
Car-Sharing between Two Locations: Online Scheduling

with Flexible Advance Bookings ?

Kelin Luoa,∗, Thomas Erlebachb, Yinfeng Xuc,d

aDepartment of Mathematics and Computer Science, Eindhoven University of
Technology, the Netherlands

bSchool of Informatics, University of Leicester, United Kingdom
cSchool of Management, Xi’an Jiaotong University, China

dThe State Key Lab for Manufacturing Systems Engineering, Xi’an, China

Abstract

We study an online scheduling problem that is motivated by applications
such as car-sharing. Users submit ride requests, and the scheduler aims to
accept requests of maximum total profit using a single server (car). Each
ride request specifies the pick-up time and the pick-up location (among two
locations, with the other location being the destination). The scheduler has
to decide whether or not to accept a request immediately at the time when
the request is submitted (booking time). We consider two variants of the
problem with respect to constraints on the booking time: In the fixed booking
time variant, a request must be submitted a fixed amount of time before
the pick-up time. In the variable booking time variant, a request can be
submitted at any time during a certain time interval that precedes the pick-up
time. We present lower bounds on the competitive ratio of deterministic and
randomized algorithms for both variants and propose a greedy algorithm that
achieves the best possible competitive ratio among deterministic algorithms.
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1. Introduction

In a car-sharing system, a company offers cars to customers for a period
of time. Customers can pick up a car in one location, drive it to another
location, and return it there. Car booking requests arrive online, and the
goal is to maximize the profit obtained from satisfied requests. We consider
a setting where all driving routes go between two fixed locations, but can be
in either direction. For example, the two locations could be a residential area
and a nearby shopping mall or central business district. Other applications
that provide motivation for the problems we study include taxi dispatching
and boat rental for river crossings.

In real life, customer requests for car bookings usually arrive over time,
and the decision about each request must be made immediately, without
knowledge of future requests. This gives rise to an online problem that bears
some resemblance to interval scheduling, but in which additionally the pick-
up and drop-off locations play an important role: The server that serves a
request must be at the pick-up location at the start time of the request and
will be located at the drop-off location at the end time of the request. A server
can serve two consecutive requests only if the drop-off location of the first
request is the same as the pick-up location of the second request, or if there is
enough time to travel between the two locations otherwise. (We allow ‘empty
movements’ that allow a server to be moved from one location to another
while not serving a request. Such empty movements could be implemented
by having company staff drive a car from one location to another, or in the
future by self-driving cars.)

An important aspect of the problem is the relation between the booking
time, i.e., the time when the request is submitted, and the start time of
the request, i.e., the time when the customer picks up the car at the pick-up
location. Constraints on the booking time (also called the reservation window
in the context of advance reservation systems) can affect the performance
of a system [1]. There are generally two types of bookings, current and
advance. Current bookings are requests that are released and must be served
immediately. Advance bookings are requests that are released before the
start time. In this paper we consider advance bookings. More specifically,
we study two variants of advance bookings: In the fixed booking time variant,
the amount of time between the booking time of a request and its start time
is a fixed value, independent of the request. In the variable booking time
variant, the booking time of a request must lie in a certain time interval
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(called the booking horizon) before the start time of the request.
We assume that every request is associated with a profit that is obtained

if the request is accepted. When a server moves from one location to another
while not serving a request, a certain cost is incurred. The goal is to maximize
the total profit, which is the sum of the profits of the accepted requests minus
the costs incurred for moving servers while not serving a request. In this
paper, we focus on the special case of a single server.

1.1. Related Work

The car sharing problem considered in this paper belongs to the class
of dynamic pick-up and delivery problems surveyed by Berbeglia et al. [2].
The problem that is closest to our setting is the online dial-a-ride problem
(OLDARP) that has been studied widely. In OLDARP, transportation re-
quests between locations in a metric space arrive over time, but typically it
is assumed that requests want to be served ‘as soon as possible’ rather than
at a specific time as in our problem. Known results for OLDARP include
online algorithms for minimizing the makespan [3, 4] or the maximum flow
time [5]. Grötschel et al. [6] use simulations to compare several online al-
gorithms for OLDARP, considering the objectives of minimizing the average
flow time and minimizing the maximum flow time. One of the algorithms,
called IG-GREEDY, adds a new request to the current schedule immediately
if it can be inserted into the current schedule without increasing the cost,
and ignores the new request for now and schedules it later otherwise. In
our problem, we do not need to serve all requests, but we consider a simi-
lar greedy algorithm: Our algorithm accepts and serves a request if it can
be served together with the previously accepted requests and if serving this
request increases the profit.

Work on versions of OLDARP where not all requests can be served in-
cludes competitive algorithms for requests with deadlines where each request
must be served before its deadline or rejected [7], and for settings with a
given time limit where the goal is to maximize the revenue from requests
served before the time limit [8]. In contrast to existing work on OLDARP,
in this paper we consider requests that need to be served at a specific time
that is specified by the request when it is released.

Offline versions of car-sharing problems are studied by Böhmová et al. [9].
They show that if all customer requests for car bookings are known in ad-
vance, the problem of maximizing the number of accepted requests can be
solved in polynomial time using a minimum-cost network flow algorithm [10].
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In the instance of the minimum-cost network flow problem that they con-
struct, each arc connecting a pick-up location/time and a drop-off loca-
tion/time has cost −1 and all others have cost 0, as their objective is to max-
imize the number of accepted requests. This approach can also be adapted
to solve the offline version of the problem considered in this paper optimally
in polynomial time: We construct an instance of the minimum-cost network
flow problem as follows. The network contains a node for the pick-up loca-
tion/time and the drop-off location/time of each request, a source node s, a
target node t, and an auxiliary node h. There are four types of arcs: For each
request, there is an arc with capacity 1 and cost −r (the profit of accepting
one request) from its pick-up location/time to its drop-off location/time; for
every two requests that can be accepted consecutively by one car, there is an
arc connecting the drop-off location/time of the first request and the pick-up
location/time of the second request with capacity 1 and cost 0 if the two
locations are the same or cost c (the cost of an empty movement from one
location to another) otherwise; for each request, there is an arc from h to its
pick-up location/time with capacity 1 and cost 0 if the pick-up location is
the original location of the car or cost c otherwise, and there is an arc from
its drop-off location/time to t with capacity 1 and cost 0; finally, there is an
arc from s to h with capacity 1 (for one car, or capacity k if there are k cars)
and cost 0. A minimum-cost maximum s-t-flow gives an optimal solution to
our car-sharing problem, where the objective value of the flow is the nega-
tive of the profit of the solution to the car-sharing problem. Furthermore,
Böhmová et al. [9] consider the problem variant with two locations where
each customer requests two rides (in opposite directions) and the scheduler
must accept either both or neither of the two. They prove that this variant
is NP-hard and APX-hard. In contrast to their work, we consider the online
version of the problem.

Online TSP problems (see, e.g., [11, 12]) are also related to our work,
but less directly because in these problems requests are served at a specific
location rather than involving a pick-up and a delivery, and typically the
requests do not need to be served at a fixed time.

1.2. Problem Description and Preliminaries

We consider a setting with only two locations (denoted by 0 and 1) and
a single server. The travel time from 0 to 1 is the same as the travel time
from 1 to 0 and is denoted by t. Let R denote a sequence of requests that
are released over time. The i-th request is denoted by ri = (t̃ri , tri , pri) and
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is specified by the booking time or release time t̃ri , the start time tri , and
the pick-up location pri ∈ {0, 1}. Note that the drop-off location of ri is the
location that is different from the pick-up location, i.e., 1 − pri . Requests
with the same release time arrive one by one in arbitrary order, and each
request must be processed by the algorithm before the next request arrives.
If ri is accepted, the server must pick up the customer at pri at time tri and
drop off the customer at location ṗri = 1 − pri at time ṫri = tri + t, the end
time of the request. We say that the request ri starts at time tri . For an
interval [b, d), we say that ri starts in the interval if tri ∈ [b, d).

The server can only serve one request at a time. Serving a request yields
profit r > 0. The server is initially located at location 0. If the pick-up
location pri of a request ri is different from the current location of the server
and if at least t time units remain before the start time of ri, the server can
move from its current location to pri . We refer to such moves (which do not
serve a request) as empty moves. An empty move takes time t and incurs a
cost of c, r ≥ c ≥ 0, and we say that ri is accepted with cost in this case. If
the server is already located at pri , we say that ri is accepted without cost.
As motivation for the cost model, we can imagine that the customer pays a
fee of f , where f > c, for being served, while the cost (in terms of fuel etc.)
of moving the car from one location to the other is c. Then an empty move
incurs a cost of c, while serving a request yields a profit of r = f − c > 0.
We can assume that f ≥ 2c, implying that r ≥ c.

