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ABSTRACT
Electrons in zero external magnetic field can be studied with the Kohn–Sham (KS) scheme of either density functional theory (DFT) or
spin-DFT (SDFT). The latter is normally used for open-shell systems because its approximations appear to model better the exchange and
correlation (xc) functional, but also because, so far the application of DFT implied a closed-shell-like approximation. In the first part of this
Communication, we show that correcting this error for open shells allows the approximate DFT xc functionals to become as accurate as those
in SDFT. In the second part, we consider the behavior of SDFT for zero magnetic field. We show that the KS equations of SDFT emerge as the
generalized KS equations of DFT in this limit, thus establishing a so far unknown link between the two theories.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0071991

I. INTRODUCTION

Density functional theory (DFT)1,2 and spin-density functional
theory (SDFT)3,4 are two reformulations of the many-electron prob-
lem. Their computational advantage is replacing the solution of
Schrödinger’s equation for the multi-dimensional ground state of
the physical electronic system of interest by the solution of a
much less demanding equation that yields the ground-state (total)
density ρ (DFT) or the spin density (ρ↑, ρ↓) (SDFT) of the real
system.5

Both the theories can, in principle, be applied equally well
to study electronic systems when the external magnetic field, B,
vanishes (B = 0). Then, obviously, the predicted values for any
observable quantity must be the same between the two, formally
exact, theories. Specifically, the ground-state (total) density and
energy of the electronic system must be the same in both the
theories.

Even though for B = 0, both exact theories can equally well
describe an electronic system, this changes when density functional
approximations (DFAs) are introduced. The flexibility of two basic

variables in SDFT is thought to offer a better modeling of the
exchange-correlation (xc) energy, Exc[ρ↑, ρ↓], compared with just a
single variable in DFT, Exc[ρ]. As Parr and Yang write,6 in local
and semi-local density functional approximations “the exchange-
correlation energy of the electrons is approximated locally by the
results for the homogeneous spin-compensated electron gas. Such
a procedure is not appropriate for systems with unpaired electrons,
such as open-shell molecules. A better description for such systems
will be obtained through the use of the exchange-correlation energy
of the homogeneous spin-polarized electron gas.” As a result, open-
shell systems are, in practice, usually treated in SDFT rather than
DFT.

The first aim of this Communication is to revisit the above
widely held view, namely, that approximations in SDFT are inher-
ently superior to those of DFT. As it will transpire, this view is a
misconception, perhaps abetted by a qualitative error in the standard
treatment of open shells with Kohn–Sham (KS)-DFT approxima-
tions. We shall explain the source of this error and show that
correcting for it yields KS-DFT results that are (almost) as accurate
as the corresponding KS-SDFT results.
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Although this result goes against current wisdom, its corollary
is positive for the DFT literature, in general. Take, for example,
the xc derivative discontinuity, the shift of the KS-DFT xc poten-
tial when the number of electrons crosses an integer number of
particles from N to N + 1. Obviously, either N or N + 1 is an odd
number, and in the analysis of the derivative discontinuity, it is
assumed that it is possible to calculate the xc potential for an odd
number of electrons accurately, without qualitative errors. With the
present work, this assumption is justified, even for approximate xc
potentials.7

In (S)DFT, the value of any observable quantity becomes a
functional of the (spin) density. So far, little is known about the
functional dependence of most observable quantities, except the
total energy and identically the total density (DFT) or the spin den-
sity (SDFT). For open-shell systems and for B = 0, the virtual KS
systems of DFT and SDFT are not the same (despite sharing the same
total density), and the single-particle KS equations of exact SDFT do
not reduce to those of exact DFT. In DFT, the (unknown) density
functional for the spin density is required to obtain the physical spin
density.

The second aim of this Communication is to investigate the link
between exact DFT and SDFT when B = 0. In general, a pair of exter-
nal potentials is necessary for the formulation of SDFT (conjugate to
the pair of spin densities), whereas when B = 0, there is only one
external potential. So, either SDFT becomes singular in this limit
or the KS-SDFT equations must reduce to a set of (yet unknown)
single-particle equations of DFT. In Sec. IV of this Communica-
tion, we show that when B = 0, the KS-SDFT equations reduce to
the equations of generalized KS-DFT (GKS-DFT), establishing a
link between DFT and SDFT. In addition, the spin density of the
GKS-DFT system emerges as the unknown density functional for
the physical (real) spin density.

