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Electrons in zero external magnetic field can be studied with the Kohn–Sham (KS) scheme of either density functional

theory (DFT) or spin-DFT (SDFT). The latter is normally used for open shell systems because its approximations

appear to model better the exchange and correlation (xc) functional, but also because so far the application of DFT

implied a closed-shell-like approximation. In the first part of this Communication, we show that correcting this error

for open shells allows the approximate DFT xc functionals to become as accurate as those in SDFT. In the second part,

we consider the behaviour of SDFT for zero magnetic field. We show that the KS equations of SDFT emerge as the

generalized KS equations of DFT in this limit, thus establishing a so-far unknown link between the two theories.

Keywords: local density approximation,implicit density functionals,semi-local density approximation

I. INTRODUCTION

Density functional theory (DFT)1,2 and spin-density func-

tional theory (SDFT)3,4 are two reformulations of the many-

electron problem. Their computational advantage is replac-

ing the solution of Schrödinger’s equation for the multi-

dimensional ground state of the physical electronic system

of interest by the solution of a much less demanding equa-

tion that yields the ground-state (total) density ρ (DFT) or the

spin-density (ρ↑,ρ↓) (SDFT) of the real system.5

Both theories can in principle be applied equally well to

study electronic systems when the external magnetic field, B,

vanishes (B = 0). Then, obviously, the predicted values for

any observable quantity must be the same between the two,

formally exact, theories. Specifically, the ground-state (total)

density and energy of the electronic system must be the same

in both theories.

Even though for B = 0 both exact theories can equally

well describe an electronic system, this changes when den-

sity functional approximations (DFAs) are introduced. The

flexibility of two basic variables in SDFT is thought to of-

fer a better modelling of the exchange-correlation (xc) en-

ergy, Exc[ρ
↑,ρ↓], compared with just a single variable in DFT,

Exc[ρ ]. As Parr and Yang write6, in local and semi-local den-

sity functional approximations “the exchange-correlation en-

ergy of the electrons is approximated locally by results for

the homogeneous spin-compensated electron gas. Such a

procedure is not appropriate for systems with unpaired elec-

trons, like open-shell molecules. A better description for such

systems will be obtained through the use of the exchange-

correlation energy of the homogeneous spin-polarised elec-

tron gas”. As a result, open shell systems are in practice usu-

ally treated in SDFT rather than DFT.

The first aim of this Communication is to revisit the above

widely-held view, namely that approximations in SDFT are

inherently superior to those of DFT. As it will transpire, this

view is a misconception, perhaps abetted by a qualitative error

in the standard treatment of open-shells with KS-DFT approx-

imations. We shall explain the source of this error and show

that correcting for it yields KS-DFT results that are (almost)

as accurate as the corresponding KS-SDFT results.

Although this result goes against current wisdom, its corol-

lary is positive for the DFT literature in general. Take for ex-

ample the xc derivative discontinuity, the shift of the KS-DFT

xc potential when the number of electrons crosses an integer

number of particles from N to N + 1. Obviously, either N or

N + 1 is an odd number, and in the analysis of the derivative

discontinuity it is assumed that it is possible to calculate the

xc potential for an odd number of electrons accurately, with-

out qualitative errors. With the present work, this assumption

is justified, even for approximate xc potentials7.

In (S)DFT the value of any observable quantity becomes a

functional of the (spin) density. So far, little is known about

the functional dependence of most observable quantities, ex-

cept the total energy and identically the total density (DFT)

or the spin-density (SDFT). For open shell systems and for

B = 0, the virtual KS systems of DFT and SDFT are not the

same (despite sharing the same total density), and the single-

particle KS equations of exact SDFT do not reduce to those of

exact DFT. In DFT the (unknown) density functional for the

spin density is required to obtain the physical spin-density.

The second aim of this Communication is to investigate the

link between exact DFT and SDFT when B = 0. In general,

a pair of external potentials is necessary for the formulation

of SDFT (conjugate to the pair of spin-densities), whereas

when B = 0, there is only one external potential. So, either

SDFT becomes singular in this limit, or the KS-SDFT equa-

tions must reduce to a set of (yet unknown) single-particle

equations of DFT. In section IV of this Communication, we

show that when B = 0 the KS-SDFT equations reduce to the

equations of generalized KS-DFT (GKS-DFT), establishing a

link between DFT and SDFT. In addition, the spin-density of
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the GKS-DFT system emerges as the unknown density func-

tional for the physical (real) spin-density.

