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1 Introduction

The complex hadronic final states of high energy particle collisions require the use of
General Purpose Monte Carlo (GPMC) event generators to turn the fundamental theory
into predictions of the observable final states. These event generators take a calculation of
a hard scattering process and evolve it down in scale using a parton shower (PS) algorithm
to a low energy scale where perturbation theory breaks down and a hadronization model
is used to convert the coloured partons into hadrons, which can then also decay using a
non-perturbative model. A model of Multiple Parton Interactions (MPI) is also required
to describe hadron-hadron collisions.
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Research in this area over the last decade has focused on matching the parton shower
with fixed-order hard processes, but there have also been recent attempts to improve the
parton shower algorithms themselves. It was one such work [1] on the problems dipole
showers1 face even at leading-logarithmic accuracy that prompted us to make similar anal-
yses of the Herwig 7 angular-ordered parton shower [4].

Logarithmic accuracy can be defined in terms of how well the PS reproduces the sin-
gular limits of soft-collinear matrix elements of QCD. In the limit where gluon emission is
widely separated in angle and energy then for n emissions there will be 2n large logarithms,
L, and the emission probability is proportional to αnsL2n. These are the Leading Logarith-
mic (LL) contributions. For emissions which are collinear or occur at commensurate ener-
gies the emission probability is proportional to αnsL2n−1 and these are the next-to-leading
logarithmic contributions. Parton shower algorithms are formally only LL accurate, but
by using quasi-collinear splitting functions, the transverse momentum as the scale of the
strong coupling and the Catani-Marchesini-Webber (CMW) [5] scheme for the two-loop
coupling, they are also able to account for LL (leading logarithmic) and NLL (next-to-
leading logarithmic) contributions with the exception of soft wide-angle gluon emission.

In ref. [4] we examined how the choice of recoil scheme in the shower affects the
logarithmic accuracy for final-state radiation (FSR). We found that of the three schemes
presented, the “p⊥ preserving” and the “dot-product preserving” schemes both satisfied
conditions to be NLL accurate while the “q2 preserving” scheme, which was the default of
Herwig 7 prior to that publication, was not NLL accurate.

In addition to FSR, there is also initial state radiation (ISR) to consider. The modelling
of ISR can have a large impact on the transverse momentum distributions of colour-singlet
systems produced in hadron collisions. The Drell-Yan (DY) process, in which a pair of
leptons is produced in a hadron collision, is an example of a “standard-candle process”,
as the lepton momenta can be measured precisely to validate our understanding of QCD.
Thus, it is of paramount importance to provide accurate theoretical predictions for this
process. Issues arising from transverse momentum recoil due to ISR in dipole showers were
addressed in ref. [6]. These were mainly related to the fact that a final state singlet, such as
in Drell-Yan production, receives a non-vanishing transverse momentum contribution only
from the very first shower emission. The authors proposed to allow the incoming partons
to take the transverse momentum recoil, and then realign them with the beam directions
at the end of the showering phase. Although this solution mitigates the problem, it is not
sufficient to reach NLL accuracy, because the shower will still face the same recoil-scheme
related problems present for final-state radiation [1].

In angular-ordered showers these issues are absent, both for the initial- and final-state
showers, but spurious NLL terms may arise depending on the interpretation of the ordering
variable in the presence of multiple emissions, as already found in ref. [4] in the context
of FSR. For this reason, in this work we present the findings of our study into the effects
of recoil scheme on ISR in the angular-ordered shower, focusing on the schemes which are

1This work focused on the PYTHIA 8 [2] and Dire [3] dipole showers but the issues raised apply to all
dipole showers.

– 2 –



J
H
E
P
0
1
(
2
0
2
2
)
0
2
6

NLL accurate for FSR. This also enables us to formulate a recoil scheme which is consistent
between FSR and ISR, and perform phenomenological studies of Drell-Yan processes. In
this work we considered several prescriptions to improve the description of the hardest
emission, and we provided dedicated tunes for all the considered options.

In section 2 we describe the implementation of the kinematic mapping for multiple
emissions for different interpretations of the ordering variable. In section 3 we discuss the
radiation pattern for the case of two soft emissions well separated in rapidity. The global
recoil necessary to ensure full momentum conservation for the production of a colour singlet
in hadron-hadron collisions is discussed in section 4 (more details and the implementation
for more generic processes is discussed in appendix A). Comparisons with experimental data
for Z- and W -boson production are presented in section 5. We present our conclusions in
section 6.

2 Kinematics

We consider the emission of initial-state radiation from a parton coming from a proton.
Conventionally, we consider such a parton as shower progenitor and evolve the shower
backwards from the scale of the hard emission to the cutoff. We adopt the Sudakov
decomposition for particles such that

pl = αlP + βln+ k⊥l, (2.1)

where the reference vectors P and n are the momentum of the parent hadron and a light-
like vector which points in the opposite direction.2 k⊥l is orthogonal to both P and n.
For the parton that enters the hard scattering process αl = x, where x is the fraction of
the hadron’s momentum that enters the hard scattering process. The parameter βl can be
found by imposing that the external particles are on their mass shell.

When we consider an ISR splitting ĩj → i, j we denote with i the space-like child
and with j the time-like one. Space-like partons are always considered massless, while the
time-like parton can have a mass mj 6= 0. This means that when a g → bb̄ splitting is
considered, one quark will be considered as massless, while the final-state one will be treated
as massive. The parent parton is on-shell and massless and it acquires an increasingly
negative virtuality as it emits towards the hard scattering. The momenta obey

P 2 = 0, P · n 6= 0, n2 = 0, P · k⊥l = n · k⊥l = 0, (2.2)

so that the transverse momenta are defined relative to the direction of P and n. This also
means that k⊥l is space-like.