For simplicity, we shall discuss the special case of SDFT for
a collinear magnetization density m = −μB(ρ

↑
− ρ↓). We shall also

restrict to densities that are pure-state v-representable (both for the
interacting and for the KS system8), with ground states having an
integer number of spin-up and spin-down electrons.9 Finally, we
consider that the KS states are Slater determinants.

We return now to the first aim of our Communication. For
B = 0, the main error in modeling open-shell electronic systems as
unpolarized arises in the exchange energy functional, Ex[ρ] (DFT) vs
Ex[ρ↑, ρ↓] (SDFT). When a local or semi-local approximate exchange
energy expression is employed, depending explicitly only on the
density ρ and its derivatives, it is essentially assumed that the spin-
up and spin-down densities are equal to each other and to one-half
of the total density. For open-shell systems, this amounts to mixing
partly the spin-up ρ↑ with the spin-down ρ↓ densities in the exchange
energy expression,

Ex[ρ] ≃ Ex[ρ/2, ρ/2], ρ = ρ↑ + ρ↓. (1)

This mixing of the spin densities in the exchange energy leads
to a spurious error that we call the ghost-exchange energy error,
in analogy to the “ghost interaction” error of Ref. 10. We define it
by the difference of the exchange energies with mixed spin densi-
ties from the reference exchange energy, where the spin densities are
separate,

Gx = Ex[ρ/2, ρ/2] − Ex[ρ↑, ρ↓]. (2)

In DFT, the ghost-exchange error is not caused by the approxi-
mate or exact expression for the exchange energy but by the mixing
of two spin densities when an open-shell system is treated as if it
were closed-shell, considering half its electrons as spin-up and half
as spin-down.

In the Secs. II and III, we show that open-shell systems in zero
magnetic field can be modeled within DFT, without any mixing of
spin-up and spin-down KS orbitals and avoiding the ghost-exchange
error. Then, we explore the link between exact DFT and SDFT in
the limit B = 0 in Sec. IV. Finally, in Sec. V, we discuss the famous
spin-symmetry dilemma11 in the context of our work.

Before proceeding, we note that there are various extensions
of KS-DFT targeted for open-shell systems. For example, we men-
tion the restricted open-shell KS (ROKS) method,12,13 KS-DFT
with complex, spin-restricted KS orbitals,14 and the recent progress
in ensemble DFT for degenerate/excited states.15–20 Methods with
multi-determinant KS reference states, or using ensemble DFT,
are, indeed, intrinsically advantageous for open-shell systems. Our
approach is restricted to single-determinant references states and
cannot be expected to compete in accuracy. Nevertheless, we main-
tain the practical advantage of KS-DFT, by employing its standard
and popular approximations, while our aim has been to under-
stand better the basic theory and to reveal the missing link between
KS-DFT and KS-SDFT.

II. THE xc ENERGY AS AN IMPLICIT DENSITY
FUNCTIONAL

To continue, we consider the exact exchange energy in
KS-DFT. It is given by the Fock expression in terms of the
spin-orbitals of the KS Slater determinant,

Ex[ρ↑, ρ↓] = −
1
2∬

drdx{
∣ρ↑(r, x)∣2

∣r − x∣
+
∣ρ↓(r, x)∣2

∣r − x∣
}, (3)

where ρσ
(r, x), σ = ↑, ↓, is the spin-σ, one-body reduced density

matrix of KS orbitals.
The exact exchange energy functional separates in two disjoint

terms,

Ex[ρ↑, ρ↓] = Ex[ρ↑, 0] + Ex[0, ρ↓], (4)

in which the subsets of spin-up and spin-down KS orbitals do
not mix. Hence, in order to avoid cross-exchange effects between
opposite spin-electrons also in approximations, the approximate
exchange energy density functionals must also satisfy equality (4).

