with
Galois group Z/2Z × Z/2Z, necessary conditions for the reduction types are established in
[8]. They use the tame simultaneous semistable reduction theorem (in a slightly weaker form,
see Theorem3.1 for the more general version) together with explicit local calculations.

Theorem1.1 fits into the tropical literature as follows. Let K be a complete algebraically
closed non-archimedean field and consider the subring

C = K [pi, j ] = K [αi − α j ] ⊂ K [αi ]. (1)

We are interested in tropicalizing the complement of the hyperplanes pi, j = 0, so we first
localize by the discriminant� = ∏

i< j (αi −α j )
2. We can then study the natural action of Sd

on C[�−1] and trop(C[�−1]) induced by σ(pi, j ) = pσ(i)σ ( j). Algebraically, the quotient is
given by the invariant ring C[�−1]Sd and one can find explicit generators using the methods
in [24, Sect. 2]. To obtain suitable tropical quotients, we do the following. We first consider
the orbit of (αi − α j )

2 under Sd and take the monic polynomial F(x) ∈ C[�−1][x] whose
roots are representatives of this orbit. The coefficients of this polynomial are then invariant
under Sd and the corresponding field has the same transcendence degree as the field generated
by the (αi − α j )

2, see [24, Proposition 2.1.1]. These coefficients do not necessarily generate
the ring of invariants, but one can ask whether these invariants are sufficient to determine
the tree type. For d ≤ 4 this is true, but for higher d it is not, see Sect. 2.5. We thus see
that we have to cast our net somewhat wider. In Sect. 2.2, we consider more subtle weighted
symmetrizations, the tropical invariants, which allow us to separate orbits. If we view this
result through the lens of invariant theory, then we find two remarkable features that are not
present in the classical theory. Namely, in this case we have an explicit finite set of generators
for the invariants1 and this set is independent of the characteristic.

It seemsworthwhile to investigatewhether similar results continue to hold for other groups
and varieties.

A subject that is related to the above is the study of the moduli space of d points on the
projective line.We loosely view this as the projective completelymarked version of the set-up
we had above. By a well-known result [17] of Kapranov over C, we have isomorphisms

M0,d � (P1)d//PGL2 � G(2, d)//T d−1. (2)

Here M0,d is the stable compactification of the moduli space M0,d of d distinct marked
points on the projective line, G(2, d) is the (2, d)-Grassmannian and T d−1 is the (d − 1)-

1 Here we adopt the following ad hoc definitions. An invariant is a symmetric polynomial in the Plücker
coordinates. A set of invariants is a tropical generating set if their valuations determine the orbit of a tree.

123



P. A. Helminck

dimensional torus; the quotients are Chow quotients. There are tropical variants of these
isomorphisms as well: if we embed the Grassmannian using the Plücker embedding, then the
tropicalization of the open part G0(2, d) corresponding to nonzero Plücker coordinates can
be identified with the space of all tree metrics on d points:

trop(G0(2, d)) = −�tr, (3)

see [22, Theorem 4.3.5]. Furthermore, if we consider the quotient by the lineality space of
trop(G0(2, d)) (which corresponds to the torus action we had earlier), then this space is the
tropicalization of M0,d under a suitable embedding, see [22, Theorem 6.4.12]. To return to
this paper, we can now introduce various group actions on these moduli spaces. For instance,
the group G = Sd1 × Sd2 × · · · × Sdk for any partition d = d1 + d2 + · · · + dk acts on the
above spaces and one can consider the corresponding quotients. These exist as schemes for
d > 3 sinceM0,d is quasi-projective and G is finite. In this paper, d − 1 is the degree of the
polynomial f (x) and the group under consideration is G = Sd−1 × S1. The extra marked
point corresponds to the pole ∞ of f (x). Theorem1.1 then shows that the tropical invariants
completely determine the orbit of a point in trop(M0,d) under the action of G.

1.2 Notation and terminology

Throughout this paper, we will mostly use the same set of assumptions and notation as in
[14]. This paper in turn is heavily influenced by [2] and [4], so the reader might benefit from
a review of these as well. We give a short summary of the most important concepts and
notation used in this paper:

• Unless mentioned otherwise, K is a complete algebraically closed non-archimedean
field with valuation ring R, maximal ideal mR , residue field k and nontrivial valuation
val : K → R ∪ {∞}. The symbol � is used for any element in K ∗ with val(�) > 0.
The absolute value associated to val(·) is defined by |x | = e−val(x), where e is Euler’s
constant.

• X is a smooth, irreducible, proper curve over K . We will often omit these and simply
say that X is a curve. Its analytification in the sense of [6] and [5] is denoted by X an.

• A finite morphism of curves φ : X → Y gives a finite morphism of analytifications
φan : X an → Y an. We say that φ is residually tame if for every x ∈ X an in the étale locus
with image y ∈ Y an, the extension of completed residue fields H(y) → H(x) is tame.
See [14, Sect. 2.1].

• For r ∈ R, we define closed disks and annuli by B(x, r) = {y ∈ K : val(x − y) ≥ r}
and S(x, r) = {y ∈ K : 0 < val(x − y) ≤ r}. Their open counterparts are denoted by
B+(x, r) and S+(x, r). If the center point is 0, then we denote these byB(r), S(r),B+(r)
and S+(r). We also use the notation S+(a) for an element a ∈ K ∗ with val(a) ≥ 0, which
by definition is S+(val(a)). Furthermore, we will use the same notation to denote the
corresponding Berkovich analytic subspaces, see [2, Sect. 3] and [4, Sect. 2] for more on
these.

• Semistable vertex sets of curves are denoted by V (�), where � is its corresponding
skeleton. The curve that � is the skeleton of will be clear from context. For open annuli
S+(x, r), we denote the skeleton by e0. We call these open edges. Similarly, for a closed
annulus S(x, r) we denote the skeleton by e. We call these closed edges. We again refer
the reader to [4, Sect. 2] and [2] for more details.

• Any semistable vertex set V (�) with skeleton � of a curve X can be enhanced to
a metrized complex of k-curves, see [2] for the terminology. Loosely speaking, the
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construction is as follows. We start with the metric graph corresponding to � and we
include the data of a residue curve Cx for every type-2 point in V (�). We then identify
every tangent direction in � with the corresponding closed point on Cx . This concept
of a metrized complex for instance gives a convenient way of expressing the fact the
local Riemann–Hurwitz formulas hold for residually tame coverings of curves. We will
use this in the proof of Theorem1.2. If we only record the genus of every curve Cx (in
addition to the skeleton itself), then we obtain the weighted metric graph associated to
�. We denote these metrized complexes and weighted metric graphs by � again as it
will be clear from context which structure we have in mind.

• The above notions of skeleta, (strongly) semistable vertex sets and metrized complexes
also have variants for marked curves (X , D), see [2, Sect. 3.7]. We also write � and
V (�) for these.

• For any marked curve (X , D) with Euler characteristic 2 − 2g(X) − |D| < 0, there is
a unique minimal skeleton �min ⊂ X an that contains D. It can be obtained from any
skeleton � of (X , D) by contracting a set of leaves. The minimal weighted metric graph
of (X , D) is defined by adding the additional data of the genera of the type-2 points in
�min. This is the object of interest to us in Theorem1.2. We call this the reduction type
of X .

2 Marked tree filtrations and tropical invariants

In this section we study trees associated to separable polynomials f (x) ∈ K [x] over a non-
archimedean field. We call these marked tree filtrations. After this, we define the tropical
invariants of a polynomial using the coefficients of certain symmetric generating polynomials.
We furthermore assign a set of tropical invariants to the maximal c-trivial subtree of a given
tree. These invariants allow us to detect isomorphisms of trees up to a finite height. The proof
of Theorem1.1 then follows by inductively considering these invariants for higher and higher
heights. We use this idea in Sect. 2.5 to give polyhedral equations for the moduli space of a
filtration type.

2.1 Marked tree filtrations

Let A be a finite set with |A| > 1. Our notion of a tree with vertex set A is as follows.

Definition 2.1 (Marked tree filtrations) Let

φ : A × R → R (4)

be any function. We say that φ defines a marked tree filtration on A if the following hold:

1. There is a c0 ∈ R such that |φ(A × {c0})| = 1.
2. Suppose that c2 > c1. If x, y ∈ A satisfy φ(x, c2) = φ(y, c2), then they also satisfy

φ(x, c1) = φ(y, c1).
3. There is a C ∈ R such that for all c > C the restricted function φ(x, c) : A × {c} → R

is injective.

The set A is the set of finite leaves of the marked tree filtration φ. We say that x, y ∈ A are
in the same c-branch if φ(x, c) = φ(y, c). This defines an equivalence relation on A for every
c and we refer to an equivalence class as a c-branch. Two functions φ and ψ are said to give
equivalent marked tree filtrations on A if for every c ∈ R, we have that φ(x, c) = φ(y, c)
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for x, y ∈ A if and only if ψ(x, c) = ψ(y, c). Given two sets A and B with marked tree
filtrations φ and ψ , we say that they are isomorphic if there exists a bijection i : A → B
such that the marked tree filtration ψ ◦ (i, id) is equivalent to φ.

Remark 2.2 Bycombining thefirst two conditions inDefinition2.1,we see that |φ(A×{c})| =
1 for every c ≤ c0. We view this as an extra leaf corresponding to ∞.

Remark 2.3 The choice of R for the target space of φ in the definition of a marked tree
filtration is not strictly necessary: we can take any set whose cardinality is greater than that
of A.

Example 2.4 Let K be a non-archimedean field and let A = {α1, ..., αd } ⊂ K be a set of
pairwise distinct elements. We can assign a marked tree filtration to A as follows. For every
pair (αi , α j ) ∈ A2, define

di, j = val(αi − α j ). (5)

We then let φ : A × R → R be any function such that φ(αi , c) = φ(α j , c) if and only if
di, j ≥ c. It is not too hard to see that this defines a marked tree filtration.

We can assign a metric graph to a marked tree filtration φ as follows. For every i ∈ A, we
take an infinite line segment Li = R∪{∞}∪{−∞}. We think of the point at positive infinity
as corresponding to the leaf i ∈ A, the point at negative infinity is the leaf corresponding to
∞, see Remark2.2. We now define an equivalence relation on the disjoint union L = ⊔

Li

as follows. We have (i, c) ∼ ( j, c) for a c ∈ R if and only if φ(i, c) = φ( j, c). The quotient
T = L/ ∼ is then a (marked) metric graph with first Betti number zero. We call this the
(marked) metric tree associated to φ. Note that this space admits a natural metric outside the
leaves.

Example 2.5 (Finite Berkovich trees) Consider the marked tree filtration from Example2.4.
The associated metric tree has a canonical interpretation in terms of Berkovich spaces: it is
isomorphic to the minimal skeleton of the marked curve (P1,an, A ∪ {∞}). We can see this
explicitly as follows. The elements αi give a set of points in P

1,an which we view as the
seminorms arising from the degenerate disks B(αi ,∞). In terms of this interpretation, the
unique path from αi to ∞ in P

1,an now consists of the seminorms associated to the disks
B(αi , r) for −∞ ≤ r ≤ ∞. Here the value −∞ corresponds to the point ∞ ∈ P

1. Two
of these paths meet exactly at the point B(αi , val(αi − α j )) = B(α j , val(αi − α j )) by the
non-archimedean nature of the valuation.

We then easily see that these paths give a metric tree isomorphic to the one we created
from the marked tree filtration. We will use this identification throughout the paper without
further mention.

Definition 2.6 (Subtrees) Let φ : A×R≥0 → R be a marked tree filtration and let i : S → A
be an injection. The induced function φS : S × R≥0 → R is a marked tree filtration on S
which we call the subtree of φ associated to i : S → A. We will also say that S is a subtree
if the injection is clear from context.

Definition 2.7 (Truncated structures) Let φ be a marked tree filtration on A and let φS be the
subtree associated to an injection i : S → A. For any positive real number c, we say that i is
c-trivial if the restricted function S×{c} → R is injective. For any c ∈ R, there is a maximal
n0 such that there is a subtree on n0 leaves with trivial c-structure. We refer to this n0 as the
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Fig. 1 The three marked tree filtrations on five leaves in Example2.9. The branch heights are the ai . The blue
vertices are the leaves at infinity

number of branches at height c. A subtree with the maximal number of leaves for a given c
is called a maximal c-trivial subtree. This maximal c-trivial subtree is uniquely defined up to
a permutation of leaves in the same c-branch. This permutation induces an isomorphism of
the maximal c-trivial subtrees. We refer to any such maximal c-trivial tree as the c-truncated
structure of φ. We say that two marked tree filtrations are isomorphic up to height c if their
c-truncated structures are isomorphic.