For simplicity, we shall discuss the special case of

SDFT for a collinear magnetisation density m = −µB(ρ
↑ −

ρ↓). We shall also restrict to densities that are pure-

state v-representable (both for the interacting and for the KS

system8), with ground states having an integer number of

spin-up and spin-down electrons9. Finally, we consider that

the KS states are Slater determinants.

We return now to the first aim of our Communication. For

B = 0, the main error in modelling open shell electronic sys-

tems as unpolarised arises in the exchange energy functional,

Ex[ρ ] (DFT) vs Ex[ρ
↑,ρ↓] (SDFT). When a local or semi-

local approximate exchange energy expression is employed,

depending explicitly only on the density ρ and its derivatives,

it is essentially assumed that the spin-up and spin-down densi-

ties are equal to each other and to one half of the total density.

For open shell systems, this amounts to mixing partly the spin-

up ρ↑ with the spin-down ρ↓ densities in the exchange energy

expression:

Ex[ρ ]≃ Ex[ρ/2,ρ/2], ρ = ρ↑+ρ↓. (1)

This mixing of the spin-densities in the exchange energy

leads to a spurious error that we call the ghost exchange

energy error, in analogy to the ‘ghost interaction’ error of

Ref.10. We define it by the difference of the exchange en-

ergies with mixed spin-densities from the reference exchange

energy where the spin-densities are separate:

Gx = Ex[ρ/2,ρ/2]−Ex[ρ
↑,ρ↓]. (2)

In DFT, the ghost exchange error is not caused by the ap-

proximate or exact expression for the exchange energy but by

the mixing of two spin-densities when an open shell system is

treated as if it were closed-shell, considering half its electrons

as spin-up and half as spin-down.

In the following sections II-III, we show that open shell

systems in zero magnetic field can be modelled within DFT,

without any mixing of spin-up and spin-down KS orbitals and

avoiding the ghost-exchange error. Then, we explore the link

between exact DFT and SDFT in the limit B= 0 in section IV.

Finally, in section V, we discuss the famous spin-symmetry

dilemma11 in the context of our work.

Before proceeding, we note that there are various exten-

sions of KS-DFT targeted for open-shell systems. For ex-

ample, we mention the restricted open-shell KS (ROKS)

method12,13, KS-DFT with complex, spin-restricted KS

orbitals14 and the recent progress in ensemble DFT for degen-

erate/excited states15–20. Methods with multi-determinant KS

reference states, or using ensemble DFT, are indeed intrinsi-

cally advantageous for open-shell systems. Our approach is

restricted to single-determinant references states and cannot

be expected to compete in accuracy. Nevertheless, we main-

tain the practical advantage of KS-DFT, by employing its stan-

dard and popular approximations, while our aim has been to

understand better the basic theory and to reveal the missing

link between KS-DFT and KS-SDFT.

II. THE XC ENERGY AS AN IMPLICIT DENSITY

FUNCTIONAL

To continue, we consider the exact exchange energy in KS-

DFT. It is given by the Fock expression in terms of the spin-

orbitals of the KS Slater determinant,

Ex[ρ
↑,ρ↓] =−

1

2

∫∫

drdx

{

|ρ↑(r,x)|2

|r− x|
+

|ρ↓(r,x)|2

|r− x|

}

. (3)

where ρσ (r,x), σ =↑,↓, is the spin-σ , one-body reduced den-

sity matrix of KS orbitals.

The exact exchange energy functional separates in two dis-

joint terms,

Ex[ρ
↑,ρ↓] = Ex[ρ

↑,0]+Ex[0,ρ
↓], (4)

in which the subsets of spin-up and spin-down KS orbitals

do not mix. Hence, in order to avoid cross exchange effects

between opposite spin-electrons also in approximations, the

approximate exchange energy density functionals must also

satisfy equality (4).

Since modelling the approximate exchange energy in terms

of the total density and its derivatives, as in LDA and in semi-

local DFAs, always violates equality (4), we have to model

the exchange energy using the DFT-KS spin-density21. This

modelling is still within DFT (not SDFT) since in DFT the

KS spin-density (the spin-density of the KS determinant) is

an implicit functional of the total density.