2In the hadron-hadron frame for colour-singlet processes such as Drell-Yan, or if the colour partner is
in the initial state. For processes with an outgoing colour partner, for example DIS, the direction of the
colour partner in the Breit frame is used.
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2.1 One emission

We consider the case of one emission. If we use the usual Sudakov decomposition the
momenta are

p
ĩj

= xP ; (2.3a)
pj = (1− z)p

ĩj
+ βn+ p⊥; (2.3b)

pi = p
ĩj
− pj = zp

ĩj
− βn− p⊥, (2.3c)

where z is the light-cone momentum fraction

z = pi · n
p
ĩj
· n
. (2.4)

The coefficient β can be determined by requiring that pj is on its mass-shell

β =
m2
j + |p⊥|2

2(1− z)xP · n. (2.5)

The virtuality of the space-like parton is

p2
i = −2pj · pĩj +m2

j =
−(|p⊥|2 + zm2

j )
(1− z) (2.6)

and the ordering variable can be defined as

q̃2 = −p2
i

1− z =
2pj · pĩj −m

2
j

1− z =
(|p⊥|2 + zm2

j )
(1− z)2 . (2.7)

2.2 Multiple emissions

When multiple emissions are considered (i.e. j acquires a positive virtuality p2
j and/or ĩj

undergoes a further initial-state splitting), we cannot preserve simultaneously p2
i , pj · pĩj

and p2
⊥.

It can be shown that in this case the virtuality of i is

p2
i = −

|p⊥|2 + zp2
j − z(1− z)p2

ĩj

1− z . (2.8)

By comparing eq. (2.8) with eq. (2.6), we notice that the on-shell massm2
j has been replaced

with the virtuality p2
j and we have also a term proportional to p2

ĩj
, which is zero when only

one emission is concerned. In order to complete the kinematic reconstruction we thus need
to find an expression of |p⊥|2 as a function of q̃2, p2

j and p2
ĩj
.

2.2.1 p⊥-preserving scheme

If we preserve the transverse momentum of each emission, we have

q̃2 ≡
|p⊥|2 + zm2

j

(1− z)2 , (2.9)

which immediately yields
|p⊥|2 = (1− z)2q̃2 − zm2

j . (2.10)
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2.2.2 q2-preserving scheme

If we preserve the virtuality of the emission, we obtain

q̃2 ≡ −p
2
i

1− z , (2.11)

By inverting eq. (2.8) and using the above expression for p2
i we get

|p⊥|2 = (1− z)2q̃2 + z(1− z)p2
ĩj
− zp2

j . (2.12)

Since p2
ĩj
< 0 and p2

j > 0, during the evolution |p⊥|2 will decrease, and can eventually
become negative, as already found in the context of FSR [4].

2.2.3 Dot-product preserving scheme

The final choice we examine is the dot-product preserving scheme:

q̃2 ≡
2pj · pĩj −m

2
j

1− z , (2.13)

from which we derive
2pj · pĩj = (1− z)q̃2 +m2

j . (2.14)

By inverting eq. (2.8) and using p2
i = (p

ĩj
− pj)2,

|p⊥|2 = (1− z)2q̃2 − p2
j − (1− z)2p2

ĩj
+ (1− z)m2

j . (2.15)

In this case we see that during the evolution of the time-like parton j, |p⊥| is reduced, while
during the evolution of the space-like parton ĩj it is increased. We need to ensure that
there is still a physical solution, i.e. |p⊥|2 ≥ 0, following subsequent initial- and final-state
radiation. As further ISR can only increase |p⊥|2 there is no problem, however subsequent
FSR can reduce |p⊥|2 and so we must ensure that further final-state radiation satisfies

p2
j ≤ (1− z)2q̃2. (2.16)

As shown in ref. [4], the angular-ordering condition for final-state radiation, q̃j < (1− z)q̃,
will ensure that for further time-like radiation3

p2
j ≤

q̃2
j

2 , (2.17)

and therefore the angular-ordering condition ensures that

p2
j ≤ (1− z)2 q̃

2

2 , (2.18)

which ensures there will always be a physical solution for |p⊥|2.
3See ref. [4] Eqn 4.11 and the surrounding text.
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xP

p3

p2

p1

k2

k1

Figure 1. Kinematics of double soft gluon emission, in the angular ordered parton shower, for ISR.

2.2.4 Summary
Remembering that we always consider the case in which mi = m

ĩj
= 0, we can summarize

all the |p⊥|2 expressions using

|p⊥|2 = (1− z)2(q̃2 − P 2
ĩj

) + (1− z)M2
j − P 2

j − (1− z)(m2
i −M2

ĩj
), (2.19)

where
P 2
l = M2

l = m2
l (2.20)

in the p⊥-preserving scheme,
P 2
l = M2

l = p2
l (2.21)

in the q2 preserving scheme, and

P 2
l = p2

l , M
2
l = m2

l (2.22)

in the dot-product preserving scheme.
It can be shown that eqs. (2.19) and (2.8) are valid also in case of ISR from a resonance.

The derivation is identical to the pure ISR case, with the exception that mi = m
ĩj
6= 0 and

that the ordering variable for one emission is

q̃2 = −p
2
i +m2

i

1− z =
2pj · pĩj −m

2
j

1− z =
|p⊥|2 + zm2

j + (1− z)2m2
i

(1− z)2 . (2.23)

3 Double gluon emission

To discuss the impact on the logarithmic accuracy of the recoil scheme, we focus now on
the case of double soft gluon emission from an incoming quark line, as shown in figure 1.