Definition 2.8 (Branch heights) Let φ be a marked tree filtration. We say that φ is branched
at c ∈ R if for every ε > 0, the number of branches at height c − ε is different from the
number of branches at c + ε. For every marked tree filtration, there are only finitely many
heights where branching occurs. We call these the branch heights.

Example 2.9 Consider the three marked tree filtrations on five leaves indicated in Fig. 1.
The branch heights are a0, a1 and a2. For c > a2, we have that the maximal c-trivial

subtree is the tree itself. For c = a0, we have that a maximal c-trivial subtree is given by
restricting to a single leaf. For c ∈ (a0, a1] in all cases the maximal c-trivial subtree is given
by restricting to two leaves from the different branches. If c ∈ (a1, a2], then in the first two
cases we have maximal c-trivial subtrees of order 4 and in the last case we have maximal
c-trivial subtrees of order 3. Note however that all of these subtrees are non-isomorphic as
marked tree filtrations. The initial trees are thus isomorphic up to height a1, but not up to any
greater height.

Remark 2.10 Let φ be a marked tree filtration and suppose that φ is not branched at c. A
maximal c-trivial subtree then naturally extends to a maximal c0-trivial subtree, where c0 is
the smallest branch height greater than c. Similarly, let φ and φ′ be twomarked tree filtrations
with no branching at c and let c0 and c′

0 be their first branching heights greater than c (if
there is no further branching, set c0 = c or c′

0 = c). If φ and φ′ are isomorphic up to height
c, then they are also isomorphic up to height min{c0, c′

0}.
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Fig. 2 The 1-marked
phylogenetic types of the trees in
Example2.9. The blue leaf is the
leaf corresponding to ∞

Definition 2.11 (Filtration structure) Let φ and φ′ be two marked tree filtrations on A with
branch heights a0 < a1 < · · · < am and a′

0 < a′
1 < · · · < a′

m′ . We say that φ and φ′ define
the same filtration structure if

1. m = m′.
2. For every i , and for every c ∈ (ai , ai+1) andd ∈ (a′

i , a
′
i+1),wehave thatφ(x, c) = φ(y, c)

if and only if φ′(x, d) = φ′(x, d).

We say that the filtration structures of the marked tree filtrations φ and φ′ are isomorphic if
the above hold for filtrations φ0, φ′

0 with φ equivalent to φ0 and φ′ equivalent to φ′
0. Here we

also say that φ and φ′ have the same filtration type.

We define one more type of structure. Suppose that we have a marked tree filtration φ

with metric tree T . We can then only consider the points in T of valence not equal to 2. If
we furthermore forget the lengths of the edges, then we obtain the phylogenetic tree GT of
T . We consider this as a tree with marked point ∞.

Definition 2.12 (Phylogenetic structure) Let φ be a marked tree filtration. The finite tree GT

together with the marked point ∞ is the 1-marked phylogenetic tree associated to φ. We say
that two marked tree filtrations φ and φ′ have the same 1-marked phylogenetic structure if
there is an isomorphismGT → GT ′ sending∞ to∞′. If there is an isomorphismGT → GT ′ ,
then we say that they have the same unmarked phylogenetic structure.

Example 2.13 Consider the trees in Example2.9.
Their 1-marked phylogenetic trees are given in Fig. 2. The second and third tree define

isomorphic 1-marked phylogenetic types, but their filtration types are different.

We will see in Sect. 3 that the underlying graph of the skeleton of the curve yn = f (x)
only depends on the 1-marked phylogenetic structure of the tree associated to the roots of
f (x). To find the lengths, we will need the marked tree filtration associated to the roots of
f (x).

2.2 Algebraic invariants

Let C = Z[αi ] be the polynomial ring in the variables α1, ..., αd . The group Sd naturally
acts through ring homomorphisms on this ring and this also gives an action onC[x]. We now
consider the polynomial

f :=
d∏

i=1

(x − αi ). (6)
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Remark 2.14 We will only work with monic polynomials throughout this paper, this will not
affect our results on invariants too greatly. For superelliptic curves yn = f (x) one has to
make an extension of degree at most n to obtain a superelliptic curve with f (x) monic.

Since every σ ∈ Sd acts as a ring homomorphism on C[x], we see that σ( f ) = f . We
define the elementary symmetric polynomials ai through the equation f = ∑d

i=0(−1)i ai xi .
By σ( f ) = f we find that the ai are indeed invariant with respect to Sd . We then have the
following classical result on symmetric polynomials:

Lemma 2.15 Z[α1, ..., αd ]Sd = Z[a0, ..., ad−1].
We use this to construct a set of invariants. Let Kd be the complete undirected graph on

d vertices. Here we identify the vertex set of Kd with {α1, ..., αd} and we write edges as
{αi , α j }. Let G be a subgraph of Kd and let

k : E(Kd) → Z≥0 (7)

be a weight function that is zero if and only if e is not in E(G). We refer to a pair (G, k) as
an edge-weighted graph. We now define

IG,k :=
∏

e={αi ,α j }∈E(G)

(αi − α j )
2k(e). (8)

We refer to elements of this form as pre-invariants. We will also write [i j] = (αi − α j )
2

so that IG,k = ∏
e∈E(G)[i j]k(e). Let HG,k := Stab(IG,k) be the stabilizer of IG,k under the

action of Sd . Writing σ1, ..., σr for representatives of the cosets of HG,k in Sd , we then obtain
the polynomial

FG,k :=
r∏

i=1

(x − σi (IG,k)). (9)

This polynomial is invariant under the action of Sd . Using Lemma2.15, we then find that we
can express its coefficients in terms of the ai .

Definition 2.16 (Algebraic invariants) The polynomial FG,k is the generating polynomial
for the pair (G, k). Its coefficients are the algebraic invariants of f with respect to the pair
(G, k).

Example 2.17 Wenote that the homogenized versions of these coefficients are not necessarily
invariant with respect to the natural SL2-action. Indeed, if we consider n = 4 and G a graph
of order 2, then the only coefficient that is invariant is the constant coefficient, which is the
discriminant of f . This follows from the criteria in [24] and [10]: the non-constant coefficients
are symmetric bracket polynomials that are not regular. The discriminant however is regular,
so this does give an invariant.

Remark 2.18 Wenow interpret the stabilizer HG,k graph-theoretically.We define amorphism
of edge-weighted graphs (G1, k1) → (G2, k2) to be an injective morphism ψ : G1 → G2

of graphs such that k2 ◦ψ = k1. An isomorphism of edge-weighted graphs is a morphism of
edge-weightedgraphs that is bijective.We then consider the set of edge-weightedgraphs in Kd

isomorphic to (G, k). The groupAut(Kd) = Sd acts transitively on this set and the stabilizer2

2 Here the stabilizer of (G, k) is the set of permutations in Sd that induce automorphisms of edge-weighted
graphs (G, k) → (G, k).
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of (G, k) under this action is HG,k . Indeed, we automatically have Stab(G, k) ⊂ HG,k and
the other inclusion follows quickly using the fact that the polynomials αi −α j are irreducible
elements of the unique factorization domainZ[αi ]. Identifying orbits of (G, k)with cosets of
HG,k = Stab(G, k) inside Sd , we now see that we can think of the σi (IG,k) as isomorphism
classes of (G, k) inside Kd .

This point of viewwill be used throughout the upcoming sections.Wewill only be needing
the case where G is the complete graph on n1 < d vertices and k is some non-trivial weight
function. In practice one might also want to use other edge-weighted graphs.

2.3 Tropicalizing invariants

Let C = Z[αi ] and D = Z[ai ] be as in the previous section and consider the discriminant
� = ∏

i< j (αi − α j )
2. In terms of the previous section, this is the invariant associated to the

complete graph Kd with trivial weights. We can localize the above rings with respect to �

to obtain

D[�−1] → C[�−1]. (10)

Let K be a field and let ψ : D[�−1] → K be a K -valued point. This corresponds to a
separable polynomial f ∈ K [x] and it defines a prime ideal Ker(ψ) = pψ in the spectrum
of D[�−1]. The fiber of pψ under the map

Spec(C[�−1]) → Spec(D[�−1]) (11)

then consists of K -rational points and each of these points corresponds to a labeling of the
roots of f . For any separable polynomial f ∈ K [x], we will write ψ f for the corresponding
K -rational point of D[�−1].

We now assume that K is a complete, non-archimedean field and we write val(·) for the
unique extension of the valuation function to an algebraic closure K . Let ψ : D[�−1] → K
be a K -valued point, corresponding to a separable polynomial f ∈ K [x] and write ψC for
an extension of ψ to a K -valued point of C[�−1]. We then have a set of d pairwise distinct
elements {ψC (α1), ..., ψC (αd)} and this gives a marked tree filtration φ by Example2.4. If
we choose another extension ψ ′

C of ψ (corresponding to a permutation of the roots), then we
obtain a marked tree filtration φ′ that is isomorphic to φ.

Definition 2.19 (Marked tree filtration of a polynomial) Let ψC : C[�−1] → K be an
extension of ψ : D[�−1] → K . We define the marked tree filtration associated to ψC and f
to be the filtration associated to {ψC (α1), ..., ψC (αd)} in Example2.4. For any two extensions
ψC and ψ ′

C of ψ , the corresponding marked tree filtrations are isomorphic and we refer to
this isomorphism class as the marked tree filtration associated to f (x).

A map ψ : D[�−1] → K gives a homomorphism of polynomial rings D[�−1][x] →
K [x] which we again denote by ψ .

By applying the valuation map

val : K → R ∪ {∞} (12)

to the coefficients of the polynomials ψ(FG,k), we then obtain the tropical invariants.

Definition 2.20 (Tropical invariants) Consider the coefficients of the polynomial ψ(FG,k).
Their valuations are the tropical invariants associated to ψ and (G, k).
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If we know the tropical invariants associated to a homomorphismψ and an edge-weighted
graph (G, k), then we can recover the valuations and multiplicities of the ψC (σi (IG,k)) (for
an extension ψC of ψ) using the classical Newton polygon theorem. The theorem we would
like to prove is that we can recover the marked tree filtration associated to the roots, up to a
permutation, from the tropical invariants.

To phrase this more precisely, we consider the set Z of all edge-weighted graphs on Kd

up to isomorphism and we define xG,k := deg(FG,k) + 1 to be the number of coefficients of
FG,k . Let T := R ∪ {∞} be the tropical affine line. We then obtain a map

trop : D[�−1](K ) →
∏

(G,k)∈Z
T
xG,k (13)

by mapping ψ to its tropical invariants.

Definition 2.21 (Equivalence of invariants) Let f and g be two separable polynomials over
K with homomorphismsψ f andψg . We write trop( f ) ≡ trop(g) if for every edge-weighted
graph (G, k), the Newton polygon ofψ f (FG,k) is equal to the Newton polygon ofψg(FG,k).

We can then state our main theorem as follows.

Theorem 1.1 (Main Theorem) We have trop( f ) ≡ trop(g) if and only if the marked tree
filtrations corresponding to f and g are isomorphic.

Remark 2.22 Calculations in practice show that one does not need special edge-weighted
graphs to distinguish between the marked tree filtrations of two polynomials: it suffices to
take graphs G with trivial functions k(·) : E(Kd) → Z≥0. It might be that Theorem1.1 still
holds for trivial edge-weighted graphs, but we have not been able to prove this. The same
result using only the graph of order two does not hold, as we will see in Sect. 2.5.

Remark 2.23 An earlier version of this paper contained a slightly different (and erroneous)
version of Theorem1.1. This said that the marked tree filtrations are isomorphic if and only if
the corresponding tropical invariants are the same. This is true in one direction. Namely, if the
polynomials have the same tropical invariants, then the Newton polygons of the generating
polynomials FG,k are the same and the proof of Theorem1.1 shows that the marked tree
filtrations are isomorphic. The converse however need not hold, as one can create polynomials
with isomorphic marked tree filtrations that induce different tropical invariants (for instance
using polynomials of degree three, see Sect. 2.6.2).