Equality (4) is satisfied by the local spin-density approx-

imation (LSDA), and as far as we know all spin-dependent

density functionals (DFs) for the exchange energy, approxi-

mate or the exact one. Therefore, we shall use expressions

for the exchange energy which depend on the total density in-

directly, or implicitly, via the KS spin-density (spin-density

functionals, SDFs),

E iDF
x [ρ ] = ESDF

x

[

ρ↑[ρ ],ρ↓[ρ ]
]

, (5)

where ESDF
x must be the sum of two disjoint terms (4).

The acronyms iDF and SDF denote that the exchange en-

ergy on the lhs is an implicit density-functional and that the

exchange energy expression on the rhs depends on the KS

spin-density.

Eq. 5 not only (re)defines for any DFA a new, ghost-

exchange-error free, x energy functional, but it is also a re-

lation satisfied by the exact x energy functionals of DFT and

SDFT. In other words, for exact exchange: Ex[ρ ] = E iDF
x [ρ ].

In order to keep the treatment of xc uniform, we decompose

the correlation energy DF in an implicit DF, following (5),

plus a remainder:

Ec[ρ ] = E iDF
c [ρ ]+∆Ec[ρ ], (6)

E iDF
c [ρ ] = ESDF

c

[

ρ↑[ρ ],ρ↓[ρ ]
]

. (7)

∆Ec[ρ ] 6= 0 in general, for open shell systems. In the follow-

ing, we omit ∆Ec (which makes the rest of the treatment ap-

proximate) and write: Ec[ρ ]≈ E iDF
c [ρ ]. In (semi)-local DFAs,
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this redefinition of the correlation energy as an implicit DF

yields a small accuracy gain, though this is typically a minor

contribution compared to the ghost exchange error. The whole

exchange-correlation (xc) density functional is thus written as

E iDF
xc [ρ ]≈ ESDF

xc

[

ρ↑[ρ ],ρ↓[ρ ]
]

. (8)

Hence, the total energy DF is now given by,

E iDF
ven

[ρ ] = Ts[ρ ]+

∫

drven(r)ρ(r)+U [ρ ]+E iDF
xc [ρ ], (9)

where U [ρ ] is the Hartree energy and ven(r) is the external

(electron-nuclear) potential of the interacting system.

As the xc energy functional is an implicit DF, the xc-

potential, given by the functional derivative

vxc[ρ ](r) =
δE iDF

xc [ρ ]

δρ(r)
, (10)

must be determined using the optimised effective potential

(OEP) method22,23,

∫

dr
′∑

σ

χσ (r,r′)vxc[ρ ](r
′) =

∫

dr
′∑

σ

χσ (r,r′)vσ
xc

[

ρ↑[ρ ],ρ↓[ρ ]
]

(r′), (11)

with

vσ
xc

[

ρ↑[ρ ],ρ↓[ρ ]
]

(r′) =
∂ESDF

xc [ρ↑,ρ↓]

∂ρσ (r′)

∣

∣

∣

∣

∣ ρ↑=ρ↑[ρ]

ρ↓=ρ↓[ρ]

, (12)

χσ (r,r′) =−2
Nσ

∑
i=1

∞

∑
a=Nσ+1

φi(r)φa(r)φi(r
′)φa(r

′)

εa − εi

, (13)

where χσ (r,r′) is the spin-σ density-density response

function24.

The derivation of equations (8-11) constitutes our first im-

portant result. These equations determine the ghost-exchange-

error-corrected xc energy and potential for open shell systems,

in (semi)-local DFAs. From (11) we obtain the DFT-KS xc

potential vxc, which is used in the usual way during the self-

consistent KS calculation. It is given as the weighted sum of

the spin-dependent xc potentials vσ
xc, with weighting factors

the spin-dependent response functions χσ .

For closed shell systems, the solution of (11) reduces to the

familiar KS xc functional derivative. For fully spin-polarised

systems (eg spin up, ρ↑ = ρ ,ρ↓ = 0), the spin-down response

function vanishes, and the solution of (11) reduces to the spin-

up xc potential, vxc[ρ ] = v
↑
xc[ρ ,0]. Even for partially spin-

polarised, open-shell systems, the spin-up (i.e. the majority

spin) xc potential is still an accurate approximation to the full

solution of (11). Firstly, this is because the latter must inter-

polate smoothly between the two limits just described, where

vxc = v
↑
xc. Secondly, because the weighting of the spin-σ re-

sponse function in (11) depends roughly on the inverse of the

HOMO-LUMO gap, ∆σ , of the spin-σ KS orbitals, and since

∆↑ < ∆↓, the spin-up response function dominates. Another

ELDA (Ha) EiLDA (Ha) ELSDA (Ha)

