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ABSTRACT
We propose a new generalized Kohn–Sham or constrained hybrid method, where the exchange potential is the (equally weighted) aver-
age of the nonlocal Fock–exchange term and the self-interaction-corrected exchange potential, as obtained from our constrained mini-
mization method of semi-local approximations. The new method gives an accurate single-particle eigenvalue spectrum with an average
deviation between (the negative of) the valence orbital eigenvalues and the experimental ionization potentials of about 0.5 eV, while the
deviation of core orbitals is within 2 eV. The improvement in the eigenvalue spectrum is achieved with a minimal increase in the total
energy.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0071205

I. INTRODUCTION

Historically, the Kohn–Sham (KS) scheme was proposed to
provide an improved approximation for the kinetic energy of an
electronic system in its ground state as a functional of the density. As
such, the (exact) KS equations were not expected to yield an accurate
single-particle eigenvalue spectrum, except for the highest occupied
(HOMO) eigenvalue, which is equal to the ionization potential (IP)
of the system.1

This view has changed over the years. Numerical inversion
of accurate electronic densities to obtain a nearly exact KS poten-
tial has revealed that the eigenvalues of the valence KS orbitals
are very close in magnitude (within ∼0.1 eV) to the correspond-
ing vertical IPs of the system. Verma and co-workers2,3 and
Van Meer and co-workers4 have independently proven theorems
predicting the observed closeness of the negative of the eigenvalues
of the valence KS orbitals to the IPs of the electronic system. For
deeper valence electrons, the coincidence between the negative of KS

orbital eigenvalues and IPs deteriorates, and for core electrons, the
difference reaches a few tens of electron volts.

Approximate local and semi-local density functionals yield
rather accurate total energy predictions, but their corresponding
KS potentials are not equally good. The typical KS HOMO eigen-
value error of local and semi-local density functional approxima-
tions (DFAs) is about ∼4 eV, relative to the exact KS result. The
reason is simple: for an N-electron system, the electrons in the occu-
pied KS orbitals are repelled via the Hartree–exchange–correlation
(HXC) part of the approximate KS potential by an effective charge
of N electrons rather than the correct N − 1 electrons of a self-
interaction-free model. Consequently, the occupied orbital eigen-
values are erroneously shifted to higher energies, resulting in an
underestimation of the IP by ∼4 eVs.

In our group, we have addressed this error with a constrained
minimization of the total energy in local or semi-local DFAs.
The DFA total energy remains almost unchanged, but the con-
strained minimization forces the effective “screening” (or “electron
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FIG. 1. IP errors compared to experimental results for a number of molecules using a cc-pVDZ basis set. The theoretical IP values are obtained from the negative of the
HOMO eigenvalues in constrained LDA/HF equations.

repulsion”) charge of the HXC potential of the DFA to equal N − 1.5
As a result, the negative of the HOMO eigenvalues from our con-
strained minimization method come closer to the true IPs (still
underestimating them on average) with a typical error of about
∼1 eV. It is noteworthy that the resulting IP predictions are similar
for the three different DFAs we tried [local-density approximation
(LDA), Perdew–Burke–Ernzerhof (PBE), and B3LYP].6

In Hartree–Fock (HF) theory, Koopmans theorem predicts that
the negative of the eigenvalues of all the occupied orbitals is equal to
minus the corresponding vertical IPs. The theorem neglects orbital
relaxation when an electron is ionized, and HF theory omits elec-
tron correlation altogether. These two errors have opposite signs
for occupied orbitals7 and almost cancel each other. Still, the orbital
relaxation error is stronger than the correlation error, and the dom-
inance of relaxation increases for core electrons. The HF eigenval-
ues typically overestimate the vertical IPs from about ∼1 eV for
the least bound electron (HOMO) to a few tens of eVs for core
electrons.