Using the Sudakov decomposition described in the previous section:

p3 = αP ; (3.1a)
k2 = (1− z2)p3 + β2n+ p⊥2; (3.1b)
p2 = p3 − k2 = z2p3 − β2n− p⊥2; (3.1c)
k1 = (1− z1)z2p3 + β1n− (1− z1)p⊥2 + p⊥1; (3.1d)
p1 = p2 − k1 = z1z2p3 − [β1 + β2]n− z1p⊥2 − p⊥1, (3.1e)
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where the βi are determined by the requirement that k2
i = 0 and α = x/(z1z2). In a space-

like shower backwards evolution is used, so the partons are labelled in ascending order the
further they are from the hard process.

All recoil schemes are equivalent for the last emission, therefore

|p⊥2|2 = (1− z2)2q̃2
2 = ε22q̃

2
2, p2

2 = −(1− z2)q̃2
2 = −ε2q̃2

2, (3.2)

where we have introduced ε2 = 1 − z2 → 0 in the soft limit. The values of p2
1 and |p⊥1|

depend on the interpretation of the ordering variable.

3.1 p⊥-preserving scheme

For the p⊥-preserving scheme, we have

|p⊥1|2 = (1− z1)2q̃2
1. (3.3)

Thus, from eq. (2.8)
p2

1 = −(1− z1)q̃2
1 − z1(1− z2)q̃2

2. (3.4)

If both emissions are soft (i.e. 1− zi ≡ εi → 0), we have

|p⊥1|2 = ε21q̃
2
1, p2

1 = −ε1q̃2
1 − (1− ε1)ε2q̃2

2 ≈ −ε1q̃2
1 − ε2q̃2

2. (3.5)

As for final-state radiation, this implies that the largest contribution to the virtuality can
also come from subsequent emissions if for example ε1 � ε2. However, since the transverse
momentum of previously emitted gluons is unchanged, this scheme will reproduce the
pattern of multiple independent soft emissions widely separated in angle.

3.2 q2-preserving scheme

For the q2-preserving scheme, we have

p2
1 = −(1− z1)q̃2

1, (3.6)

thus inverting eq. (2.8)

|p⊥1|2 = (1− z1)
[
(1− z1)q̃2

1 − z1(1− z2)q̃2
2

]
, (3.7)

which means that |p⊥,1|2 decreases and is not guaranteed to be positive. In the soft limit

|p⊥1|2 ≈ ε1
(
ε1q̃

2
1 − ε2q̃2

2

)
, p2

1 = −ε1q̃2
1. (3.8)

Clearly if ε2 � ε1, the kinematics of the first emission is significantly modified. This, as
we saw in ref. [4], causes NLL issues, so we will not to consider this scheme further.
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3.3 Dot-product preserving scheme

When preserving the dot-product

p2
1 = (p2 − k1)2 = p2

2 − 2p2 · k1 = −(1− z2)q̃2
2 − (1− z1)q̃2

1. (3.9)

From eq. (2.23) we have

|p⊥1|2 = (1− z1)2
[
q̃2

1 − p2
2

]
= (1− z1)2

[
q̃2

1 + (1− z2)q̃2
2

]
. (3.10)

Thus in the soft limit

|p⊥1|2 = ε21(q̃2
1 + ε2q̃

2
2) ≈ ε21q̃2

1, p2
1 = −ε1q̃2

1 − ε2q̃2
2. (3.11)

It is interesting to notice that in the case of ISR, subsequent emissions tend to increase
|p⊥1|2, while in the case of FSR the opposite behaviour takes place (see ref. [4]). In any case,
when ε1 and ε2 are both small, regardless of which one is smaller, this scheme reproduces
the p⊥-preserving one, thus it is capable of describing the matrix element for multiple
independent soft gluon emissions.

4 Global recoil strategy for Z and Z+jet production

In a parton shower algorithm in which each parton showers independently, it is neces-
sary to ‘re-assemble’ the individual partons to produce the full event. Since the partons’
virtualities are shifted by the showering, it is not possible to preserve all momentum com-
ponents simultaneously, and some momentum must be shuffled between partons. We call
the algorithm by which this is done the global recoil strategy.

In this section we summarize the global recoil strategy applied to the cases of Z and
Z+jet production. More details and the generalization to an arbitrary colour structure
are discussed in appendix A. We stress that in the presence of only soft and/or collinear
emissions, the global recoil strategy amounts to power suppressed changes to the rapidity
and the transverse momentum of partons emitted from initial state radiation and thus does
not alter the discussion presented in the previous section.

Let us consider a Drell-Yan process, which at LO is described by the annihilation of
a qq̄ pair into a massive gauge boson. Each incoming parton is identified as a shower
progenitor by the Herwig angular-ordered shower, and thus showered independently. The
two initial partons form a colour-connected neutral system so the transverse momentum of
each new emission is defined with respect to the qq̄ direction. After the showering phase, the
original incoming partons have acquired a negative virtuality and a transverse momentum.
The total transverse momentum imbalance is reabsorbed by the Z boson, but there is some
freedom in how to impose longitudinal momentum conservation. Three options are possible:

1. we fix the Z-boson rapidity;

2. we fix the longitudinal momentum of the Z boson;

3. we preserve the new off-shell momentum of the shower progenitor that does not
contain the hardest emission.

– 8 –
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The latter option is the default behaviour, as it allows for a simpler matching with higher
order matrix elements. Indeed for one emission it exactly reproduces the kinematics of
the Catani-Seymour initial-initial dipole [7]. All these options ensure that, in the case of
multiple soft emissions well separated in rapidity, the transverse momentum of the Z is
given by the vector sum of all the emissions’ transverse momenta and that the Z rapidity
can receive only suppressed power corrections O

(
p2
⊥/m

2
z

)
.

