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Abstract
We prove that any link admitting a diagram with a single negative crossing is strongly
quasipositive. This answers a question of Stoimenow’s in the (strong) positive. As a
second main result, we give a simple and complete characterization of link diagrams
with quasipositive canonical surface (the surface produced by Seifert’s algorithm).
As applications, we determine which prime knots up to 13 crossings are strongly
quasipositive, and we confirm the following conjecture for knots that have a canon-
ical surface realizing their genus: a knot is strongly quasipositive if and only if the
Bennequin inequality is an equality.

Mathematics Subject Classification 57M25

Introduction

Notions of quasipositivity for links and surfaces were introduced and explored by
Rudolph in a series of papers (cited in the text). Their study is motivated, for example,
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by connectionswith complex algebraic plane curves [6,20] and relationships to contact
geometry [3,12].

Quasipositive links, strongly quasipositive links, and quasipositive Seifert surfaces
are usually defined in terms of braids. In this paper, however, our focus lies more
on geometry and less on braids, and so we omit the original definitions in favor of
the following characterizations: a Seifert surface is called quasipositive if it is an
incompressible subsurface of the fiber surface of a positive torus link (incompressible
meaning that the map induced by inclusion on the fundamental group is injective)
and strongly quasipositive links are precisely those links that arise as the boundary
of a quasipositive Seifert surface. That these characterizations are equivalent to the
original definitions is due to Rudolph [21]. We are not concerned with (non-strongly)
quasipositive links in this text.

Quasipositive Seifert surfaces are of maximal Euler characteristic; not just among
Seifert surfaces of the given link, but even among smooth slice surfaces [13,22].

Main results

Links that admit a positive diagram, in other words a diagram without negative cross-
ings, are known as positive links. Positive links are strongly quasipositive [18,24]. Our
first main result generalizes this to almost positive links—links admitting an almost
positive diagram, in other words a diagram with a single negative crossing. This gives
a positive answer to a question of Stoimenow [27, Question 4].

Theorem A Almost positive links are strongly quasipositive.

Note that the hypothesis cannot be weakened further (at least in the most obvious
way), since links admitting diagrams with two negative crossings need not even be
quasipositive (for example, the figure eight knot).

Almost positive links have been studied before they were given this name, and
their similarity in many respects to positive links has been observed. For example,
Cromwell showed that almost positive links have Conway polynomials with non-
negative coefficients [7]; Przytycki and Taniyama proved they have negative signature
[19]; Stoimenow showed that non-trivial almost positive links are chiral and non-
slice [26]; and Tagami proved that the 3-genus, 4-genus, and s/2 (for s the Rasmussen
invariant) of almost positive knots agree [31]. TheoremAcan be seen in this context. In
particular, Theorem A recovers the last result: the slice-Bennequin inequality implies
that for any strongly quasipositive knot (and thus for any almost positive knot) the
3-genus, 4-genus, and all slice-torus invariants agree [14,15,22]. This also proves
chirality and non-sliceness for non-trivial almost positive knots. Here, a slice-torus
invariant [14,15] is a homomorphism y from the smooth concordance group toR such
that for all knots K , y(K ) is a lower bound for the 4-genus of K , and for positive torus
knots K , y(K ) is equal to the 4-genus of K . Examples of such y include τ from knot
Floer homology, and s/2.

To prove Theorem A, we explicitly exhibit quasipositive Seifert surfaces for all
almost positive links. For a certain type of almost positive diagram (which will later
be referred to as type I), we prove that in fact the canonical surface is quasipositive
(the canonical surface is that produced from the diagram by Seifert’s algorithm).
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Almost positive links are strongly quasipositive 483

Canonical surfaces have been studied extensively; it is for example a classical result
that the canonical surfaces of alternating diagrams are genus-minimizing [8,17], which
generalizes to homogeneous diagrams [7], and has recently been scrutinized further
[28,29]. In this light, our proof of Theorem A naturally begs the question: which
canonical surfaces are quasipositive? The complete answer to this question forms
our second main result: namely a criterion in terms of the Seifert graph, which is
combinatorial and algorithmic.

Theorem B A canonical surface is quasipositive if and only if all cycles of its Seifert
graph have strictly positive total weight.

Here, the Seifert graph �(D) of a diagram D has the Seifert circles as vertex set,
and one edge between k and k′ for each crossing connecting the Seifert circles k and k′.
It is a bipartite graph, possibly with multiple edges between two vertices. Its edges
carry a weight of ±1 corresponding to the sign of the crossing. The total weight of
a cycle is understood as the sum of the weights of the cycle’s edges. The reader will
find more details on Seifert graphs at the beginning of Sect. 1.

Applications of Theorem B

Theorem B implies a purely geometric criterion for quasipositivity of a canonical
Seifert surface, which we state as the following corollary.

Corollary C Let � be a Seifert surface that is isotopic to a canonical surface. Then �

is quasipositive if and only if every unknot contained in � bounds a disk in � or has
negative induced framing by �.

Corollary C does not generalize to non-canonical Seifert surfaces; in fact, there
exist non-quasipositive Seifert surfaces� such that all incompressible annuli of� are
quasipositive Seifert surfaces [4].

Next we observe the following criterion for quasipositivity. This allows, see the
example below, to determine the strong-quasipositivity status of all prime knots up
to 13 crossings, in particular recovering the recently completed calculation [10] of
the strong-quasipositivity status of prime knots up to 12 crossings. Throughout this
subsection, let y denote a slice-torus invariant.

Theorem D If K is a knot with a canonical surface � such that y(K ) = genus(�),
then � is a quasipositive Seifert surface; in particular, K is a strongly quasipositive
knot.

Recall that the Bennequin inequality states sl(K )+1
2 ≤ g(K ), where sl(K ) is defined

in either of the following two equivalent ways; see [5]:

sl(K ) := max{sl(T ) | T is a transverse representative of K }
sl(K ) := max{writhe(β) − n | β is an n-braid with closure K }.

It is a conjecture (popularized by Hedden, Etnyre and Van Horn-Morris amongst
others) that theBennequin inequality is an equality if andonly if K is stronglyquasipos-
itive; compare also [10]. As a consequence of Theorem D, we confirm this conjecture
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for knots with canonical genus g̃ (the minimum genus of a canonical surface) equal
to the genus.

Corollary E Let K be a knot with g̃(K ) = g(K ), i.e. a knot for which the genus g(K )

is realized by a canonical surface �. The following are equivalent:

(1) � is quasipositive,
(2) K is strongly quasipositive,
(3) for K the Bennequin-inequality is an equality, and
(4) y(K ) = g(K ).

Note that for K a fibered knot with fiber surface �, the conditions of (1)–(4) in
Corollary E are also equivalent [12].

Applied to the canonical surface �(p1, . . . , p2n+1) of genus n of the P(p1, . . . ,
p2n+1) pretzel knot with all p1, . . . , pn ∈ Z odd, Theorem B immediately yields that
this surface is quasipositive if and only if pi + p j < 0 for all 1 ≤ i < j ≤ n, recovering
a result of Rudolph’s [22,25].Moreover, since�(p1, . . . , p2n+1) is genus-minimizing
[9, Theorem 3.2], Corollary E now implies the following.

Corollary F The P(p1, . . . , p2n+1) pretzel knot with all p1, . . . , pn odd is strongly
quasipositive if and only if pi + p j < 0 for all 1 ≤ i < j ≤ n.

Example We claim that if K is a prime knot with crossing number c(K ) ≤ 13, then
K is strongly quasipositive if and only if y(K ) = g(K ). The ‘only if’ direction holds
for all knots. To show the ‘if’ direction, we rely on Stoimenow’s calculation [30]
that for all prime knots K with c(K ) ≤ 13, it holds that g̃(K ) = m(K ), where m
denotes Morton’s lower bound [16] for g̃ coming from the Homflypt-polynomial. So,
using Theorem D, it is enough to show that all prime knots with c(K ) ≤ 13 satisfy
τ(K ) < g(K ) or τ(K ) = m(K ). This is readily verified by a computer calculation.

Note that this criterion is algorithmic, and can be used in practice to determine
the strong quasipositivity status of a given prime knot K with c(K ) ≤ 13: simply
calculate τ(K ) and m(K ); K is strongly quasipositive if and only if τ(K ) = m(K ).

We do not know whether y(K ) = g(K ) also implies strong quasipositivity for
prime knots K with c(K ) = 14. For c(K ) = 15, we know it does not: the 2-twisted
positive Whitehead double of the right-handed trefoil knot is a prime 15-crossing
knot (15n115646 in the table) with τ = g = 1, which is not quasipositive since its
Rasmussen invariant s is 0 [11].

Remark Theorem B also provides a new proof for Baader’s theorem [1] that a knot K
is positive if and only if it is strongly quasipositive and homogeneous.

Here, following [7], a knot is called homogeneous if it admits a homogeneous
diagram D; and D is called homogeneous if all edges within each block of the Seifert
graph �(D) carry the same weight; where a block B of a graph G is either an isolated
vertex of G, or a maximal subgraph of G with the property that B is connected and
B \ v is connected for all vertices v of B.

We leave it as an exercise in graph theory to show that a knot diagram D is homo-
geneous if and only if all edges within each cycle of �(D) carry the same weight.