Since modeling the approximate exchange energy in terms of
the total density and its derivatives, as in the local density approxi-
mation (LDA) and in semi-local DFAs, always violates equality (4),
we have to model the exchange energy using the DFT-KS spin den-
sity.21 This modeling is still within DFT (not SDFT) since in DFT,
the KS spin density (the spin density of the KS determinant) is an
implicit functional of the total density.
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Equality (4) is satisfied by the local spin-density approximation
(LSDA) and as far as we know all spin-dependent density functionals
(DFs) for the exchange energy, approximate or the exact one. There-
fore, we shall use expressions for the exchange energy that depend
on the total density indirectly, or implicitly, via the KS spin density
[spin-density functionals (SDFs)],

EiDF
x [ρ] = ESDF

x [ρ
↑
[ρ], ρ↓[ρ]], (5)

where ESDF
x must be the sum of two disjoint terms (4).

The acronyms iDF and SDF denote that the exchange energy on
the lhs is an implicit density functional and that the exchange energy
expression on the rhs depends on the KS spin density.

Equation (5) not only (re)defines for any DFA a new, ghost-
exchange-error free, x energy functional, but it is also a relation
satisfied by the exact x energy functionals of DFT and SDFT. In other
words, for exact exchange: Ex[ρ] = EiDF

x [ρ].
In order to keep the treatment of xc uniform, we decompose

the correlation energy DF in an implicit DF, following (5), plus a
remainder,

Ec[ρ] = EiDF
c [ρ] + ΔEc[ρ], (6)

EiDF
c [ρ] = ESDF

c [ρ
↑
[ρ], ρ↓[ρ]], (7)

where ΔEc[ρ] ≠ 0, in general, for open-shell systems. In the follow-
ing, we omit ΔEc (which makes the rest of the treatment approxi-
mate) and write Ec[ρ] ≈ EiDF

c [ρ]. In (semi)-local DFAs, this redef-
inition of the correlation energy as an implicit DF yields a small
accuracy gain, though this is typically a minor contribution com-
pared to the ghost-exchange error. The whole exchange-correlation
(xc) density functional is, thus, written as

EiDF
xc [ρ] ≈ ESDF

xc [ρ
↑
[ρ], ρ↓[ρ]]. (8)

Hence, the total energy DF is now given by

EiDF
ven [ρ] = Ts[ρ] + ∫ drven(r)ρ(r) +U[ρ] + EiDF

xc [ρ], (9)

where U[ρ] is the Hartree energy and ven(r) is the external
(electron–nuclear) potential of the interacting system.

As the xc energy functional is an implicit DF, the xc potential,
given by the functional derivative,

vxc[ρ](r) =
δEiDF

xc [ρ]
δρ(r)

, (10)

must be determined using the optimized effective potential (OEP)
method,22,23

∫ dr′∑
σ

χσ
(r, r′)vxc[ρ](r′)

= ∫ dr′∑
σ

χσ
(r, r′)vσ

xc[ρ
↑
[ρ], ρ↓[ρ]](r′), (11)

with

vσ
xc[ρ

↑
[ρ], ρ↓[ρ]](r′) =

∂ESDF
xc [ρ↑, ρ↓]
∂ρσ(r′)

∣
ρ↑=ρ↑[ρ]
ρ↓=ρ↓[ρ]

, (12)

χσ
(r, r′) = −2

Nσ

∑
i=1

∞
∑

a=Nσ+1

ϕi(r)ϕa(r)ϕi(r′)ϕa(r′)
εa − εi

, (13)

where χσ
(r, r′) is the spin-σ density–density response function.24

The derivation of Eqs. (8)–(11) constitutes our first impor-
tant result. These equations determine the ghost-exchange-error-
corrected xc energy and potential for open-shell systems in (semi)-
local DFAs. From (11), we obtain the DFT-KS xc potential vxc, which
is used in the usual way during the self-consistent KS calculation.
It is given as the weighted sum of the spin-dependent xc poten-
tials vσ

xc, with weighting factors being the spin-dependent response
functions χσ .

For closed-shell systems, the solution of (11) reduces to the
familiar KS xc functional derivative. For fully spin-polarized sys-
tems (e.g. spin-up, ρ↑ = ρ, ρ↓ = 0), the spin-down response func-
tion vanishes, and the solution of (11) reduces to the spin-up xc
potential, vxc[ρ] = v↑xc[ρ, 0]. Even for partially spin-polarized, open-
shell systems, the spin-up (i.e., the majority spin) xc potential is
still an accurate approximation to the full solution of (11). First,
this is because the latter must interpolate smoothly between the two
limits just described, where vxc = v↑xc. Second, because the weight-
ing of the spin-σ response function in (11) depends roughly on the
inverse of the HOMO–LUMO gap, Δσ , of the spin-σ KS orbitals, and
since Δ↑ < Δ↓, the spin-up response function dominates. Another
meaningful approximation for the solution is the weighted average,
vxc ≈ (Δ↓ v↑xc + Δ↑ v↓xc)/(Δ↑ + Δ↓). In the supplementary material, we
compare these two approximations with the full solution of the OEP
equation (11).