2.4 Invariants for truncated structures

As before, let K be a complete non-archimedean field. We start with a homomorphism
ψ : D[�−1] → K giving a separable polynomial ψ( f ) ∈ K [x] and we fix an extension
ψC of ψ to C[�−1]. The construction of the invariants will be independent of this choice,
so we denote this extension by ψ again. Consider the marked tree filtration φ attached to the
roots of ψ( f ) in Remark 2.4 with vertex set A = {αi }. We let c be a height at which φ is
not branched and we take Lc ⊂ A to be a maximal c-trivial subtree with respect to ψ . Our
goal is now to assign an edge-weighted graph to this pair (ψ( f ), c). This gives us a set of
algebraic invariants by the construction in the previous section.

We denote the branch heights of Lc by a0 < a1 < · · · < am . Here am < c by assumption.
We will also make use of the sequence (bi ) of branch differences, which is defined by
bi := ai − ai−1 and b0 = a0. Consider the complete graph G on Lc ⊂ A with weights
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km(e) = 1 for every e ∈ E(G).We now inductively assign newweights to the edges using the
marked tree filtration induced by Lc, the graph G will not change. Let e = {αi , α j } ∈ E(G)

and set de,ψ := val(ψ(αi − α j )). Let

Rai = {e ∈ E(G) : de,ψ = ai },
Sai = {e ∈ E(G) : de,ψ ≥ ai }.

Note that Rai is nonempty for every ai since Lc is a maximal c-trivial subtree. If we set
ci,m = ∑

e∈Sai km(e) = |Sai |, then we can write

val(ψ(IG,km )) =
∑

2ci,mbi . (14)

To see this formula, first note that ai = ∑
0≤ j≤i bi . We then have val(ψ(IG,km )) =

∑
2c′

i,mai , where c′
i,m = ∑

e∈Rai
km(e). The formula in Eq.14 now follows by writing

Sai as a disjoint union of the Rai . The value cm,m will be of special importance to us, so we
assign a separate variable

Cm := cm,m . (15)

Note that Cm > 0 since Ram �= ∅. We now define the weight functions km−i and constant
coefficients Cm−i using the following rules. For the weights, we set

km−i (e) =
{
Cm−(i−1) + 1 if e ∈ Ram−i

km−(i−1)(e) if e /∈ Ram−i .
(16)

The coefficients Cm−i are in turn defined by

Cm−i =
∑

e∈Sam−i

km−i (e). (17)

Here we allow i to run from i = 0 to i = m. We can now write val(ψ(IG,k0)) = ∑
2C ′

i ai ,
where C ′

i = ∑
e∈Rai

k0(e). Using ai = ∑
0≤ j≤i b j , we then obtain val(ψ(IG,k0)) =

∑
i (

∑
e∈Sai 2k0(e))bi . Since ki (e) = k0(e) for e ∈ Sai , we find

val(ψ(IG,k0)) =
∑

2Cibi . (18)

Definition 2.24 (Invariants for marked tree filtrations) Let ψ : C[�−1] → K be a homo-
morphism with marked tree filtration φ, and let c be a height at which φ is not branched.
The coefficients of the generating polynomial FG,k0 associated to the edge-weighted graph
(G, k0) are the invariants associated to (ψ, c). The value M := val(ψ(IG,k0)) is called the
minimizing value.

We will see in Lemma2.33 that this value M is indeed minimal among all the
val(ψ(σ (IG,k0))) for σ ∈ Sd .

Remark 2.25 The construction of the weight function is independent of the specific lengths
a0 < a1 < · · · < am . That is, if we start with a different set of lengths a′

0 < a′
1 < · · · < a′

m
but the same filtration structure as in Definition2.11, then the weights are the same. The
minimizing value however is dependent on the lengths.
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Example 2.26 We calculate some of the invariants in Definition2.24 for the trees in Exam-
ple2.9. Throughout this example we write ψ : C[�−1] → K a for a homomorphism that
gives rise to one of these trees. Let a0 < c < a1. Then a maximal c-trivial subtree for any of
the three trees consists of two leaves from two different branches. We thus consider the com-
plete graph on two vertices with trivial weight function. In general, if a marked tree filtration
has r different branches above the first branch height a0, then the corresponding invariants
are obtained by taking the complete graph on r vertices with trivial weight function.

We now consider a height a1 < c < a2, so m = 1. Consider a maximal c-trivial subtree
for the marked tree filtration I. If we label the leaves from left to right, then we can take
{α1, α3, α4, α5}. We start with the complete graph G on these four vertices and with trivial
weight function k1. There are then two edges with de,ψ = a1, namely e1 = {α1, α3} and
e2 = {α4, α5}. We thus have C1 = 2. The next weight function k0 is 1 on e1 and e2, and it is
3 on the other edges. The corresponding pre-invariant is given by

IG,k0 = [13][45]([14][15][34][35])3. (19)

Here [i j] = (αi−α j )
2 as in Sect. 2.2. Theminimizing value isM = 24a0+4a1 = 28b0+4b1

and the stabilizer HG,k0 is the group generated by the permutation (14)(35). The generating
polynomial FG,k0 thus has degree 5!/2 = 60.

We now prove some simple properties of the Cm−i .

Lemma 2.27 Cm−(i−1) < Cm−i .

Proof We have Cm−(i−1) = ∑
e∈Sam−(i−1)

km−(i−1)(e) and Cm−i = ∑
e∈Sam−i

km−i (e) by

definition. Furthermore, km−i (e) is defined by

km−i (e) =
{
Cm−(i−1) + 1 for e ∈ Ram−i

km−(i−1)(e) for e /∈ Ram−i

. (20)

For e ∈ Ram−i we have km−(i−1)(e) = 1, so km−i (e) > km−(i−1)(e) by Cm−(i−1) > 0. For
e /∈ Ram−i , we have km−i (e) = km−(i−1)(e). Using Sam−(i−1) ∪ Ram−i = Sam−i and the first
two formulas we obtain Cm−i > Cm−(i−1), as desired.

��
Corollary 2.28 The sequence Ci is a strictly decreasing sequence. That is, if j > i , then
C j < Ci .

Lemma 2.29 If e /∈ Sai , then k0(e) > Ci .

Proof Suppose that e ∈ Ra j for j < i . If i = j + 1, then k0(e) = C j+1 + 1 = Ci + 1 > Ci .
Suppose now that i > j + 1. Then k0(e) = C j+1 + 1 > Ci + 1 > Ci by Corollary2.28. ��

2.4.1 Comparing invariants

We now consider two homomorphisms ψ,ψ ′ : C[�−1] → K with marked tree filtrations φ

and φ′. We assume that φ and φ′ are isomorphic up to height am . This in particular implies
that they have the same number of branches at every ai ≤ am . Let c be slightly larger than
am , so that neither ψ nor ψ ′ is branched between am and c. Consider the polynomial FG,k0
associated to ψ and c in Definition2.24. By Remark2.18, a root of FG,k0 corresponds to an
edge-weighted graph (G ′, k′) isomorphic to (G, k0). We write

σ : G → G ′ (21)

123



P. A. Helminck

for the isomorphism of graphs. As before, we set

de,ψ := val(ψ(αi − α j )),

de,ψ ′ := val(ψ ′(αi − α j )).

Furthermore, we define the analogue of Sai for G
′ and ψ ′ as follows:

S′
s = {e ∈ E(G ′) : de,ψ ′ ≥ s}. (22)

Here we allow s to be greater than am . If we adopt the same notation for G and ψ , then
Sc = ∅ since Lc is a maximal c-trivial tree. Setting

rs =
∑

e′∈S′
s

k′(e′), (23)

we then have the formula

val(ψ ′(IG ′,k′)) =
∑

2rsbs, (24)

where the sum is over all branch heights s of φ′.

Lemma 2.30 If there exists an e′ ∈ S′
ai such that σ

−1(e′) /∈ Sai , then rai > Ci . If there exists
an e′ ∈ S′

s for s > c, then Cs = 0 < rs .

Proof It suffices to show that k′(e′) > Ci for this particular e′. Let a j = de,ψ for e =
σ−1(e′), so that a j < ai by assumption. By Lemma2.29, we have k0(e) > Ci . Since σ is
weight-preserving, we have k′(e′) = k0(e) > Ci , as desired. The second statement follows
immediately from the fact that Lc is a maximal c-trivial subtree.

��
Lemma 2.31 Let i ≤ m. If σ−1(e′) ∈ Sai for every e

′ ∈ S′
ai , then φ(v, ai ) = φ(w, ai ) if and

only if φ′(σ (v), ai ) = φ′(σ (w), ai ).

Proof Recall that the number of branches of a marked tree filtration φ at a certain height
s is the number of values attained by the restricted function φ : A × {s} → R. Since
Lc = V (G) ⊂ A induces a maximal c-trivial tree for c > am > ai , we find that the
restriction of φ : A × R → R to V (G) also attains the same maximum number of values
for ai . By assumption we have that φ and φ′ are isomorphic up to height am , so they have
the same number of branches at every height s ≤ am . It follows that the number of branches
at ai of the restriction of φ′ to V (G ′) is less than or equal to the number of branches of φ

restricted to V (G). The condition in the lemma now gives a well-defined map from the set of
ai -branches of φ′ to the set of ai -branches of φ. We claim that this map is a bijection. Indeed,
let i1, ..., i
 ∈ V (G) be representatives of the ai -branches with respect to φ so that no pair
of these is in Sai . Using the assumption in the lemma, we then see that σ(i1), ..., σ (i
) are in
different ai -branches with respect to ψ ′. The number of ai -branches in V (G ′) with respect
to ψ ′ is thus greater than or equal to 
. Since we already had the other inequality, it follows
that they are equal and that the induced map of ai -branches is a bijection. Translating this
statement then directly gives the lemma. ��
Corollary 2.32 Suppose that we are in the situation described in Lemma2.31. Then rai = Ci .

Proof Indeed, by definition we have Ci = ∑
e∈Sai k0(e). Since the edges in Sai are exactly

the edges vw with φ(v, ai ) = φ(w, ai ), we obtain Ci = rs from Lemma2.31 and the fact
that σ preserves weights. ��
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Lemma 2.33 Let M ′ be the minimal slope occurring in the Newton polygon of ψ ′(FG,k0).
Then M ′ ≥ M. Furthermore, we have that M ′ = M if and only if there exists an isomorphism
of edge-weighted graphs σ : (G, k) → (G ′, k′) that induces an isomorphism of marked tree
filtrations.

Proof By Eqs. 18 and 24 and Lemmas2.30 and 2.32, we see that M is the minimal value that
can be attained. It occurs exactly when there exists a σ : (G, k) → (G ′, k′) such that the
conditions in Lemma2.31 are satisfied for every height s ∈ {ai }, and S′

c = ∅. We claim that
if these conditions hold, then this gives an isomorphism of marked tree filtrations. We have
to check that φ(v, s) = φ(w, s) if and only if φ′(σ (v), s) = φ′(σ (w), s) for every pair of
vertices v,w ∈ V (G) and every height s. These equalities do not occur for heights s strictly
greater than am , so we only have to check them for heights s ≤ am . For these the equalities
follow from Lemma2.31. Conversely, if σ induces an isomorphism of marked tree filtrations
then we easily see that the conditions in Lemma2.31 are satisfied for every height, so the
minimal value M occurs. ��
Remark 2.34 We can in particular apply Lemma2.33 when φ = φ′. It then says that M is
the minimal slope of the Newton polygon of ψ(FG,k0), thus justifying the nomenclature in
Definition2.24.

We are now ready to prove our main theorem.

Proof of Theorem 1.1 If the marked tree filtrations are isomorphic, then one easily checks that
the corresponding tropical invariants are equivalent.We now prove the converse. Let ai and a′

i
be the branch heights of φ and φ′. We writeψ andψ ′ for the corresponding homomorphisms
from C[�−1] to K . First, assume that a0 �= a′

0 and suppose without loss of generality that
a0 < a′

0. We consider the generating polynomial FG2 = FG2,1 of an edge-weighted graph
(G2, 1) on two vertices with a trivial weight function. The smallest slope in the Newton
polygon of ψ(FG2) is then a0, which is different from a′

0, a contradiction. We conclude that
a0 = a′

0.
We now let am be the largest height such that am-structures of φ and φ′ are isomorphic.
Let n1 be the number of branches of φ at a height c slightly larger than am (so that there is

no branching between c and am). We similarly define n2 for φ′. We suppose without loss of
generality that n1 ≥ n2. If this inequality is strict, then we consider a maximal c-trivial tree
of φ for c > am with edge-weighted graph (G, k0). The slopes of ψ ′(FG,k0) are then larger
than M , because otherwise φ′ would contain a c-trivial subtree of order n1 by Lemma2.33.
Suppose now that n1 = n2 and consider the same (G, k0). If ψ ′(FG,k0) contained M as a
minimal slope, then φ′ would be isomorphic to φ up to a larger height by Lemma2.33 and
Remark2.10, a contradiction. ��

2.5 Newton half-spaces

In this section we use moduli of Newton polygons to write down equations for the subspaces
of trop(D[�−1]) associated to filtration types. The idea here is that the criteria used in the
proof of Theorem1.1 can be represented by unions of linear half-spaces. Explicit examples
of this will be given in Sect. 2.6.