The improvement of the HOMO eigenvalue with the con-
strained minimization of local/semi-local DFAs brings the magni-
tude of the IP error to the same ballpark as HF theory but with
the opposite sign (Fig. 1). At the same time, the total energies from
DFA constrained minimizations are virtually identical to the uncon-
strained DFA energies (within ∼0.1 meV),8 so the good quality of
the DFA total energies remains intact in the constrained minimiza-
tion. The aim of this paper is to consider a hybrid of the constrained

minimization of local/semi-local DFAs and HF theory, aiming to
formulate a generalized KS (GKS) scheme9,10 with further improved
single-particle spectrum over constrained DFA (CDFA) and HF the-
ory for all occupied electrons, preserving at the same time the quality
of the DFA total energy.

The rest of the paper is organized as follows: In Sec. II, we
briefly review the CDFA method and modify it to aid its integration
in a hybrid scheme and to make the implementation of our con-
straints more efficient. In Sec. III, we present the GKS formalism
valid for any mixing between CDFA and HF. We seek the optimal
mixing and find it is close to 50%, as expected from Fig. 1. In Sec. IV,
we confirm that the predictions for the first IPs are better than those
of either HF or CDFA and that the quality of the resulting total
energies is of similar quality compared with those of the DFA (and
CDFA). Finally, we investigate whether the flexibility of our hybrid
potential corrected for self-interactions (SIs) allows for a better pre-
diction for the IPs of all the bound electrons, including those in the
core where relaxation effects are expected to become dominant.

II. CONSTRAINED MINIMIZATION OF THE TOTAL
ENERGY

In our previous work,5,8 the approximate KS potential is con-
strained in order to remove the effect of SIs from its long-range
asymptotic decay (without correcting for SIs the total energy). For
a finite system of N electrons, the HXC potential should decay
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as (N − 1)/r, but in many common approximations, it incorrectly
decays as N/r, a failure that we attribute to SIs.

To correct the potential for SIs, the KS equations are written as

[−∇
2

2
+ ven(r) + vrep(r)]ϕi(r) = εiϕi(r), (1)

where vrep takes the role of the HXC potential, vHXC. The poten-
tial vrep is written as the Coulomb–Hartree potential of an auxiliary
density ρrep as follows:

vrep(r) = ∫ dr′
ρrep(r′)
∣r′ − r∣ . (2)

We have called this density the “effective repulsion” or “screening”
density in the KS system. Mimicking in a mean field way the absent
repulsion of the real electrons, the KS screening density is distinct
from the physical density of the interacting electron system and is
subject to the following constraints:

∫ drρrep(r) = N − 1, (3)

ρrep(r) ≥ 0. (4)

The application of these constraints ensures that the potential vrep
has the correct asymptotic decay of the exact HXC potential. In addi-
tion, for a single electron, the effective repulsion potential becomes
zero everywhere, vrep(r) = 0, which is the exact one electron result
for the HXC potential. Even though we employ vrep to approxi-
mate vHXC, we avoid writing vrep = vHXC because so far, we have not
been able to write vrep satisfying (3, 4) as the functional derivative
of an approximate HXC energy. Görling11 was the first to employ
the ansatz (2, 3) for the exact-exchange potential, constraining the
exchange density to integrate to −1.

The first constraint in (3) is incorporated via a Lagrange multi-
plier in the objective functional

GDFA[ρrep] = EDFA[ρrep] − λ∫ drρrep(r). (5)

In Refs. 5 and 8, the second constraint in (4) is enforced through the
use of a penalty function. However, our recent work12 provides an
alternative by constructing the density ρrep(r) as the modulus square
of an effective repulsion, or screening, amplitude,

ρrep(r) = ∣ f (r)∣2. (6)

To obtain the ground state, the objective functional in Eq. (5)
is minimized with respect to ρrep. The minimization can be per-
formed as an extension to the optimized effective potential (OEP)
method.13,14 [When ρrep is given by Eq. (6), the minimization is with
respect to f . Details of the minimization of the objective function
with respect to the amplitude f in (5) are presented in a separate
publication.] At the minimum of G,

0 = δGDFA[ρrep]
δρrep(x)

= ∫ drdr′
δvrep(r′)
δρrep(x)

χv(r, r′)

× [vDFA
HXC(r) − vrep(r)] − λ, (7)

where vDFA
HXC(r) = δEDFA

HXC[ρ]/δρ(r) is the DFA HXC potential and

χv(r, r′) = −2∑
ia

ϕi(r)ϕa(r)ϕi(r′)ϕa(r′)
εa − εi

(8)

is the KS density–density response function. The computational cost
to solve the OEP in Eq. (7) enforcing (3, 4) is low, scaling similar to
a few (∼ 10) KS-DFA calculations, since the potential vDFA

HXC(r) in (7)
is local.