If two requests are such that they cannot both be served by one server, we
say that the requests are in conflict. We forbid ‘unprompted’ moves for the
offline adversary (or, equivalently, for the optimal offline solution to which
we compare the solution produced by an online algorithm), i.e., the offline
adversary is allowed to make an empty move to the other location only if
it does so in order to serve a request that was accepted before the current
time and whose pick-up location is the other location. The offline adversary
is allowed to make an empty move to the other location only if its currently
next unserved request (i.e., the request that has already been accepted but
not yet served and has earliest pick-up time among all such requests) has
that location as the pick-up location. Our greedy algorithm does not use
unprompted moves. All our lower bounds also apply to algorithms that may
use unprompted moves.

We denote the requests accepted by an algorithm by R′, and the i-th
request in R′, in order of request start times, is denoted by r′i. We say that
request r′i is accepted without cost if i = 1 and pr′i = 0 or if i > 1 and
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pr′i = ṗr′i−1
. Otherwise, r′i is accepted with cost. We denote the profit of

serving the requests in R′ by PR′ . If R′c denotes the subset of R′ consisting
of the requests that are accepted with cost, we have PR′ = r · |R′| − c · |R′c|.

The goal is to accept a set of requests R′ that maximizes the profit PR′ .
The problem for one server and two locations for the fixed booking time
variant in which tri − t̃ri = a for all requests ri, where a ≥ 0 is a constant,
is called the 1S2L-F problem. For the variable booking time variant, the
booking time t̃ri of any request ri must satisfy tri − bu ≤ t̃ri ≤ tri − bl, where
bl and bu are constants, with bl ≤ bu, that specify the minimum and maximum
length, respectively, of the time interval between booking time and start time.
The problem for one server and two locations for the variable booking time
variant is called the 1S2L-V problem. If bl = bu, the 1S2L-V problem turns
into the 1S2L-F problem.

We briefly discuss the case r = c, where a request accepted with cost
yields profit r − c = 0. For 1S2L-F, an algorithm will never make an empty
move to accept a request in this case, so the case r = c is equivalent to
forbidding empty moves. For 1S2L-V, however, the following is possible if
r = c: An algorithm may first accept a request ri from 1 to 0 with cost (i.e.,
making an empty move), gaining a profit of zero. Afterwards, a request from
0 to 1 may arrive that has an earlier start time than ri and can be served
before ri, replacing the empty move from 0 to 1. In this way, the algorithm
can gain profit 2r from the two requests. In fact, the issue that accepting
requests with empty moves can turn out to be useful later on if suitable other
requests arrive is one of the most interesting aspects of the problem variant
with variable booking time for r = c, see Theorems 6 and 10. In a real-life
scenario, the case r = c arises if the fee f paid by the customer is exactly
twice the cost c of moving the car from one location to the other.

The performance of an algorithm for 1S2L-F or 1S2L-V is measured using
competitive analysis (see [13, 14]). For any request sequence R, let PRA

denote the objective value produced by an online algorithm A, and PR∗ that
obtained by an optimal scheduler OPT that has full information about the
request sequence in advance. This paper presents a simple deterministic
algorithm with optimal competitive ratio for the above two problems. Recall
that we require that OPT does not make unprompted moves, i.e., OPT
is allowed to make an empty move starting at time t0 only if there is an
accepted request ri with t̃ri ≤ t0 and tri ≥ t0 + t whose pick-up location is
the other location. Without this restriction on OPT , it would not be possible
for deterministic algorithms to achieve finite competitive ratio in cases where
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a request can be booked less than t units of time before its starting time. (A
randomized algorithm can be competitive even if OPT is allowed to make
unprompted moves.)

The competitive ratio of A is defined as ρA = supR
PR∗
P
RA

. We say that

A is ρ-competitive if PR∗ ≤ ρ · PRA
for all request sequences R. (For a

randomized algorithm A, PRA
is replaced by the expected profit E[PRA

] in
this definition.) If there is a ρ-competitive algorithm, ρ is an upper bound
(UB) on the best possible competitive ratio that can be achieved for the
problem. Let ON be the set of all online algorithms for a problem. A
value β is a lower bound (LB) on the best possible competitive ratio if it
can be proven that ρA ≥ β for all A in ON . For ON we may consider all
deterministic algorithms or we may also allow randomized algorithms. Lower
bounds are proven using adversarial arguments and hold for all algorithms.
Upper bounds are proven by analyzing a specific algorithm and showing that
the algorithm is ρ-competitive. The aim is to prove matching upper and
lower bounds. In this case, if there is a lower bound β and an algorithm A
with ρA = β, we say that A is optimal (among all online algorithms).

1.3. Paper Outline

In Section 2, we study the 1S2L-F problem. We give lower bounds and
propose a Greedy Algorithm (GA) that accepts each request if it can be
served and is profitable. We show that the algorithm achieves the best pos-
sible competitive ratio among all deterministic online algorithms. In Sec-
tion 3, we study the 1S2L-V problem. Although variable booking times
provide much greater flexibility to customers, we show that GA is still opti-
mal among deterministic algorithms. An overview of our results is shown in
Table 1. The rows of the table cover the whole range of possible parameter
values for the booking time constraint, i.e., for how the parameter a relates
to t for 1S2L-F and for how the parameter bu relates to t for 1S2L-V. For
each setting, we consider the case 0 ≤ c < r (where a request that is accepted
with cost is also profitable) and the case c = r (where a request accepted
with cost has zero profit but could, in the 1S2L-V setting, potentially become
profitable if serving a request with earlier start time that arrives later can
replace the empty movement). For each case, our lower bound on the best
competitive ratio of any deterministic algorithm matches the upper bound
we obtain with algorithm GA, indicated by the ‘LB=UB (det)’ columns.
Furthermore, we give lower bounds for randomized algorithms, indicated by
the ‘LB (rand)’ columns. The table entries also indicate the theorems where
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the corresponding bounds are proved. A lower bound of 1 holds trivially for
each problem variant.

Table 1: Lower and upper bounds for the car sharing problem

0 ≤ c < r c = r

Problem Parameter LB=UB (det) LB (rand) LB=UB (det) LB (rand)

1S2L-F 0 ≤ a < t 1 (Th. 2) 1 1 (Th. 2) 1
1S2L-F t ≤ a 2r

r−c (Th. 1,3) 3r+c
2r

(Th. 1) 1 (Th. 2) 1

1S2L-V 0 < bu < t 3 (Th. 5, 7) 5/3 (Th. 5) 3 (Th. 6,10) 5/3 (Th. 6)
1S2L-V bu = t max{ 2r

r−c , 3} (Th. 2,5,8) 5/3 (Th. 5) 3 (Th. 6,10) 5/3 (Th. 6)

1S2L-V t < bu
3r−c
r−c (Th. 4,9) 5r−c

3r−c (Th. 4) 1 + 2d bu−bl
2t
e (Th. 6,10) 5/3 (Th. 6)

2. Car Sharing with Fixed Booking Times

In this section, we study the 1S2L-F problem. First, we present a lower
bound. We use ALG to denote any online algorithm and OPT to denote an
optimal scheduler. We refer to the server of ALG and OPT as s′ and s∗,
respectively. The set of requests accepted by ALG is referred to as R′, and
the set of requests accepted by OPT as R∗.

Theorem 1. For 0 ≤ c < r and a ≥ t, no deterministic online algorithm
for 1S2L-F can achieve a competitive ratio smaller than 2r

r−c . Furthermore,
no randomized online algorithm can achieve a competitive ratio smaller than
3r+c

2r
.

Proof. We first present the lower bound for deterministic algorithms. Ini-
tially, the adversary releases a request r1 = (0, a, 1). We distinguish two
cases.

Case 1 : ALG accepts r1 (with cost). The adversary releases requests
r2 = (ε, a+ ε, 0) and r3 = (ε+ t, a+ ε+ t, 1), where 0 < ε < t. OPT accepts
r2 and r3 without cost, but ALG cannot accept either of these requests as
they are in conflict with r1 (see Fig. 1 for an illustration). We have PR∗ = 2r
and PR′ = r − c, and hence PR∗

PR′
= 2r

r−c .

8



0

1

r1 r2 r3

ALG: accept one request

OPT: accept two requests

Figure 1: Illustration of R∗ and R′ in Case 1

Case 2 : ALG does not accept request r1. In this case, OPT accepts r1

and we have PR∗ = r − c and PR′ = 0, and hence PR∗
PR′

=∞.

To prove a lower bound for randomized algorithms, we apply Yao’s prin-
ciple [13]: Giving a probability distribution y(j) over request sequences σj
and showing that

Ey(j)[OPT (σj)]

Ey(j)[A(σj)]
≥ β

holds for all deterministic algorithms A implies a lower bound of β on the
competitive ratio of any randomized online algorithm.