Remark 2.35 The variables bi were used in Sect. 2.4 to denote the branch differences. In this
section, they will be used to denote various other tropical quantities such as the valuations
of the coefficients of the generating polynomials FG,k .
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We start by introducing notation for lines between two points. Let P = (z0, w0) and
Q = (z1, w1) be two B-valued points of Spec(Z[x, y]) for some commutative ring B. We
also assume that z0 − z1 is invertible, so that we can set

h0(x) = x − z0
z1 − z0

,

h1(x) = x − z1
z0 − z1

.

The polynomial describing the line between P and Q is then given by

hP,Q(x) := w1h0(x) + w0h1(x). (25)

That is, the polynomial y − hP,Q(x) lies in the kernel of the homomorphisms Z[x, y] → B
corresponding to P and Q. For a fixed r ∈ N, we now specialize to the case of a polynomial
ring over R in r + 1 variables B = R[br−i ] and let S be the set of pairs {Pi } = {(i, br−i )}.
The reverse labeling will be explained in Example2.40. We view the br−i as the valuations
of the coefficients of some polynomial over a valued field. We fix a pair {Pi , Pj } in S with
i �= j and consider the polynomial hPi ,Pj (x) ∈ B[x]. Given any k ∈ {0, ..., r}, we then set

�k,Pi ,Pj = br−k − hPi ,Pj (k). (26)

We will write �k for this linear polynomial if Pi and Pj are clear from context. This consists
of at most 3monomials: br−i , br− j and br−k . Suppose that we are givenψ(b) = (ψ(br−i )) ∈
T
r+1, where T = R ∪ {∞} is the tropical affine line. Here we view ψ(b) as the result of

applying a tropical evaluation map ψ(·) to the variables br−i , see Remark2.38 for more on
this. If ψ(br−i ), ψ(br− j ) and ψ(br−k) are in R, then we can safely evaluate �k at these
values and obtain a valueψ(�k) ∈ R. Here we use ordinary subtraction on R. If one of these
values is infinite, then we define ψ(�k) as follows:

1. If ψ(br−i ), ψ(br− j ) ∈ R and ψ(br−k) = ∞, then we set ψ(�k) = ∞.
2. If either ψ(br−i ) or ψ(br− j ) is ∞, then we set ψ(�k) = −1.

Ourmotivation for thesewill be given after Definition2.36.We nowuse the�k to definemod-
uli spaces ofNewton polygons. Consider theNewton polygonN (ψ) of the points {(i, ψ(bi ))}
for a given vector ψ(b) ∈ T

r+1. We assume here that all line segments inN (ψ) are of finite
slope. For any two points ψ(Pi ) = (i, ψ(bi )) and ψ(Pj ) = ( j, ψ(b j )) in this set, we can
give the following necessary conditions for these to be endpoints of N (ψ). We first require
any point ψ(Pk) with i < k < j to be above or on the line determined by ψ(Pi ) and ψ(Pj ).
For points ψ(Pk) with k < i , we require ψ(Pk) to be strictly above this line. This gives the
following inequalities.

Definition 2.36 (Newton half-spaces) Let Pi , Pj and �k be as above. Let T
r+1 be the

r + 1-dimensional tropical affine line. We define I (Pi , Pj ) ⊂ T
r+1 to be the set of all

ψ(b) = (ψ(br−i )) ∈ T
r+1 such that the following hold:

1. For every integer k with i ≤ k ≤ j , we have ψ(�k) ≥ 0.
2. For every integer k with k < i , we have ψ(�k) > 0.

We call I (Pi , Pj ) the Newton half-space associated to Pi and Pj .

Remark 2.37 Note that these conditions by themselves are not enough to deduce the existence
of line segments in Newton polygons. If we have a disjoint sequence of these conditions that
completely cover S (in the obvious sense), then this does determine the Newton polygon.
See Example2.40 for instance.
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Remark 2.38 Let Z[cr−i ] be a polynomial ring in r +1 variables (where i ranges from 0 to r )
and let ψ : Z[cr−i ] → K be a K -valued point for some non-archimedean field K . We then
obtain an element ψ(b) = (ψ(br−i )) ∈ T

r+1 by ψ(br−i ) := val(ψ(cr−i )). We view this
as extending the evaluation homomorphism ψ to a tropical evaluation map on the variables
br−i . If ψ is clear from context, then we write b = (br−i ) for this vector.

Remark 2.39 Our definition of ψ(�k) in the infinite cases comes from the following. Let
Z[cr−i ] and ψ : Z[cr−i ] → K be as in Remark2.38 and write ψ(Pi ) = (i, ψ(br−i )). We
assume here that the Newton polygon N (ψ) of the ψ(Pi ) consists of finite slopes only. For
any segment 
 = ψ(Pi )ψ(Pj ) in N (ψ), we then have ψ(b) ∈ I (Pi , Pj ). Conversely, we
would now like to check whether a segment 
 = ψ(Pi )ψ(Pj ) for two arbitrary points ψ(Pi )
and ψ(Pj ) with i < j is in N (ψ). If one of the coefficients ψ(br−i ) or ψ(br− j ) is infinite,
then these do not give rise to a line segment by our finiteness assumption, so we should
impose the condition ψ(b) /∈ I (Pi , Pj ). If ψ(br−i ) and ψ(br− j ) are finite and ψ(br−k) is
infinite, then ψ(br−k) does not give an obstruction to ψ(Pi )ψ(Pj ) giving a line segment, so
we should impose ψ(b) ∈ I (Pi , Pj ). This is our motivation for defining ψ(�k) as above.

Example 2.40 Suppose that we want to describe tuples

b = (b4, b3, b2, b1, b0) ∈ T
5

that give a Newton polygon as in Fig. 3 (see Remark2.38 for the notation).
Then b0, b2 and b4 are finite, so b0, b2, b4 ∈ R. We first write down the polynomials

�k,P2,P4 for the pair (P2, P4). The non-trivial ones are given by

�3,P2,P4 = b1 − 1/2(b0 + b2),

�1,P2,P4 = b3 + 1/2b0 − 3/2b2,

�0,P2,P4 = b4 − 2b2 + b0.

The nontrivial polynomial �1,P0,P2 for the pair (P0, P2) is then

�1,P0,P2 = b3 − 1/2(b2 + b4).

We directly find that the set of tuples that describe a Newton polygon as in Fig. 3 is given by
I (P2, P4) ∩ I (P0, P2). Explicitly, it is given by the inequalities

b1 ≥ 1/2(b0 + b2),

b3 > 3/2b2 − 1/2b0,

b4 > 2b2 − b0,

b3 ≥ 1/2(b2 + b4).

Note that if we assign an additive weight function using the rules wt(bi ) = i and wt(m/n) =
m/n for a fraction m/n (in particular wt(−1) = −1), then the above hypersurfaces are
homogeneous. This is the reason we defined S as the set of (i, br−i ) instead of the set of
(i, bi ).

Definition 2.41 (Moduli of Newton polygons) Consider a vector ψ(b) = (ψ(br−i )) ∈ T
r+1,

where at least ψ(b0) and ψ(br ) are finite. WriteN (ψ) for the Newton polygon of the points
ψ(Pi ) and consider its essential vertices ψ(Pi1), ψ(Pi2),..., ψ(Pit ). The moduli space of
Newton polygons of type N (ψ) is then the intersection of the half-spaces I (Pi j , Pi j+1). We
will also write this intersection as I (Pi1 , ..., Pit ).
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Fig. 3 One of the Newton polygons in Example2.40. The dotted lines are the x and y-axes

Remark 2.42 In this paper, we are interested in the Newton polygons of the generating poly-
nomials FG,k defined in Sect. 2.2. These satisfy two additional conditions:

1. br ∈ R,
2. b0 = 0.

The first holds because the roots of FG,k are all nonzero. The second holds since the leading
coefficient of FG,k is 1. We thus see that our tropicalization map from D[�](K ) lands in the
subspace R × T

r−1 × {0} ⊂ T
r+1.

2.5.1 Equations for filtration types

We now explain how the proof of Theorem1.1 gives a set of half-spaces that completely
determines the filtration type of a separable polynomial. Throughout this section, we fix the
degree d of the polynomials in question and write A = {α1, ..., αd } as in Sect. 2.4.We also fix
our complete non-archimedean field K throughout this section. We start with a preliminary
observation on the number of filtration types.

Lemma 2.43 For any fixed number of leaves, the number of filtration types is finite.

Proof Indeed, at every branch height there are only finitely many options for every branch to
split. Since there are only finitely many branch heights, we see that the number of filtration
types is finite. ��

Suppose now that we have a filtration type, represented by a marked tree filtration φ. If its
branch heights are�-rational (where� is the value group of K ), then we can find a separable
polynomial f (x) ∈ K [x]with tree equal to φ. Since we can freely change the branch heights
in a filtration type, we see that we can represent any filtration type by a K -rational polynomial.
By Lemma2.43, there are only finitely many of these, so we can represent the filtration types
by a finite set of polynomials G = { fi }. We write ψi for the homomorphisms D[�−1] → K
corresponding to these and φi for their marked tree filtrations.
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Notation 2.44 (Invariant generators of filtration types) Let fi ∈ G be a filtration type. For
every height c ∈ R, we obtain an edge-weighted graph and thus a generating polynomial using
the construction in Sect. 2.4. By varying c, this gives finitely many edge-weighted graphs
(since they only change at branch heights) and thus finitelymany generating polynomials.We
write ci, j for the j-th height corresponding to the polynomial fi .We denote the corresponding
edge-weighted graphs by Gi, j and the generating polynomials by Fi, j . The degree of Fi, j
is written as d(i, j). We furthermore write G2 for a trivially weighted graph of order two on
A = {α1, ..., αd} with generating polynomial F2 of degree d(2) = (d

2

)
.

By mapping a polynomial f with corresponding homomorphism ψ f : D[�−1] → K
to the valuations of the coefficients of the generating polynomials ψ f (F2) and ψ f (Fi, j ) for
every i, j , we obtain a map

trop : D[�−1](K ) → T
d(2)+1 ×

∏

i, j

T
d(i, j)+1. (27)

A quick inspection of the proof of Theorem1.1 shows that the invariants used there are a
subset of the ones we use here, so the conclusion of that theorem still holds with this more
restricted (but finite) set of invariants.

Remark 2.45 For the upcoming material, it is convenient to define the components of trop( f )
more explicitly. We write Fi, j = ∑d(i, j)

k=0 cd(i, j)−k,i, j xk and let the component of trop( f ) in
T
d(i, j)+1 be (bd(i, j)−k,i, j ), where bd(i, j)−k,i, j = val(ψ f (cd(i, j)−k,i, j )). A general element of

T
d(2)+1×∏

i, j T
d(i, j)+1 will be denoted by Q and a general elementTd(i, j)+1 will be denoted

by πi, j (Q) = (bd(i, j)−k,i, j ), where k = 0, ..., d(i, j). Finally, we assign the set of points
ρi, j (πi, j (Q)) = {(k, bd(i, j)−k,i, j )} in R × T to any such element πi, j (Q) = (bd(i, j)−k,i, j ).
These can be thought of as the points in the corresponding Newton polygon.

We would now like to distinguish between the different filtration types of the polyno-
mials on the left-hand side of Eq.27 using various half-spaces on the right-hand side. For
every filtration type represented by the polynomial fi , we first consider the Newton polygon
N (ψi (F2)) of F2 with respect to ψi . For each such Newton polygon, we obtain a moduli
space of Newton polygons using Definition2.41. This gives us our first set of equations on
T
d(2)+1 × ∏

i, j T
d(i, j)+1.