In section 5 we will present our results for Z and Z+jet matched predictions. In the
latter case, also the final state quark can be identified as a shower progenitor, which is
colour connected to an initial parton. The global recoil strategy applied in this case is a
hybrid between the one we just discussed for the production of a colour singlet, and the one
developed for Deep Inelastic Scattering (DIS) processes. To be concrete, let us consider
the qe− → qe− DIS process, which proceeds through a colour neutral t-channel exchange.
The kinematic reconstruction and the transverse momentum are defined in the Breit frame,
where the two quarks are back-to-back. Such a mapping must leave the momenta of the two
electrons unchanged, thus the final-state quark and its children, i.e. the partons produced
during its parton-shower evolution, need to absorb the transverse momentum imbalance due
to initial state radiation. A longitudinal boost is also applied to the incoming (outgoing)
parton and its children to ensure that the t-channel propagator is preserved.

For Z+jet production, the shower progenitor which leads to the hardest emission is
reconstructed first together with its colour evolution partner. If they form an initial-initial
dipole, the kinematic reconstruction devised for the Drell-Yan case is adopted, while if
they form an initial-final dipole the one for DIS is implemented. Then one proceeds to the
reconstruction of the remaining shower progenitor momentum, which is colour connected
to a gluon jet which has already been reconstructed. In this case, the gluon jet will be
boosted again to absorb the recoil of its second colour partner.

5 Drell-Yan production

To investigate the performance of the new recoil scheme for the angular-ordered shower,
we compared predictions for the DY process at

√
s = 7, 8 and 13TeV with ATLAS and

CMS data.
We have considered several options for the treatment of the hardest emission. We

simulated leading order (LO) predictions, with matrix element corrections (MEC) to im-
prove the description of the hardest emission and to populate the dead zone, i.e. the region
of phase space not populated by the angular-ordered shower. We also simulated next-to-
leading order (NLO) predictions, obtained from Matchbox [8] machinery, which allows the
inclusion of next-to-leading order corrections in either the MC@NLO [9] or POWHEG [10]
matching schemes.

For LO+MEC predictions, by default Herwig uses leading-order parton distribution
functions (PDFs). However, the usage of NLO PDFs is also possible as this introduces

– 9 –
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higher-order differences beyond the level of accuracy of the calculation.4 Thus, for illus-
trative purposes, in the next sections we compare LO results obtained with both LO and
NLO PDFs, finding small differences as expected.

When using the POWHEG method, it is possible to separate the real emission contribu-
tion into a singular and a non-singular part, and exponentiate in the Sudakov form factor
only the former contribution, while the latter is generated as a Born-like event with a higher
particle multiplicity. This separation is somewhat arbitrary and in Herwig is controlled by
the hard scale profile [11], which we turn off in our simulation (i.e. we exponentiate all the
real corrections).

When the hardest emission generated by the POWHEG algorithm is inside the phase
space region accessible to the parton shower algorithm (i.e. it is not in the dead zone), the
kinematics are always reconstructed as a Z event. However, in the case that the hardest
emission is in the dead zone, we consider two options. The first is to reconstruct the event
as a Z+jet hard process when the hardest emission is in the dead zone. We label this
behaviour as “POWHEG” in the plots below. But we also consider the option of always
reconstructing the event as a shower emission from a Z event, which we label as “POWHEG
(aS)”. We consider the first to be more self-consistent, but the second is actually the current
Herwig default. This choice has a negligible impact on the description of the small Z-boson
transverse momentum, but leads to sizeable differences in the high-p⊥ tails of distributions.

5.1 Tuning

Before comparing Herwig predictions with the experimental data, we need to tune the
parameters sensitive to ISR: the intrinsic p⊥, i.e. the non-perturbative intrinsic transverse
momentum for the partons inside the incoming hadron, and the strong coupling αs (which
is given in the CMW [5] scheme). To this end, we have introduced the possibility of setting
the value of αs for ISR independently from that which was previously tuned for FSR. We
do not consider an independent variation of the minimum transverse momentum used as a
shower cutoff, pmin

⊥ , because it is strongly anti-correlated with αs. Therefore it is sufficient
only to tune αs and set pmin

⊥ to its FSR value of ≈ 1GeV [4].5 We consider only the dot-
product and transverse-momentum preserving schemes, as the virtuality preserving scheme
was found to have NLL issues in ref. [4].

The parametric dependence of the distributions is obtained from the Professor [12]
program, which also finds the parameter values that minimise the χ2 distribution for the
data we are using and parameters we are fitting. To avoid being dominated only by
points with a small experimental uncertainty, during the minimization procedure we set
the minimum experimental uncertainty to 1%. We compare the events analysed with

4Here we refer to the PDF employed to evaluate the matrix element and to perform the ISR evolution.
The underlying event (UE) is not included, as it has no impact on the transverse momentum of the Z boson,
which is only affected by ISR, in the Herwig 7 model. For the UE, the usage of LO PDFs is recommended
as the combination of leading order matrix elements and PDFs is a better approximation to the NLO result
than LO matrix elements and NLO PDFs due to the different behaviours of the gluon distribution at small x.

5For the dot-product preserving scheme pmin
⊥ = 0.958GeV, while for the p⊥ preserving one pmin

⊥ =
0.900GeV.
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Rivet [13] to the ATLAS Drell-Yan Z-boson production data at 7TeV [14–16]. To reduce
correlations, we consider the transverse momentum of the Z boson reconstructed from
muons, and the angular correlations between e+e− pairs produced from the Z decay.