Consider the following probability distribution y(j) over request sequences:
We present request sequence σ1 = {r1} with probability y(1) = p = r+c

2r

and request sequence σ2 = {r1, r2, r3} with probability y(2) = 1 − p, where
r1, r2, r3 are defined as above. When r1 is released, every deterministic al-
gorithm either accepts it or rejects it. Deterministic algorithms that accept
r1 (denoted by ALG1) gain profit r − c on both sequences. Deterministic
algorithms that reject r1 (denoted by ALG2) gain profit 0 on σ1 and profit
at most 2r on σ2, thus an expected profit of at most p · 0 + (1− p)2r = r− c.
The profit gained by OPT is r − c on σ1 and 2r on σ2, thus an expected

Table 2: Profits for σ1 and σ2 in the proof of Theorem 1

σ1 σ2

ALG1 r − c r − c
ALG2 0 2r
OPT r − c 2r

profit of p(r − c) + (1− p)2r = (r−c)(3r+c)
2r

. See Table 2 for an overview. We
have

Ey(j)[OPT (σj)]

Ey(j)[A(σj)]
≥

(r−c)(3r+c)
2r

r − c
=

3r + c

2r
,
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and by Yao’s principle it follows that no randomized online algorithm can
achieve competitive ratio smaller than 3r+c

2r
. �

Algorithm 1 Greedy Algorithm (GA)

Input : one server, requests arrive over time.
Step: When request ri arrives, accept ri if ri is acceptable and PRGA

i ∪{ri}−
PRGA

i
> 0;

Note 1: RGA
i is the set of requests accepted by GA before ri is released.

Note 2: ri is acceptable if and only if ∀r′j ∈ RGA
i , |tri − tr′j | ≥ 2t if pri = pr′j , and

|tri − tr′j | ≥ t if pri 6= pr′j , and tri − t̃ri ≥ t if s′ is at location ps′ ∈ {0, 1} at time t̃ri and
pri = 1− ps′ .

We propose a Greedy Algorithm (GA) for the 1S2L-F problem, shown
in Algorithm 1. The algorithm is based on the natural idea of accepting
each request if it can be served and is profitable. For an arbitrary request
sequence R = {r1, r2, r3, . . . , rn}, note that we have tri ≤ tri+1

for 1 ≤ i < n
because tri− t̃ri = a is fixed. Denote the requests accepted by OPT by R∗ =
{r∗1, r∗2, . . . , r∗k∗} and the requests accepted by GA by R′ = {r′1, r′2, . . . , r′k}
indexed in order of non-decreasing start times.

We compare the profit gained by OPT and GA as follows. In Theorem 2,
we consider the setting where both OPT and GA only accept requests with-
out cost, and in the proof we show that the schedule of OPT can be trans-
formed into GA’s schedule without reducing the profit. This is because, at
any point in the schedule, the next request of the remaining schedule by
OPT can always be replaced by the next request of GA’s schedule, which
is the earliest acceptable request at that point. This establishes that GA is
1-competitive. Theorem 3 considers the remaining setting, where c < r and
a ≥ t. Here, we partition the schedule into periods in such a way that GA
accepts one request that starts in each period. We then analyze each period
separately and check the maximum profit that could be gained by OPT in
the period. As the requests accepted by OPT cannot start before the re-
quest accepted by GA because of the definition of periods, we can show that
OPT can accept at most two requests in the period. Thus, we have that GA
achieves profit r or r − c in the period, while OPT gains at most 2r.

Theorem 2. Algorithm GA is 1-competitive for 1S2L-F if c = r, or if 0 ≤
c < r and 0 ≤ a < t.
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Proof. If 0 ≤ c < r and 0 ≤ a < t, GA and OPT only accept requests
without cost because the release time of a request is too late for the server
to be able to serve it with cost (recall that we forbid unprompted moves by
OPT ). Observe that this means that both GA and OPT accept requests with
alternating pick-up location, starting with a request with pick-up location 0.

We claim that R∗ can be transformed into R′ without reducing its profit,
thus showing that PR∗ = PR′ . As GA accepts the first request rj with prj = 0,
it is clear that tr′1 ≤ tr∗1 . If r′1 6= r∗1, we can replace r∗1 by r′1 in R∗, and R∗

is still a valid solution with the same profit. Now assume that R′ and R∗

are identical with respect to the first i requests, and that s′ and s∗ are at
location p ∈ {0, 1} at time ṫr′i . If there is a request r∗i+1, there must also be a
request r′i+1 with tr′i+1

≤ tr∗i+1
, as GA could accept r∗i+1. We can replace r∗i+1

by r′i+1 in R∗. The claim thus follows by induction.
If c = r, accepting a request with cost yields profit r−c = 0. Without loss

of generality, we can therefore assume that both GA and OPT only accept
requests without cost. The arguments of the previous paragraph can then
be applied to this case as well. �

Theorem 3. Algorithm GA is 2r
r−c-competitive for 1S2L-F if 0 ≤ c < r and

a ≥ t.

Proof. We partition the time horizon [0,∞) into intervals (periods) that
can be analyzed independently. Period i, for 1 < i < k, is the interval
[tr′i , tr′i+1

). Period 1 is [0, tr′2), and period k is [tr′k ,∞). (If k = 1, there is
only a single period [0,∞).) Exactly one request in R′, namely r′i, starts in
period i, for 1 ≤ i ≤ k. We define R′i = {r′i} for 1 ≤ i ≤ k. Let R∗i denote
the set of requests accepted by OPT that start in period i, for 1 ≤ i ≤ k.

For 1 < i ≤ k, r′i starts at time tr′i and the first request of R∗i starts
during the interval [tr′i , tr′i+1

) (or the interval [tr′k ,∞) if i = k). Furthermore,
r′1 is the first acceptable request in R, and so the first request of R∗1 cannot
start before r′1. Hence, for all 1 ≤ i ≤ k, the first request in R∗i cannot start
before the request r′i.

We bound the competitive ratio of GA by analyzing each period indepen-
dently. As R′ =

⋃
iR
′
i and R∗ =

⋃
iR
∗
i , it is clear that PR∗/PR′ ≤ α follows

if we can show that PR∗i
/PR′i

≤ α for all i, 1 ≤ i ≤ k.
For all 1 ≤ i ≤ k, as R′i = {ri}, we have PR′i

∈ {r, r − c}. It suffices to
show PR∗i

/PR′i
≤ 2r/(r− c) to prove the theorem. We claim that R∗i contains

at most two requests. Assume that R∗i contains at least three requests. Let
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rj be the third request (in order of start time) in R∗i . As the first request in
R∗i does not start before tr′i , we have trj ≥ tr′i + 2t. This means that rj would
be acceptable to GA after it has accepted r′i. Therefore, GA accepts either rj
or another request starting before trj , and that request becomes r′i+1. Hence,
there cannot be such a request rj that starts in period i.

As we have shown that R∗i contains at most two requests, we get that
PR∗i
≤ 2r. Since PR′i

≥ r − c, we have PR∗i
/PR′i

≤ 2r/(r − c). The theorem
follows. �

3. Car Sharing with Variable Booking Times

In this section, we study the 1S2L-V problem. Recall that the booking
time of a request ri must satisfy tri − bu ≤ t̃ri ≤ tri − bl. First, we present
three lower bound results, two for the case c < r and one for the case c = r.

Theorem 4. No deterministic algorithm for 1S2L-V can achieve a compet-
itive ratio smaller than 3r−c

r−c if 0 ≤ c < r and bu > t. Furthermore, no
randomized online algorithm can achieve a competitive ratio smaller than
5r−c
3r−c .

Proof. First, we give the lower bound for deterministic algorithms. Ini-
tially, the adversary releases the request r1 = (0, bu, 1). We distinguish two
cases.

Case 1 : ALG accepts r1 (with cost). The adversary releases requests
r2 = (ε, tr1 − ε, 1), r3 = (ε + t, tr2 + t, 0) and r4 = (ε + 2t, tr3 + t, 1), where
0 < ε < min{t, bu−bl

2
}. OPT accepts r2, r3 and r4. As they are in conflict with

r1, ALG cannot accept any of them, see also Fig. 2. We have PR∗ = 3r − c
and PR′ = r − c. Hence, PR∗/PR′ = 3r−c

r−c .

0

1

r1r2 r3

ALG: accept one request

OPT: accept three requests

r4

Figure 2: Case 1: PR∗
PR′

= 3r−c
r−c

Case 2 : ALG does not accept request r1. In this case, OPT accepts r1.
We have PR∗ = r − c, PR′ = 0, and hence PR∗/PR′ =∞.