We now consider a fixed filtration type given by a polynomial fs . We write Gs,0 for the set
of polynomials whose Newton polygon N (ψi (F2)) is of the same type as N (ψs(F2)). That
is, give rise to the same moduli space, see Remark2.41. We now in particular find that the
fi ∈ Gs,0 have the same number of branch heights. Since filtration types are defined up to a
change of edge lengths, we can and do assume that the branch heights for all the fi ∈ Gs,0
are the same.

Consider the polynomial ψs(Fs,0). The minimizing value as in Definition2.24 then gives
the minimal slope in the Newton polygon of ψs(Fs,0) by Lemma2.33. Furthermore, this
minimizing value can be expressed as a linear function in terms of the valuations of the
coefficients of F2. More specifically: the branch heights are determined linearly by the slopes
of the Newton polygon of F2 and the minimizing value is a linear function in terms of
the branch heights, see Example2.26 for instance. We denote this function by Ms,0. For
any Q ∈ T

d(2)+1 × ∏
i, j T

d(i, j)+1 with projection π2(Q) ∈ T
d(2)+1 lying in the Newton

polygon space of N (ψs(F2)), we consider the line LQ in R
2 of slope −Ms,0(π2(Q)) going

through the point (d(s, 0), 0). Since π2(Q) lies in the Newton polygon moduli space of
ψ fs (F2), we find that the slope −Ms,0(π2(Q)) is finite. As in Remark2.45, every tuple
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πs,0(Q) = (bd(s,0)−i,s,0) ∈ T
d(s,0)+1 gives a set of points ρs,0(πs,0(Q)). The second set of

equations for fs then follows by imposing the following conditions:

• The set of points ρs,0(πs,0(Q)) must lie on or above the line LQ .
• There exists a point in ρs,0(πs,0(Q)) that lies on the line LQ .

It should be clear that these conditions can be represented by a finite union of intersections
of linear half-spaces in T

d(2)+1 × ∏
i, j T

d(i, j)+1. If Q = trop( f ) satisfies these conditions,
then we know from Lemma2.33 that the marked tree filtration φ f of f contains a subtree
isomorphic to the cs,0-maximal subtree of fs for a0 < cs,0 < a1.

To know that φ f is in fact isomorphic up to height a1 to φs , we consider the filtration types
in Gs,0 that have more branches than fs at cs,0. The corresponding set is denoted by Gs,0,>.
For each fi ∈ Gs,0,>, we can again express the minimizing value as a linear function Mi,0 in
the valuations of the coefficients of F2. As before, we denote the line of slope−Mi,0(π2(Q))

through (d(i, 0), 0) by LQ and the set of points in R × T corresponding to the projection
πi,0(Q) by ρi,0(πi,0(Q)). We then have the following set of conditions for fi ∈ Gs,0,>:
• Every point of ρi,0(πi,0(Q)) must lie strictly above the line LQ .

We need the strictness here, because if some point in ρi,0(πi,0(Q)) were to lie on this line,
then the corresponding marked tree filtration would contain a subtree with more branches
than φs . As before, it is not too hard to see that these conditions can be represented by linear
half-spaces. By combining these for all fi ∈ Gs,0,>, we obtain our third set of equations for
fs . If trop( f ) now satisfies all of the conditions given above, then φ f is isomorphic to φs

up to height a1. We can then start over and consider the set Gs,1 of all filtration types that
satisfy the previous equations, so their tree filtrations are isomorphic to φs up to height a1. By
continuing in this way, we then obtain a set of equations for each filtration type fs . We denote
the corresponding space these equations cut out by Is . It is then clear from the construction
that every trop( f ) lies in a unique Is .

Remark 2.46 To distinguish between two polynomials that have the same filtration type, we
only need to look at the corresponding Newton polygon of F2. The slopes of these polygons
give us the branch heights, which in turn gives us the desired marked tree filtration. In other
words, to navigate the moduli space of trees with the same filtration type, we accordingly
change the branch heights. To go from one filtration type to the other, we can let the difference
between two of these branch heights go to zero.We then obtain a newfiltration type by joining
the branches in the obvious way. It would be interesting to investigate these limits from a
moduli space point of view as in [1].

Remark 2.47 Note that the spaces we defined in this section are different from the ones
defined in Sect. 2.5. That is to say, they cannot simply be interpreted in terms of the spaces
introduced in Definitions2.36 and 2.41. It might be that the Newton moduli spaces of the
FG,k defined in Sect. 2.5 are enough to determine the filtration type of a polynomial. We will
see in the upcoming examples that this is true for polynomials f of degree ≤ 5.

2.6 Examples

In this sectionwe give explicit examples of polyhedral equations associated to filtration types.
We start with phylogenetically trivial trees, whose moduli space can be expressed purely in
terms of the invariants associated to a graph of order two. We then give equations for the
filtration types of polynomials of degree d ≤ 5 using the Newton half-spaces introduced in
Sect. 2.5.
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Fig. 4 The two filtration types for
a polynomial of degree 3. The
blue point corresponds to ∞ and
the arrow corresponds to the
contraction of the edge e1

Remark 2.48 Throughout this section, we write 
(ei ) for the length of a finite edge ei in
a marked tree filtration. Here we view a marked tree filtration as a metric tree using the
construction in Sect. 2.1.

2.6.1 Trivial trees

Consider the 1-marked or unmarked phylogenetic tree type of a marked tree filtration on d
elements. We say that it is trivial if it consists of a single vertex with d + 1 leaves attached
to it. For polynomials, this translates to the following.

Proposition 2.49 Let f (x) be a separable polynomial over K and let G2 be a trivially
weighted graph of order two with generating polynomial F2 of degree d(2). Then the 1-
marked (or unmarked) phylogenetic type of the tree associated to f (x) is trivial if and only
if π2(trop( f )) ∈ I (P0, Pd(2)).

Proof We have that the tree is trivial if and only if val(αi − α j ) is constant for every pair of
roots. This in turn is equivalent to the Newton polygon of F2 having a single line segment,
so we obtain the statement of the proposition. ��

2.6.2 Polynomials of degree three

Consider a separable polynomial of degree d = 3:

f (x) = x3 − a1x
2 + a2x − a3. (28)

There are exactly two types for the marked tree filtration corresponding to the roots of f , see
Fig. 4.

In this case, we can detect the two types using a trivially weighted graph G2 of order two.
The generating polynomial F2 has degree 3 and there are two types of Newton polygons:
either there is a point where the slope changes (corresponding to a tree of type II), or there
is no such point (corresponding to a tree of type I).

We write F2 = ∑3
i=0 c3−i x i for the generating polynomial and bi = val(ci ). Explicitly,

we have

c3 = −a22a
2
1 + 4a32 + 4a3a

3
1 − 18a1a2a3 + 27a23 ,

c2 = a41 − 6a2a
2
1 + 9a22 .
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Here c3 is the discriminant of f (x).Write Pi = (i, b3−i ) for the points in theNewton polygon
of F2. If theNewtonpolygonof F2 has a breakingpoint, then it occurs at P1 = (1, b2). In terms
of the notation introduced in the previous section, we thus have the following description of
the filtration types:

Filtration type Polyhedron 2
(e1)

I I (P0, P3) –

II I (P0, P1, P3)
2b3 − 3b2

2

More explicitly, we can describe these Newton polygon half-spaces as follows. The line
through (1, b2) and (3, 0) attains the value 3/2 · b2 at 0, so we have 3b2 < 2b3 if and only if
the tree is of type II and 3b2 ≥ 2b3 if and only if the tree is of type I. We can now transform

this criterion so that it becomes slightly more familiar. Let jtrop = c32
c23

. Then the filtration

type of f (x) is II if and only if val( jtrop) < 0.
This has a well-known interpretation in terms of elliptic curves which we now recall. For

char(K ) �= 2, let E be the elliptic curve defined by y2 = f (x) and let j(E) be its j-invariant.
We then have

216 jtrop = j(E)2. (29)

If the residue characteristic of K is furthermore not 2, then the tree associated to f (x) has
type II if and only if E has multiplicative reduction. This will follow from Proposition3.13,
but see also [12, Proposition 3.10] for a proof that works when the residue characteristic is
not equal to 2 or 3. The proof in the discretely valued case can be found in [16, Chapter VII].
We will see in Sect. 3 that we can in general characterize the reduction types of superelliptic
curves using the filtration type of f (x).

2.6.3 Polynomials of degree four

We write

f (x) = x4 − a1x
3 + a2x

2 − a3x + a4. (30)

If we consider unmarked phylogenetic trees with 5 points, then there are three types. If we
add a marked point, then there are five types, see Fig. 5.

Here we used a Roman numeral to denote the unmarked phylogenetic type and an Arabic
numeral to denote the non-leaf vertex that the marked point is attached to. Among these five
1-marked phylogenetic types, there are six filtration types. That is, the graph III.2 admits two
non-isomorphic marked tree filtrations: one with 
(e1) > 
(e2) (or symmetrically 
(e2) >


(e1)) and one with 
(e1) = 
(e2). We denote the first by III.2.1 and the second by III.2.2.
We consider the invariants corresponding to a graph G2 of order two and trivial weight

function. The generating polynomial F2 = ∑6
i=0 c6−i x i has degree |HG,1| = (4

2

) = 6, but
we will only need c3, c4, c5 and c6. Explicitly, we have the following formulas:

c3 := −a61 + 8a41a2 + 8a31a3 − 24a21a
2
2

− 6a21a4 − 30a1a2a3 + 28a32 + 16a2a4 + 26a23 ,

123



Invariants for trees of non-archimedean polynomials...

Fig. 5 The five 1-marked phylogenetic types for a polynomial of degree 4 considered in Sect. 2.6.3. The blue
point corresponds to ∞ and an arrow corresponds to a contraction of one of the edges

c4 := −6a51a3 + 2a41a
2
2 + 6a41a4

+ 38a31a2a3 − 12a21a
3
2 − 32a21a2a4 − 25a21a

2
3

− 54a1a
2
2a3 + 56a1a3a4 + 17a42 + 24a22a4 + 48a2a

2
3 − 112a24 ,

c5 := −9a41a
2
3 + 6a31a

2
2a3 + 18a31a3a4 − a21a

4
2 − 6a21a

2
2a4

+ 42a21a2a
2
3 + 72a21a

2
4 − 26a1a

3
2a3 − 120a1a2a3a4 − 54a1a

3
3

+ 4a52 + 32a32a4 + 18a22a
2
3 − 192a2a

2
4 + 216a23a4,

c6 := −27a41a
2
4 + 18a31a2a3a4 − 4a31a

3
3

− 4a21a
3
2a4 + a21a

2
2a

2
3 + 144a21a2a

2
4 − 6a21a

2
3a4 − 80a1a

2
2a3a4

+ 18a1a2a
3
3 − 192a1a3a

2
4 + 16a42a4 − 4a32a

2
3 − 128a22a

2
4

+ 144a2a
2
3a4 − 27a43 + 256a34 .

Here the polynomial c6 is again the discriminant of f (x). We write bi = val(ci ) for the
corresponding valuations.

The polyhedra in Table1 now describe the various filtration types. The formulas for the
edge lengths follow by subtracting the various slopes in the Newton polygon of F2. We
illustrate this for the edge e2 in III.1 here. The branch heights (multiplied by a factor of 2)
are the slopes of the Newton polygon of F2. We now need the largest branch height minus
the second largest branch height. We thus calculate the slope of the leftmost segment minus
the slope of the segment next to it. This gives

2
(e2) = b6 − b5 − (b5 − b3)

2
= 2b6 − 3b5 + b3

2
.

The Newton half-spaces can be written out explicitly as follows. We first find the polyno-
mials hPi ,Pj (x):

hP1,P3(x) = (b3 − b5)

2
x + 3b5 − b3

2
,

hP1,P2(x) = (b4 − b5)x + 2b5 − b4,
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Table 1 The polyhedra for
polynomials of degree four

Filtration type Polyhedra 2
(e1) 2
(e2)

I I (P0, P6) – –

II.1 I (P0, P3, P6)
b6 − 2b3

3
–

II.2 I (P1, P6)
5b6 − 6b5

5
–

III.1 I (P1, P3, P6)
3b5 − 5b3

6

2b6 − 3b5 + b3
2

III.2.1 I (P1, P2, P6)
4b5 − 5b4

4

4b6 − 4b5 − b4
4

III.2.2 I (P0, P2, P6)
2b6 − 3b4

4

2b6 − 3b4
4

Table 2 Explicit half-spaces for polynomials of degree four

Filtration type Polyhedra

I
i

6
b6 ≤ bi for i ∈ {3, 4, 5}

II.1
i

3
b3 < bi for i ∈ {4, 5, 6}, 2b6 + b3 ≤ 3b5 and b6 + 2b3 ≤ 3b4

II.2
i

5
b5 ≤ bi for i ∈ {3, 4} and 6b5 < 5b6

III.1
i

3
b3 < bi for i ∈ {4, 5, 6}, b3 + b5 ≤ 2b4 and 3b5 − b3 < 2b6

III.2.1
3

4
b4 ≤ b3,

i

4
b4 < bi for i ∈ {5, 6} and 2b5 − b4 < b6

III.2.2
3

4
b4 ≤ b3,

i

4
b4 < bi for i ∈ {5, 6} and b4 + b6 ≤ 2b5

hP0,P2(x) = (b4 − b6)

2
x + b6,

hP0,P3(x) = (b3 − b6)

3
x + b6.