Since in our simulation we use only the matrix elements for Z plus 0 or 1 jet, we are
unable to perform a realistic description of the high p⊥ spectrum, which would require the
matching with higher multiplicity matrix elements as the parton shower approximation is
not valid in this region. For this reason, when tuning we consider only bins in which the
Z transverse momentum is smaller than 50GeV and φ∗η < 0.8.6

The results of our tuning procedure for the several predictions described in section 5
are shown in table 1. We notice that the behaviour of the dot-product and p⊥ preserving
schemes is similar, except when the POWHEG scheme is adopted and the hardest emission
inside the dead zone is treated as a shower emission (aS). For all the considered cases,
the new dot-product preserving scheme always yields a better chi-squared. We also find
that the value of αs for ISR is considerably larger than the one for FSR obtained in
ref. [4]. In particular, at LO (+MEC) the tuned value of αs is very close to 0.1256 in the
CMW scheme, which corresponds to the well known value αs = 0.118 in the MS scheme.
The usage of NLO PDFs for LO predictions does not yield a significant difference with
respect to the default choice of using LO PDFs. On the other hand, when adopting the
MC@NLO matching the value of the strong coupling is always smaller and the χ2 is slightly
worse. The predictions obtained with the POWHEG scheme are those with the largest
chi-squared, and the tuned value of αs is always larger than the expected value of 0.1256.
When we always treat the hardest emission as a shower emission (aS), the dot-product
preserving scheme yields the best chi-squared, with αs = 0.1255. This is in contrast with
our expectations, as the treatment of emissions in the dead zone as part of the hard process
is better motivated. Furthermore, as we have already said, this is the only case where we
find a significant discrepancy (both in the chi-squared and in the tuned value of the strong
coupling) between the p⊥ and the dot-product preserving schemes.

It is not a surprise that the value of the coupling obtained by tuning the dot-product
preserving scheme predictions is smaller than the one from the p⊥ scheme, as subsequent
emissions tend to increase the transverse momentum of previously emitted partons (see
section 3.3). This behaviour is opposite to the FSR case, where instead the dot-product
preserving scheme yields an αs value larger than in the p⊥ scheme [4].

In POWHEG we find a larger value of αs since for the hardest emission, which is
completely handled by Matchbox, the CMW prescription is not included in the strong
coupling evaluation. We have re-run the fits with the CMW prescription implemented and
obtain αs ≈ 0.125 with distributions and χ2 that are nearly identical.

6The variable φ∗η is introduced in ref. [15] and is defined as

φ∗η = tan
(
π − ∆φ

2

)
sin θ∗, (5.1)

with ∆φ being the azimuthal opening angle between the two leptons and θ∗ the scattering angle of the
leptons with respect to the proton beam direction in the rest frame of the dilepton system.
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Scheme dot-product preserving p⊥ preserving
Accuracy LO (NLO PDF) LO MC@NLO POWHEG POWHEG (aS) LO MC@NLO POWHEG POWHEG (aS)

ISR Shower Parameters
αISR
s 0.1260 0.1247 0.1171 0.1341 0.1255 0.1264 0.1189 0.1352 0.1318

Intrinsic p⊥ 0.984 1.008 1.780 1.552 1.803 0.865 1.679 1.542 1.696
χ2 of best fit point

χ2 521 590 719 1528 253 658 923 2551 914
χ2/NDOF 2.8 3.2 3.9 8.3 1.4 3.6 5.0 13.8 5.0

Table 1. Tuned parameters and χ2 for Drell-Yan Z-boson production events at 7TeV.
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Figure 2. Normalised differential cross section as a function of Z p⊥. CMS [17] data at 7TeV
compared to data generated by Herwig. In the left pane, LO (plus MEC) predictions in the dot-
product and p⊥ preserving schemes, in the right pane LO and NLO predictions in the dot-product
preserving scheme.

5.2 Results

In this section we present the results of our simulations of vector boson production at the
LHC and the impact of the recoil scheme and matching procedure on the accuracy of these
simulations.

Z production at 7TeV. We begin by illustrating the distributions of Z boson trans-
verse momentum and φ∗η at 7TeV. We expect to find good agreement between all of our
predictions and the data for small values of both transverse momentum and φ∗η as we have
tuned our parameters using the low-p⊥ range of these distributions.

In figure 2 we show the CMS measurement [17] of the transverse momentum of the
Z boson in the low p⊥ region. We can observe that the dot-product and p⊥ preserving
schemes are almost identical (left pane), and very small differences are found including
higher order corrections (right pane).

Figure 3 illustrates the distribution of the φ∗η parameter of the Z boson measured by
the ATLAS collaboration [15]. Like the transverse momentum results, for small values of
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Figure 3. Normalised differential cross section of Z → µ+µ− as a function of the φ∗η parameter of
the Z boson. Herwig results compared to ATLAS [15] data at 7TeV. In the left pane, a comparison
of LO results from the dot-product (with both LO and NLO PDFs) and p⊥ preserving schemes. In
the right pane, a comparison of LO and NLO results in the dot-product preserving scheme.
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Figure 4. Normalised differential cross section of Z → µ+µ− as a function of Z p⊥ (left panel)
and of the φ∗η parameter (right panel). Herwig results, obtained using the POWHEG matching
prescription, are compared to CMS [17] and ATLAS [15] data at 7TeV.