The ‘only if’ direction of Baader’s theorem is clear. For the ‘if’ direction, let a
strongly quasipositive and homogeneous knot K be given. Let D be a homogeneous
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diagram of K that is also reduced (has no nugatory crossings). For � the canonical
surface of D, we have g(�) = g(K ) [7]. So, by Corollary E, � is quasipositive. We
are going to show that D is a positive diagram. Let an edge e of �(D) be given. Since
the crossing corresponding to e is not nugatory, e is contained in a cycle C of �(D).
Because � is quasipositive, by Theorem B, the cycle C has positive total weight.
Therefore, C must contain at least one edge with weight +1. But as discussed above,
the homogeneity of D implies that all edges within C carry the same weight, so in
particular, e has weight +1. This concludes the proof.

Approach to proofs

In this subsection we give more details regarding the proofs of the main theorems. We
distinguish two types of diagrams.

Definition We say that D is of type I if D is positive, or if D is almost positive and
there is no positive crossing parallel to the unique negative crossing (in other words
connecting the same pair of Seifert circles).

Definition We say that D is of type II if it is almost positive, and there is a positive
crossing parallel to the unique negative crossing.

We opted to include positive diagrams in type I because they behave similarly in
our constructions as almost positive diagrams of type I; for example our proof of
Theorem A in Sect. 1 for links with a diagram of type I recovers Rudolph’s result that
positive links are strongly quasipositive.

The distinction between type I and II is rather natural and has been made previously
[27,29,31]. Stoimenow shows that each of the two types is realized by knots that do
not admit diagrams of the other type; he further shows that an almost positive diagram
has a minimal genus canonical surface if and only if it is of type I. We strengthen this
result from ‘minimal genus’ to ‘quasipositive’.

Indeed, we show that if D is of type I, then the canonical surface �(D) is quasi-
positive. If D is of type II, we construct a quasipositive Seifert surface �′(D) with
∂�′(D) = ∂�(D) of genus one less than �(D). The alert reader has spotted that the
quasipositivity of �(D) for D of type I also follows from Theorem B. Nevertheless,
we are going to supply an independent proof, which also serves as a warm-up for the
other proofs.

The quasipositivity of links admitting diagrams of type II can be shown using a
method due to Baader [2] as remarked by Tagami [31]. It does not seem clear, however,
how this approach could be strengthened to give a proof of strong quasipositivity. For
links admitting only diagrams of type I, even quasipositivity has not hitherto been
established.

The proof strategy is similar for both theorems. The quasipositivity of the surface
�(D) or�′(D) is established by induction over somemeasure of the complexity of the
Seifert graph�(D). For the induction step, the following two facts about quasipositive
Seifert surfaces are crucial:

(M) Murasugi sums of quasipositive Seifert surfaces are quasipositive [23],
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(S) Incompressible subsurfaces of quasipositive Seifert surfaces are quasipositive.

Note that (S) is an immediate consequence of the characterization of quasipositive
Seifert surfaces that we use.

Outline of the paper

The remainder of the paper contains the proofs of the main results. The proof of
Theorem A is split into Proposition 1.1 for type I in Sect. 1, and Proposition 2.1
for type II in Sect. 2. Theorem B is proven in Sect. 3. Corollary C, Theorem D and
Corollary E are proven in Sect. 4. Sections 1, 2, 3 and 4 can essentially be read
independently.

1 Almost positive links of type I

The goal of this section is to prove the following.

Proposition 1.1 The canonical surface �(D) of a diagram D of type I is quasipositive.

Let us start by providing details regarding the Seifert graph �(D) of a diagram D,
which was briefly defined in the introduction.

The set of edges adjacent to a vertex k of �(D) carries a cyclic ordering, which
comes from the ordering of crossings around the Seifert circle k. Moreover, k separates
R
2 into an interior and an exterior. So each edge adjacent to k carries the additional

information of on which side of k it lies. We say two Seifert circles k and k′ are nested
if one lies in the interior of the other.

If D has no nested Seifert circles, that is the interior of every Seifert circle is empty,
then shrinking every Seifert circle to a point provides a canonical embedding of �(D)

into R2. Thus, if D has no nested Seifert circles, we shall treat �(D) as a plane graph
(i.e. a graph with a fixed embedding into R2).

Next, we will need two lemmas giving sufficient diagrammatic conditions for the
canonical surface being a Murasugi sum and a Hopf plumbing, respectively.

Lemma 1.2 (cf. [7]) Let D be a non-split link diagram (i.e. D is not a disjoint union of
link diagrams) and let k be a Seifert circle of D. Let Di and De be the link diagrams
forming the closure of the interior and the exterior of k, respectively (so that Di ∩De =
k). Then �(D) is a Murasugi sum of �(Di ) and �(De).

Lemma 1.3 Let D be a link diagram with a positive crossing c between two Seifert
circles k and k′ that are not nested. Let D′ be the diagram obtained from D by inserting
another positive crossing c′ that is parallel to c and such that c is the next crossing
after c′ with respect to both the cyclic orderings of crossings around k and around k′.
Then �(D′) is the plumbing of �(D) and a positive Hopf band.

Proof See Fig. 1.

Proof of Proposition 1.1 We prove that �(D) is quasipositive by induction over the
sum of the number of Seifert circles of D and the number of crossings of D.
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(a) (b) (c)

Fig. 1 Inserting a positive crossing next to another one by positive Hopf plumbing. Red and blue indicate
the two sides of oriented surfaces. Dotted lines are hidden below a surface. a Two Seifert circles connected
by a positive crossing. The small arrows indicate positive normal vectors of the surfaces. b Surface obtained
from a by plumbing a positive Hopf band along the gray curve on the positive side of the surface. c This
surface is isotopic to b (pull the Hopf band away from the crossing). Note that the central white region
could contain infinity

Suppose that D is a diagram with a Seifert circle that has empty exterior and non-
empty interior. By ‘moving infinity’ we may change this to a diagram D′ with no such
circle and such that �(D′) = �(D). So without loss of generality we may assume
that D has no Seifert circle with empty exterior and non-empty interior.

Consider the following cases; we will prove below that they are exhaustive.

(1) If D consists of a single Seifert circle:
The canonical surface �(D) is a disk, which is quasipositive.

(2) If D is split, i.e. D = D1 � D2 for link diagrams D1 and D2:
The surfaces �(Di ) are quasipositive by induction, and, thus, so is �(D) =
�(D1) � �(D2).

(3) If there is a nugatory crossing (i.e. an edge removing which would discon-
nect �(D)):
Let D′ denote the diagram obtained by untwisting. Then the surfaces �(D) and
�(D′) are isotopic and, by induction, �(D′) is quasipositive.

(4) If D has a Seifert circle with non-empty interior and non-empty exterior:
If D is a split diagram, we proceed as in case (2). Otherwise, the canonical Seifert
surface �(D) is the Murasugi sum of two canonical surfaces by Lemma 1.2.
Since these two summands are quasipositive by induction, �(D) is quasipositive
by (M).

(5) If there is a Seifert circle with empty interior that is adjacent to exactly two cross-
ings, one of which is a positive crossing and the other is a negative crossing:
A Reidemeister-II-move removes that circle and the crossings adjacent to it,
producing a diagram D′ such that �(D) and �(D′) are isotopic and �(D′) is
quasipositive by induction.

(6) If a pair of non-nested Seifert circles are connected by two positive crossings that
are next to each other (i.e. as in the hypothesis of Lemma 1.3):
Denote by D′ the diagramobtained by deleting one of these crossings. Then�(D′)
is quasipositive by induction, and �(D) is a plumbing of �(D′) and a positive
Hopf band by Lemma 1.3. Thus �(D) is quasipositive by (M).
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Fig. 2 Top and left: a type I diagram D (the (−3,−3, 1)-pretzel diagram) and �(D). Below: its Seifert
graph, with the unique edge of weight −1 drawn dashed. On the right: a diagram D′ obtained from D by
applying (7) to the closed interval drawn gray and dotted, the surface �(D′), and the graph �(D′)

(7) If there is a closed interval embedded in the plane such that

(a) its interior is disjoint from D,
(b) its endpoints lie on two distinct Seifert circles k1, k2,
(c) k1, k2 are oriented coherently,
(d) if k1 and k2 are both connected to a third circle, then both of the connecting

edges are positive:

Denote by D′ the diagramobtainedby adding a 1–handle along that closed interval.
Because D′ has one fewer Seifert circle than D and D′ is of type I by (7d), �(D′)
is quasipositive by induction. Since �(D′) contains �(D) as an incompressible
subsurface, �(D) is quasipositive by (S). See Fig. 2 for an example of this case.

Let us prove that the above cases are exhaustive. For this, let us assume that (1)–(6)
are not satisfied, and deduce that (7) is. Note that the exclusion of (2) and (4) implies
that no Seifert circles in D are nested, so its Seifert graph�(D) can be seen canonically
as a plane graph. Furthermore, the exclusion of (2) implies that �(D) is a connected
graph, the exclusion of (1) and (3) imply that all vertices of �(D) have degree at least
2, and by the exclusion of (5) vertices adjacent to a negative edge have degree at least
3.

We distinguish two cases based on whether �(D) contains a negative edge or not.
In both cases, we succeed in finding an interval as in (7). See Fig. 3 for an illustration.

Case 1. Suppose there is no negative edge. Pick any edge c connecting circles k and
k1. Since k has degree at least 2, one may walk from the edge c in clockwise direction
around k until the next edge c′, which connects k to some Seifert circle k2.