The conditions for I (P0, P3) for instance are now hP0,P3(1) ≤ b5 and hP0,P3(2) ≤ b4. By
writing these out, we then arrive at the decomposition in Table 2.

2.6.4 Polynomials of degree five

We write

f (x) = x5 − a1x
4 + a2x

3 − a3x
2 + a4x − a5. (31)

There are 7 types of unmarked phylogenetic treeswith 6 leaves, see Fig. 6. By adding amarked
point, we obtain 12 types. We use a Roman numeral to denote the unmarked phylogenetic
type, we add an Arabic numeral to denote the marked vertex. Here we read the vertices
from left to right. These 1-marked phylogenetic types can be furthermore subdivided into 20
different filtration types.

We now encounter a new phenomenon: the invariants associated to a graph of order
two do not give enough information to distinguish between the tree types IV.2 and VI.2.
For a concrete example, consider the trees labeled I and II in Fig. 1 with branch heights
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Fig. 6 The seven unmarked phylogenetic types for a polynomial of degree 5 considered in Sect. 2.6.4. The
arrows correspond to the contraction of one of the edges and the numbers next to the vertices correspond to
the number of leaves attached to the vertex

a0 < a1 < a2. The Newton polygons of the polynomials F2 for these marked tree filtrations
are identical: they both have a line segment of slope a0 and multiplicity 6, a line segment of
slope a1 and multiplicity 3, and a line segment of slope a2 and multiplicity 1. To distinguish
between these trees, we will use the invariants associated to a graph of order three.

Before we study these higher-order invariants, we first describe the trees that can be
distinguished using F2 = ∏

i< j (x − [i j]) = ∑10
i=0 c10−i,2xi . We leave it to the reader to

write down the ci in terms of the ai . We write b10−i = b10−i,2 for the valuations of the c10−i

and Pi = (i, b10−i,2). We have the following preliminary subdivision of the phylogenetic
tree types:

Polyhedron Tree types

I (P6, P10) III.2, IV.3, V.1, VI.1, VII.
I (P4, P10) IV.2, VI.2
I (P3, P10) II, IV.1
I (P2, P10) V.2
I (P1, P10) III.1
I (P0, P10) I

Here the tree types IV.2, V.2, VI.2 and VII admit multiple filtration types. We now subdivide
the filtration types satisfying I (P6, P10) by adding conditions for the extra line segments in
the Newton polygon of F2. The result is as follows:
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Filtration type Extra polyhedra 2
(e1) 2
(e2) 2
(e3)

III.2 I (P0, P6)
2b10 − 5b4

12
– –

IV.3 I (P0, P3, P6)
b10 − 2b7 + b4

3

4b7 − 7b4
12

–

V.1 I (P1, P6)
4b9 − 9b4

20

5b10 − 6b9 + b4
5

–

VI.1 I (P1, P3, P6)
4b7 − 7b4

12

3b9 − 5b7 + 2b4
6

2b10 − 3b9 + b7
2

VII.1 I (P0, P1, P2, P6)
b8 − 2b4

4

4b9 − 4b8 − b4
4

4b10 − 4b9 − b4
4

VII.2 I (P0, P2, P6)
b8 − 2b4

4

2b10 − 3b8 + b4
4

2b10 − 3b8 + b4
4

Here the edges are as in Fig. 6. Furthermore, in VII.1 we took e2 and e3 so that 
(e2) < 
(e3).
We can similarly treat trees of type II, III.1, IV.1 and V.2:

Filtration type Extra polyhedra 2
(e1) 2
(e2)

II I (P0, P3)
7b10 − 10b7

21
–

III.1 I (P0, P1)
9b10 − 10b9

9
–

IV.1 I (P0, P1, P3)
7b9 − 9b7

14

2b10 − 3b9 + b7
2

V.2.1 I (P0, P1, P2)
8b9 − 9b8

8

8b10 − 8b9 − b8
8

V.2.2 I (P0, P2)
4b10 − 5b8

8

4b10 − 5b8
8

Here V.2.1 is the filtration type with 2
(e1) < 2
(e2) (or 2
(e2) < 2
(e1)) and V.2.2 is the
filtration type with 2
(e1) = 2
(e2). To distinguish between the types in I (P4, P10), we use
higher-order invariants. Consider the trivially weighted complete graph G3 on three vertices.
The corresponding polynomial is F3 = ∏

(x − σi ([12][13][23])), where the product is over
a set of representatives σi of S5/H and H is the stabilizer of [12][13][23]. This stabilizer has
order 12, so F3 has degree 5!/12 = 10. We denote the coefficients by ci,3, where the labeling
is so that F3 = ∑10

i=0 c10−i,3xi . For the Newton polygon conditions as in Definition2.36,
we will use the set {Pi,3} where Pi,3 = (i, b10−i,3). For trees of type IV.2, we consider three
cases:

1. 
(e1) = 
(e2),
2. 
(e1) > 
(e2),
3. 
(e1) < 
(e2).

We write IV.2.i for these. We then obtain the following subdivision:
For trees of type VI.2, we have a similar subdivision, see Table3. Here the labeling

for the edges is as in Fig. 6. The five different filtration types correspond to the different
configurations of 
(e1), 
(e2) and 
(e2) + 
(e3). They are given by

1. 
(e1) < 
(e2) < 
(e2) + 
(e3),
2. 
(e1) = 
(e2) < 
(e2) + 
(e3),
3. 
(e2) < 
(e1) < 
(e2) + 
(e3),
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Filtration type Extra polyhedra 2
(e1) 2
(e2)

IV.2.1 I (P0, P4)
3b10 − 5b6

12

3b10 − 5b6
12

IV.2.2 I (P0, P3, P4)
b10 − 4b7 + 3b6

3

6b7 − 7b6
6

IV.2.3 I (P1, P4), I (P4,3, P10,3)
2b9 − 3b6

6

3b10 − 4b9 + b6
3

Table 3 The filtration types for trees of 1-marked phylogenetic type VI.2

Filtration
types

Extra polyhedra 2
(e1) 2
(e2) 2
(e3)

VI.2.1 I (P1, P3, P4)
6b7 − 7b6

6

b9 − 3b7 + 2b6
2

2b10 − 3b9 + b7
2

VI.2.2 I (P1, P4), I (P3,3, P10,3)
2b9 − 3b6

6

2b9 − 3b6
6

3b10 − 4b9 + b6
3

VI.2.3 I (P1, P2, P4), I (P3,3, P6,3, P10,3)
2b9 − 3b8 + b6

2

3b8 − 4b6
6

b10 − 2b9 + b8
1

VI.2.4 I (P0, P2, P4)
b10 − 2b8 + b6

2

3b8 − 4b6
6

b10 − 2b8 + b6
2

VI.2.5 I (P1, P2, P4), I (P4,3, P6,3, P10,3)
b10 − 2b9 + b8

1

3b8 − 4b6
6

2b9 − 3b8 + b6
2

4. 
(e2) < 
(e1) = 
(e2) + 
(e3),
5. 
(e2) < 
(e2) + 
(e3) < 
(e1).

Remark 2.50 Let us briefly mention what happens for polynomials of degree six. In this case,
there are 15 unmarked phylogenetic types, which can be further subdivided into 40 1-marked
phylogenetic types and 80 filtration types. As with degree five polynomials, the tropical
invariants of the complete graph of order 2 do not completely determine the filtration types.

3 The semistable reduction type of superelliptic curves

In this section, we use the invariants introduced in the previous section to determine the
semistable reduction type of a superelliptic curve Xn, f defined by yn = f (x), where f (x)
is a separable polynomial and n is coprime to the residue characteristic. By Theorem1.1,
the tropical invariants give us the marked tree filtration corresponding to the roots of f (x)
and we show here that this is enough to determine the minimal skeleton of Xn, f . A version
for completely marked trees in the discretely valued case can be found in [9], we extend
these results to the non-discrete case here using the machinery of Berkovich spaces. We will
assume throughout Sect. 3 that K is a complete algebraically closed non-archimedean field.

We first recall a result known as the tame simultaneous semistable reduction theorem:

Theorem 3.1 Let (X ′, D′) → (X , D) be a residually tame covering of marked curves. Then
the inverse image of any (strongly) semistable vertex set V of (X , D) is a (strongly) semistable
vertex set for (X ′, D′).
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Proof See [14, Theorem 3.1] for the result over a nondiscrete valuation ring and [13, Theorem
1.1] for its counterpart over a discrete valuation ring. Weaker versions of this theorem can
be found in [21, Proposition 4.30] and [20, Theorem 2.3], where the covers are assumed to
be Galois with Galois group G satisfying char(k) � |G|. ��
Remark 3.2 In terms of ordinary algebraic geometry, this theorem says that for a residually
tame covering of marked curves (X ′, D′) → (X , D), the normalization of a (strongly)
semistable model X/R of (X , D) in the field extension K (X) ⊂ K (X ′) gives a (strongly)
semistable model for (X ′, D′), see [14, Sect. 3].

For the superelliptic curve Xn, f with covering map φ : Xn, f → P
1 given locally by

(x, y) �→ x , we impose the following conditions so that we can use Theorem3.1.We suppose
that either char(k) = 0 or char(k) is coprime to n if char(k) �= 0. The morphism φ is then
automatically residually tame. For the branch locus B,we easilyfind that B ⊂ Z( f (x))∪{∞}.
We write D = Z( f (x)) ∪ {∞}.

We now consider the metric tree in P
1,an associated to D ⊂ P

1(K ) by the construction
in Remark2.5. By taking the points in this tree of valence not equal to two, we obtain a
strongly semistable vertex V (�) of (P1, D) with skeleton � and semistable model Y . For
the remainder of this section, we use this skeleton �, which lifts to a skeleton �(Xn, f )

of Xn, f by Theorem3.1. We can enhance the map of skeleta �(Xn, f ) → � to a tame
covering of metrized complexes using [2, Lemma 4.33]. This in particular implies that the
local Riemann–Hurwitz formulas hold, see [2, Sect. 2.12].

To reconstruct �(Xn, f ) from �, we determine the following:

1. (Edges) The number of open annuli lying over an open annulus. See3.7.
2. (Vertices) The number of points lying over a type-2 point of �. See3.8.
3. (Gluing) A prescription for gluing the edges and vertices. See3.9.

The first two follow from the non-archimedean slope formula and local considera-
tions. These then also determine the genera of the type-2 points in �(Xn, f ) by the local
Riemann–Hurwitz equations. For the third, we show that the transitive Z/nZ-action com-
pletely determines the underlying graph of �(Xn, f ).

After the proof of Theorem1.2, we prove a criterion for potential good reduction in
Proposition3.13. This proposition says that a superelliptic curve has potential good reduction
if and only if the tree of f (x) is trivial. If we replace the zero locus of f (x) by the branch locus
of a more general map X → P

1, then the corresponding statement is false, see Remark3.17.
We end this section by determining �(Xn, f ) for deg( f (x)) ≤ 5 in terms of the tropical
invariants.