φ∗η all the theoretical predictions are very similar and agree well with data. We observe
deviations between the recoil schemes (left panel) and among the several matching pre-
scriptions (right panel) only for larger values of φ∗η. It is interesting to notice that the
LO predictions obtained using a NLO PDF (green curve in the left plot) are very similar
to those obtained with the default LO PDF (red curve). We also notice that, at LO, the
dot-product preserving scheme yields good agreement with data up to φ∗η ∼ 0.8, which
is the upper value we used in our tuning procedure, while 5% differences with respect to
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Figure 5. Differential normalized cross section of W → µνµ as a function of W p⊥. Herwig
compared to ATLAS [18] data at 7TeV.

the data arise at φ∗η ∼ 0.8 in the p⊥-preserving scheme (blue curve in the left plot). Both
the MC@NLO and POWHEG NLO predictions (right plot) give a poorer description of the
data, with small discrepancies between φ∗η ∼ 0.02 and φ∗η ∼ 0.1, becoming very significant
for φ∗η > 0.2 (POWHEG) or 0.5 (MC@NLO).

In figure 4 we compare the POWHEG predictions obtained treating hardest emissions
in the dead zone as part of the hard process (i.e. as a genuine “real emission”), with those
obtained treating the hardest emission always as a shower emission (aS). We notice that
for small values of the Z-boson p⊥ (left panel), all the predictions are in good agreement.
However, large differences arise when looking at the hard tail of the φ∗η distribution (right
panel), where all the Herwig predictions underestimate ATLAS data. The “real-emission”
scheme, which is the best theoretically motivated, leads to the largest discrepancies with
respect to the data. The “as shower” treatment yields significantly different predictions
between the dot-product and p⊥ preserving schemes. As already seen in table 1, POWHEG
dot-product “as shower” (aS) results (green curve) are the ones that yield the best descrip-
tion of the experimental data.

W production at 7TeV. As we have tuned using only the Z-boson transverse momen-
tum distribution, we can use the impact of our tune on the transverse momentum of the W
boson to assess the universality of our tuning procedure. In figure 5 we compare the AT-
LAS 7TeV measurement [18] with our predictions in the dot-product (left) and p⊥ (right)
preserving schemes. For W -boson transverse momentum values smaller that 50GeV, all
the predictions agree fairly well with the data, which are however plagued by large un-
certainties. For larger values we see that all the theoretical predictions are systematically
lower than the data, particularly those obtained using the NLO matched simulations.

Z production at 8TeV. We now examine the Z boson distributions at 8TeV, i.e. with
a centre-of-mass energy slightly above the one we adopted for the tuning. The ATLAS
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Figure 6. Differential normalized cross section of Z → µ+µ− as a function of the Z transverse
momentum (upper pane) and φ∗η (low pane), below (left) and above (right) the Z mass peak region.
Herwig compared ATLAS [19] at 8TeV.

measurements of ref. [19] allow us to investigate the behaviour below and above the Z-
boson mass peak region. Predictions in the peak region are similar to those described in
the previous section and not shown here.

In figure 6 experimental data is compared to Herwig results in the dot-product preserv-
ing scheme. Above the Z-mass peak we get good agreement with the data for p⊥ < 100GeV
and φ∗η < 1. However, for masses below the peak the LO predictions overpopulate the low-
p⊥ (φ∗η) region and under populate the region with moderate p⊥ values. This feature is
present also at NLO, but it is milder and discrepancies are only of the order of a few per-
cent. In all cases, the high-p⊥ (φ∗η) tail is not properly described. This is not surprising,
as the proper treatment of this region would require higher order matrix elements.

Z production at 13TeV. We conclude our phenomenological study by comparing Her-
wig predictions to CMS measurements at 13TeV [20]. Figure 7 shows the distribution of
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Scheme dot LO dot MC@NLO dot POWHEG p⊥ LO p⊥ MC@NLO p⊥ POWHEG
χ2

p⊥ 57.94 30.81 300.2 130.8 37.75 517.1
φ∗η 36.30 683.2 1230 243.3 1164 1712
y 106.4 22.84 11.60 102.4 24.35 11.16

p⊥, y bins 401.8 147.8 1355 729.8 171.8 2332
Reduced χ2

p⊥ (χ2/24) 2.414 1.284 12.51 5.448 1.573 21.55
φ∗η (χ2/26) 1.396 26.90 47.30 9.359 44.76 65.86
y (χ2/12) 8.863 1.903 0.9668 8.535 2.029 0.9298

p⊥, y bins (χ2/120) 3.348 1.232 11.29 6.081 1.431 19.43

Table 2. χ2 results for Z Drell-Yan distributions at 13TeV compared to CMS data [20]. For the
Z-boson transverse momentum distributions, the χ2 is computed only in the region p⊥ < 50GeV,
while for φ∗η we consider only φ∗η < 0.8. The “p⊥, y bins” rows refer to the p⊥ distributions broken
up into 5 distributions based on y.

the Z boson transverse momentum for several rapidity ranges, with the upper-left plot
showing the inclusive case. In table 2 we present the results of χ2 calculations for the full
distributions of Z boson production at 13TeV: p⊥, φ∗η and y (Z boson rapidity). The table
also shows the total χ2 of the p⊥ distributions for the y sub-ranges. For this calculation
we consider only p⊥ < 50 and φ∗η < 0.8.

We notice that all predictions, particularly those obtained using NLO matching pre-
scriptions, track the data fairly well around the peak region, pZ⊥ ≈ 10GeV, however large
differences are found both in the large and in the small p⊥ regions. For very small pZ⊥
values, the distribution is very sensitive to the modelling of the intrinsic p⊥, which we have
tuned at 7TeV. For an improved description of the data, a new tuning could be performed
for each centre-of-mass energy. Alternatively, the model of [21] could be used to predict the
amount of transverse momentum built up by non-perturbative smearing throughout the
perturbative evolution, as a function of the partonic and hadronic centre-of-mass energies.