If k1 �= k2 then there is a closed interval as in (7) which connects k1 and k2 by
following c and c′. Note that because there is no negative edge, (7d) is vacuously true.

If k1 = k2, then walk clockwise around k2 from where c′ meets k2 until we meet
the next edge c′′. If c′′ = c, then we are in case (6). If c′′ �= c, note that topologically
c′′ cannot connect to k since we would then have met it when walking clockwise along
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k1

c

c′

k

k2

k2 = k1

k2 = k1

c

c′

c′′ k3
k

Fig. 3 How to find an interval as in (7) (drawn green)

k from c to c′. So c′′ connects to a Seifert circle k3 �= k. There is then an interval
connecting k to k3 by following c′ and c′′.

Case 2.Now suppose there is a negative edge connecting circles k and k0. Because
k has degree at least 3, one may walk from that edge in clockwise direction around k
until an edge c connecting k and some Seifert circle k1, and still further until an edge
c′ connecting k and some Seifert circle k2. Because the diagram is type I, one has
k1 �= k0 and k2 �= k0. Now one may proceed exactly as in the previous case to find an
interval as needed for (7). We note that the intervals as constructed above also satisfy
(7d) because none of k1, k2 and k3 are adjacent to the negative edge.

2 Almost positive links of type II

In this section, we prove the second half of Theorem A.

Proposition 2.1 If D is a link diagram of type II, then D represents a strongly quasi-
positive link.

We first describe how to associate a Seifert surface �′(D) to such a diagram D,
which is similar to the canonical surface butwith smaller first Betti number.Afterwards
we will show that �′(D) is a quasipositive Seifert surface.

Construction 1 (Generalized Seifert algorithm) Let D be a diagram with exactly one
negative crossing c−. Further suppose c− is parallel to a positive crossing c+. If there
is more than one positive crossing parallel to c−, we fix a choice of c+. We describe
a version of Seifert’s algorithm adapted to this setting that associates a Seifert surface
�′(D) with the diagram D as follows.

Resolve all crossings except for c− and for c+ in the orientedmanner (as in Seifert’s
algorithm). This produces a two-crossing diagram D0 of an unlink L0. The diagram
D0 consists of two twice transversely intersecting curves, which we call s1 and s2, and
simple closed curves that are pairwise disjoint and disjoint from s1 and s2, which we
refer to as Seifert circles. We take s1 to be the curve that goes over. We refer to the
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s1 s2

c+

c−

U1 U2O1 O2

Fig. 4 s1 and s2 cut the plane into four regions

union of the Seifert circles and {s1, s2} as generalized Seifert circles. For the rest of
this section, we only consider D such that s1 is oriented clockwise and s2 is oriented
counterclockwise; which, if not the case, can be achieved by ‘moving infinity’ without
changing the associated link. See Fig. 4.

As in Seifert’s algorithm, pick a disjoint union of oriented disks di in R
3 with

constant z-coordinate, one for each generalized Seifert circle ki , such that the boundary
of di projects to ki preserving orientation, and glue in a twisted ribbon for each crossing
to obtain �′(D). We choose the z-coordinates for the disks as follows.

(1) The disk corresponding to s1 has to lie above the disk corresponding to s2. In other
words (using the convention that s1 is oriented clockwise and goes over s2), the
positive sides of the disks face each other.

(2) Let k1 be a generalized Seifert circle lying wholly inside a generalized Seifert
circle k2. The disk d1 corresponding to k1 lies to the positive side of the disk d2
corresponding to k2. In other words, a positive normal to d2 points in the direction
of d1.

Any such choice of z-coordinates assures that glueing in the twisted ribbons provides
an embedded surface.

The choice of z-coordinate for disks corresponding to Seifert circles nested in s1
and s2 is crucial. For other disks, other choices work equally well in what is done
below (save small changes in the details of the proof of Lemma 2.7).

Remark 2.2 The above generalized Seifert algorithm produces a Seifert surface out of
any link diagram D with two marked crossings that are parallel and of opposite sign.

When no c− and c+ are specified, the above algorithm produces a Seifert surface
from a link diagram (simply ignore (1)). However, that Seifert surface is in general not
isotopic to the canonical surface, since z-coordinates are usually chosen differently
in the usual Seifert algorithm (nested implies higher, independent of the orientations
of the disks). In this section, we write �( · ) for the Seifert surface constructed by the
Seifert algorithm using the height order given in (2).
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· · ·

· · ·
· · · · · ·

· · ·c c′

k

k1

k2

c c′ c c′

Fig. 5 Left: crossings c and c′ next to each other on k. Middle and right: crossings c and c′ next to each
other

c± c±

cc

Fig. 6 Swapping the crossing c, which is adjacent to s1 and s2. Note that no other Seifert circles or crossings
are present in the disk where the modification occurs

We note that the proof of Proposition 1.1 holds verbatim for the z-coordinate con-
ventions in this section. Hence if D is a positive diagram we already know that �(D)

is a quasipositive Seifert surface.

In the usual way, we specify each crossing (different from c− and c+) by giving an
embedded closed interval c (which we shall also call a crossing) in R2. The boundary
points of each such crossing will lie on two different generalized Seifert circles, and
each such crossing will be disjoint from c− and c+, with its interior disjoint from all
generalized Seifert circles. See Fig. 7 for examples.

Definition 2.3 We give a few notions which we shall refer to throughout the remainder
of this section.

• From here on, unless otherwise stated, a crossing refers to a crossing of D that is
neither c+ nor c−.

• A crossing is said to be adjacent to the generalized Seifert circles on which its
endpoints lie.

• Two crossings c and c′ are said to be next to each other on a generalized Seifert
circle k, if they are both adjacent to k, they both lie to the same side of k, and
there is a closed subinterval I of k with endpoints on c and c′ such that I does
not contain c− or c+ and there are no crossings with endpoints on I that lie to the
same side of k as c and c′. See Fig. 5(left).

• Two crossings c and c′ are said to be next to each other, if they are both adjacent
to the same two generalized Seifert circles k1 and k2, they are next to each other
on both ki , witnessed by intervals Ii , such that the union S = c ∪ c′ ∪ I1 ∪ I2 has
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the property that one of the two components of R2 \ S contains no generalized
Seifert circles and no crossings. See Fig. 5(middle).

• We also say c and c′ are next to each other if they are next to each other after
swapping one of them over c− or c+; see Fig. 5(right).

• Here swapping a crossing c over c− or over c+ is the operation on diagrams
defined by a modification of a diagram in a disk as described in Fig. 6.

• The union of s1 and s2 separates R2 into four regions. Two of these have inconsis-
tently oriented boundaries induced from the orientations of s1 and s2. We denote
the unbounded region U1 and the other U2. We denote the remaining two regions
by O1 and O2, where Oi is the region contained inside si . See Fig. 4.

We note that if the diagram D′ arises from D by swapping a crossing, then �′(D′)
and �′(D) are isotopic Seifert surfaces.

Proof of Proposition 2.1 As in the proof of Proposition 1.1, we shall proceed by induc-
tion on the sum of the number of Seifert circles and the number of crossings and
consider a list of cases. That these cases are exhaustive is the content of Lemma 2.5
below. We shall refer back to the proof of Proposition 1.1 for how to proceed with
some of these cases.

(1’) If D is one of the 8 diagrams indicated in Fig. 7 or a diagram obtained from one
of them by deleting Seifert circles or crossings:
The Seifert surface �′(D) is a quasipositive Seifert surface, as demonstrated in
Lemma 2.6.

(2’) If D is split:
Proceed as in (2) (using �′( · ) rather than �( · ) for the part of the diagram that
contains the si ). Explicitly,writing the diagram D as D−�D+, where D− contains
c− (and thus also c+), we have that �′(D) = �′(D−) � �(D+) is quasipositive,
since �′(D−) is quasipositive by induction, and �(D+) is quasipositive because
D+ is positive.

(3’) If there is a nugatory crossing:
Proceed as in (3).

(4’) If a Seifert circle has non-empty interior and exterior:
Proceed as in (4).

(5’) If two generalized Seifert circles are connected by two crossings that are next to
each other:
By Lemma 2.7 (analog of Lemma 1.3 provided at the end of this section), we
obtain a diagram D′ by removing one of the two crossings such that �′(D)

is quasipositive if and only if �′(D′) is quasipositive. However, by induction,
�′(D′) is a quasipositive Seifert surface.

(6’) If there is a closed interval embedded in R2 such that

(a) its interior is disjoint from D,
(b) one of its endpoints lies on a Seifert circle k1 and the other endpoint lies on a

generalized Seifert circle k2, and
(c) k1, k2 are oriented coherently:

Denote by D′ the diagram obtained by adding a 1-handle along that closed inter-
val. Because D′ has one fewer Seifert circle than D, �′(D′) is quasipositive by
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D1 D2

D3 D4

D5 D6

D7 D8

Fig. 7 Diagrams to which (2’)–(6’) do not apply

induction. And since �′(D′) contains �′(D) as an incompressible subsurface,
�′(D) is quasipositive by (S).

Let us first establish that the above cases are exhaustive.

Lemma 2.4 If the conditions of none of (2’)–(6’) are satisfied, then

(i) the regions U1 and U2 contain no Seifert circles,
(ii) O1 and O2 each contain at most one Seifert circle,
(iii) each of the Seifert circles has exactly 2 positive crossings adjacent to it,
(iv) in each Ui there is at most one crossing between s1 and s2.