12



This completes the proof of the lower bound for deterministic algorithms.
To get a lower bound for randomized algorithms, we apply Yao’s principle,
in a similar way as in the proof of Theorem 1. We present request sequence
σ1 = {r1} with probability p = 2r

3r−c and request sequence σ2 = {r1, r2, r3, r4}
with probability 1−p, where r1, r2, r3, r4 are defined as above. Let y(j) denote
the resulting probability distribution. All deterministic online algorithms
either accept r1 (class ALG1) or reject r1 (class ALG2). Algorithms in ALG1

achieve profit r− c on both request sequences. Algorithms in ALG2 achieve
profit 0 on σ1 and profit at most 3r − c on σ2, thus an expected profit of at
most (1 − p)(3r − c) = r − c. The profit of OPT is r − c on σ1 and 3r − c
on σ2, thus an expected profit of (r − c)5r−c

3r−c . See also Table 3. As we have

Table 3: Profits for σ1 and σ2 in the proof of Theorem 4

σ1 σ2

ALG1 r − c r − c
ALG2 0 3r − c
OPT r − c 3r − c

Ey(j)[A(σj)] ≤ r − c and Ey(j)[OPT (σj)] = (r − c)5r−c
3r−c , Yao’s principle gives

a lower bound of 5r−c
3r−c on the competitive ratio of randomized algorithms. �

Theorem 5. No deterministic algorithm for 1S2L-V can have a competitive
ratio smaller than 3 if 0 ≤ c ≤ r and bu ≤ t. Furthermore, no randomized
online algorithm can achieve a competitive ratio smaller than 5

3
.

Proof. First, we give the lower bound for deterministic algorithms. Ini-
tially, the adversary releases the request r1 = (0, bu, 0). We distinguish two
cases.

Case 1 : ALG accepts r1 (without cost). The adversary releases requests
r2 = (ε, tr1 − ε, 0), r3 = (ε + t, tr2 + t, 1) and r4 = (ε + 2t, tr3 + t, 0), where
0 < ε < min{t, bu−bl

2
}. OPT accepts r2, r3 and r4. As they are in conflict

with r1, ALG cannot accept any of them. We have PR∗ = 3r and PR′ = r.
Hence, PR∗/PR′ = 3.

Case 2 : ALG does not accept request r1. In this case, OPT accepts r1.
We have PR∗ = r, PR′ = 0, and hence PR∗/PR′ =∞.

This completes the proof of the lower bound for deterministic algorithms.
To get a lower bound for randomized algorithms, we use Yao’s principle and
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present request sequence σ1 = {r1} with probability p = 2
3

and request se-
quence σ2 = {r1, r2, r3, r4} with probability 1 − p = 1

3
, where r1, r2, r3, r4

are defined as above. Let y(j) denote the resulting probability distribution.
All deterministic online algorithms either accept r1 (class ALG1) or reject
r1 (class ALG2). Algorithms in ALG1 achieve profit r on both request se-
quences. Algorithms in ALG2 achieve profit 0 on σ1 and profit at most 3r
on σ2, thus an expected profit of at most (1− p)3r = r. The profit of OPT
is r on σ1 and 3r on σ2, thus an expected profit of 5

3
r. See also Table 4.As

Table 4: Profits for σ1 and σ2 in the proof of Theorem 5

σ1 σ2

ALG1 r r
ALG2 0 3r
OPT r 3r

we have Ey(j)[A(σj)] ≤ r and Ey(j)[OPT (σj)] = 5
3
r, Yao’s principle gives a

lower bound of 5
3

on the competitive ratio of randomized algorithms. �

From Theorems 1 and 5 we can conclude that no deterministic algorithm
for 1S2L-V can have competitive ratio smaller than max{ 2r

r−c , 3} if 0 ≤ c < r
and bu = t.

Theorem 6. No deterministic algorithm for 1S2L-V can achieve a compet-
itive ratio smaller than 1 + 2d bu−bl

2t
e if c = r. Furthermore, no randomized

online algorithm can achieve a competitive ratio smaller than 5
3
.

Proof. The lower bound for randomized algorithms follows from Theo-
rem 5. In the following we present the lower bound for deterministic al-
gorithms. Let ALG be an arbitrary online algorithm, and let OPT be an
optimal scheduler. We distinguish two cases based on the value of bu − bl.

Case 1 : 0 < bu − bl ≤ 2t. We need to show that the competitive ratio
is at least 3. Define four requests as follows: r1 = ( bu+bl

2
+ t, bu + bl + t, 0),

r2 = (2bu+bl
3

+ t, bl + 2bu+bl
3

+ t, 0), r3 = (2bu+bl
3

+ 2t, bl + 2bu+bl
3

+ 2t, 1),

r4 = (2bu+bl
3

+ 3t, bl + 2bu+bl
3

+ 3t, 0). Note that a server can accept either r1,
or all of r2, r3, r4. Furthermore, r2 is released after r1 but starts earlier.

Initially, the adversary releases r1. There are two sub-cases.

14



0

1

r1r2 r3 r4

ALG: accept one request

OPT: accept three requests

Figure 3: Illustration of R∗ and R′ in Case 1.1

Case 1.1 : ALG accepts r1. The adversary releases r2, r3 and r4. OPT ac-
cepts r2, r3, r4 without cost (see Fig. 3 for an illustration), so we have PR∗ =
3r and PR′ = r, showing that PR∗/PR′ = 3.

Case 1.2 : ALG does not accept request r1. OPT accepts r1. We have
PR∗ = r and PR′ = 0, and hence PR∗/PR′ =∞.

The lower bound of 3 follows.
Case 2 : 2t < bu−bl. Let n = d bu−bl

2t
e−1. Choose values εi for 1 ≤ i ≤ n+2

satisfying 0 ≤ ε1 < ε2 < · · · < εn+1 < εn+2 < min{t, bu − bl − 2tn}.
Initially, the adversary releases the request sequence R1 consisting of the

following requests: r1 = (ε1, bl+εn+2+t, 1), r2 = (ε2, bl+εn+2+3t, 1), . . . , ri =
(εi, bl + εn+2 + (2i− 1)t, 1), . . . , rn = (εn, bl + εn+2 + (2n− 1)t, 1) and rn+1 =
(εn+1, bu + εn+1, 0). Note that bl ≤ bl + εn+2 + (2i−1)t ≤ bu for all 1 ≤ i ≤ n.
There are three sub-cases.

Case 2.1 : ALG rejects all the requests of R1. In this case, OPT accepts
the request rn+1. We have PR∗ = r and PR′ = 0, yielding PR∗/PR′ =∞.

Case 2.2 : The first request accepted by ALG is ri for some i with 1 ≤
i ≤ n. In this case, the adversary does not release the remaining requests of
R1. Instead, it releases only one final request rf = (εi+1, bl + (2i − 1)t, 0).
ALG cannot accept rf as it is in conflict with ri. OPT accepts rf . We have
PR∗ = r and PR′ = r − c = 0, hence PR∗/PR′ =∞.

Case 2.3 : The first request accepted by ALG is rn+1. The adversary
then releases the request sequence R2 consisting of the following requests:
rn+1+1 = (εn+2, bl + εn+2, 0), rn+1+2 = (εn+2, bl + εn+2 + 2t, 0), . . ., rn+1+i =
(εn+2, bl + εn+2 + 2(i − 1)t, 0), . . ., rn+1+n = (εn+2, bl + εn+2 + 2(n − 1)t, 0).
After this, the adversary releases the request sequence R3 consisting of three
more requests: r2n+1+1 = (εn+2, bu, 0), r2n+1+2 = (εn+2+t, bu+t, 1), r2n+1+3 =
(εn+2+2t, bu+2t, 0). ALG cannot accept any requests ofR3 as they all conflict
with rn+1 (see Fig. 4 for an illustration). ALG can accept any number of
requests of R2, but since they all have pick-up location 0 (as does rn+1), its
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ALG: accept rn+1

OPT: accept 2n+ 3 requests

0

1

rn+1 r2n+4r1rn+2 ...r2rn+3 r2n+1 rn

Figure 4: Illustration of R∗ and R′ in Case 2.3

total profit will be PR′ = r. OPT accepts all requests of R1 except rn+1,
and all requests of R2 and R3. We have PR∗ = (2n + 3)r = (2d bu−bl

2t
e + 1)r.

Hence, PR∗/PR′ = 1 + 2d bu−bl
2t
e.