Li -7.388721 -7.398145 -7.398155

B -24.43315 -24.44669 -24.44747

N -54.12891 -54.14996 -54.15110

Na -161.6491 -161.6571 -161.6572

Sia -288.4640 -288.4905 -288.4910

LiH+ -7.652062 -7.685603 -7.685608

O2
a -149.6038 -149.6383 -149.6403

OH -75.34813 -75.37077 -75.37208

NH4 -56.79800 -56.80389 -56.80404

Avg diff (mHa) 20.1 0.666 -

a Triplet state

TABLE I. L(S)DA ground-state total energies calculated with:

(i) standard LDA; (ii) implicit LDA (iLDA); and (iii) spin-LDA

(LSDA). All states are doublets unless specified otherwise; auxiliary

bases are uncontracted cc-pVTZ.

meaningful approximation for the solution is the weighted av-

erage, vxc ≈ (∆↓ v
↑
xc +∆↑ v

↓
xc)/(∆

↑+∆↓). In the Supplemen-

tary Material we compare these two approximations with the

full solution of the OEP equation (11).

III. RESULTS

We have implemented equations (5-11) in the Gaussian ba-

sis set code HIPPO25. The solution of finite-basis OEP equa-

tions hides non-analytic behaviour26, which leads to oscil-

lations of the potential near the nuclei27,28. We overcome

these issues routinely following the method in Refs. 7 and 26

(please see Refs. 7 and 29 for details of the computational

implementation). Unless otherwise stated, all results use cc-

pVTZ bases for the KS orbitals and uncontracted cc-pVDZ

auxiliary bases30,31 for the expansion of the “electron repul-

sion” or “screening” density7,32,33.

Ground-state energies calculated with our iDF KS method

compare favourably with those from SDFT-KS. This is

demonstrated in Table I for some atoms and molecules at their

equilibrium geometries, using the L(S)DA functional. We em-

phasise again that we seek only the ground-state energy in our

approach, and thus where a state is referred to as ‘doublet’ this

simply means

∆N = N↑−N↓ = 1, (14)

and likewise for triplet and so on. We also note the effect of

the ghost exchange (and correlation) error, which is particu-

larly pronounced for triplet states; we shall now explore some

examples in which this error significantly affects results.

In Fig 1, we have calculated the energy dissociation curve

for the H2 molecule with the L(S)DA functional. As is well-

known in the literature34 and can be seen in this figure, the

standard restricted solution yields a qualitatively incorrect dis-

sociation curve; however, in our new method, once the bond

is stretched enough the triplet state becomes lower in energy

than the singlet, and the energy tends to the correct limit. This

transition does not occur when the ghost exchange energy is
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−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

E
H

2
−
2E

H
(H

a)

LDA
CCSD(T)
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FIG. 1. Energy dissociation curves for the H2 molecule. Top, iLDA

energies for different values of ∆N; bottom, comparison of LDA,

spin LDA (LSDA), and iLDA minimum energies.

present: in this case the triplet energy is higher than the singlet

at all bond distances.

We see a similar picture emerge for the stretched OH rad-

ical with the Perdew-Burke-Ernzehof (PBE)35 functional in

Fig. 2. In this case, the energy dissociation curve is again qual-

itatively inaccurate for the solution contaminated with ghost-

exchange errors; in our method which removes the ghost-

exchange error, the energy correctly becomes equal to the en-

ergy of the two atoms in the infinitely stretched limit. In both

these examples, the transition region is interesting: the unre-

stricted solution yields a smooth dissociation curve, whereas

in our single-determinant method the transition is abrupt. Of

course, our method does not correct the ubiquitous inability

of typical semi-local functionals to capture static correlation

effects36. Naturally, using a spin-restricted formalism man-

dates constraints absent in an unrestricted scheme: for exam-

ple, the HOMO and LUMO KS energy levels in a “doublet”

state are by definition degenerate, though this is not typically

the case for the corresponding energy levels in an unrestricted

scheme.