We postpone the proof of Lemma 2.4 and apply it to prove the following.

Lemma 2.5 If D is a diagram such that (2’)–(6’) do not apply, then (1’) applies to D.
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Fig. 8 k is s1 or s2 and c is next
to one of the two intersection
points of s1 and s2 (bottom)

kk1

k2

c

Proof By Lemma 2.4, it suffices to consider diagrams satisfying i)–iv).
First we consider the case where D has a crossing in both U1 and U2 and O1 and

O2 each contain a Seifert circle. Once one has fixed the endpoints of the crossings in
U1 andU2, there are four possibilities for how the two crossings adjacent to the unique
Seifert circle in O1 can lie without being next to each other (as otherwise (5’) applies
to D). Similarly, there are four possibilities for how the two crossings adjacent to the
Seifert circle in O2 can lie without being next to each other.

Thus in this case there are 16 diagrams satisfying i)–iv). However, in 12 of these
diagrams there is a crossings in U1 that is next to a crossing of U2 (using the notion
of next to each other that uses swapping). Hence for these 12 diagrams (5’) applies.
The four remaining diagrams, which we denote by D1, D2, D3, and D4, are indicated
in Fig. 7.

Next we consider the case where D has a crossing in exactly one of U1 or U2, and
two Seifert circles. There are eight such diagrams satisfying i)–iv). Four of these arise
by deleting a crossing in one of the diagrams D1, D2, D3, and D4. The other four,
denoted by D5, D6, D7, and D8, are indicated in Fig. 7.

Finally, it is easy to see that any case not yet considered is obtained from at least
one of the Di by deleting Seifert circles or crossings.

Proof of Lemma 2.4 i) Assume towards a contradiction that there is at least one
Seifert circle, say k1, in Ui . There is a crossing c connecting k1 to a different
generalized Seifert circle k. We distinguish two cases.
Case 1:Assume that on k there is a crossing c′ next to c. Let k2 be the generalized
Seifert circle adjacent to c′ that is not k; see Fig. 3.
If k1 �= k2, then (6’) applies (see green interval in Fig. 3(left)), hence we obtain a
contradiction. Thus we have that k1 = k2. The crossings c′ and c (compare Fig. 3)
are next to each other on k, which implies that there must be another crossing c′′
adjacent to k2 that is between c and c′, since otherwise the crossings c and c′ are
next to each other (this uses that D is not split). Let k3 be the other Seifert circle
adjacent to c′′. Now (6’) applies (see green interval in Fig. 3 (right)), hence we
obtain a contradiction.
Case 2: Assume that on k there is no crossing next to c. This implies that k is s1
or s2 (if k were a Seifert circle, having no crossing next to c on k would imply
that c is the only crossing on one side of k, thus c would be nugatory).
Thus, (6’) applies (see green interval in Fig. 8), contradiction.
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ii) Assume towards a contradiction that there are at least two Seifert circles in O1
(without loss of generality).
Case 1: Assume that inside O1 there are two distinct crossings c, c′ adjacent to
si for some i . Calling the Seifert circle k1 that is also adjacent to c, we can now
argue verbatim as in Case 1 of i) above.
Case 2: Assume that inside O1 there is at most one crossing adjacent to s1 and
at most one crossing adjacent to s2. Then, to avoid nugatory crossings, we know
that there is exactly one crossing c1 adjacent to s1 and exactly one crossing c2
adjacent to s2.
Call the Seifert circle k1 that is also adjacent to c1. If k1 is adjacent to no other
crossings then c1 is nugatory. If k1 is adjacent to c1, to c2, and to no other crossing
then either the diagram is disconnected, k1 has non-empty interior, or there is no
other Seifert circle in O1. If k1 is adjacent to some crossing different from c1
and c2, then pick c �= c2 to be a crossing next to c1 on k1. Then there is an arc
connecting s1 to the other Seifert circle adjacent to c.

iii) Let i ∈ {1, 2}. Let k be a Seifert circle in Oi . All crossings adjacent to k are
adjacent to s1 or s2 since there are no other Seifert circles in Oi by ii). If there
are at least three crossings, then two of them are adjacent to the same s j and are
next to each other since there are no other Seifert circles in Oi by ii).

iv) Let i ∈ {1, 2}. If there are two or more crossings in Ui , then two of them are next
to each other since there are no Seifert circles in Ui by i).

It remains to show that for the diagrams Di for i ∈ {1, . . . , 8} given in Fig. 7,
�′(Di ) is a quasipositive surface. This implies that �′(D) is a quasipositive Seifert
surface for any diagram D obtained from some Di by deleting crossings or Seifert
circles. (Because in this case �′(D) is an incompressible subsurface of �′(Di ) and
thus a quasipositive Seifert surface by (S).)

Lemma 2.6 The Seifert surface �′(Di ) is quasipositive for all i ∈ {1, . . . , 8}.
Proof We discuss each of the surfaces �′(Di ) in turn.

• 6′(D1).Wewrite L1 for the boundary of�′(D1). Note that L1 has two components
and further note that �′(D1) has Euler characteristic χ(�′(D1)) = −2. Hence
�′(D1) is a twice punctured surface of genus 1.
By inspection, L1 is the two component link consisting of the positive trefoil and
a meridian positively linking the trefoil.
Note that the link L1 is the boundary of the surface F given as the connected sum
(a special case of a Murasugi sum) of the fiber surface of the positive trefoil F2,3
and the positive Hopf band F2,2. In particular, F is a fiber surface (since Murasugi
sum preserves fiberedness) for L with Euler characteristic −2. Since F is a fiber
surface, it is the unique Euler characteristic maximizing Seifert surface for L1;
therefore �′(D1) is isotopic to F . However, F is a quasipositive Seifert surface
by (M) since it is the Murasugi sum of the two quasipositive Seifert surfaces F2,3
and F2,2.

• 6′(D2). This is seen to be isotopic to �′(D1), for example via rotation about the
vertical axis in the plane.
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O1 O2
c+

Fig. 9 Left-to-middle and right-to-middle: swapping a Seifert circle over c+ into a crossing. Left-to-right:
swapping a Seifert circle from O1 over c+ into a Seifert circle in O2

• 6′(D3). We consider a diagram move (similar to swapping a crossing) indicated in
Fig. 9 that swaps a Seifert circle with two adjacent crossings into a crossing and
vice versa.
Note that �′(D) = �′(D′) for diagrams D and D′ that are related by this move.
We apply this move (Fig. 9(left-to-middle)) to D3: swap the Seifert circle in O1
over c+ into a crossing in U2 to get a diagram D′

3 with two crossings in U2 and
one crossing in U1. One of the crossings in U2 is next to the other crossing in U2
and also next to the crossing in U1. By Lemma 2.7, �′(D′

3) is quasipositive if and
only if �′(D′′

3 ) is quasipositive, where D′′
3 is the diagram obtained from D′

3 by
deleting the crossing in U1 and one of the crossings in U2.
Finally, we observe that �′(D′′

3 ) is a quasipositive surface. This follows since D′′
3

can be obtained from D1 by deleting crossings and Seifert circles establishing that
�′(D′′

3 ) is an incompressible subsurface of the quasipositive surface �′(D1).
• 6′(D4). This is seen to be isotopic to �′(D3), for example via rotation about the
vertical axis in the plane.

• 6′(D5). First use the move depicted in Fig. 9(middle-to-left) to swap the crossing
in U2 over c+ to result in a diagram with two Seifert circles in O1. Then swap the
Seifert circle in O2 over c+ to O1 using the move depicted in Fig. 9(right-to-left)
resulting in a diagram D′

5 with three Seifert circles in O1.
The Seifert surface �′(D′

5) is isotopic to �′(D5) and is easily seen to be the
Seifert surface of a positive diagram of the (−2,−2,−2)–pretzel link, and hence
quasipositive.

• 6′(D6). The surface �′(D6) is a thrice-punctured sphere since it has Euler char-
acteristic −1 and its boundary is a three component link L6.
By inspection, the link L6 is the three-component link given as an unknot with
two parallel positively linked meridians. Thus, we note that L6 is the boundary of
the Seifert surface S of Euler characteristic −1 given as the connected sum of two
positive Hopf bands. As for �′(D1), we conclude that S is a quasipositive Seifert
surface that is isotopic to �′(D6). Thus, �′(D6) is a quasipositive Seifert surface.

• 6′(D7). The surfaces �′(D7) and �′(D6) are isotopic since D6 can be turned into
D7 by swapping a crossing.

• 6′(D8). The surfaces �′(D8) and �′(D5) are isotopic since swapping a crossing
in D5 (and then moving the crossing over infinity) turns D5 into D8.

We end the section with the generalization of Lemma 1.3 used above.
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(a) (b) (c)

Fig. 10 Inserting a positive crossing next to another one by positive Hopf plumbing (generalizing Fig. 1). a
Local picture of �′(D) containing the two ribbons corresponding to two crossings c1 and c2 that are next
to each other. Note that the central white region could contain infinity. b The result of plumbing a positive
Hopf band in c. c A closed interval (gray) in �′(D′) along which a positive Hopf band gets plumbed to the
blue side

Lemma 2.7 Let D be a diagram with two marked crossings of opposite sign c− and c+.
If two positive crossings c1 and c2 are next to each other, then for some i ∈ {1, 2}, the
diagram D′ obtained by deleting ci satisfies: �′(D) is a quasipositive Seifert surface
if and only �′(D′) is a quasipositive Seifert surface.