III. RESULTS
We have implemented Eqs. (5)–(11) in the Gaussian basis set

code HIPPO.25 The solution of finite-basis OEP equations hides
non-analytic behavior,26 which leads to oscillations of the potential
near the nuclei.27,28 We overcome these issues routinely following
the method in Refs. 7 and 26 (please see Refs. 7 and 29 for details
of the computational implementation). Unless otherwise stated, all
results use cc-pVTZ bases for the KS orbitals and uncontracted
cc-pVDZ auxiliary bases30,31 for the expansion of the “electron
repulsion” or “screening” density.7,32,33

Ground-state energies calculated with our iDF KS method
compare favorably with those from SDFT-KS. This is demonstrated
in Table I for some atoms and molecules at their equilibrium geome-
tries, using the L(S)DA functional. We emphasize again that we seek
only the ground-state energy in our approach, and thus, where a
state is referred to as “doublet,” this simply means
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TABLE I. L(S)DA ground-state total energies calculated with: (i) standard LDA, (ii)
implicit LDA (iLDA), and (iii) spin-LDA (LSDA). All states are doublets unless specified
otherwise; auxiliary bases are uncontracted cc-pVTZ.

ELDA (Ha) EiLDA (Ha) ELSDA (Ha)

Li −7.388 721 −7.398 145 −7.398 155
B −24.433 15 −24.446 69 −24.447 47
N −54.128 91 −54.149 96 −54.151 10
Na −161.649 1 −161.657 1 −161.657 2
Sia

−288.464 0 −288.490 5 −288.491 0
LiH+ −7.652 062 −7.685 603 −7.685 608
O2

a
−149.603 8 −149.638 3 −149.640 3

OH −75.348 13 −75.370 77 −75.372 08
NH4 −56.798 00 −56.803 89 −56.804 04

Avg diff (mHa) 20.1 0.666 ⋅ ⋅ ⋅

aTriplet state.

ΔN = N↑ −N↓ = 1, (14)

and likewise for the triplet and so on. We also note the effect of
the ghost-exchange (and correlation) error, which is particularly
pronounced for triplet states; we shall now explore some examples
in which this error significantly affects the results.

FIG. 1. Energy dissociation curves for the H2 molecule. (Top) iLDA energies for
different values of ΔN. (Bottom) Comparison of LDA, spin-LDA (LSDA), and iLDA
minimum energies.

In Fig. 1, we have calculated the energy dissociation curve for
the H2 molecule with the L(S)DA functional. As is well-known in
the literature34 and can be seen in Fig. 1, the standard restricted
solution yields a qualitatively incorrect dissociation curve; however,
in our new method, once the bond is stretched enough, the triplet
state becomes lower in energy than the singlet, and the energy tends
to the correct limit. This transition does not occur when the ghost-
exchange energy is present: in this case, the triplet energy is higher
than the singlet at all bond distances.

We see a similar picture emerge for the stretched OH radical
with the Perdew–Burke–Ernzehof (PBE)35 functional in Fig. 2. In
this case, the energy dissociation curve is again qualitatively inac-
curate for the solution contaminated with ghost-exchange errors; in
our method that removes the ghost-exchange error, the energy cor-
rectly becomes equal to the energy of the two atoms in the infinitely
stretched limit. In both the examples, the transition region is inter-
esting: the unrestricted solution yields a smooth dissociation curve,
whereas in our single-determinant method, the transition is abrupt.
Of course, our method does not correct the ubiquitous inability of
typical semi-local functionals to capture static correlation effects.36

Naturally, using a spin-restricted formalism mandates constraints
absent in an unrestricted scheme: for example, the HOMO and
LUMO KS energy levels in a “doublet” state are by definition degen-
erate, though this is not typically the case for the corresponding
energy levels in an unrestricted scheme.