The claimed lower bound of 1 + 2d bu−bl
2t
e follows. �

We now turn to upper bounds and analyze Algorithm GA (which was
presented as Algorithm 1 in Section 2) for the 1S2L-V problem. Denote the
set of requests accepted by OPT by R∗ and the set of requests accepted by
GA as R′. The server of OPT is referred to as s∗, and the server of GA as s′.
Let R′ = {r′1, . . . , r′k}, with the requests indexed in order of increasing start
time. For 1 ≤ i ≤ k, let R′i = {r′i}. We partition the time horizon [0,∞) into
intervals (periods) that can be analyzed independently. The partition differs
for GA and OPT , so we refer to GA periods and OPT periods. GA period i
is the interval [0, tr′2) if i = 1, the interval [tr′k ,∞) if i = k, and the interval
[tr′i , tr′i+1

) if 1 < i < k. Note that R′i consists of the only request in R′ that
starts in GA period i.

For 1 ≤ i ≤ k, define t̂r′i to be the first time when the optimal server s∗

is at location ṗr′i at or after time ṫr′i , or ∞ if s∗ never reaches ṗr′i from time

ṫr′i onward. Now, define OPT period i to be the interval [0, t̂r′1) if i = 1,

the interval [t̂r′k−1
,∞) if i = k, and the interval [t̂r′i−1

, t̂r′i) if 1 < i < k. For
1 ≤ i ≤ k, let R∗i be the set of requests accepted by OPT that start during
OPT period i. If t̂r′i ≤ t̂r′i−1

, OPT period i is empty and R∗i = ∅. The jth (in
order of start times) request of R∗i is denoted by R∗i (j).

We will compare the profit PR′i
that GA accrues in GA period i with the

profit PR∗i
that OPT accrues in OPT period i. We can again analyze each

period independently: If we can show that PR∗i
/PR′i

≤ α for all i, this implies
that PR∗/PR′ ≤ α. We first state two observations.

Observation 1. For all i, s′ is at ṗr′i at time ṫr′i, and s∗ is at ṗr′i at time t̂r′i,

and t̂r′i ≥ ṫr′i.
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Observation 2. If c = r, by definition of Algorithm GA (Algorithm 1), for
1 < i ≤ k we have that t̃r′i−1

≤ t̃r′i (otherwise, PRGA
i ∪{r′i} − PRGA

i
= 0 and r′i

would be rejected).

Theorems 7–9 consider the setting with 0 ≤ c < r. In the proofs, we
compare the maximum profit gained by OPT in OPT period i with the
profit gained by GA in GA period i. For the case bu < t, GA and OPT
only accept requests without cost, and we can show that OPT can accept
at most three requests in each OPT period, giving a competitive ratio of 3
(Theorem 7). If bu = t, the additional possibility arises that GA accepts
a request with cost, while OPT accepts two requests without cost in the
corresponding OPT period, giving ratio max{3, 2r

r−c} (Theorem 8). If bu >
t, it additionally becomes possible that GA accepts a request with cost,
while OPT accepts a request starting earlier with cost and then two further
requests without cost, giving a ratio of 3r−c

r−c (Theorem 9). Finally, the setting
with r = c is considered in Theorem 10 and is the most complex to analyze.
For the case where GA accepts a single request ri (without cost), OPT can
accept a number of pairs of requests from 0 to 1 and from 1 to 0 that start
before the end time of ri, and we can bound the number of those pairs of
requests depending on the size bu−bl of the booking horizon. For the general
case where GA accepts an arbitrary number of requests, we give a proof by
induction: We use the argument sketched above to handle the final request ri
accepted by GA, and apply the induction hypothesis to the smaller instance
without ri (and without any requests released later that GA could accept
instead of ri). The resulting competitive ratio is 1 + 2d bu−bl

2t
e.

Theorem 7. Algorithm GA is 3-competitive for 1S2L-V if 0 < bu < t and
0 ≤ c < r.

Proof. Due to 0 < bu < t, all requests of R∗i and R′i must be accepted
without cost because the request arrival is too late to serve a request with
cost (recall that we forbid unprompted moves by OPT ).

First, consider period i = 1. OPT cannot accept any request that is
released during the time interval [0, t̃r′1), because otherwise such a request

accepted by OPT could be accepted by GA instead of r′1. Thus t̃R∗1(1) ≥ t̃r′1 ,

and hence tR∗1(1) ≥ t̃r′1 ≥ tr′1 − bu. By Observation 1 and because OPT does
not accept any request with cost, ṗR∗i (1) = ṗr′1 , ṗR∗1(2) = pr′1 , and ṗR∗1(3) = ṗr′1 .

Hence, s∗ is at ṗr′1 at time ṫR∗i (3), which is not before ṫr′1 (because tR∗1(3) ≥
tR∗1(1) + 2t ≥ tr′1− bu + 2t > tr′1 + t). Therefore, |R∗1| ≤ 3. Thus, PR∗1

/PR′1
≤ 3.
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For 1 < i ≤ k, we distinguish the following cases in order to bound
PR∗i

/PR′i
. As R′i = {r′i}, PR′i

= r. We need to show that PR∗i
≤ 3r.

Case 1 : t̂r′i−1
< t̂r′i and t̂r′i−1

< tr′i . Assume that |R∗i | ≥ 3. (Otherwise,
there is nothing to show.) By Observation 1 and because OPT does not
accept any request with cost, ṗR∗i (1) = ṗr′i , ṗR∗i (2) = pr′i , and ṗR∗i (3) = ṗr′i .

If tR∗i (1) ≥ tr′i , we have t̂r′i = ṫR∗i (1) and thus |R∗i | = 1. Therefore, we must
have tR∗i (1) < tr′i . Observe that OPT can only accept requests with pick-up
location pr′i that start before tr′i if they start after tr′i−bu > tr′i−t. Otherwise,
such a request accepted by OPT would arrive before r′i and so it would be
accepted by GA instead of r′i. So we have ṫR∗i (3) ≥ tR∗i (1) +3t ≥ tr′i− bu +3t >

ṫr′i . When OPT finishes serving the third request of R∗i , s
∗ is at ṗr′i , and this

happens at a time after ṫr′i (see Fig. 5 for an illustration). Therefore, this

time is t̂r′i and thus the end of OPT period i, and R∗i cannot contain any
further requests. (If i = k, the end of OPT period i is ∞, but any further
request accepted by OPT could also be accepted by GA, a contradiction.)
We have shown |R∗i | ≤ 3, as required. Hence PR∗i

/PR′i
≤ 3.

0

1

r′i−1

GA: accept one request

OPT: accept three requests

r′i

t̂r′i−1
t̂r′i

Figure 5: Example configuration for R∗i and R′i in Case 1

Case 2 : t̂r′i−1
< t̂r′i and t̂r′i−1

≥ tr′i . We claim that |R∗i | ≤ 1 and argue as

follows. Because t̂r′i−1
≥ tr′i , OPT can accept at most one request in OPT

period i: When s∗ finishes serving the first request in R∗i , s
∗ is located at

ṗr′i , and the time when this happens becomes t̂r′i and thus the end of OPT
period i. (If i = k, we can argue as in Case 1 that OPT cannot accept any
further requests.) Hence, PR∗i

/PR′i
≤ 1 < 3.

Case 3 : t̂r′i−1
≥ t̂r′i . As OPT period i is empty by definition, we have

R∗i = ∅ and hence PR∗i
= 0. Thus, PR∗i

/PR′i
< 3.

Because PR∗i
/PR′i

≤ 3 holds for all 1 ≤ i ≤ k, we have PR∗/PR′ ≤ 3. This
proves the theorem. �

Theorem 8. Algorithm GA is max{ 2r
r−c , 3}-competitive for 1S2L-V if 0 ≤

c < r and bu = t.
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Proof. First, consider period i = 1. OPT cannot accept any request that
is released during the time interval [0, t̃r′1), because otherwise such a request

accepted by OPT could be accepted by GA instead of r′1. Thus t̃R∗1(1) ≥ t̃r′1 ,

and hence tR∗1(1) ≥ t̃R∗1(1) ≥ t̃r′1 ≥ tr′1 − bu = tr′1 − t (as bu = t). Furthermore,

if pR∗1(1) = 1, tR∗1(1) ≥ t̃R∗1(1) + t (recall that OPT is not allowed to make

unprompted moves), and hence tR∗1(1) ≥ t̃r′1 + t ≥ tr′1 (note that the booking

interval of r′1, tr′1 − t̃r′1 , is not greater than t). There are two sub-cases based
on the pick-up location of r′1.

(1) pr′1 = 0. Note that PR′1
= r. Since tR∗1(1) ≥ tr′1−t, tR∗1(3) ≥ tr′1 +t = ṫr′1 .