Proof of Lemma 2.7 One direction of the Lemma follows immediately since �′(D′)
is an incompressible subsurface of �′(D). The other direction shall be proven in a
similar way as Lemma 1.3.Wemay and do assume that c1 and c2 are next to each other
without swapping needed (otherwise swap a crossing first and consider the resulting
diagram as D). Writing k and k′ for the generalized Seifert circles adjacent to c1 and
c2, we wish to prove that the local situation is isotopic to Fig. 10a. Then, while there
may be twisted ribbons attached to k and to k′ between c1 and c2, either all of those
ribbons lie above the disk corresponding to k, and below the disk corresponding to k′,
or vice versa. So, the Hopf band in Fig. 10b may be plumbed to Fig. 10c such that it
does not interfere with the ribbons.

To make this plan work, we distinguish two cases depending on whether k and k′
are nested or not; in each of the cases we pay attention to the possibility that k and k′
may be s1 or s2.

Case when k and k′ are not nested. It turns out that D′ can be chosen such
that �′(D) arises from plumbing a positive Hopf band to �′(D′), which implies that
�′(D) is a quasipositive Seifert surface if and only if�′(D′) is. The argument is more
involved version of the proof of Lemma 1.3; in particular, we will have to be careful
which of the two crossings c1 and c2 to eliminate in D to obtain D′.

We first consider the case that at least one of the generalized Seifert circles k or k′
is a Seifert circle (i.e. not an si ). The situation is as depicted in Fig. 10a (we note that
picture only depicts a closed range of z-coordinate height—far above or below there
could be further disks corresponding to generalized Seifert circles that contain both k
and k′).

This is due to the z-coordinate convention of nested disks assuring that all the
ribbons corresponding to crossings on k and k′ to the other side than the ci are to
the positive (red) side of the disks corresponding to k and k′. Then, the surface can
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be isotoped to be the result (see Fig. 10b) of plumbing a positive Hopf band to the
negative (blue) side of �′(D′) (see Fig. 10c), where D′ is the diagram obtained by
deleting the crossing ci in D that is depicted at the bottom of Fig. 10a.

If instead k and k′ are s1 and s2, then the crossings c1 and c2 lie in U1 or U2. If they
lie in U1, the situation is again exactly as depicted in Fig. 10a. If instead the crossings
c1 and c2 lie in U2, then �′(D) can be isotoped to look like Fig. 10a by locally pulling
the disks corresponding to s1 and s2 apart, so the first is no longer above the second.
Note that, different from the previous cases, the positive side of �′(D) is depicted as
blue and the plumbing of the positive Hopf band happens to the positive (blue) side of
�′(D′). Again, here D′ is the appropriate diagram obtained from D by deleting either
c1 or c2.

Case when k and k′ are nested.
First remark that k or k′ is a Seifert circle since s1 and s2 are not nested. Second,

note that either the two ci and the two si all lie to the same side of k, or they all lie to
the same side of k′. All in all, we suppose w.l.o.g. that k is a Seifert circle and the si

and the ci all lie to the same side of k.
Wenowsplit�′(D) as aMurasugi sumalong k. Let D− and D+ be the link diagrams

so that D = D− ∪ D+ and D− ∩ D+ = k (as in Lemma 1.2), where we let D− be the
link diagram that contains the si and the ci . The simple case that D+ consists only of
k and D− = D is possible. The Seifert surface �′(D) is a Murasugi sum of �(D+)

and �′(D−). Since D+ has no negative crossings, �(D+) is a quasipositive Seifert
surface and, thus, �′(D) is a quasipositive Seifert surface if and only if �′(D−) is by
(M).

We now argue that �′(D−) arises by positive Hopf plumbing on �′(D′−), where
D′− is a diagram obtained from deleting one of the ci in D−. For this we note that the
Seifert surface �′(D−) can be isotoped (by folding the disk corresponding to either k
or k′, which ever contains the other, along the part of its boundary connecting the two
ribbons corresponding to c1 and c2) to look like Fig. 10a.

In fact, the situation is necessarily simpler as depicted in Fig. 10a: on the disk
corresponding to k there will be no ribbons leaving between c1 and c2 on either side
(red or blue). In other words, the situation is as depicted in Fig. 10a to one side and as
depicted in Fig. 1c on the other side.

So then, as before, �′(D−) is the result (see Fig. 10b) of plumbing a positive Hopf
band to �′(D′−) (see Fig. 10c), where D′− is the appropriate diagram obtained from
D− by deleting one of the ci . We note that both plumbing to the positive side and
plumbing to the negative side can occur.

Finally, we set D′ to be the union of D′− and D+. The Seifert surface �′(D′) is
a Murasugi sum of �(D+) and �′(D′−) and, thus, �′(D′) is a quasipositive Seifert
surface if and only if �′(D′−) is (by (M)). Therefore, we conclude that �′(D) is a
quasipositive Seifert surface if and only if �′(D′) is, as desired.

3 Canonical quasipositive surfaces

Let us start with some graph theoretic concepts.
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Definition 3.1

• A path P is a sequence e1, . . . , en of distinct edges in which ei has vertices v1i
and v2i such that v2i = v1i+1 and such that every vertex appears at most twice as
endpoint of an edge of P .

• The length of such a path P is denoted by �(P) = n.
• A cycle C is a path as above with v2n = v11.• A region of a plane graph G is a connected component of R2 \ G.
• A graph G is 2–connected if it has at least three vertices, is connected, and the
result of removing any vertex is again connected.

• A weighted graph is a graph in which each edge carries either the weight +1 or
the weight −1. For a collection E of edges of a weighted graph, we denote by
w(E) ∈ Z the total weight of E , i.e. the sum of the weights of the edges in E .

Our main theorem of this section is the following.
Theorem B. A canonical surface is quasipositive if and only if all cycles of its Seifert
graph have strictly positive total weight.

Proof A cycle C of �(D) lifts to a non-null-homologous unknot in �(D) with fram-
ing w(C). A tubular neighborhood of that unknot in �(D) is an annulus with w(C)

full twists, and an incompressible subsurface of �(D). So if �(D) is quasipositive,
then w(C) > 0 follows from (S). This establishes the necessity of the cycle condition
for quasipositivity.

To see that that the cycle condition for quasipositivity is sufficient, suppose some
diagram D has �(D) satisfying the hypothesis of Theorem B.

If D is a split diagram, then �(D) is not connected and the cycle condition can be
checked on each connected component individually. Therefore wemay and do assume
that D is non-split.

If there is a Seifert circle k in D that has non-empty interior and exterior, then�(D)

may be expressed as the Murasugi sum of some �(Di ) and �(De) (see Lemma 1.2).
Since �(Di ) and �(De) are both subgraphs of �(D), we conclude that Theorem B
follows from considering diagrams where each Seifert circle either has empty interior
or empty exterior.

By moving infinity we move to a different diagram but with an isotopic canonical
surface. So, by possibly moving infinity, we may and do assume that every Seifert
circle of D has empty interior.

Hence we have reduced the proof to Proposition 3.2.

Proposition 3.2 If D is a non-split link diagram such that every Seifert circle of D has
empty interior, and such that all cycles of �(D) have positive total weight, then �(D)

is quasipositive.

Recall from the paragraph after Theorem B in Sect. 1 that if D is a link diagram
with all Seifert circles having empty interior, then its Seifert graph �(D) is naturally
a plane graph, while also being bipartite and weighted. All graphs considered in this
section will be bipartite weighted plane graphs.
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Proof of Proposition 3.2 Let D be a link diagram satisfying the hypothesis of the propo-
sition. Since D is non-split, �(D) is connected.

Suppose that D is a connected sum of diagrams D1 and D2, each with at least
one crossing. Then �(D) is a connected sum (a special case of a Murasugi sum) of
�(D1) and �(D2) and it suffices to consider the summands by (M). Therefore we
only consider diagrams that are not such connected sums.

If D has only one Seifert circle, �(D) is a disk, which is quasipositive. Similarly
if D has only two Seifert circles and only one crossing.

If D has two Seifert circles and n ≥ 2 crossings, then each crossing is positive
since otherwise the cycle positivity condition of �(D)would be violated. Then we see
that �(D) is the fiber surface of the positive (2, n)–torus link, which is quasipositive.
This case will be the root case of a proof by induction.

We assume now that D has at least three Seifert circles. Since D is not a non-trivial
connected sum, �(D) is 2–connected (see Definition 3.1). Then it is a straightforward
graph theoretic result about 2–connected plane graphs that the boundary of each region
of R2 \ �(D) is a cycle. We will call such a cycle boundary cycle.

Our strategy is a proof by induction over the following measure of complexity
of �(D). Suppose x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .) are two infinite
sequences of integers with only finitely many non-zero integers. Define x > y iff the
rightmost non-zero entry of x − y is positive. Let fi be the number of boundary cycles
of length 2i . We define the infinite sequence

f (�(D)) = ( f1, f2, f3, . . .).

Given a link diagram D satisfying the hypothesis of Proposition 3.2, our idea is to
produce a new link diagram D′ also satisfying the hypothesis. Furthermore we aim to
do this so that f (�(D′)) < f (�(D)) and so that �(D) is a quasipositive surface if
�(D′) is a quasipositive surface.Having already verified the root case that all boundary
cycles have length 2 (which implies having two Seifert circles), the induction will give
us the result.