IV. LIMIT OF SDFT-KS EQUATIONS FOR B = 0.

We now turn our attention to the limit of SDFT when B = 0

and compare with DFT. We start with the universal internal

−75.6

−75.5

−75.4

−75.3

−75.2

−75.1

E
O
H
(H

a)

D-PBE (Q)

CCSD(T) (Q)

iPBE (Q)

D-PBE (D)

iPBE (D)

0.5 1.0 1.5 2.0 2.5 3.0

rOH (Å)

−0.3

−0.2

−0.1

0.0

0.1

0.2

E
O
H
−
(E

H
+
E

O
)
(H

a) D-PBE
CCSD(T) iPBE

SPBE

FIG. 2. Energy dissociation curves for the OH radical. Top, implicit

PBE (iPBE) energies for different values of ∆N; bottom, comparison

of PBE as total density functional (D-PBE), spin-PBE (SPBE), and

iPBE minimum energies.

energy density functional,

F[ρ ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉 . (15)

The minimising state Ψρ depends on the total density ρ .

When ρ is the ground state density of an interacting electronic

system bound by a local potential v (i.e. when ρ is pure-state

interacting v-representable), Ψρ is the corresponding ground

state. We remind the reader that we restricted our study to

densities that are pure-state v-representable, both for the inter-

acting and for the KS system8. The numbers of spin-up/down

electrons N↑, N↓ are good quantum numbers for Hamiltoni-

ans with collinear B, including B = 0. It follows the ground

state Ψρ can always be selected to have integer N↑,N↓. In

DFT-KS theory, the KS reference state Φρ is obtained from a

similar minimisation to (15) for the noninteracting kinetic en-

ergy density functional, Ts[ρ ] = minΦ→ρ〈Φ|T̂ |Φ〉. Under the

same assumptions, the KS ground state Φρ can also be chosen

to have integer N↑,N↓ and be a Slater determinant.

To proceed, we follow Levy37 and separate the minimisa-

tion in (15) into two separate minimisations with the same

minimum,

F [ρ ] = min
(ρ↑,ρ↓)→ρ

[

min
Ψ→(ρ↑,ρ↓)

〈Ψ|T̂ + V̂ee|Ψ〉

]

. (16)
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The inner minimisation, performed first, is over all states Ψ
with spin-density (ρ↑,ρ↓). The outer minimisation is over

all spin-densities that add up to the total density ρ . The first

minimisation inside the brackets on the rhs defines SDFT’s

internal energy functional; we conclude that the DFT internal

energy functional can be obtained from the SDFT functional

with an extra optimisation over spin-densities with the same

ρ (see also Appendix B in Ref. 11),

F [ρ ] = min
(ρ↑,ρ↓)→ρ

F[ρ↑,ρ↓] . (17)

The two minimisations in (16) have the same overall mini-

mum as the minimisation in (15). Therefore, the minimising

spin-density, (ρ↑
ρ ,ρ

↓
ρ), is equal to the spin-density of Ψρ in

(15) and hence equal to the spin-density of the real interact-

ing system, even though the minimisation (17) is at fixed total

density (not fixed spin-density), i.e. within DFT, not SDFT.

The minimisation in (17) is worth investigating further.

We invoke SDFT’s KS system with spin-density (ρ↑,ρ↓),
to expand the internal energy functional in the usual way,

F [ρ↑,ρ↓] = Ts[ρ
↑,ρ↓]+Exc[ρ

↑,ρ↓]+U [ρ↑+ρ↓]. Dropping

the superscript SDF from the functionals of SDFT, we obtain

F [ρ ] = min
(ρ↑,ρ↓)→ρ

{

Ts[ρ
↑,ρ↓]+Exc[ρ

↑,ρ↓]
}

+U [ρ ] . (18)

Since every SDFT-KS system has a different spin-density,

the minimisation effectively searches over all SDFT-KS sys-

tems with common total density ρ and returns that with the

correct spin-density (ρ↑
ρ ,ρ

↓
ρ). The KS Slater determinant state

is Φ
ρ
↑
ρ ,ρ

↓
ρ
. The minimising SDFT-KS system depends only

on the total density ρ . The corresponding SDFT-KS poten-

tial (functional of the spin-density) at the specific spin-density

(ρ↑
ρ ,ρ

↓
ρ) is also an implicit functional of ρ . In the Supple-

mentary Material we show how this unrestricted KS potential

emerges directly from the minimisation in (18).

The SDFT-KS system that minimises (18) defines a new

non-interacting system in DFT (when B = 0) represented by

the state Φ
ρ
↑
ρ ,ρ

↓
ρ
. We call it the generalised KS (GKS) system,

as its derivation is analogous to the well-known GKS scheme

in the literature38. However, unlike typical GKS schemes,

which employ a nonlocal potential term, the potential in the

present DFT-GKS scheme is local and spin-dependent.