Furthermore, from table 2, we notice that given a matching procedure, the results ob-
tained in the dot-product preserving scheme always yield a smaller χ2. The POWHEG pre-
dictions always lead to the worst descriptions of the data, apart from the rapidity distribu-
tion of the vector boson (y). This is not unexpected, since the parton shower is not allowed
to change the rapidity of the Z boson,7 thus the χ2 value associated with the y distributions
reported in table 2 depends only on the matching procedure, and not on the recoil scheme.

7It should be noted that with the current reconstruction scheme y is not preserved, but it is subject only
to minor changes as it is non-zero at leading-order.
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Figure 7. Differential normalized cross section as a function of Z p⊥, broken down into different
rapidity ranges. Herwig results are compared to CMS [20] data at 13TeV.
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6 Conclusions

In this paper we have generalized our previous study [4] of the logarithmic accuracy of
angular-ordered parton showers to include initial-state radiation.

Similarly to the final-state case, we find that the q2-preserving scheme has problems
in the strongly-ordered regime, with later emissions being able to modify the kinematics
of an earlier soft emission and diminish its logarithmic accuracy. For this reason, we have
not considered it further.

We have extended the definition of the dot-product preserving scheme introduced in
ref. [4] to ISR. The implementation of this recoil option thus enables a consistent treat-
ment of radiation which is emitted from the initial and final states. Like the p⊥-preserving
scheme, this does not modify earlier kinematics significantly, so that multiple-gluon emis-
sion inherits the correct radiation pattern of single-gluon emission. One significant dif-
ference compared to the final-state case is that in the initial state, additional soft gluon
emissions add to the transverse momentum generated by the first emission, while in the
final-state case, they reduce it. This has an impact on the value of αs fitted to data, which
we allow to be different for ISR and FSR.

Based on their logarithmic accuracy, we conclude that either the p⊥-preserving or dot-
product preserving scheme can be used for ISR. For the sake of consistency between the
ISR case and the FSR case, where the dot-product preserving scheme is recommended, we
recommend it also for ISR.

We have performed a dedicated tune of the non-perturbative parameters using Z-
production data at 7TeV for each recoil scheme and matching procedure that we con-
sidered. Due to the importance of gauge boson transverse momentum distributions for
the LHC physics program, we have performed a phenomenological study of the Drell-Yan
process using these tuned showers. Since the description of data is better with the dot-
product preserving scheme than with the p⊥-preserving scheme (regardless of the matching
prescription employed), we recommend the use of the dot-product preserving scheme for
the additional reason that it provides a better modelling of the data.

It is impossible to consider the description of data without also considering the choice
of hard process and higher order matching scheme. Of the NLO schemes, the POWHEG
(aS) scheme with the dot-product preserving shower gives the best description of data.
We consider this scheme to be somewhat inconsistent, because it treats real emission in
the dead zone that the shower cannot populate, as if it was a parton shower emission.
Nevertheless, because of its significantly better description of data, we recommend that it
remain Herwig’s default setting for now. The dot-product preserving reconstruction scheme
will become the default also for ISR from the next Herwig release.
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A Global recoil

In this section we briefly describe the global recoil that is applied to hadron-collider events
at the end of the showering phase to achieve momentum conservation. An exhaustive
description of the recoil strategy of the previous Herwig++ generator, which shares many
similarities with the current one (adopted since the 7.0 release), can be found in section 6.5.2
of ref. [22].

After the parton shower evolution, the space-like shower progenitors (i.e. the partons
colliding in the hard process) and the time-like ones (i.e. the final-state partons arising
from the hard scattering) are no longer on their mass shell, having acquired a negative or
positive virtuality. Furthermore, the colliding particles have also acquired some transverse
momentum that must be redistributed among the final-state progenitors and their daughter
partons. We therefore need to perform some momentum reshuffling to ensure momentum
conservation. How this is performed depends on whether the colour partner is an initial-
or final-state parton.

The details of the algorithm for final-final correlations can be found in section 6.4.2 of
ref. [22], here we focus on the case where ISR is involved.

A.1 Drell-Yan: initial-initial correlations

When we consider the production of colour-singlet systems, such as electroweak gauge
bosons in Drell-Yan processes, we only have an initial-initial dipole.

We use the hadronic beam momenta p⊕ and p	 to define the Sudakov basis for the
initial-shower algorithms. The suffix ⊕ denotes the particle incident from the +z direction,
while 	 from the −z direction. The momenta of the colliding partons q⊕ and q	 can be
written

q± = α±p± + β±p∓ + q⊥±, (A.1)

where q⊥⊕ and q⊥	 are two space-like vectors orthogonal to the beam momenta.
We denote by pcms the original final state momentum, i.e. the momentum of the colour

singlet system. Prior to the inclusion of the shower

pcms = x⊕p⊕ + x	p	, (A.2)

but now the sum of the momenta of the incoming shower progenitors, qcms = q⊕ + q	 is
different from pcms. We can thus introduce two rescaling factors, k± to define the shuffled
momenta q′

q′± = α±k±p± + β±

k±
p∓ + q⊥±, (A.3)
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which satisfy q2′
± = q2

±, and

q′cms = q′⊕ + q′	 =
(
α⊕k⊕ + β	

k	

)
p⊕ +

(
α	k	 + β⊕

k⊕

)
p	 + q⊥⊕ + q⊥	 (A.4)

By imposing q′2cms = p2
cms = x⊕x	s, where

√
s in the centre-of-mass energy of the hadronic

collision, we obtain a constraint on the product of the rescaling factors k⊕	 = k⊕k	:

α⊕α	k
2
⊕	 +

(
α⊕β	 + α	β⊕ − x⊕x	 + (q⊥⊕ + q⊥	)2

s

)
k⊕	 + β⊕β	 = 0. (A.5)

It is trivial to check that if no emission has occurred, i.e. α± = x±, β± = 0 and q⊥± = 0,
then k⊕ = k	 = 1 is a solution of eq. (A.5).