Hence, s∗ is at ṗR∗1(3) at time ṫR∗1(3), which is not before ṫr′1 , and at pR∗1(3) at

time tR∗1(3), which is not before ṫr′1 . Therefore, |R∗1| ≤ 3. Thus, PR∗1
/PR′1

≤ 3.
(2) pr′1 = 1. Note that PR′1

= r−c. If pR∗1(1) = 0, then s∗ is at ṗr′1 (= 1) at

time ṫR∗i (1) (≥ tr′1). We claim that OPT can accept at most one more request

in OPT period 1: if pR∗1(2) = 1, then s∗ is at 0 at time ṫR∗i (2) (≥ tr′1 + t), which

is not before ṫr′1 ; if pR∗1(2) = 0, then s∗ is at 0 at time tR∗i (2) (≥ tr′1 + t), which

is not before ṫr′1 . Therefore, |R∗1| ≤ 2. Hence, PR∗1
/PR′1

≤ 2r
r−c . If pR∗1(1) = 1,

then ṫR∗1(1) ≥ ṫr′1 . Hence, s∗ is at ṗr′1 at time ṫR∗i (1), which is not before ṫr′1 .
Therefore, |R∗1| ≤ 1. Thus, PR∗1

/PR′1
≤ r−c

r−c = 1.
For 1 < i ≤ k, we distinguish the following cases in order to bound

PR∗i
/PR′i

. As R′i = {r′i}, PR′i
= r or PR′i

= r − c. We need to show that
PR∗i
≤ 3r when PR′i

= r , and PR∗i
≤ 2r when PR′i

= r − c.
R∗i cannot contain any request that is released before t̃r′i , because other-

wise such a request accepted by OPT could be accepted by GA instead of
r′i. Thus t̃R∗i (1) ≥ t̃r′i , and hence tR∗i (1) ≥ t̃R∗i (1) ≥ t̃r′i ≥ tr′i − bu = tr′i − t.

Furthermore, if pR∗i (1) = pr′i−1
, tR∗i (1) ≥ t̃R∗i (1) + t (recall that OPT is not

allowed to make unprompted moves), and hence tR∗i (1) ≥ t̃r′i + t ≥ tr′i (as the

booking interval of r′i, tr′i − t̃r′i , is not greater than t).

Case 1 : t̂r′i−1
< t̂r′i and t̂r′i−1

< tr′i . There are two sub-cases based on the
pick-up location of r′i.

(1) pr′i = ṗr′i−1
. Note that PR′i

= r. Since tR∗i (1) ≥ tr′i − t, tR∗i (3) ≥ tr′i + t =

ṫr′i . Hence, s∗ is at ṗR∗i (3) at time ṫR∗i (3), which is not before ṫr′i , and at pR∗i (3) at

time tR∗i (3), which is not before ṫr′i . Therefore, |R∗i | ≤ 3. Thus, PR∗i
/PR′i

≤ 3.
(2) pr′i = pr′i−1

. Note that PR′i
= r − c. If pR∗i (1) = ṗr′i−1

(= ṗr′i), then s∗

is at ṗR∗i (1) (= pr′i) at time ṫR∗i (1) (≥ tr′i). We claim that OPT can accept at
most one more request in OPT period i: if pR∗i (2) = pR∗i (1), then s∗ is at pR∗i (2)
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(=ṗr′i) at time ṫR∗i (2) (≥ tr′i + t), which is not before ṫr′i ; if pR∗1(2) = ṗR∗i (1),

then s∗ is at ṗR∗i (2) (=ṗr′i) at time ṫR∗i (2) (≥ tr′i + t), which is not before

ṫr′i . Therefore, |R∗i | ≤ 2. Hence, PR∗i
/PR′i

≤ 2r
r−c . If pR∗i (1) = pr′i−1

, then

tR∗i (1) ≥ tr′i , tR∗i (2) ≥ tr′i + t = ṫr′i . Hence, s∗ is at ṗR∗i (2) at time ṫR∗i (2), which is

not before ṫr′i , and at pR∗i (2) at time tR∗i (2), which is not before ṫr′i . Therefore,
|R∗1| ≤ 2. Thus, PR∗i

/PR′i
≤ 2r

r−c .
If i = k, the end of OPT period i is ∞, but any further request accepted

by OPT could also be accepted by GA, a contradiction.
Case 2 : t̂r′i−1

< t̂r′i and t̂r′i−1
≥ tr′i . Observe that tR∗i (1) ≥ tr′i . We claim

that |R∗i | ≤ 2 and argue as follows. OPT can accept at most two requests in
OPT period i: When s∗ starts serving the second request in R∗i , s

∗ is located
at pR∗i (2) at tR∗i (2) (≥ tr′i + t), so that time becomes t̂r′i and thus the end of
OPT period i if pR∗i (2) = ṗr′i ; when s∗ finishes serving the second request in

R∗i , s
∗ is located at ṗR∗i (2) at ṫR∗i (2) (≥ tr′i + 2t), so that time becomes t̂r′i and

thus the end of OPT period i if ṗR∗i (2) = ṗr′i . (If i = k, we can argue as in
Case 1 that OPT cannot accept any further requests.) Since PR′i

≥ r − c,
PR∗i

/PR′i
≤ 2r

r−c .

Case 3 : t̂r′i−1
≥ t̂r′i . As OPT period i is empty by definition, we have

R∗i = ∅ and hence PR∗i
= 0. Thus, PR∗i

/PR′i
< max{ 2r

r−c , 3}.
Because PR∗i

/PR′i
≤ max{ 2r

r−c , 3} holds for all 1 ≤ i ≤ k, we have

PR∗/PR′ ≤ max{ 2r
r−c , 3}. This proves the theorem. �

Theorem 9. Algorithm GA is 3r−c
r−c -competitive for 1S2L-V if 0 ≤ c < r and

bu > t.

Proof. We show that PR∗i
/PR′i

≤ (3r − c)/(r − c) for all 1 ≤ i ≤ k.
First, consider i = 1. We have PR′1

≥ r− c. If |R∗1| ≤ 2, then PR∗1
≤ 2r <

3r−c and PR∗1
/PR′1

≤ (3r−c)/(r−c) as claimed. Thus, assume |R∗1| ≥ 3 from
now on. OPT does not accept any request with pick-up location ṗr′1 that
starts during period [0, tr′1 − t], and it does not accept any request with pick-
up location pr′1 during period [0, tr′1−2t]. Otherwise, such a request accepted
by OPT could be accepted by GA, a contradiction to r′1 being the request
with earliest start time in R′. If pR∗1(1) = pr′1 and the first three requests in R∗1
have alternating pick-up locations, ṫR′1(3) > ṫr′1 follows from tR∗1(1) > tr′1 − 2t.

As ṗPR′1
(3) = ṗr′1 , we have t̂r′1 = ṫR′1(3) and thus |R∗1| = 3. If pr′1 = 0, we have

PR′1
= r and PR∗1

= 3r, giving PR∗1
/PR′1

≤ 3 < (3r − c)/(r − c). If pr′1 = 1,
we have PR′1

= r − c and PR∗1
= 3r − c, giving PR∗1

/PR′1
= (3r − c)/(r − c).
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If pR∗1(1) = pr′1 and the first three requests in R∗1 do not have alternating
pick-up locations, the start time of one of the requests is at least t units of
time after the end time of the preceding request, and thus ṫR′1(3) > ṫr′1 + t.

As s∗ is at ṗr′1 either at time tR∗1(3) or at time ṫR∗1(3), and as both times are

after ṫr′1 , OPT period 1 ends before a fourth request in R∗1 could start. Thus,
|R∗1| ≤ 3 and PR∗1

≤ 3r − c, since serving two consecutive requests with the
same pick-up location means accepting the second of these requests with
cost. If pR∗1(1) 6= pr′1 and the first two requests in R∗1 have alternating pick-up

locations, ṫR∗1(2) > ṫr′1 follows from tR∗1(1) > tr′1 − t. As ṗR∗1(2) = ṗr′1 , we have

t̂r′1 = ṫR∗1(2) and thus |R∗1| = 2 and PR∗1
≤ 2r, showing PR∗1

/PR′1
≤ 2r/(r−c) <

(3r − c)/(r − c). If pR∗1(1) 6= pr′1 and the first two requests in R∗1 have the
same pick-up location, the start time of the second request is at least t units
of time after the end time of the first request, and thus ṫR∗1(2) > ṫr′1 + t. As s∗

is at ṗr′1 either at time tR∗1(2) or at time ṫR∗1(2), and as both times are after ṫr′1 ,
OPT period 1 ends before a third request in R∗1 could start. Thus, |R∗1| ≤ 2
and PR∗1

≤ 2r − c, yielding PR∗1
/PR′1

≤ 2r−c
r−c <

3r−c
r−c .

Hence PR∗1
/PR′1

≤ 3r−c
r−c in all cases.

For 1 < i ≤ k, we distinguish the following cases.
Case 1 : r′i is accepted without cost. We have PR′i

= r and ṗr′i−1
= pr′i ,

and we know that s∗ is at pr′i at time t̂r′i−1
.