If�(D) contains a vertex of degree 2 adjacent to a positive and a negative edge, then
we have �(D) = �(D′) where D′ is obtained from D by removing two crossings via
a Reidemeister II move. Furthermore D′ satisfies the hypothesis of Proposition 3.2
and has f (�(D′)) < f (�(D)). So we may and do assume that �(D) contains no
degree 2 vertices adjacent to both a positive and negative edge.

Let us now introduce a new move, which generalizes (7) from the proof of Theo-
remA. Suppose v,w are vertices of�(D) on the boundaryC of a region ofR2 \�(D).
Let d be the distance (lengthwise, not weighted) between v andw alongC and suppose
d ≥ 2.We nowdescribe a diagram D′ obtained from D. It is enough to describe�(D′),
which is obtained from�(D) by adding a chord consisting of a path of (d −2) positive
edges between v and w inside of the region. In the special case of d = 2, adding a
chord of length 0 is understood as merging v and w. The two crucial observations are:

• We have that f (�(D′)) < f (�(D)) because the regions ofR2 \�(D′) correspond
to those of R2 \ �(D), except for the region with boundary C , which is split into
two regions, each of them with strictly fewer edges than C .
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• The surface �(D) is an incompressible subsurface of �(D′).

So to conclude the proof of the proposition, it suffices to show that this move is always
possible in such a way that D′ still satisfies the hypothesis of the proposition. Note that
the only cycles of �(D′) not occurring as cycles of �(D) are those that pass through
the new chord. So it suffices to pick v,w and C such that any path Q in �(D) between
v and w satisfies w(Q) + d − 2 ≥ 2. That this is always possible is the contents of
Propositions 3.5 and 3.6.

Definition 3.3 Wesay that a link diagram D has property (*) if it satisfies the following.

• All Seifert circles of D have empty interior.
• All cycles of �(D) have positive total weight.
• �(D) is 2-connected (see Definition 3.1).
• �(D) contains no degree 2 vertices adjacent to both a positive and a negative edge.

Definition 3.4 Suppose that D has property (*) and C is the boundary cycle of a
region of R2 \ �(D). We say that C is splittable if there exist vertices v and w of C ,
distance d ≥ 2 apart on C , such that every path Q in �(D) connecting v to w satisfies
w(Q) ≥ 4 − d.

Proposition 3.5 Suppose that D has property (*). Then there is a region of R2 \�(D)

whose boundary cycle C has w(C) ≥ 4.

We postpone the proof of this proposition to the end of the section.

Proposition 3.6 Suppose that D has property (*) and C is the boundary cycle of a
region of R2 \ �(D) with w(C) ≥ 4. Then C is splittable.

Proof The proof is divided into two cases given as Lemmas 3.7 and 3.8.

Lemma 3.7 Suppose that D has property (*), and that C is the boundary cycle of a
region of R2 \ �(D) with w(C) ≥ 4 and at least one edge of C negative. Then C is
splittable.

Lemma 3.8 Suppose that D has property (*), and that C is the boundary cycle of a
region of R2 \�(D) with w(C) ≥ 4 and every edge of C positive. Then C is splittable.

For the proof of Lemmas 3.7 and 3.8 we first collect some straightforward facts,
without proof, in the following lemma.

Lemma 3.9 We have the following.

(1) Suppose that H is a graph and v and w are distinct vertices of H. Then paths
from v to w are exactly the minimal subgraphs of H in which v and w are the only
vertices with odd degree.

(2) If H is a graph with vertices of only even degree then its set of edges can be written
as a disjoint union of cycles.
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(3) Suppose that H is a graph with exactly two vertices v and w of odd degree and
that P is any path from v to w (such a P exists by the first part of this lemma).
Then removing the set of edges of P from H leaves a graph whose set of edges is
a disjoint union of cycles.

Proof of Lemma 3.7 Let us pick v and w as follows. Walking around C , pick v such
that the next edge is positive and the one immediately after is negative, and continue
walking until the next positive edge, and call its farther vertexw. Then one has walked
along a path P with w(P) = 4 − �(P). The other path P ′ in C between v and w

satisfies w(P ′) + w(P) ≥ 4, and so �(P ′) ≥ w(P ′) ≥ 4 − w(P) = �(P). Hence P
is not the longer path between v and w around C , and d = �(P).

For every path Q in �(D) between v and w, we must show that w(Q) ≥ 4 − d,
which is equivalent to showing w(Q) ≥ w(P) since 4 − d = 4 − �(P) = w(P).

So let Q be such a path. Note that (P ∪ Q) \ (P ∩ Q) is a union of cycles (see
Lemma 3.9(2)), say Z1, . . . , Zn . Let us write Zi = Pi � Qi for a decomposition of
each Zi into sets of edges Pi ⊂ P and Qi ⊂ Q. Then we have that

w(P) = w(P1) + · · · + w(Pn) + w(P ∩ Q),

w(Q) = w(Q1) + · · · + w(Qn) + w(P ∩ Q).

So we shall be done if we can show that w(Qi ) ≥ w(Pi ) for all i .
Since P contains only two positive edges, we must have w(Pi ) ≤ 2, with equality

only when Pi consists of exactly the two positive edges of P (in other words the first
and last edge of P). Since the path Qi of course cannot enter the region bounded by
C the only way that w(Pi ) = 2 can happen is if Qi consists of a path connecting v

to w and another path connecting the other two endpoints of the first and last edge
of P . But Q is a path connecting v to w and Qi ⊂ Q, so we have a contradiction
by Lemma 3.9(1). Therefore we must have w(Pi ) ≤ 1 for all i . Further note that
w(Qi ) + w(Pi ) = w(Zi ) ≥ 2 since Zi is a cycle. Hence we can conclude that
w(Qi ) ≥ w(Pi ) for all i .

A heuristic important for our proof of Lemma 3.8 is that if two paths of a weighted
graph intersect, one can resolve them and obtain two new paths which have the same
total weight. This heuristic turns out, when formalized in the following lemma, only
to yield an inequality rather than an equality.

Lemma 3.10 Let D be a diagram which has property (*) and consider the boundary
cycle C of a region of R2 \�(D). Suppose that �(C) ≥ 4, and let vi be distinct vertices
of C for i ∈ Z/4, occurring in the cyclic ordering around C. Suppose that P02 and
P13 are paths from v0 to v2 and from v1 to v3 respectively.

Then for some i ∈ {0, 1} there exists a path Pi,i+1 from vi to vi+1 and a path
Pi+2,i+3 from vi+2 to vi+3 such that

w(Pi,i+1) + w(Pi+2,i+3) ≤ w(P02) + w(P13).
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Proof Consider the subgraph H of �(D)

H = (P02 ∪ P13) \ (P02 ∩ P13).

The vertices in H of odd degree are exactly the vertices vi for i ∈ Z/4. Let ˜H be the
subgraph of H obtained by removing those connected components of H not containing
any of the vertices vi . Again the vertices of ˜H of odd degree are exactly the vertices vi .
Therefore ˜H is either connected or has exactly two components each containing two
of the vertices Pi . Any path connecting v0 and v2 must intersect any path connecting
v1 and v3. Hence, it cannot be the case that there are two components of which one
contains v0 and v2 and while the other contains v1 and v3. Therefore v0 is in the same
component as v1 or as v3. Let us assume the former for now.

Let Q be a path in ˜H connecting v0 to v1. Note that Q is a subgraph of H and so, by
construction, each edge of Q occurs either in P02 or in P13 but not in both. Therefore
we have

w(P02) + w(P13) = w((P02 ∪ Q) \ (P02 ∩ Q)) + w((P13 ∪ Q) \ (P13 ∩ Q)).

Now v1 and v2 are exactly the vertices of (P02 ∪ Q) \ (P02 ∩ Q) of odd degree.
Therefore (P02 ∪ Q) \ (P02 ∩ Q) can be written as the disjoint union of a path P12
from v1 to v2 and some cycles (by Lemma 3.9). Since by assumption each cycle has
weight ≥ 2, we must have that

w(P12) ≤ w((P02 ∪ Q) \ (P02 ∩ Q)).

Similarly there is a path P30 from v3 to v0 satisfying

w(P30) ≤ w((P13 ∪ Q) \ (P13 ∩ Q)).

Hence we have

w(P12) + w(P30) ≤ w((P02 ∪ Q) \ (P02 ∩ Q)) + w((P13 ∪ Q) \ (P13 ∩ Q))

= w(P02) + w(P13).

The other case follows from making the assumption that v0 is in the same component
of ˜H as v3.

Lemma 3.11 Suppose that D has property (*) and that C is the boundary of a region
of R2 \ �(D) such that all edges of C have weight +1. Let v and w be vertices of C
such that the shortest path in C between v and w has length d ≥ 1. Then there is no
path between v and w of weight less than 2 − d.

Proof Let P be a path between v andw. Let us write Q for a path of length d contained
in C connecting v to w. Consider P ∩ Q. Each connected component of P ∩ Q, since
it is a subgraph of Q, is a path in C . Furthermore the set of edges of (P ∪ Q)\ (P ∩ Q)
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can be written as a disjoint union of cycles. Let us write c for the number of cycles in
such a decomposition of (P ∪ Q) \ (P ∩ Q).