This method can be applied to a generic energy density func-
tional E[ρ]. In Ref. 8, we applied this method to a range of func-
tionals, including a hybrid functional, for which the HXC potential
is nonlocal. The constrained minimization increased total energies
minimally, while improving calculations of the IP from the nega-
tive of the HOMO eigenvalue. It was also found that the HOMO
eigenvalues were largely independent from the functional used to
calculate them.

In the original formulation of the constrained method, the
sum of the Hartree, exchange, and correlation potentials is sub-
ject to the constraints (3) and (4). Alternatively, these constraints
can instead be applied only to the Hartree and exchange (HX)
potential. To leading order, the long-range decay of the exact HX
potential is (N − 1)/r, while the exact correlation potential decays
as ∝ −1/r4.15,16 Therefore, the asymptotic behavior of the exact
vHXC will be dominated by that of the HX potential vHX. The exact,
leading-order asymptotic behavior of the potential is, therefore,
maintained if the unconstrained correlation potential is included
separately to the constrained HX potential. Correlation can be
treated separately to the constrained method by constructing the KS
equations as

[−∇
2

2
+ ven(r) + vc(r) + vrep(r)]ϕi(r) = εiϕi(r), (9)

where vc(r) is the density functional theory (DFT) correla-
tion potential δEc[ρ]/δρ(r). Treating correlation separately to
Hartree–exchange, represented again by vrep, the equation to deter-
mine ρrep becomes

0 = δGDFA[ρrep]
δρrep(x)

= ∫ drdr′
δvrep(r′)
δρrep(x)

χv(r, r′)

× [vDFA
HX (r) − vrep(r)] − λ, (10)

identical to Eq. (7), except that the potential vDFA
HXC is now vDFA

HX .
Table I shows that excluding correlation from the con-

straint results in an upshift of the calculated IP. For LDA, this results
in an average upshift of 0.90 eV, and for PBE, this average is 0.42 eV.
Typically, calculations of the HOMO energy, similar to uncon-
strained LDA calculations, underestimate the IP. This upshift of
the calculated IP, therefore, after leaving correlation unconstrained,
generally improves slightly the quality of the approximation for the
IP of the system. However, the removal of correlation from the con-
strained minimization results in a KS potential that is no longer
appropriate for a system with a single electron. The exact behavior
for a one electron system is only recovered if the approximate corre-
lation potential is zero for a single electron, which holds for the exact
functional.
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TABLE I. Errors in calculating HOMO energies for a sample of molecules using the
constrained minimization method with correlation included vxc and correlation sepa-
rate vx. Calculations performed for a cc-pVTZ basis set. The total average error (AE)
and absolute average error (AAE) are shown along with the average change in energy
between the two methods ΔE. All energies are given in eV.

LDA PBE

Molecule Expt. vxc vx vxc vx

C2H2 11.40 −1.52 −0.74 −1.30 −1.03
NH3 10.07 −0.92 −0.14 −0.84 −0.65
CO 14.01 −2.23 −1.22 −1.71 −1.24
C2H4 10.51 −1.34 −0.57 −1.28 −0.96
F2 15.70 −4.79 −3.50 −4.07 −3.29
CH2O 10.89 −2.31 −1.44 −2.04 −1.64
HCN 13.60 −1.85 −1.03 −1.84 −1.32
HF 16.03 −2.82 −1.89 −2.57 −2.06
CH4 12.61 −0.10 0.66 0.01 0.31
N2 15.58 −2.82 −1.74 −2.25 −1.71
H2O 12.62 −2.10 −1.30 −1.97 −1.69