Case 1.1 : t̂r′i−1
< t̂r′i and t̂r′i−1

< tr′i . We show PR∗i
≤ 3r by considering

the following sub-cases.
Case 1.1.1 : OPT accepts R∗i (1) with cost. We have pR∗i (1) = pr′i−1

. See
Fig. 6 for an illustration. Because any request with pick-up location pr′i−1

that starts during period [ṫr′i−1
+ t, tr′i − t] could be accepted by GA, we have

tR∗i (1) > tr′i − t. Thus ṫR∗i (1) + t > ṫr′i . R∗i can contain at most one request

that starts from time ṫR∗i (1) onward during period [t̂r′i−1
, t̂r′i) because any more

requests would be assigned to R∗i+1 (or, if i = k, any more requests could be
accepted by GA, a contradiction to r′k being the last request in R′). Therefore
we have PR∗i

≤ 2r − c. Hence PR∗i
/PR′i

≤ 2r−c
r

< 3r−c
r−c .
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GA: accept one request

OPT: accept two requests

0

1

r′i−1

t̂r′i−1
t̂r′i

r′i

Figure 6: Illustration of R∗i and R′i in Case 1.1.1

Case 1.1.2 : OPT accepts R∗i (1) without cost. We have pR∗i (1) = ṗr′i−1
.

If |R∗i | ≤ 2, we have PR∗i
≤ 2r < 3r, as required. Assume |R∗i | ≥ 3. See

Fig. 7 for an illustration. Because any request with pick-up location ṗr′i−1

that starts during period [ṫr′i−1
, tr′i − 2t] could be accepted by GA, we have

tR∗i (1) > tr′i − 2t. Thus ṫR∗i (1) + 2t > ṫr′i . If the first three requests in R∗i have

alternating pick-up locations, we have t̂r′i ≤ ṫR∗i (3), and hence R∗i contains
no more than three requests. If the first three requests in R∗i do not have
alternating pick-up locations, we have ṫR∗i (3) ≥ ṫR∗i (1) +3t > ṫr′i + t. As s∗ is at

ṗr′i either at time tR∗i (3) or at time ṫR∗i (3), t̂r′i cannot be later than that time.
Therefore, |R∗i | ≤ 3. (If i = k, observe in addition that OPT cannot accept
any request starting after t̂r′i as any such request accepted by OPT could
also be accepted by GA.) We have PR∗i

≤ 3r. Hence, PR∗i
/PR′i

≤ 3r
r
< 3r−c

r−c .

GA: accept one request

OPT: accept three requests

0

1

r′i−1

t̂r′i−1
t̂r′i

r′i

Figure 7: Illustration of R∗i and R′i in Case 1.1.2

Case 1.2 : t̂r′i−1
< t̂r′i and t̂r′i−1

≥ tr′i . We claim |R∗i | ≤ 1 and argue as

follows. Based on the definition of t̂r′i−1
, s∗ is at ṗr′i−1

at time t̂r′i−1
. Because

t̂r′i−1
≥ tr′i , s

∗ can only accept one request without cost or move to ṗr′i for

serving a request with cost during OPT i period [t̂r′i−1
, t̂r′i). Hence PR∗i

/PR′i
≤

r
r
< 3r−c

r−c .

Case 1.3 : t̂r′i−1
≥ t̂r′i . As the OPT period i is empty by definition, R∗i = ∅
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and PR∗i
= 0. Hence PR∗i

/PR′i
< 3r−c

r−c .
Case 2 : r′i is accepted with cost. We have PR′i

= r− c and pr′i−1
= pr′i . s

∗

is at ṗr′i at time t̂r′i−1
.

Case 2.1 : t̂r′i−1
< t̂r′i and t̂r′i−1

< tr′i . We show PR∗i
≤ 3r−c by considering

the following sub-cases.
Case 2.1.1 : OPT accepts R∗i (1) with cost. Note that pR∗i (1) = pr′i−1

. See
Fig. 8 for an illustration. If |R∗i | ≤ 2, we have PR∗i

≤ 2r − c < 3r − c as
required. Assume |R∗i | ≥ 3. Because any request with pick-up location pr′i−1

that starts during period [ṫr′i−1
+ t, tr′i − 2t] could be accepted by GA, we

have tR∗i (1) > tr′i − 2t. If the first three requests in R∗i have alternating pick-

up locations, we have t̂r′i ≤ ṫR∗i (3) (because ṫR∗i (1) + 2t > ṫr′i), and hence R∗i
contains no more than three requests. If the first three requests in R∗i do not
have alternating pick-up locations, we have ṫR∗i (3) ≥ ṫR∗i (1) + 3t > ṫr′i + t. As

s∗ is at ṗr′i either at time tR∗i (3) or at time ṫR∗i (3), t̂r′i cannot be later than that
time. Therefore, |R∗i | ≤ 3. (If i = k, observe again that OPT cannot accept
any request that starts after t̂r′k .) Thus, we have PR∗i

≤ 2r + r − c = 3r − c.

GA: accept one request

OPT: accept three requests

0

1

r′i−1

t̂r′i−1
t̂r′i

r′i

Figure 8: Illustration of R∗i and R′i in Case 2.1.1

Case 2.1.2 : OPT accepts R∗i (1) without cost. Note that pR∗i (1) = ṗr′i−1
.

See Fig. 9 for an illustration. If |R∗i | ≤ 2, we have PR∗i
≤ 2r < 3r − c as

required. Assume |R∗i | ≥ 3. Because any request with pick-up location ṗr′i
that starts during period [ṫr′i−1

, tr′i − t] could be accepted by GA, we have

tR∗i (1) > tr′i − t. Thus ṫR∗i (1) + t > ṫr′i . OPT accepts at most one request

after ṫR∗i (1) during period [t̂r′i−1
, t̂r′i) as any further accepted requests will be

assigned to R∗i+1. Therefore, we have PR∗i
≤ 2r. Thus, PR∗i

/PR′i
≤ 2r

r−c ≤
3r−c
r−c .
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GA: accept one request

OPT: accept two requests

0

1

r′i−1

t̂r′i−1
t̂r′i

r′i

Figure 9: Illustration of R∗i and R′i in Case 2.1.2

Case 2.2 : t̂r′i−1
< t̂r′i and t̂r′i−1

≥ tr′i . We show that |R∗i | ≤ 2 and hence

PR∗i
≤ 2r. Recall that s∗ is at ṗr′i at time t̂r′i−1

.

Because t̂r′i−1
≥ tr′i , OPT can only accept one request with cost (and the

end time of that request becomes t̂r′i) or two requests without cost (and the

end time of the second request becomes t̂r′i) before time t̂r′i . Hence PR∗i
≤ 2r

and PR∗i
/PR′i

≤ 2r
r−c <

3r−c
r−c .

Case 2.3 : t̂r′i−1
≥ t̂r′i . The OPT period i is empty and, by definition,

R∗i = ∅. Therefore, P ∗i = 0 and PR∗i
/PR′i

< 3r−c
r−c .

As we have shown that PR∗i
/PR′i

≤ 3r−c
r−c holds for all 1 ≤ i ≤ k, we have

PR∗/PR′ ≤
(∑k

i=1
3r−c
r−c PR′i

)
/
(∑k

i=1 PR′i

)
= 3r−c

r−c . �

Theorem 10. Algorithm GA has competitive ratio at most 1 + 2d bu−bl
2t
e for

1S2L-V if c = r. In particular, it is 3-competitive if 0 < bu ≤ t.

Proof. We prove the theorem by induction over the size of R′.
Base Case: |R′| = 1.
As GA only accepts requests without cost if c = r, we have PR′ = r.

Before time t̃r′1 , OPT can only accept requests which start during period

[0, t̃r′1 + bu) and have pick-up location 1 (note that s′ is at point 0 and rejects
all such requests). s′ reaches location 1 at time tr′1 + t and could serve
any request which starts no earlier than tr′1 + t and has pick-up location 1.

Thus after time t̃r′1 , OPT can only accept requests that start during period

[t̃r′1+bl,∞) and have pick-up location 0, and requests that start during period

[t̃r′1 + bl, tr′1 + t) and have pick-up location 1.
We can assume without loss of generality that OPT only accepts requests

without cost. As reasoned above, the earliest possible start time of a request
with pick-up location 0 that OPT can accept is t̃r′1 + bl. The latest possible
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start time of a request with pick-up location 1 that OPT can accept is at
most t̃r′1 + bu if the request arrives before t̃r′1 and strictly smaller than tr′1 + t

if the request arrives after t̃r′1 .