In the case that c = 0 then P = Q and w(Q) = w(P) = d ≥ 2 − d.
In the case that c ≥ 1 then

w(P) = w((P ∪ Q) \ (P ∩ Q)) + 2w(P ∩ Q) − w(Q)

≥ 2c + 2w(P ∩ Q) − d ≥ 2c − d ≥ 2 − d.

Now we are in a position to give the proof of Lemma 3.8, thus establishing Propo-
sition 3.6.

Proof of Lemma 3.8 Let us proceed by contradiction. So assume that C is a boundary
cycle with no negative edges, of total weight w(C) = �(C) = 2n ≥ 4, and assume
C is not splittable. That is to say that for any pair of vertices v,w on C of distance d
along C , there is a path Q in �(D) with w(Q) < 4 − d, thus 2n ≤ 2 − d.

Pick vi for i ∈ Z/4 on C in the cyclic ordering, such that the distances between
vi and vi+1 are 1, 1, n − 1 and n − 1 for i = 0, 1, 2, 3. Thus there are paths P02
and P13 from v0 to v2 and from v1 to v3, respectively, such that w(P02) ≤ 0 and
w(P13) ≤ 2−n. ByLemma3.11 it follows that in factw(P02) = 0 andw(P13) = 2−n.
By Lemma 3.10, there are paths Pi,i+1 and Pi+2,i+3 for some i ∈ {0, 1} such that
w(Pi,i+1) + w(Pi+2,i+3) ≤ 2− n. This contradicts the fact that by positivity of cycle
weights, w(Pi,i+1) > −1 and w(Pi+2,i+3) > 1 − d and thus w(Pi,i+1) ≥ 1 and
w(Pi+2,i+3) ≥ 3 − d.

Finally, we turn to Proposition 3.5, to whose proof we devote the remainder of this
section.

Proof of Proposition 3.5 We divide the proof of this proposition into Lemmas 3.14 and
3.15.

Let us first prove the following.

Lemma 3.12 Suppose that D is a diagram which has property (*). Suppose further
that the boundaries of all regions of R2 \ �(D) have total weight 2. Then there is a
positive vertex of �(D), in other words a vertex not adjacent to a negative edge.

Proof As before, let fi be the number of boundary cycles of length 2i . Let f be the
total number of regions, e the number of edges, e− the number of negative edges and
v the number of vertices. Then we have

f =
∞
∑

i=2

f2i and e =
∞
∑

i=2

i f2i so that v = 2 +
∞
∑

i=2

(i − 1) f2i .

Then, since every region of R2 \ �(D) has two more positive edges in its boundary
than negative edges, we have
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e− =
∞
∑

i=2

(i − 1) f2i/2 and so v > 2e−.

Definition 3.13 Let D be a diagram which has property (*) and let v be a positive
vertex of �(D). Let C1, . . . , Cn be the boundaries of those regions of R2 \ �(D)

adjacent to v. We say that v is a wicked positive vertex if Ci ∩ C j is connected for all
i, j .

Lemma 3.14 Suppose that D is a diagram which has property (*) and which contains
a wicked positive vertex. Then R

2 \�(D) contains a region whose boundary cycle has
weight at least 4.

Proof For a contradiction, suppose that D is a diagram which has property (*) and in
which there is no region of R2 \ �(D) whose boundary has weight 4 or greater, and
suppose that v is a wicked positive vertex of �(D).

Let C1, . . . , Cn be the boundaries of those regions of R2 \ �(D) adjacent to v, in
counterclockwise order around v, where the subscripts are considered modulo n. If
all of the Ci had length 2, then v would have n edges adjacent to a vertex w, and no
further edges, which would contradict property (*). Since Ci ∩Ci+1 is connected, it is
a path starting at v (or containing v in case n = 2). Since D has property (*), all these
paths contain only positive edges, and thus have positive total weight. Now, using that
not all Ci have length 2, the edges of

(C1 ∪ · · · ∪ Cn) \
⋃

i

(Ci ∩ Ci+1)

form a cycle C with

w(C) =
∑

i

w(Ci ) − 2
∑

i

w(Ci ∩ Ci+1)

= 2n − 2
∑

i

w(Ci ∩ Ci+1)

≤ 2n − 2n = 0.

But this contradicts the property (*).

Lemma 3.15 If D is diagram which has property (*) then either �(D) has a wicked
positive vertex, or R2 \ �(D) contains a region whose boundary cycle has weight at
least 4.

Proof of Lemma 3.15 Suppose for a contradiction that there exists at least one diagram
with property (*) whose Seifert graph contains no positive wicked vertices and no
boundaries of weight at least 4. Consider such diagrams with the minimal number of
positive vertices, and let D be one of these with the minimal number of crossings.
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Ri

Rj

B1 B2 B3 Bn

P1 P2 P3 Pn

Fig. 11 A diagram of the situation of Lemma 3.15

We knowbyLemma 3.12 that D has a positive vertex; let us call it v. LetC1, . . . , Cn

be the boundaries of those regions of R2 \ �(D) adjacent to v, in counterclockwise
order around v, where the subscripts are considered modulo n. Then, since v is not
wicked by assumption, for some i �= j we have that Ci ∩ C j has m ≥ 2 components
(note that one of these components contains the positive vertex v). We write Ri and R j

for the closed bounded regions of R2 whose boundaries are Ci and C j respectively.
Then R

2 \ (Ri ∪ R j ) has m components B1, . . . , Bn and the boundary of each Bk is
a cycle in �(D). Let us write Zk for the boundary of Bk , and P1, P2, . . . , Pn for the
paths which are the components of Ri ∩ R j .

The situation is illustrated in Fig. 11. Note that the interiors of the regions Ri and
R j do not contain any vertices or edges of �(D). Note also that some paths Pk could
consist of single vertices. Note further that the vertices of each Pk which are not
endpoints of Pk have degree 2 in �(D). Since �(D) has property (*) it follows that
no Pk has both positive and negative edges.

Now for any k consider the subgraph of �(D) that lies within Bk . This is the Seifert
graph of a diagram D′ that also satisfies property (*), apart from possibly containing
a degree 2 vertex adjacent to both a positive and a negative edge. By Reidemeister II
moves D′ may be converted to a diagram D′′ with property (*) such that D′′ has the
same number of Seifert circles as D′ and possibly fewer crossings. Hence by induction
R
2 \ �(D′′) contains a region whose boundary has weight 4 or more. However the

regions of R2 \ �(D′′) are in an obvious correspondence with those of R2 \ �(D′)
under which the weights the boundary cycles are invariant. HenceR2 \�(D′) contains
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a region whose boundary has weight 4 or more. We conclude that either R2 \ �(D)

does as well (and we are done) or that w(Zk) ≥ 4.
We assume for a contradiction that we have w(Ck) = 2 for all Ck . Then we have

2(w(P1) + · · · + w(Pn)) = 2w(Ci ∩ C j )

= w(Ci ) + w(C j ) − (w(Z1) + · · · + w(Zn))

= 4 − (w(Z1) + · · · + w(Zn))

≤ 4 − 4n ≤ −2n,

where the last inequality is because n ≥ 2.
Since no Pk has both positive and negative edges, and at least one of the Pk , say

Pα , (that containing the vertex v) contains no positive edge, it follows that at least one
of the Pi contains two consecutive negative edges. Let w be the midpoint of these two
consecutive edges. Note that there is an embedded circle in R

2 which meets �(D)

only at v and w. Flyping along this circle to move one of the negative edges to lie
adjacent to v creates a new graph which is the Seifert graph �(D′) of a diagram D′.

Now, in the case that the path Pα contains at least one edge, D′ admits simplification
via a Reidemeister II move to a new diagram D′′ such that D′′ has property (*). Fur-
thermore �(D′′) has either the same number or one fewer positive vertices than �(D).
Hence by assumption, �(D′′) must contain a wicked positive vertex and so by
Lemma 3.14 contains a region whose boundary cycle has weight 4.

But there is an obvious correspondence between the regions of R2 \ �(D′′) and
those of R2 \ �(D), and the weight of the boundary cycle of each region is preserved
under this correspondence. Hence we get a contradiction in this case.

Finally consider the remaining case that the path Pα contains no edges. In this
case we have that �(D′) has property (*), has no wicked positive vertices, and has
one fewer positive vertices than does �(D). Hence by assumption R

2 \ �(D′) must
contain a region whose boundary cycle has weight at least 4. But again, there is a
weight-preserving correspondence between the regions of R2 \ �(D′) and those of
R
2 \ �(D). Hence we have a contradiction.

4 Applications

This section contains the proofs of the applications of Theorem B mentioned in the
introduction.
Corollary C. Let � be a Seifert surface that is isotopic to a canonical surface. Then �

is quasipositive if and only if every unknot contained in � bounds a disk in � or has
negative induced framing by �.

Proof For the ‘only if’ direction (for which the assumption that � is isotopic to a
canonical surface is not necessary), assume � is quasipositive and let γ ⊂ � be an
unknot that does not bound a disk in �, with framing k induced by �. Let B be an
annular neighborhood of γ in �. As an incompressible subsurface of �, B is itself
quasipositive. But as an unknotted band, B is quasipositive only if its core curve γ has
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negative induced framing by B (which equals the framing induced by �). It follows
that k < 0, concluding the proof of the ‘only if’ direction.