AE −2.07 −1.17 −1.81 −1.39
AAE 2.07 1.29 1.81 1.45
ΔE 7.9 × 10−6 −3.3 × 10−5

III. THE GENERALIZED KS METHOD
Separating the correlation potential from the constrained min-

imization allows for the calculation of a constrained HX component
of the KS potential, where the main effects of SIs have been removed.
To construct our hybrid method, this potential is combined with the
SI-free nonlocal HF potential in a GKS scheme.9,10 A simple gen-
eralized KS equation can be constructed using a single parameter
α to control the contribution of local and nonlocal exchanges. The
hybrid, single-particle potential corresponding to HXC is written as
follows:

vhyb = α vrep + (1 − α)vHF
HX + vDFA

c , (11)

where vrep is the effective repulsion, or screening, potential given by
Eq. (10) (with χv constructed using the GKS orbitals), vHF

HX is the sum
of the Hartree plus nonlocal Fock–exchange potentials, and vDFA

c is
the DFA correlation potential. Correspondingly, the total energy is
given as

Etot[ρ] = Ts[ρ] + Een[ρ] + EDFA
c [ρ] + EH[ρ] + αEDFA

x [ρ]
+ (1 − α)EF

x[ρ], (12)

where Ts is the noninteracting kinetic energy, Een is the energy
from the nuclear potential, EH is the Hartree energy, EDFA

x and EDFA
c

are the exchange and correlation energy functionals, and EF
x is the

Fock–exchange energy.
The treatment of correlation separately to exchange allows for

the new hybrid method to have a consistent correlation energy for
all values of α. The total energy varies almost linearly from the HF
plus DFA correlation limit (α = 0) to the constrained DFA energy
limit (α = 1) as the hybrid parameter α varies from 0 to 1. We look
to choose a DFA for which this change in total energy is small such

TABLE II. Change in the total energies, E(α) − E(α = 0), for various values of α
for the LDA and PBE functionals and a range of molecules. These results are the
average of the differences in total energies for the molecules in Table I. Energies are
given in eV.

α LDA PBE

0.2 0.224 0.005
0.4 0.446 0.008
0.6 0.666 0.010
0.8 0.884 0.010
1 1.100 0.009

that total energies are insensitive to the choice of α. This allows the
parameter α to be varied to optimize the prediction of ionization
energies for this hybrid. For LDA, Table II demonstrates a significant
change of 1.11 eV in the total energy as α varies over 0 ≤ α ≤ 1. This
large energy change can be explained because the HF energy is lower
than the LDA total energy, and adding correlation energy, a negative
quantity, on top of HF at α = 0 further lowers the total energy and
increases the energy difference between the end points, α = 1 (LDA)
and α = 0 (HF + LDA correlation).

The constrained PBE (CPBE) approximation shows a smaller
energy shift of about 0.01 eV (Table II) between the constrained
PBE total energy (α = 1) and the HF plus PBE correlation energy
(α = 0). To exploit the insensitivity of the total energy on the hybrid
parameter α, we restricted our investigation to the hybrid method
with constrained PBE exchange. Because the energetics of the CPBE
hybrid remain consistent throughout the range 0 ≤ α ≤ 1, the effect
of varying α on the orbital energies can be investigated while the
quality of the energetics is not affected. As we found in our pre-
vious work,8 the ionization energy calculated from the constrained
method is insensitive to the choice of DFA, and therefore, an opti-
mization of the ionization energies is likely to be valid for a range of
exchange functionals.