By default, we set the rescaling factor of the progenitor which had the largest transverse
momentum emission to k⊕	, and the other rescaling factor to 1. This choice makes match-
ing with higher order matrix elements simpler as for one emission it exactly reproduces the
kinematics of the Catani-Seymour dipole [7].8

Since q± and q′± have the same virtuality, it is possible to define a boost to transform
q± to q′±. This boost is then applied to all the time-like children and the final space-like
child produced during the showering phase.

We then need a second boost, which is applied to the original colour singlet final state,
from pcms to q′cms, in order to absorb the transverse momentum q⊥⊕+q⊥	 that the colliding
partons have acquired.

It is easy to check that

k⊕	 = 1 +O
(
q2
⊕
s

)
+O

(
q2
	
s

)
, (A.8)

i.e. the rescaling coefficients are equal to 1 plus power-suppressed corrections, thus the
boosts applied to the daughters of the time-like shower progenitors do not alter the loga-
rithmic accuracy of the result.9

A.2 Deep inelastic scattering: initial-final correlations

We now consider deep inelastic processes, i.e. when the incoming parton with momentum
pin is colour connected to an outgoing parton with momentum pout. We want our recoil

8An alternative option, which was the default in Herwig++ and FORTRAN HERWIG, is to preserve the
rapidity of the colour-singlet system, i.e. that the ratio of p⊕ and p	 is identical in q′cms and pcms:

k2
⊕ = k⊕	

x⊕ (β⊕ + α	k⊕	)
x	 (β	 + α⊕k⊕	) . (A.6)

The last option is to preserve the longitudinal momentum, which leads to(
α⊕ + β	

k⊕	

)
k2
⊕ + (x⊕ − x	)k⊕ − (α	k⊕	 + β⊕) = 0. (A.7)

9By default we boost only the time-like jet that contains the hardest emission, however if we adopt
one of the alternative reconstruction options we need to build two separate boosts, one for each incoming
shower progenitor.
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strategy to preserve the transferred momentum, defined as

Q2 = −(pin − pout)2. (A.9)

In the Breit frame

pin = Q

2

[
1 + m2

out
Q2 ; ~0,+1 + m2

out
Q2

]
(A.10)

pout = Q

2

[
1 + m2

out
Q2 ; ~0,−1 + m2

out
Q2

]
(A.11)

∆p = pin − pout = Q
[
0; ~0, 1

]
, (A.12)

where mout is the on-shell mass of the outgoing shower progenitor colour connected to the
incoming one. We introduce a set of basis vectors

n1 = Q
[
1;~0, 1

]
, n2 = Q

[
1;~0,−1

]
, (A.13)

so that
∆p = 1

2 (n1 − n2) , (A.14)

and the momentum of the incoming jet, after the radiation, can be written as

qin = αinn1 + βinn2 + q⊥. (A.15)

The transverse momentum component of qin must be absorbed by the outgoing progenitor
qout (and its daughters), so we first perform a rotation that leads to

qout = αoutn1 + βoutn2 + q⊥, (A.16)

where βout = 1
2 .

We introduce rescaling factors kin,out that allow us to define the shuffled momenta

q′in,out = αin,outkin,outn1 + βin,out
kin,out

n2 + q⊥. (A.17)

We impose
∆p = pin − pout = q′in − q′out, (A.18)

which leads to
αinkin − αoutkout = 1

2 ,
βin
kin
− βout
kout

= −1
2 . (A.19)

Each of these rescalings can be implemented via a boost applied to the progenitor and to
its daughter particles.

If we assume that mout � Q2, we can write

αin = βout = 1
2 , βin = O

(
p2

in
Q

)
, αout = O

(
p2

out
Q

)
, (A.20)

which implies that

kin,out = 1 +O
(
p2

in
Q

)
+O

(
p2

out
Q

)
, (A.21)

i.e. the boost only leads to power-suppressed corrections and does not alter the logarithmic
structure of the result.
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A.3 General case

For more complicated colour structures (like e.g. Z+jet production) we need a more general
procedure.

The default approach used by Herwig++ from version 2.3 and the one employed by
FORTRAN HERWIG and Herwig++ versions prior to 2.3 are both detailed in ref. [22], here we
want to present the new approach introduced in Herwig 7, which uses the information on
the colour structure as much as possible.

The jet associated with the progenitor which leads to the hardest emission is recon-
structed first. By default, its evolution partner is also reconstructed.10 The procedure is
then repeated with the next unreconstructed jet with the hardest emission. Since a gluon
has two colour partners, it is shifted twice, once by the recoil from each of its partners.

For the case of DY production with matrix element corrections, the hardest emission
is considered as part of the hard process (and thus treated as a shower progenitor and not
as a shower emission) only when it is inside the dead zone. For POWHEG matched DY
production, by default a profile function is employed to decide whether the first emission
should be treated as a shower emission (and exponentiated in the Sudakov) or as part of
the hard process. However, in this work, we switch off this profiling mechanism and we
always exponentiate the hardest emission, but we treat it as a shower progenitor when it
is inside the dead zone. For MC@NLO matched DY production, the first emitted parton is
always interpreted as part of the hard process, i.e. as a shower progenitor.

In any of these cases, the global recoil is obtained by rescaling the momenta of the pro-
genitors. However, since such rescalings are equal to 1 plus power-suppressed corrections,
they do not interfere with the logarithmic structure of the result.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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