FIG. 2. Energy dissociation curves for the OH radical. (Top) Implicit PBE (iPBE)
energies for different values of ΔN. (Bottom) Comparison of PBE as total density
functional (D-PBE), spin-PBE (SPBE), and iPBE minimum energies.
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IV. LIMIT OF SDFT-KS EQUATIONS FOR B = 0
We now turn our attention to the limit of SDFT when B = 0

and compare with DFT. We start with the universal internal energy
density functional,

F[ρ] = min
Ψ→ρ
⟨Ψ∣T̂ + V̂ee∣Ψ⟩. (15)

The minimizing state Ψρ depends on the total density ρ. When
ρ is the ground-state density of an interacting electronic system
bound by a local potential v (i.e., when ρ is pure-state interacting
v-representable), Ψρ is the corresponding ground state. We remind
the reader that we restricted our study to densities that are pure-
state v-representable, both for the interacting and the KS systems.8
The numbers of spin-up/down electrons N↑, N↓ are good quan-
tum numbers for Hamiltonians with collinear B, including B = 0. It
follows that the ground state Ψρ can always be selected to have
integer N↑, N↓. In DFT-KS theory, the KS reference state Φρ is
obtained from a similar minimization to (15) for the non-interacting
kinetic energy density functional, Ts[ρ] = minΦ→ρ⟨Φ∣T̂∣Φ⟩. Under
the same assumptions, the KS ground state Φρ can also be chosen to
have integer N↑, N↓ and be a Slater determinant.

To proceed, we follow Levy37 and separate the minimization in
(15) into two separate minimizations with the same minimum,

F[ρ] = min
(ρ↑ ,ρ↓)→ρ

[ min
Ψ→(ρ↑ ,ρ↓)

⟨Ψ∣T̂ + V̂ee∣Ψ⟩]. (16)

The inner minimization, performed first, is over all states Ψ with
spin density (ρ↑, ρ↓). The outer minimization is over all spin densi-
ties that add up to the total density ρ. The first minimization inside
the brackets on the rhs defines SDFT’s internal energy functional; we
conclude that the DFT internal energy functional can be obtained
from the SDFT functional with an extra optimization over spin
densities with the same ρ (see also Appendix B in Ref. 11),

F[ρ] = min
(ρ↑ ,ρ↓)→ρ

F[ρ↑, ρ↓]. (17)

The two minimizations in (16) have the same overall minimum
as the minimization in (15). Therefore, the minimizing spin density,
(ρ↑ρ, ρ↓ρ), is equal to the spin density of Ψρ in (15) and, hence, equal
to the spin density of the real interacting system, even though the
minimization (17) is at fixed total density (not fixed spin density),
i.e., within DFT, not SDFT.

The minimization in (17) is worth investigating further. We
invoke SDFT’s KS system with spin density (ρ↑, ρ↓) to expand the
internal energy functional in the usual way, F[ρ↑, ρ↓] = Ts[ρ↑, ρ↓]
+ Exc[ρ↑, ρ↓] +U[ρ↑ + ρ↓]. Dropping the superscript SDF from the
functionals of SDFT, we obtain

F[ρ] = min
(ρ↑ ,ρ↓)→ρ

{Ts[ρ↑, ρ↓] + Exc[ρ↑, ρ↓]} +U[ρ]. (18)

Since every SDFT-KS system has a different spin density, the
minimization effectively searches over all SDFT-KS systems with

common total density ρ and returns that with the correct spin
density (ρ↑ρ, ρ↓ρ). The KS Slater determinant state is Φρ↑ρ ,ρ↓ρ . The
minimizing SDFT-KS system depends only on the total density ρ.
The corresponding SDFT-KS potential (functional of the spin den-
sity) at the specific spin density (ρ↑ρ, ρ↓ρ) is also an implicit functional
of ρ. In the supplementary material, we show how this unrestricted
KS potential emerges directly from the minimization in (18).

The SDFT-KS system that minimizes (18) defines a new non-
interacting system in DFT (when B = 0) represented by the state
Φρ↑ρ ,ρ↓ρ . We call it the generalized KS (GKS) system, as its derivation is
analogous to the well-known GKS scheme in the literature.38 How-
ever, unlike typical GKS schemes, which employ a nonlocal potential
term, the potential in the present DFT-GKS scheme is local and
spin-dependent.