IV. RESULTS
With our choice of CPBE, the total energies of our hybrid

scheme are relatively unchanged for a range of values of α. This
allows the optimization of the hybrid parameter α for the calcu-
lation of ionization energies. However, instead of focusing just on
the HOMO eigenvalue,4,17 we optimized the present hybrid method
to best approximate the ionization energies of all occupied orbitals.
The value of the hybrid parameter was optimized for the simple
molecules in Table I with molecular geometries taken from the sup-
plementary material of Ref. 18 along with experimental and coupled
cluster results. The minimizing α can be determined from the results
in Fig. 2. These results show that the minimizing α varies slightly
when considering the HOMO, core, and valence orbitals. The energy
eigenvalues of the valence orbitals are optimized at a slightly larger
value of α, i.e., a smaller percentage of HF exchange, while IPs
from core orbital eigenvalues are better approximated with a slightly
smaller percentage of constrained DFT exchange. A choice that
achieves good accuracy for the full range of orbitals without overfit-
ting the results is the value α = 0.5. This value coincides with the half-
and-half mixing of the original hybrid formulation of Becke19 based
on a linear interpolation of the adiabatic connection formula. The
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FIG. 2. Orbital energy “error” (difference of orbital eigenvalue magnitude from
experimental IP) as a function of α. We show average error (AE) and absolute
average error (AAE) for all the valence orbitals and separately for the HOMO.
In the inset, we show the average error and absolute average error for the core
orbitals. Results are calculated for the molecules in Table I using a cc-pVDZ basis
set.

present 50% hybrid of CPBE and HF exchange (which we denote
“constrained hybrid”—CHYB) is the self-interaction-corrected ana-
log of the PBE50 functional20 that was employed in time-dependent
DFT and many-body perturbation theory methods. In DFT appli-
cations, the PBE0 hybrid functional21,22 with 25% HF exchange is a
more widely used parameterization.

The eigenvalue accuracy of the constrained hybrid method
with α = 0.5 will now be investigated. Figure 3 demonstrates the
agreement of the CHYB method with experimental results for the

FIG. 3. Experimental IPs vs IPs calculated from orbital energies for the test set
of molecules in the supplementary material of Ref. 18 using the cc-pVDZ basis
set. Colored points (blue for HOMO and red for valence orbitals) correspond to the
hybrid method, gray points show results for CPBE (crosses) and HF(diamonds),
and the black line shows the ideal exact agreement between experimental and
calculated results. The inset shows the same results, including high energy core
orbitals.

HOMO (blue), valence (red), and core (inset) orbitals. We see a clear
improvement of the CHYB method over the CPBE and HF meth-
ods. Table III shows a comparison of our new CHYB method with
results from unconstrained and constrained PBE, PBE0, HF, and
coupled-cluster singles and doubles (CCSD) methods. These results
demonstrate that the constrained hybrid method has a significantly
reduced error over the other DFT methods for the calculation of all
IPs and has accuracy approaching CCSD results. Ionization energies
of core orbitals show a significant improvement over PBE and HF
results. These ionization energies are largely independent of the sur-
rounding chemical environment, and as such, the four groupings of
points in Fig. 3 (inset) correspond (from left to right) to C, N, O, and
F. As shown in Table III, the error for valence orbitals is, in general,
positive; for core orbitals, this error becomes negative. This is likely
caused by the HF error increasing more relative to CPBE due to the
neglect of relaxation effects. The core orbitals especially are expected
to have a large relaxation error and the HF error to increase. Of
the molecules investigated with this hybrid, outlying results are for
the molecules O3 with one valence orbital underestimated by 3 eV
and SiF4 where every orbital has errors over 1 eV. The large error

TABLE III. Errors in calculated IPs for HOMO and valence orbitals for several meth-
ods for the set of molecules in the supplementary material of Ref. 18, showing the
number of IPs involved (#IPs), the average error (AE), and the absolute average
error (AAE). Results for core orbitals of the molecules in Table I are also shown for
the cc-pVTZ basis set.

All valence states HOMO

#IPs AE AAE #IPs AE AAE

cc-pVDZ

HF 381 2.90 2.90 136 1.63 1.63
PBE 381 −5.02 5.02 136 −4.41 4.41
PBE0 381 −3.04 3.04 136 −2.90 2.90
CPBE 381 −2.84 2.84 136 −2.06 2.06
CHYB 381 −0.01 0.52 136 −0.24 0.34
IP-EOM-CCSD 381 −0.07 0.34 136 −0.12 0.24

cc-pVTZ

HF 91 2.58 2.58 28 1.62 1.62
PBE 91 −4.71 4.9 28 −4.79 4.79
PBE0 91 −3.04 3.03 28 −3.19 3.19
CPBE 91 −1.6 1.63 28 −1.46 1.46
CHYB 91 0.48 0.54 28 0.11 0.25
IP-EOM-CCSD 91 0.15 0.27 28 −0.04 0.15