Remark 3.3 Most of the results on coverings in Sect. 3.1 are valid for more general polyno-
mials f with possible double factors. We use the separability assumption on f in the proof of
Theorem1.2 to invoke our results on tropical invariants from Sect. 2. To obtain similar invari-
ants for non-separable polynomials, one can write f = gr11 · ...grkk for separable polynomials
gi of degree di with no common factors. Theorem1.1 then determines the marked tree fil-
trations of the various products of the gi up to isomorphism. To recover the marked points,
one can then generalize the FG,k by symmetrizing over products of symmetric groups. This
gives a new set of tropical invariants and we suspect that the corresponding generalization of
Theorem1.1 also holds. We leave this open for now and content ourselves with the special
case where f is separable.
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Remark 3.4 We quickly highlight the main differences between the material in Sect. 3 and
[9]. First, the base field is no longer discretely valued, so [20, Theorem 2.3] and a number
of other algebraic results can no longer be used. The machinery of Berkovich spaces makes
up for this deficiency, as we will see shortly. Overall, the results obtained in Sect. 3.1 can
be considered as more general than the ones in [9], as they also determine the skeleton of a
superelliptic curve Xn, f over a finite extension of a discretely valued field, see Remark3.12
for a similar discussion. Secondly, we note that the proof of [9, Theorem 4.5] is incomplete
in the sense that the gluing mentioned above is not fully explained. This is rectified here by
Lemma3.9. Finally, the content of Proposition3.13 is new, as are the explicit tropical moduli
spaces in Sect. 3.2.1.

3.1 Reconstructing the skeleton

We start by reviewing the set-up given in the beginning of the proof of [14, Theorem 1.3].
The skeleton � of P

1,an corresponds to a strongly semistable model Y over the valuation
ring R. The inclusion of function fields corresponding to Xn, f → P

1 can be written as
K (x) ⊂ K (x)(α), where αn = f (x). We write G = Z/nZ for the Galois group of this
covering.ByTheorem3.1, the normalizationX ofY in K (Xn, f ) is again a strongly semistable
model and we have a finite morphism X → Y . We can calculate the normalization near the
generic point η corresponding to a type-2 point y as follows. We first write f = fη · ω,

where vη( fη) = 0 and ω ∈ K . The element αη = α

ω1/n is then integral overOY,η, satisfying

αn
η = fη. By our assumption on the residue characteristic, we then find that the extension

OY,η ⊂ OY,η[αη] is étale. Since OY,η is normal, this implies that OY,η[αη] is also normal,
so the points lying over η are described by the scheme

Z = Spec(OY,η[αη]), (32)

or equivalently by its base change over Spec(k(η)). The points of this scheme are in turn
given by the following lemma.

Lemma 3.5 Let r be the largest divisor of n such that f y ∈ k(η) can be written as h
r = f y ,

where h ∈ k(η). The number of points in X lying over η ∈ Y is equal r . Let k = n/r .
The residue field extension k(η) ⊂ k(η′) for any point η′ lying over η is k(η)-isomorphic to
k(η)[z]/(zk − h).

We will give a more explicit formula for the vertices in Lemma3.8. First, we determine
the number of edges lying above an edge. To do this, we switch to the theory of Berkovich
spaces and use [2, Theorem 4.23(2)], which says that we can determine the expansion factor
using the morphism of residue curves.

Wefirst recall some standard results onBerkovich spaces. Thefinitemorphismof algebraic
curves φ : Xn, f → P

1 induces a finite morphism of analytifications φan : X an
n, f → P

1,an.
We denote this analytified morphism by φ to ease notation. The latter is piecewise linear by
[2, Theorem 4.23(1)]. For any bounded line segment e′ in X an where φ is linear, we then
have a well-defined expansion factor de′ , which is the slope of φ along this segment. Using
the results in [4, Sect. 2], one then sees that this expansion factor is the degree of φ on e′.

We use this on a specific set of line segments in X an
n, f . The semistable model Y for the

marked curve (P1, D) gives a finite set of open annuli and a set of open disks. On the open
annuli V � S+(a) in this decomposition the covering is Kummer, which is to say that for
every connected component U of φ−1(V ) there is an a ∈ K ∗ with val(a) ≥ 0 and an
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isomorphism U � S+(a1/r ) such that the induced map

S+(a1/r ) � U → V � S+(a) (33)

is given by t �→ tr . This integer r is the expansion factor of φ along the skeleton of U .

Lemma 3.6 The action of G on the connected components of φ−1(V ) is transitive.

Proof This follows quickly from the classical result that the action is simply transitive over
the type-1 points of V (here we use that φ is étale over V for the simplicity of the action).
We leave the details to the reader. ��
UsingLemma3.6,we now also obtain that this expansion factor r is the same for all connected
components of φ−1(V ). We denote this integer by de, where e is the skeleton of V . We then
have the following formula for the number ne of edges lying over e:

ne = n

de
. (34)

We thus see that it suffices to know the expansion factor to know the number of edges.
We now determine this expansion factor. Let Supp( f ) ⊂ P

1,an be the subset of zeros and
poles of f , considered as type-1 points. Consider the function

F = −log| f | (35)

on the complement P
1,an\Supp( f ). This is piecewise linear by [2, Theorem 5.15]. Let y be

a type-2 point in the above complement. For any tangent direction w starting at y, we then
have a well-defined slope dw(F). If F is linear on a bounded line segment e corresponding
to w, then we write

δe(F) = |dw(F)| (36)

for the absolute value of this slope. For instance, for any open annulus in the decomposition
P
1,an\V with skeleton e, the function F is automatically linear.

Lemma 3.7 Let e be the skeleton of an open annulus in the semistable decomposition deter-
mined by Y . Then ne = gcd(δe(F), n).

Proof Let y be a type-2 point corresponding to an endpoint of e and let x ∈ X an
n, f be any point

lying over y. In terms of the above semistable models, y corresponds to the generic point ηy

of an irreducible component of Ys and x corresponds to a point ηx of the scheme Z in Eq.32
lying over ηy . By Lemma3.5 the extension of residue fields k(ηy) ⊂ k(ηx ) is described by
the polynomial zk − h, where h

r = f y . We denote their residue curves by Cx and Cy . These
are the smooth proper curves corresponding to the residue fields of ηx and ηy respectively.
Note that the edge e corresponds to a closed point on the curve Cy . We denote this point by
z. By [2, Theorem 4.23(2)], the expansion factor along e is equal to the ramification index
of the covering Cx → Cy at any point lying over z. This point z corresponds to a discrete
valuationwz(·) of the function field k(Cy) = k(ηy). By a simple calculation, the ramification
index over this point is given by the formula

ez = k

gcd(wz(h), k)
. (37)

Using the non-archimedean slope formula [4, Theorem 5.15(3)], we then obtain rwz(h) =
wz( f y) = δe(F). The identity a · gcd(b, c) = gcd(ab, ac) from elementary number theory
and the expression in Eq.37 then directly give the statement of the lemma. ��
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Lemma 3.8 Let y be a type-2 point in the semistable vertex set V (�) determined by Y and
let m be the greatest common divisor of all the δe(F) and n, where e ranges over the outgoing
edges in � at y. The number of points lying over y is then equal to m.

Proof By Lemma3.5, the number of points lying over y is equal to the highest divisor r of
n such that f y = h

r
. Using the non-archimedean slope formula [4, Theorem 5.15] and the

fact that the divisor class group of P
1
k is trivial, we then directly obtain the desired formula.

��
We now consider the third problem of gluing these edges and vertices. Consider a graph-

theoretical connected section �′ ⊂ �(Xn, f ) of the map �(Xn, f ) → �. More explicitly, we
can construct �′ as follows. We start with a vertex v′ ∈ V (�(Xn, f )) with image v ∈ V (�).
We then choose an adjacent edge e of v and an edge e′ such that v′ is connected to e′. We
then continue with the other endpoint w of e and choose a vertex w′ such that e′ is connected
to w′. Continuing in this way, we obtain the desired subgraph �′ of �(Xn, f ) isomorphic to
the tree �.

We write Dv and De for the stabilizer of any vertex v′ or edge e′ lying over v or e
respectively. These groups are independent of the vertex or edge chosen since the Galois
group is abelian. We also refer to these as the decomposition groups of the vertices and
edges. Since G is moreover cyclic, we find that the order of Dv or De completely determines
the subgroup. These orders in turn are determined by the formulae in Lemmas3.7 and 3.8.
Using this, we can reconstruct �(Xn, f ) from �:

Lemma 3.9 The underlying graph of the skeleton �(Xn, f ) of the superelliptic curve Xn, f is
completely determined by the orders of the stabilizers Dv and De for the vertices and edges
of �.

Proof We reconstruct �(Xn, f ) from �′ as follows. We take n copies of �′, indexed by
G = Z/nZ. We impose an equivalence relation on these n copies �′

i using the following
rules. Two vertices v′

i and v′
j lying over v are equivalent if and only if the images of i and

j in the quotient G/Dv are the same. We similarly define the equivalence relation for the
edges. The quotient

⊔
�′
i/ ∼ then has a natural G-action and it is isomorphic to �(Xn, f ).

The isomorphism is as follows. We send a vertex v′
i to the vertex σi (v

′), where σi is the
automorphism corresponding to i ∈ Z/nZ. We similarly define the map for the edges.
The transitivity of this action implies that this map is surjective and the definition using
the decomposition groups shows that it is injective. We leave it to the reader to fill in the
set-theoretic details. ��
Remark 3.10 This result does not hold for more general coverings. For instance, if we allow
� to have non-trivial cycles then it can fail for cyclic groups. Using this one can then also
easily construct a Z/2Z × Z/2Z-covering of a tree where this fails.

Using Lemma3.9, we can now prove the second main theorem of this paper:

Theorem 1.2 For any n ≥ 2, let Xn, f be the superelliptic curve over a complete algebraically
closed non-archimedean field K defined by yn = f (x), where f (x) is a separable polynomial
of degree d. We suppose that gcd(n, char(k)) = 1. Then the weighted metric graph �(Xn, f )

of Xn, f is completely determined by the tropical invariants of f (x).

Proof By Theorem1.1, the tropical invariants completely determine the isomorphism class
of the marked tree filtration associated to f (x). Since f (x) is separable, we have that
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vP ( f (x)) = 1 for the discrete valuations on K (x) corresponding to the points P in Z( f ).
From thiswe also find v∞( f (x)) = −deg( f (x)). The absolute slopes δe(F) of the piecewise-
linear function F = −log| f | on P

1,an can then be obtained by a recursive procedure using
[4, Theorem 5.15], see [9, Lemma 2.6] for explicit formulas. This determines the orders of
the decomposition groups by Lemmas3.7 and 3.8. By Lemma3.9, we can then recover the
underlying graph of the skeleton �(Xn, f ). Furthermore, the edge lengths are given by


(e′) = 
(e)

|De| (38)

and the genera of the vertices v′ are given by the local Riemann–Hurwitz formulas given in
[2, Sect. 2.12] for generically étale morpisms. Here the fact that�(Xn, f ) → � is generically
étale is contained in [2, Lemma 4.33]. This finishes the proof. ��
Remark 3.11 It is unclear to the author whether the algebraic isomorphism classes of the
residue curves can also somehow be recovered from the invariants defined in this paper.
For genus 1 there are already some issues, since we obtain j(E)2/216 and not j(E), see
Sect. 2.6.2. In this case we can also obtain the j-invariant by a small modification but to do
this more generally requires some more work.

Remark 3.12 Suppose we are given a superelliptic curve Xn, f over a complete discretely
valued non-archimedean field K with valuation ring R and algebraically closed residue field
k. One can then consider the group of connected components �(J ) of the special fiber of
the Néron model J /R of the Jacobian J of Xn, f . For a finite extension K ′ of K over which
Xn, f attains semistable reduction, we then have that the group �(JR′)3 is determined by
the metric graph �(Xn, f ), see [3]. We thus find that Theorem1.2 can be used to calculate
component groups for Jacobians of superelliptic curves over finite extensions. In this case
we can also give an explicit extension K ′ over which Xn, f /K ′ attains semistable reduction:
we take the composite of the splitting field of f (x) and K (� 1/n), where � is a uniformizer
of K .

3.2 A criterion for potential good reduction and explicit examples

In this section we prove a criterion for potential good reduction for superelliptic curves. Here
we say that a curve X has potential good reduction if the minimal skeleton of X consists
of a single vertex of genus g(X). After this, we determine the reduction types of the curves
Xn, f : yn = f (x) for all separable f (x) of degree d ≤ 5 using the results in Sect. 2.5. For
the next result, f (x) is not assumed to be separable.

Proposition 3.13 The superelliptic curve Xn, f has potential good reduction if and only if the
unmarked phylogenetic type of the tree associated to the branch locus of the map (x, y) �→ x
is trivial.