We conclude that the SDFT-KS equations reduce to the
DFT-GKS equations for B = 0. The DFT-GKS Slater determinant
state Φρ↑ρ ,ρ↓ρ gives not only the true total density but also the true
(i.e., physical or observable) spin density. The elusive exact density
functional for the spin density is the spin density of the DFT-GKS
system.

V. THE SPIN-SYMMETRY DILEMMA
One of the oft-cited issues with SDFT in the absence of an

external magnetic field is the spin-symmetry dilemma, so-called
because SDFT approximate results yield either accurate total ener-
gies but with a poor (broken symmetry) prediction for the spin
density or an accurate prediction for the spin density with poor
total energies.11,39,40 The dilemma lies in that the spin density is the
key quantity and hence SDFT (exact) results are supposed to yield
both the exact total energy and the exact spin density. For example,
H2 should dissociate into two hydrogen atoms with zero net mag-
netization (difference of spin densities): indeed, the lowest energy
solution of local and semi-local approximations in SDFT gets the
energy right, but it wrongly dissociates the molecule into two atoms
of opposite spin (broken symmetry solution). There is also a self-
consistent solution where the spin densities are correctly equal to
each other, but the total energy is too high.

In their famous paper,11 Perdew, Savin, and Burke “escape”
the spin-symmetry dilemma, by postulating a “nearly exact alter-
native theory,” where the spin densities obtained from (semi)-local
functionals “are not physical spin densities, but are only interme-
diate objects such as the Kohn–Sham orbitals.” Instead, the on-top
electron pair density P(r, r), and the total density, become the
two fundamental variables of the new theory. As an aside, we
note that P(r, r′) is itself a useful quantity and has been used to
develop improved LSD approximations for multi-determinant ref-
erence states.41 We share the principle of this Communication,
namely, that the spin density is no longer the basic quantity in the
absence of a magnetic field, but in our approach, we do not con-
sider any alternative theory: our (ghost-exchange-error-free) theory
yields the correct ground-state energy and the correct total density
in the dissociation limit, and thus, the spin-symmetry dilemma is
weakened as a fundamental problem, since the KS spin density is
not expected equal to the observable spin density.

However, we also propose that the DFT-GKS spin density is the
exact density functional of the observable spin density; knowledge
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of the (exact) SDFT xc functional Exc[ρ↑, ρ↓] is necessary to obtain
from the density the (exact) DFT-GKS spin density. The value of the
latter is the same as the SDFT-KS spin density,42 which, in local and
semi-local approximations, demonstrates the spin-symmetry
dilemma. We believe the explanation is that the approximate
DFT-GKS spin density is not a sufficiently accurate density func-
tional for the real spin density. According to Cohen, Mori-Sánchez,
and Yang34,36 on the fractional spin error, the crux of the problem
is the degeneracy of different Slater determinants with the same
energy and total density but different spin densities. This kind
of strong correlation cannot be captured with local or semi-local
functionals.

VI. CONCLUSION
We have addressed two related conceptual or fundamental

theoretical questions in DFT and spin-DFT. The first is the chal-
lenge how to apply the KS equations of DFT for open shells,
avoiding a serious qualitative error, which we called the “ghost-
exchange error.” Associated with this problem is the widespread
belief that spin-DFT approximations are inherently more flexible
and, hence, can model more accurately the xc energy for open
shells than the corresponding approximations of DFT. In the lit-
erature, this common view seemed plausible, almost obvious. We
demonstrate that actually, density functionals can be as accurate
as spin-density functionals, provided the ghost-exchange error is
corrected.

For zero external magnetic field (B = 0), both DFT and
spin-DFT can obviously be applied to study open-shell electronic
systems, and both exact theories should give identical results for
any observable quantity. Then, intuitively, one would expect in the
limit B = 0 the single-particle KS equations of spin-DFT to reduce
to a set of single-particle equations of DFT. We demonstrate that
this intuition is correct and that the SDFT equations reduce to the
generalized KS equations of DFT.

SUPPLEMENTARY MATERIAL

See the supplementary material for the comparison of the full
solution of the OEP equation (11) with two simple approximations
and an alternative derivation of the DFT-GKS system.
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