Core states

cc-pVTZ #IPs AE AAE

HF 15 17.34 17.34
PBE 15 −25.93 25.93
PBE0 15 −15.46 15.46
CPBE 15 −22.06 22.06
CHYB 15 −2.53 2.53
IP-EOM-CCSD 15 0.98 0.98
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on these molecules requires further investigation, although similarly
poor results were also found for the CCSD calculations for O3.18 As
would be expected from the imposition of additional constraints, the
calculated total energy is higher than the unconstrained 50% PBE
hybrid and in line with the increase in energy when applying the
constrained method.8 An increase in the total energy of ∼ 0.1 meV
was found for the hydrogen fluoride molecule. This small increase
was maintained for a range of interatomic separations, showing that
the addition of the constrained method will have minimal impact on
the energetic behavior compared to the unconstrained method. This
hybrid will, therefore, have the same energetic behavior as the 50%
PBE hybrid method.

Table IV shows the full orbital energies for a selection of
molecules compared with experimental results. The agreement with
experiment of the self-interaction-corrected hybrid functional can
clearly be seen throughout these molecules. Core orbitals have the
largest absolute error due to their large eigenvalues; however, even
for these orbitals, the constrained hybrid method has average errors
smaller than 1 eV. The present method demonstrates a significant

TABLE IV. Errors for the full set of orbitals in the molecules N2, CO, HF, and H2O for
the cc-pVTZ basis set compared with experimental results, with average errors (AEs)
and average absolute errors (AAEs) for the subsets of orbitals.

MOL Expt. HF PBE PBE0 CPBE CHYB

N2

15.58 0.73 −5.45 −3.49 −1.81 0.20
16.93 0.21 −5.63 −4.09 −1.97 −1.12
18.75 2.71 −5.12 −2.91 −1.47 1.05
37.30 2.08 −9.58 −6.39 −5.95 −1.11

409.98 17.00 −26.57 −15.54 −23.33 0.88
409.98 17.08 −26.55 −15.5 −23.30 0.94

CO

14.01 1.13 −5.00 −3.26 −1.41 0.10
16.91 0.22 −5.30 −3.67 −1.72 −0.56
19.72 2.10 −5.65 −3.45 −2.07 0.44
38.30 2.69 −9.34 −6.06 −5.77 −0.69

296.21 13.17 −23.92 −14.51 −20.73 −0.41
542.55 19.81 −29.33 −16.89 −26.30 1.35

HF

16.19 1.29 −7.17 −4.74 −1.83 0.06
19.90 0.63 −7.01 −4.78 −1.71 −0.27
39.60 3.65 −10.2 −6.41 −4.90 0.23

694.23 21.09 −34.59 −20.65 −28.42 1.27

H2O

12.62 1.11 −5.92 −3.86 −1.53 0.06
14.74 0.97 −5.9 −3.87 −1.52 0.00
18.55 0.60 −5.86 −3.95 −1.48 −0.21
32.20 4.30 −7.38 −4.14 −2.99 1.38

539.9 19.50 −29.71 −17.43 −26.23 1.14

HF PBE PBE0 CPBE CHYB

ALL AE 6.29 −12.91 −7.89 −8.88 0.22
AAE 6.29 12.91 7.89 8.88 0.64

CORE AE 17.94 −28.44 −16.75 −24.72 0.86
AAE 17.94 28.44 16.75 24.72 1.00

VALENCE AE 1.63 −6.7 −4.34 −2.54 −0.03
AAE 1.63 6.7 4.34 2.54 0.50

HOMO AE 1.06 −5.88 −3.84 −1.65 0.11
AAE 1.06 5.88 3.84 1.65 0.11

improvement in calculating the spectra of these molecules when
compared to HF, PBE0, and CPBE methods. The computational cost
of a constrained hybrid calculation scales similarly to a small number
of conventional hybrid calculations.