Proof We write � for the tree associated to the branch locus. If the phylogenetic type of
� is trivial, then the lifted skeleton �(Xn, f ) consists of only one vertex. Indeed, we then
have a semistable vertex set of P

1,an consisting of a single point, which lifts by Theorem3.1
to a single point. This has the right genus by the genus formula given in [4, Sect. 4.16], so
we see that Xn, f has potential good reduction. Note that we did not use that Xn, f → P

1 is
superelliptic here.

3 This is the corresponding group for the Néron model of the base change J ×K K ′.
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Conversely, suppose that Xn, f has potential good reduction and let v′ be the type-2 point
in X an

n, f with g(v′) = g(Xn, f ). We write v for its image in P
1,an. For any type-1 point P in

the branch locus, there is a unique path from P to v. We claim that these paths do not meet
before v. This then shows that the tree associated to the branch locus is trivial. Suppose on
the other hand that at least two of these paths meet. We can consider a maximal type-2 point
w where at least two of these meet, in the sense that all paths from points in the branch locus
that go through w have unique tangent directions on one end of w. We consider a point w′
lying over w. Since Xn, f has potential good reduction, we find that the genus of the curve
corresponding to w′ is 0. Let e be an edge connected to w in � in the direction of v. We
first assume that |Dw| = |De|. We can then use the following easy lemma whose proof is an
exercise in the Riemann–Hurwitz formula.

Lemma 3.14 Let k be an algebraically closed field and let P
1
k → P

1
k be a finite Galois

morphism with Galois group Z/rZ and suppose that (r , char(k)) = 1. If there is a branch
point with ramification index r , then the branch locus is of order two and both points have
ramification index r .

Using |Dw| = |De| and Lemma3.14 we now find that there is exactly one more edge over
which the morphism of residue curves Cw′ → Cw is ramified. But this contradicts the
assumption that at least two points in the branch locus meet at w. We thus see that we are
reduced to showing |Dw| = |De|. The following lemma gives us one inequality:

Lemma 3.15 For every e adjacent to w, we have De ⊂ Dw .

Proof Let e′ be an edge over e connected to w′. The explicit Kummer presentation of the
morphism over the open annuli in Sect. 3.1 directly implies that any automorphism fixing e′
must also fix w′. ��
Suppose now for a contradiction that |Dw| > |De|. We can then find an automorphism
σ ∈ Z/nZ that fixes w′, but not e′. Here e′ is an edge over e connected to w′. We thus have
two distinct edges e′ and σ(e′) over e starting at w′. These two edges can be extended to
give two paths from w′ to the vertex of good reduction. A moment of reflection shows that
the composition of the first with the inverse of the second gives a non-trivial homology class
for �(Xn, f ), a contradiction. We conclude that none of the paths from points in the branch
locus to the vertex v meet before the vertex v. This implies that the phylogenetic type of the
branch locus is trivial, as desired.

��
Using the results in Sect. 2.5, we now immediately obtain the following practical criterion

for potential good reduction:

Corollary 3.16 Consider a superelliptic curve Xn, f : yn = f (x) with f (x) separable and
let G2 be a trivially weighted graph of order two with generating polynomial F2. Then Xn, f

has potential good reduction if and only if π2(trop( f )) ∈ I (P0, Pd(2)).

Remark 3.17 Given the result in Proposition3.13, one might be led to hypothesize the fol-
lowing criterion for general coverings: a curve X admitting a residually tame morphism
ψ : X → P

1 has potential good reduction if and only if the tree corresponding to the branch
locus of ψ is phylogenetically trivial. As we saw in the proof of Proposition3.13, this is true
in one direction. The other direction does not hold however by the following counterexample.
Let E be the elliptic curve defined by y2 = x3 + Ax + B, where v(A) > 0, v(B) = 0,
v(�) = 0 and char(k) �= 2, 3. We also assume that A �= 0. Then E has potential good
reduction, but the branch locus of the degree three covering (x, y) �→ y gives a nontrivial
tree. See [11, Theorem 10.6.1(3)] for the details in the discretely valued case.
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Fig. 7 The reduction types for superelliptic curves yn = x3 − a1x
2 + a2x − a3 as in Example3.18. The blue

vertex denotes the vertex that a point over ∞ reduces to. The arrows correspond to contractions as in Fig. 4

Table 4 The absolute values of
the slopes of F = −log| f | in
Example 3.19

Tree type δe1 (F) δe2 (F)

I – –

II.1 3 –

II.2 2 –

III.1 3 2

III.2 2 2

3.2.1 Examples

We now work out the semistable reduction types for superelliptic curves Xn, f with d ≤ 5
using the tree data in Sect. 2.5. The numerical data associated to the metrized complexes
�(Xn, f ) can be found in Sect. 4.

Example 3.18 Let Xn, f be as in Theorem1.2 with d = 3, so that Xn, f is described by
yn = f (x) = x3 − a1x2 + a2x − a3. The tree types of f (x) including the edge lengths
are given in Sect. 2.6.2. For type II, the slope of the piecewise linear function F = −log| f |
along the nontrivial segment is two.

Suppose first that n �≡ 0 mod 3. Then g(Xn, f ) = n − 1. The possible reduction types
are as in Fig. 7 and the genera of the vertices and the edge lengths are given in Table 6. If
n ≡ 0 mod 3, then g(Xn, f ) = n − 2. As before, there are three reduction types which can
be found in Fig. 7. The genera of the vertices and the edge lengths are given in Table7. To
distinguish between I and II, we use the valuation of jtrop as in Sect. 3.1. If we use the classical
j-invariant here, then we obtain the wrong result for fields of residue characteristic two. For
instance, if we consider the curves Xn, f for n = 1 mod 2 and f (x) ∈ C2[x], then Xn, f

has potential good reduction if and only if v2( jtrop) ≥ 0, which is not the same as having
v2( j) ≥ 0 since the j-invariant has additional factors of 2, see Eq.29.

Example 3.19 From now on, we will restrict to certain congruence subclasses of n to illus-
trate Theorem1.2. We invite the reader to work out the remaining cases. Let Xn, f be as in
Theorem1.2 with d = 4, so Xn, f is given by yn = f (x) = x4 − a1x3 + a2x2 − a3x + a4.
The slopes of F = −log| f | along the non-trivial line segments are as in Table4. Here the
edges are as in Sect. 2.6.3, see also Fig. 8.

For simplicity, we suppose that n �≡ 0 mod 2. Then g(Xn, f ) = 3n − 3

2
by the Riemann–

Hurwitz formula. The reduction types are given in Fig. 8. Here the first two symbols indicate
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Fig. 8 The reduction types for superelliptic curves yn = x4 − a1x
3 + a2x

2 − a3x + a4 as in Example3.19.
The blue vertex denotes the vertex that a point over ∞ reduces to and the arrows correspond to contractions
of edges as in Fig. 5

the 1-marked phylogenetic type, the last symbol stands for a specific congruence class of n.
The genera of the vertices and the orders |De| (which determine the lengths by Eq.38) are
given in Table8. If we plug in n = 3, then we obtain a decomposition for Picard curves. The
corresponding reduction types are on the lefthand side of Fig. 8. To illustrate our techniques,
we reconstruct III.1.a using the given data. The slope δe1(F) is three, which divides n by
assumption, so by Lemma3.7 we find three edges over e1. Over e2, we find only one edge
since 2 is coprime to n. By Lemma3.8, we then also find that there is only one vertex v2
over the endpoint w2 of e1 and e2. One similarly finds that there is only one vertex over w1

and w3. This determines the graph of III.1.a. The genera of the vertices follow from a quick
calculation using the Riemann–Hurwitz formula.

Example 3.20 Let Xn, f be as in Theorem1.2 with d = 5. In this case the reduction type
depends on the image of n in Z/60Z. We restrict ourselves to a subset of residue classes that
contains hyperelliptic genus 2 curves. That is, we suppose that n ≡ 2 mod 4, n �≡ 0 mod 3
and n �≡ 0 mod 5. In Sect. 2.6.4, we saw that there are 7 unmarked phylogenetic types,
12 1-marked phylogenetic types and 20 filtration types for these polynomials. It turns out
that the underlying graph of �n, f does not depend on the marked point in this case. Our
formulas for the genera and the edges however do depend on the marked point. We will only
give explicit formulas for the 1-marked trees in Fig. 6 whose marked point is attached to
the vertex w1 = φ(v1), see Fig. 9. The reader is invited to find the formulas for the other
1-marked trees. The slopes of F = −log| f | for the 1-marked phylogenetic types under
consideration can be found in Table5.

We have g(Xn, f ) = 2n−2 and the reduction types of the Xn, f are as in Fig. 9. The genera
of the vertices, the orders of the decomposition groups |De| and the first Betti numbers of
the �(Xn, f ) can be found in Table9.

Forn = 2, the formulas for the genera do not depend on themarked point (up to symmetry),
so we obtain a full description of the reduction types of curves of genus 2.
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Fig. 9 The underlying graphs of the �n, f as in Example3.20. Adding a marked point determines the genera
of the vertices. The edge lengths are determined by the filtration types

Table 5 The absolute values of
the slopes of F = −log| f | in
Example 3.20

Tree type δe1 (F) δe2 (F) δe3 (F)

I – – –

II.1 3 – –

III.1 2 – –

IV.1 3 2 –

V.1 4 2 –

VI.1 4 3 2

VII.1 4 2 2

We invite the reader to compare this to [19, Théorème 1], where a similar description using
Igusa invariants is given. It is not clear to the author whether there is an algebraic connection
between the invariants there and the ones in this paper. We can however deduce from our
data that the valuations of the invariants given in [19] determine the unmarked phylogenetic
type of f (x) for residue characteristics not equal to 2 or 3.
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4 Appendix

We give the first Betti numbers, the orders of the decomposition groups, and the genera of the
vertices associated to the metrized complexes�(Xn, f ) in Sect. 3.2.1 here. The Betti numbers
are denoted by β(�n, f ).

4.1 Polynomials of degree three

Table 6 The numerical quantities associated to the metrized complexes �n, f with n �≡ 0 mod 3 in Example
3.18

Reduction type Congruence 2g(v1) 2g(v2) |De| β(�n, f )

I – 2n − 2 – – 0

II.0 n ≡ 0 mod 2 n − 2 n − 2 n/2 1

II.1 n ≡ 1 mod 2 n − 1 n − 1 n 0

Table 7 The numerical quantities associated to the metrized complexes �n, f with n ≡ 0 mod 3 in Example
3.18

Reduction type Congruence 2g(v1) 2g(v2) |De| β(�n, f )

I – 2n − 4 – – 0

II.0 n ≡ 0 mod 2 n − 4 n − 2 n/2 1

II.1 n ≡ 1 mod 2 n − 1 n − 3 n 0

4.2 Polynomials of degree four

Table 8 The numerical quantities associated to the metrized complexes �n, f in Example 3.19

Reduction type Congruence 2g(v1) 2g(v2) 2g(v3) |De1 | |De2 | β(�n, f )

I n ≡ 1 mod 2 3n − 3 – – – – 0

II.1.a n ≡ 3 mod 6 n − 3 2n − 4 – n/3 – 2

II.1.b n ≡ 1, 5 mod 6 n − 1 2n − 2 – n – 0

II.2 n ≡ 1 mod 2 n − 1 2n − 2 – n – 0

III.1.a n ≡ 3 mod 6 n − 3 n − 3 n − 1 n/3 n 2

III.1.b n ≡ 1, 5 mod 6 n − 1 n − 1 n − 1 n n 0

III.2 n ≡ 1 mod 2 n − 1 n − 1 n − 1 n n 0

The conditions for the tree types can be found in Example2.6.3
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4.3 Polynomials of degree five

Table 9 The numerical quantities associated to the metrized complexes �n, f in Example 3.20

Reduction type 2g(v1) 2g(v2) 2g(v3) 2g(v4) 2g(v5) |De1 | |De2 | |De3 | β(�n, f )

I 4n − 4 – – – – – – – 0

II.1 2n − 2 2n − 2 – – – n – – 0

III.1 3n − 4 n − 2 – – – n/2 – – 1

IV.1 2n − 2 n − 2 n − 2 – – n n/2 – 1

V.1 n − 2 2n − 4 n − 2 – – n/2 n/2 – 2

VI.1 n − 2 n − 2 n − 2 n − 2 – n/2 n n/2 2

VII.1 n − 2 n/2 − 1 n/2 − 1 n − 2 n − 2 n/2 n/2 n/2 2

The conditions for the tree types can be found in Example2.6.4
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