First, consider the case that t̃r′1 + bu ≥ tr′1 + t. We bound the maximum
number of pairs of requests (one with pick-up location 0 and the next with
pick-up location 1) that OPT can accept. As the last request with pick-up
location 1 that OPT can accept has start time at most t̃r′1 +bu, the start time

of the first request of the last pair that OPT accepts is at most t̃r′1 +bu−t. As
the start times of consecutive pairs differ by at least 2t, the number of pairs is
bounded by 1+b((t̃r′1+bu−t)−(t̃r′1+bl))/2tc = 1+b(bu−bl−t)/2tc. If bu−bl−t
is a multiple of 2t, this bound is equal to 1 + (bu− bl− t)/2t = d(bu− bl)/2te.
Otherwise, the bound is equal to d(bu− bl− t)/2te ≤ d(bu− bl)/2te. After the
last pair, OPT can accept at most one more request with pick-up location 0.
Therefore, |R∗| ≤ 1 + 2 · d bu−bl

2t
e. As PR′ = r and PR∗ = |R∗| · r, we get

PR∗/PR′ ≤ 1 + 2d bu−bl
2t
e.

Now, consider the case that t̃r′1 + bu < tr′1 + t. Again, we consider the
maximum number of pairs of requests (one with pick-up location 0 and the
next with pick-up location 1) that OPT can accept. As the last request
with pick-up location 1 that OPT can accept must have start time strictly
smaller than tr′1 + t ≤ t̃r′1 + bu + t, the start time of the first request of the

last pair that OPT accepts is strictly smaller than t̃r′1 + bu. The start times
of consecutive pairs differ by at least 2t. If bu − bl is a multiple of 2t, the
number of pairs is bounded by ((t̃r′1 + bu) − (t̃r′1 + bl))/2t = (bu − bl)/2t =
d(bu−bl)/2te. If bu−bl is not a multiple of 2t, the number of pairs is bounded
by 1 + b(bu − bl)/2tc = d(bu − bl)/2te. In any case, the number of pairs is at
most d(bu − bl)/2te. After the last pair, OPT can accept at most one more
request with pick-up location 0. Therefore, |R∗| ≤ 1 + 2 · d bu−bl

2t
e. As PR′ = r

and PR∗ = |R∗| · r, we get PR∗/PR′ ≤ 1 + 2d bu−bl
2t
e.

Induction Step: We assume that PR∗
PR′
≤ 1 + 2d bu−bl

2t
e holds for all in-

stances with |R′| ≤ i and show that then PR∗
PR′
≤ 1 + 2d bu−bl

2t
e also holds for

all instances with |R′| = i+ 1.
Consider an instance of 1S2L-V given by a request sequence R where GA

accepts i+ 1 requests. As GA accepts requests in order of increasing arrival
time by Observation 2, GA accepts i requests before time t̃r′i+1

. Let R̄ be the
sub-instance of R that contains all requests in R except r′i+1 and all requests
that are released after r′i+1 (i.e., released at time t̃r′i+1

and processed after r′i+1,
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or released after time t̃r′i+1
) and that GA could accept instead of r′i+1. By

the inductive hypothesis, OPT can achieve profit at most i · (1 + 2d bu−bl
2t
e) · r

on the request sequence R̄. The increase in profit that OPT can achieve on
request sequence R compared to R̄ must be due to requests accepted without
cost that start in the interval [t̃r′i+1

+ bl,∞) as all requests that start earlier

were presented before time t̃r′i+1
and are thus contained in R̄. Let Q be a

largest set of requests in R \ R̄ with start times in [t̃r′i+1
+ bl,∞) that can

be accepted without cost by OPT . Clearly, PR∗ ≤ PR̄∗ + r · |Q|, where R̄∗

denotes the requests accepted by an optimal solution for the instance R̄.
We claim that the first request in Q must have pick-up location pr′i+1

as

otherwise that request would have to be contained in R̄, a contradiction to
Q being a subset of R \ R̄. To see this, assume that the request with earliest
start time after t̃r′i+1

+ bl in Q has pick-up location ṗr′i+1
. Denote that request

by rj. If rj was presented before r′i+1, it is clearly contained in R̄. If rj
was presented after r′i+1, it is also contained in R̄ because GA cannot accept
it instead of r′i+1 (as s′ is at location pr′i+1

after serving r′i and GA accepts
requests in order of increasing start times by Observation 2).

Before time t̃r′i+1
, OPT can accept requests with pick-up location ṗr′i+1

that start no later than t̃r′i+1
+ bu. After time t̃r′i+1

, OPT can only accept
requests with pick-up location ṗr′i+1

that start strictly before tr′i+1
+t, because

s′ arrives at ṗr′i+1
at time tr′i+1

+ t and could serve any request with pick-up
location ṗr′i+1

from that time onward.

First, consider the case that t̃r′i+1
+ bu ≥ tr′i+1

+ t. The last request that

OPT can accept with pick-up location ṗr′i+1
starts no later than t̃r′i+1

+ bu.
After that request, OPT can accept at most one more request with pick-up
location pr′i+1

. To bound the size of Q, we bound the maximum number of
pairs of requests (one with pick-up location pr′i+1

and the next with pick-
up location ṗr′i+1

) that OPT can accept. As the last request with pick-up

location ṗr′i+1
that OPT can accept has start time at most t̃r′i+1

+ bu, the
start time of the first request of the last pair that OPT accepts is at most
t̃r′i+1

+ bu − t. As the start times of consecutive pairs differ by at least 2t,

the number of pairs is bounded by 1 + b((t̃r′i+1
+ bu − t)− (t̃r′i+1

+ bl))/2tc =
1 + b(bu − bl − t)/2tc. If bu − bl − t is a multiple of 2t, this bound is equal
to 1 + (bu − bl − t)/2t = d(bu − bl)/2te. Otherwise, the bound is equal to
d(bu−bl−t)/2te ≤ d(bu−bl)/2te. After the last pair, OPT can accept at most
one more request with pick-up location pr′i+1

. Therefore, |Q| ≤ 1 + 2 · d bu−bl
2t
e.
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Now, consider the case that t̃r′i+1
+ bu < tr′i+1

+ t. Again, we consider
the maximum number of pairs of requests (one with pick-up location pr′i+1

and the next with pick-up location ṗr′i+1
) that OPT can accept. As the last

request with pick-up location ṗr′i+1
that OPT can accept must have start time

strictly smaller than tr′i+1
+t ≤ t̃r′i+1

+bu+t, the start time of the first request

of the last pair that OPT accepts is strictly smaller than t̃r′i+1
+bu. The start

times of consecutive pairs differ by at least 2t. If bu−bl is a multiple of 2t, the
number of pairs is bounded by ((t̃r′i+1

+ bu)− (t̃r′i+1
+ bl))/2t = (bu− bl)/2t =

d(bu−bl)/2te. If bu−bl is not a multiple of 2t, the number of pairs is bounded
by 1 + b(bu − bl)/2tc = d(bu − bl)/2te. In any case, the number of pairs is at
most d(bu − bl)/2te. After the last pair, OPT can accept at most one more
request with pick-up location pr′i+1

. Therefore, |Q| ≤ 1 + 2 · d bu−bl
2t
e.

In either case, |Q| ≤ 1 + 2d bu−bl
2t
e. Thus, PR∗ ≤ PR̄∗ + r · |Q| ≤ i(1 +

2d bu−bl
2t
e)r + (1 + 2d bu−bl

2t
e)r = (i + 1)(1 + 2d bu−bl

2t
e)r. As PR′ = (i + 1)r, we

get PR∗/PR′ ≤ 1 + 2d bu−bl
2t
e. �

4. Conclusion

We have studied an online problem with one server and two locations
that is motivated by applications such as car sharing and taxi dispatching.
In particular, we have analyzed the effects of different constraints on the
booking time of requests on the competitive ratio that can be achieved. For
all variants of booking time constraints and costs for empty server movements
we have given matching lower and upper bounds on the competitive ratio.
The upper bounds are all achieved by the same greedy algorithm (GA).
Interestingly, the size of the booking horizon does not affect the competitive
ratio if 0 ≤ c < r, but the competitive ratio increases as bu − bl increases if
c = r.

A number of directions for future work arise from this work. In particular,
it would be interesting to extend our results to the case of more than one
server and more than two locations. It would be interesting to determine
how the constraints on the booking time affect the competitive ratio for the
general car-sharing problem with k servers and m locations.

Another direction could be the design and analysis of randomized algo-
rithms that achieve a better competitive ratio than deterministic algorithms
for the online car-sharing problem.

In this paper, we only considered requests having different pick-up and
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drop-off locations. It would also be interesting to consider requests having
the same pick-up and drop-off location, i.e., the server picks up the customer
at a location and drops off the customer at the same location after a period
of serving time. Another generalization is the consideration of the case where
a request is a round-trip consisting of two opposite rides [15].
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