V. CONCLUSIONS
From the results presented in this paper, it is clear that the

constrained hybrid method offers significant improvements in the
approximation of orbital energies not just for the HOMO but for
the full range of occupied orbitals. The errors in orbital ener-
gies, below 1 eV for valence orbitals and within 1–2 eV for core
orbitals, are surprisingly small considering the semi-local DFA we
employ. We attribute the improvement to the hybrid character of the
exchange potential whose equally weighted components are either
SI-free (nonlocal Fock term) or corrected from the main errors of
SIs (constrained DFA exchange potential). The total energy of this
constrained hybrid remains relatively consistent with the PBE and
HF plus PBE correlation methods and is increased over an uncon-
strained hybrid method by ∼ 0.1 meV. The accuracy of these results,
especially for the core orbitals, suggests that there is a cancellation
of errors between the exchange potential in the constrained mini-
mization method and HF. For orbitals with large ionization energies,
there should be significant orbital relaxation effects, which, nev-
ertheless, are accounted for in the orbital energy spectrum of the
constrained hybrid method. As we found in Ref. 8, the IPs calcu-
lated from the constrained method are largely independent of the
DFA. Therefore, the constrained hybrid method will show similar
improvements in the calculation of IPs for a range of DFAs using
a mixing parameter of 50%. This mixing is in line with a simple
linear interpolation of the adiabatic connection, and while further
improvements for specific orbitals may be obtained for a highly opti-
mized value of α, the choice of α = 0.5 is expected to work for a
variety of systems and orbitals. Finally, the accuracy of these results
is consistent with recent arguments3,18,23,24 that the DFT Koopmans’
theorem holds approximately for all orbitals, although to achieve the
systematic high accuracy of the present results, a hybrid exchange
potential is necessary.

ACKNOWLEDGMENTS
T.C.P. and N.I.G. acknowledge financial support from The Lev-

erhulme Trust through a Research Project Grant under Grant No.
RPG-2016-005. N.I.G. thanks Professor Rod Bartlett for helpful dis-
cussions during his visit to Durham University in early 2019 and
acknowledges the Institute of Advanced Study at Durham University
for hosting this visit.

AUTHOR DECLARATIONS
Conflict of Interest

The authors state that they have no conflict of interest to
disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

J. Chem. Phys. 155, 224105 (2021); doi: 10.1063/5.0071205 155, 224105-6

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

REFERENCES
1J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., “Density-functional theory
for fractional particle number: Derivative discontinuities of the energy,” Phys. Rev.
Lett. 49, 1691 (1982).
2P. Verma and R. J. Bartlett, “Increasing the applicability of density functional
theory. II. Correlation potentials from the random phase approximation and
beyond,” J. Chem. Phys. 136, 044105 (2012).
3R. J. Bartlett, “Adventures in DFT by a wavefunction theorist,” J. Chem. Phys.
151, 160901 (2019).
4R. Van Meer, O. V. Gritsenko, and E. J. Baerends, “Physical meaning of virtual
Kohn–Sham orbitals and orbital energies: An ideal basis for the description of
molecular excitations,” J. Chem. Theory Comput. 10, 4432–4441 (2014).
5N. I. Gidopoulos and N. N. Lathiotakis, “Constraining density functional approx-
imations to yield self-interaction free potentials,” J. Chem. Phys. 136, 224109
(2012).
6Using a local multiplicative KS potential for all three, including B3LYP.
7E. J. Baerends, O. V. Gritsenko, and R. van Meer, “The Kohn–Sham gap, the fun-
damental gap and the optical gap: The physical meaning of occupied and virtual
Kohn–Sham orbital energies,” Phys. Chem. Chem. Phys. 15, 16408–16425 (2013).
8T. Pitts, N. I. Gidopoulos, and N. N. Lathiotakis, “Performance of the con-
strained minimization of the total energy in density functional approximations:
The electron repulsion density and potential,” Eur. Phys. J. B 91, 130 (2018).
9A. Görling and M. Levy, “Correlation-energy functional and its high-density
limit obtained from a coupling-constant perturbation expansion,” Phys. Rev. B
47, 13105 (1993).
10A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, “Generalized Kohn-
Sham schemes and the band-gap problem,” Phys. Rev. B 53, 3764–3774 (1996).
11A. Görling, “New KS method for molecules based on an exchange charge density
generating the exact local KS exchange potential,” Phys. Rev. Lett. 83, 5459 (1999).
12T. Pitts, S. Bousiadi, N. Gidopoulos, and N. Lathiotakis, “The effective orbital
method” (unpublished) (2021).