We conclude that the SDFT-KS equations reduce to the

DFT-GKS equations for B= 0. The DFT-GKS Slater determi-

nant state Φ
ρ
↑
ρ ,ρ

↓
ρ

gives not only the true total density but also

the true (i.e. physical, or observable) spin-density. The elu-

sive exact density functional for the spin-density is the spin-

density of the DFT-GKS system.

V. THE SPIN-SYMMETRY DILEMMA

One of the oft-cited issues with SDFT in the absence of

an external magnetic field is the spin-symmetry dilemma, so-

called because SDFT approximate results yield either accurate

total energies but with a poor (broken symmetry) prediction

for the spin-density, or an accurate prediction for the spin-

density with poor total energies11,39,40. The dilemma lies in

that the spin-density is the key quantity and hence SDFT (ex-

act) results are supposed to yield both the exact total energy

and the exact spin-density. For example, H2 should dissociate

into two Hydrogen atoms with zero net magnetisation (differ-

ence of spin densities): indeed the lowest energy solution of

local and semi-local approximations in SDFT gets the energy

right, but it wrongly dissociates the molecule into two atoms

of opposite spin (broken symmetry solution). There is also a

self-consistent solution where the spin-densities are correctly

equal to each other but the total energy is too high.

In their famous paper11, Perdew, Savin and Burke “escape”

the spin-symmetry dilemma, by postulating a “nearly exact

alternative theory” where the spin-densities obtained from

(semi)-local functionals “are not physical spin densities, but

are only intermediate objects (like the Kohn-Sham orbitals”.

Instead, the on-top electron pair density P(r,r), alongside the

total density, become the two fundamental variables of the

new theory. As an aside, we note that P(r,r′) is itself a useful

quantity and has been used to develop improved LSD approx-

imations for multi-determinant reference states41. We share

the principle of this paper, namely that the spin-density is no

longer the basic quantity in the absence of a magnetic field;

but in our approach, we do not consider any alternative the-

ory: our (ghost-exchange-error free) theory yields the correct

ground-state energy and the correct total density in the disso-

ciation limit, and thus the spin-symmetry dilemma is weak-

ened as a fundamental problem, since the KS spin-density is

not expected equal to the observable spin-density.

However, we also propose that the DFT-GKS spin-density

is the exact density functional of the observable spin-density;

knowledge of the (exact) SDFT xc functional Exc[ρ
↑,ρ↓] is

necessary to obtain from the density the (exact) DFT-GKS

spin-density. The value of the latter is the same as the SDFT-

KS spin-density42 which, in local and semi-local approxi-

mations, demonstrates the spin-symmetry dilemma. We be-

lieve the explanation is that the approximate DFT-GKS spin-

density is not a sufficiently accurate density functional for the

real spin-density. According to Cohen, Sanchez and Yang34,36

on the fractional spin error, the crux of the problem is the de-

generacy of different Slater determinants with the same en-

ergy and total density but different spin-densities. This kind

of strong correlation cannot be captured with local or semi-

local functionals.

VI. CONCLUSION

We have addressed two related conceptual or fundamental

theoretical questions in DFT and spin-DFT. The first is the

challenge how to apply the KS equations of DFT for open

shells, avoiding a serious qualitative error, which we called

the "ghost-exchange error". Associated with this problem is

the widespread belief that spin-DFT approximations are in-

herently more flexible and hence can model more accurately

the xc energy for open shells than the corresponding approx-

imations of DFT. In the literature this common view seemed
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plausible, almost obvious. We demonstrate that actually den-

sity functionals can be as accurate as spin-density functionals,

provided the ghost-exchange error is corrected.

For zero external magnetic field (B=0), both DFT and spin-

DFT can obviously be applied to study open shell electronic

systems and both exact theories should give identical results

for any observable quantity. Then, intuitively, one would ex-

pect in the limit B= 0 the single particle KS equations of spin-

DFT to reduce to a set of single-particle equations of DFT. We

demonstrate this intuition is correct and that the SDFT equa-

tions reduce to the generalised KS equations of DFT.

SUPPLEMENTARY MATERIAL

In the Supplementary Material we compare the full solution

of the OEP equation (11) with two simple approximations and

we provide an alternative derivation of the DFT-GKS system.
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