For the ‘if’ direction, let� be a canonical Seifert surface. By Theorem B, it suffices
to check that all cycles in the Seifert graph of � have strictly positive total weight.
For a cycle c in the Seifert graph, we let Ac be the embedded annulus in � given by
the union of Seifert circles and half-bands that correspond to the vertices and edges
that make up c. Note that Ac is an unknotted annulus and incompressible in �. So, by
assumption, Ac has strictly negative framing. Twice the framing of Ac equals minus
the total weight of c. To see this, note that the framing is calculated as the linking of the
two boundary components of Ac where the orientation is reversed on one component,
hence every positive crossing traversed by Ac contributes − 1

2 to the framing, while it
contributes +1 to the total weight of c (and analogously for negative crossings). With
this we established that all cycles have strictly positive total weight, as required.

Recall that by y we denote a slice-torus invariant, as defined in the introduction.
Theorem D. If K is a knot with a canonical surface � such that y(K ) = genus(�),
then � is a quasipositive Seifert surface; in particular, K is a strongly quasipositive
knot.

Proof Let g denote the genus of �. Assume toward a contradiction that � is not
strongly quasipositive. Then, by Corollary C, � contains a homologically non-trivial
unknot U whose framing induced by � is some non-negative integer k. Choose a
closed disk D ⊂ S3 such that D intersects � transversely in a proper arc I ⊂ � that
lies in the interior of D and, in �, I intersects U transversely in exactly one point.
Let �′ ⊂ S3 be the surface obtained from � by a ±1/k surgery along ∂ D, where the
sign is chosen such that U ⊂ �′ has framing 0 induced by �′. Note that one gets
from the knot K = ∂� to the knot J := ∂�′ by k crossing changes from negative
to positive, and so y(K ) ≤ y(J ). Hence ambient surgery in B4 of �′ along U (i.e.
replacing an annular neighborhood of U in�′ by two discs properly embedded in B4)
produces a slice surface F of J with genus(F) = genus(�′) − 1 = g − 1. It follows
that y(K ) ≤ y(J ) ≤ g − 1, contradicting the assumption y(K ) = g.

Corollary E. Let K be a knot with g̃(K ) = g(K ), i.e. a knot for which the genus g(K )

is realized by a canonical surface �. The following are equivalent:

(1) � is quasipositive,
(2) K is strongly quasipositive,
(3) for K the Bennequin-inequality is an equality, and
(4) y(K ) = g(K ).

Proof (1)⇒ (2) holds by definition; (2)⇒ (3) is implied bywrithe(β)−n+1 = 2g(K )

for a strongly quasipositive braid β on n strands whose closure is K ; (3)⇒ (4) follows
since sl(K )+1

2 ≤ y(K ) ≤ g(K ) holds for all knots K ; and (4)⇒ (1) is immediate from
Theorem D.

Acknowledgements The authors thank Sebastian Baader both generally for his advocacy of quasipositivity
and specifically for a conversation that inspired an important step in the proof of Theorem B. They also
thank an anonymous referee for a suggestion which lead to further applications of Theorem B. Peter Feller

123



Almost positive links are strongly quasipositive 509

gratefully acknowledges support by the SNSF Grant 181199. Lukas Lewark is supported by the DFG,
project no. 412851057.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest and there is no further data.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baader, S.: Quasipositivity and homogeneity. Math. Proc. Camb. Philos. Soc. 139(2), 287–290 (2005)
2. Baader, S.: Slice and Gordian numbers of track knots. Osaka J. Math. 42, 257–271 (2005).

arXiv:math/0504594
3. Baader, S., Ishikawa, M.: Legendrian graphs and quasipositive diagrams. Ann. Fac. Sci. Toulouse

Math. (6) 18(2), 285–305 (2009). arXiv:math/0609592
4. Baader, S., Ishikawa, M.: Legendrian framings for two-bridge links. Proc. Am. Math. Soc. 139(12),

4513–4520 (2011). arXiv:0910.0355
5. Bennequin, D.: Entrelacements et équations de Pfaff. Astérisque 107–108, 87–161 (1983)
6. Boileau, M., Orevkov, S.: Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe.

C. R. Acad. Sci. Paris Sér. I Math. 332(9), 825–830 (2001)
7. Cromwell, P.R.: Homogeneous links. J. Lond. Math. Soc. 39(3), 535–552 (1989)
8. Crowell, R.: Genus of alternating link types. Ann. Math. 69, 258–275 (1959)
9. Gabai, D.: Genera of the arborescent links. Mem. Am. Math. Soc. 59(339), i–viii and 1–98 (1986)

10. Hamer, J., Ito, T., Kawamuro, K.: Positivities of knots and links and the defect of Bennequin inequality,
Exp. Math. Published online, 1–27 (2019). arXiv:1809.10836

11. Hedden,M., Ording, P.: The Ozsváth-Szabó and Rasmussen concordance invariants are not equal. Am.
J. Math. 130(2), 441–453 (2008). arXiv:math/0512348

12. Hedden,M.:Notions of positivity and theOzsváth-Szabó concordance invariant. J. Knot TheoryRamif.
19(5), 617–629 (2010). arXiv:math/0509499

13. Kronheimer, P.B., Mrowka, T.S.: Gauge theory for embedded surfaces, I. Topology 32(4), 773–826
(1993)

14. Lewark, L.: Rasmussen’s spectral sequences and the sln -concordance invariants. Adv. Math. 260,
59–83 (2014). arXiv:1310.3100

15. Livingston, C.: Computations of the Ozsváth-Szabó knot concordance invariant. Geom. Topol. 8,
735–742 (2004). arXiv:math/0311036

16. Morton, H.R.: Seifert circles and knot polynomials. Math. Proc. Camb. Philos. Soc. 99(1), 107–109
(1986)

17. Murasugi, K.: On the genus of the alternating knot. I, II. J. Math. Soc. Jpn. 10(94–105), 235–248
(1958)

18. Nakamura, T.: Four-genus and unknotting number of positive knots and links. Osaka J. Math. 37(2),
441–451 (2000)

19. Przytycki, J.H., Taniyama, K.: Almost positive links have negative signature. J. Knot Theory Ramif.
19(2), 187–289 (2010). arXiv:0904.4130

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/math/0504594
http://arxiv.org/abs/math/0609592
http://arxiv.org/abs/0910.0355
http://arxiv.org/abs/1809.10836
http://arxiv.org/abs/math/0512348
http://arxiv.org/abs/math/0509499
http://arxiv.org/abs/1310.3100
http://arxiv.org/abs/math/0311036
http://arxiv.org/abs/0904.4130


510 P. Feller et al.

20. Rudolph, L.: Algebraic functions and closed braids. Topology 22(2), 191–202 (1983).
arXiv:math/0411316

21. Rudolph, L.: Constructions of quasipositive knots and links. III. A characterization of quasipositive
Seifert surfaces. Topology 31(2), 231–237 (1992). arXiv:math/0411320

22. Rudolph, L.: Quasipositivity as an obstruction to sliceness. Bull. Am. Math. Soc. (N.S.) 29(1), 51–59
(1993). arXiv:math/9307233

23. Rudolph, L.: Quasipositive plumbing (constructions of quasipositive knots and links. V). Proc. Am.
Math. Soc. 126(1), 257–267 (1998)

24. Rudolph, L.: Positive links are strongly quasipositive, Proceedings of the Kirbyfest (Berkeley,
CA, 1998), Geom. Topol. Monogr., vol. 2, pp. 555–562. Geom. Topol. Publ., Coventry (1999).
arXiv:math/9804003

25. Rudolph, L.: Quasipositive pretzels. Topol. Appl. 115(1), 115–123 (2001). arXiv:math/9908028
26. Stoimenow, A.: Knots of genus one or on the number of alternating knots of given genus. Proc. Am.

Math. Soc. 129(7), 2141–2156 (2001)
27. Stoimenow, A.: On polynomials and surfaces of variously positive links. J. Eur. Math. Soc. 7(4),

477–509 (2005). arXiv:math/0202226
28. Stoimenow,A.:Knots of (canonical) genus two. Fund.Math. 200(1), 1–67 (2008). arXiv:math/0303012
29. Stoimenow, A.: Minimal genus of links and fibering of canonical surfaces. Ill. J. Math. 59(2), 399–448

(2015)
30. Stoimenow, A.: Knot data tables, retrieved 26 September. http://stoimenov.net/stoimeno/homepage/

ptab (2020)
31. Tagami, K.: The Rasmussen invariant, four-genus and three-genus of an almost positive knot are equal.

Can. Math. Bull. 57(2), 431–438 (2014). arXiv:1411.2209v3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/math/0411316
http://arxiv.org/abs/math/0411320
http://arxiv.org/abs/math/9307233
http://arxiv.org/abs/math/9804003
http://arxiv.org/abs/math/9908028
http://arxiv.org/abs/math/0202226
http://arxiv.org/abs/math/0303012
http://stoimenov.net/stoimeno/homepage/ptab
http://stoimenov.net/stoimeno/homepage/ptab
http://arxiv.org/abs/1411.2209v3

	Almost positive links are strongly quasipositive
	Abstract
	Introduction
	Main results
	Applications of Theorem B
	Approach to proofs
	Outline of the paper

	1 Almost positive links of type I
	2 Almost positive links of type II
	3 Canonical quasipositive surfaces
	4 Applications
	Acknowledgements
	References