13R. T. Sharp and G. K. Horton, “A variational approach to the unipotential many-
electron problem,” Phys. Rev. 90, 317 (1953).
14J. D. Talman and W. F. Shadwick, “Optimized effective atomic central
potential,” Phys. Rev. A 14, 36 (1976).
15R. Van Leeuwen and E. J. Baerends, “Exchange-correlation potential with
correct asymptotic behavior,” Phys. Rev. A 49, 2421 (1994).
16C. O. Almbladh and A. C. Pedroza, “Density-functional exchange-correlation
potentials and orbital eigenvalues for light atoms,” Phys. Rev. A 29, 2322
(1984).
17P. Verma and R. J. Bartlett, “Increasing the applicability of density functional
theory. III. Do consistent Kohn-Sham density functional methods exist?,” J. Chem.
Phys. 137, 134102 (2012).
18D. S. Ranasinghe, J. T. Margraf, A. Perera, and R. J. Bartlett, “Vertical valence
ionization potential benchmarks from equation-of-motion coupled cluster theory
and QTP functionals,” J. Chem. Phys. 150, 074108 (2019).
19A. D. Becke, “A new mixing of Hartree–Fock and local density-functional
theories,” J. Chem. Phys. 98, 1372–1377 (1993).
20Y. A. Bernard, Y. Shao, and A. I. Krylov, “General formulation of spin-flip
time-dependent density functional theory using non-collinear kernels: Theory,
implementation, and benchmarks,” J. Chem. Phys. 136, 204103 (2012).
21J. P. Perdew, M. Ernzerhof, and K. Burke, “Rationale for mixing exact
exchange with density functional approximations,” J. Chem. Phys. 105, 9982–9985
(1996).
22C. Adamo and V. Barone, “Toward reliable density functional methods with-
out adjustable parameters: The PBE0 model,” J. Chem. Phys. 110, 6158–6170
(1999).
23D. P. Chong, O. V. Gritsenko, and E. J. Baerends, “Interpretation of the
Kohn–Sham orbital energies as approximate vertical ionization potentials,”
J. Chem. Phys. 116, 1760–1772 (2002).
24S. Hamel, P. Duffy, M. E. Casida, and D. R. Salahub, “Kohn–Sham orbitals and
orbital energies: Fictitious constructs but good approximations all the same,” J.
Electron Spectrosc. Relat. Phenom. 123, 345–363 (2002).

J. Chem. Phys. 155, 224105 (2021); doi: 10.1063/5.0071205 155, 224105-7

© Author(s) 2021

https://scitation.org/journal/jcp
https://doi.org/10.1103/physrevlett.49.1691
https://doi.org/10.1103/physrevlett.49.1691
https://doi.org/10.1063/1.3678180
https://doi.org/10.1063/1.5116338
https://doi.org/10.1021/ct500727c
https://doi.org/10.1063/1.4728156
https://doi.org/10.1039/c3cp52547c
https://doi.org/10.1140/epjb/e2018-90123-8
https://doi.org/10.1103/physrevb.47.13105
https://doi.org/10.1103/physrevb.53.3764
https://doi.org/10.1103/physrevlett.83.5459
https://doi.org/10.1103/physrev.90.317
https://doi.org/10.1103/physreva.14.36
https://doi.org/10.1103/physreva.49.2421
https://doi.org/10.1103/physreva.29.2322
https://doi.org/10.1063/1.4755818
https://doi.org/10.1063/1.4755818
https://doi.org/10.1063/1.5084728
https://doi.org/10.1063/1.464304
https://doi.org/10.1063/1.4714499
https://doi.org/10.1063/1.472933
https://doi.org/10.1063/1.478522
https://doi.org/10.1063/1.1430255
https://doi.org/10.1016/s0368-2048(02)00032-4
https://doi.org/10.1016/s0368-2048(02)00032-4

