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COMPARISON OF OEP SOLUTION FOR XC
POTENTIAL WITH SIMPLE APPROXIMATIONS

As discussed in the main text, we compare the full OEP
solution of Eq. 11 with the following simple approxima-
tions:

vxc(r) ≈ v↑xc(r) , (S1)

vxc(r) ≈ vw
xc(r) =

∆↓v↑xc(r) + ∆↑v↓xc(r)

∆↑ + ∆↓ , , (S2)

where ∆↑ = εN↑
e +1 − εN↑

e
is the HOMO-LUMO gap for

the up-spin-channel, and ∆↓ = εN↓
e +1− εN↓

e
the HOMO-

LUMO gap for the down-spin channel. We stress that
the meaning of the “up”-spin-channel is just whichever
contains more electrons, and vice-versa for the “down”-
channel (N↑

e > N↓
e for open shells). The first approx-

imation therefore just uses the more ‘dominant’ spin-
channel to define the whole potential, and the second
is a weighted average of the two spin-dependent xc-
potentials. The form of the weighted potential is moti-
vated by the energy differences εi − εa in the OEP equa-
tion.

In Fig. S1, we plot the spin-up and spin-down xc-
potentials, alongside the full OEP and weighted (eq. S2)
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FIG. S1: xc-potentials for Lithium (doublet). The lower
panel shows the absolute difference |∆vxc| of the

xc-potentials relative to the full OEP reference result.

Etot (Ha) ∆E (mHa)

Exc[ρ
↑, ρ↓], vOEP

xc -7.398144 0.011
Exc[ρ

↑, ρ↓], vwxc -7.398135 0.020
Exc[ρ

↑, ρ↓], v↑xc -7.398136 0.019
Exc[ρ

↑, ρ↓], v↓xc -7.396281 1.87
Exc[ρ], vxc[ρ] -7.388721 9.43

TABLE S1: Total energies for Lithium (doublet),
obtained via different applications of the L(S)DA

functional, and differences relative to the spin-DFT
result. The final row uses the LDA functional of the

total density (not spin-density), i.e. is contaminated by
the ghost exchange error.

xc-potentials. We also plot the plain DFT potential
vxc[ρ](r) (labelled ‘unpolarized’ in the figure) for compar-
ison). From this figure, we see that both the weighted xc-
potential and the up-only xc-potential are both in close
agreement with the full OEP solution; the down-only
and unpolarized potentials show much greater differences
compared to the OEP solution. It might at first seem sur-
prising that the up-only potential agrees so closely with
the full OEP solution. However, because the up-spin-
channel contains more electrons, it will have a smaller
HOMO-LUMO energy difference (∆↑ < ∆↓); the weight-
ing is therefore biased to the up-spin potential, explaining
why this is such a good approximation.

In Table S1, we see that the the energies coming from
the full OEP, weighted and up-only potentials are also
similar, with any differences relative to the benchmark
spin-DFT (LSDA) result being much lower (several or-
ders of magnitude) than the result obtained using the
plain LDA xc-functional of the total density (i.e. the
ghost-exchange-contaminated result). In fact, we notice
that even the result obtained using only the spin-down
potential has a much smaller error than the the plain
LDA result, even though the down-spin potential is dif-
fers much more from the full OEP potential than does
the spin-unpolarized potential.

The accurate energetics using the up-only or weighted
potentials holds for all the systems we have studied. For
example, In Fig. S2 we show the energy dissociation
curves for the OH radical (both doublet and quadruplet
states where the energies have been obtained from the
spin-up and full OEP potentials. From this figure, it is
clear that there are only very minimal (in the order of a
few mHa) differences between the approximate and full
OEP solutions. The scheme we have presented above is
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FIG. S2: Comparison of energies for the OH radical
dissociation curve, where the KS equations have been

solved with the full OEP xc-potential, and just the
spin-up potential.

thus a practical way of performing ghost-exchange-free
calculations at no extra cost or difficulty compared to a
normal DFT calculation.

EMERGENCE OF UNRESTRICTED KS
POTENTIAL FROM MINIMIZATION IN EQ. 18

The Euler-Lagrange equations which determine the
minimising SDFT-KS system and the minimising spin-
density in Eq. 18 of the main paper are (σ =↑, ↓)

∂Ts[ρ
↑, ρ↓]

∂ρσ(r)

∣∣∣∣
ρ↑ρ,ρ

↓
ρ

+
∂Exc[ρ↑, ρ↓]

∂ρσ(r)

∣∣∣∣
ρ↑ρ,ρ

↓
ρ

+veff [ρ](r) = 0 , (S3)

where the local potential veff [ρ](r) arises as a continu-
ous set of Lagrange multipliers to satisfy the fixed total
density constraint. It is convenient to write veff as the
sum of the Hartree potential plus a remainder potential,
veff [ρ](r) = vH[ρ](r) + v[ρ](r).

The functional derivative of the non-interacting kinetic
energy at the spin-density (ρ↑ρ, ρ

↓
ρ) is equal to minus the

spin-dependent SDFT-KS potential for that spin-density

(within a spin-constant). Hence, the unrestricted KS po-
tential with the correct spin-density is:

vσs [ρ↑ρ, ρ
↓
ρ](r) = vσxc[ρ↑ρ, ρ

↓
ρ](r) + vH[ρ](r) + v[ρ](r) (S4)

where all terms in (S4) are functionals of the total density
ρ. By the HK theorem of SDFT (see Ref. 4) for non-
interacting systems, the local potential v[ρ](r) in (S4) is
the external potential of the interacting system.

It is instructive to repeat the previous analysis for the
DFT-KS system to establish how it differs from the DFT-
GKS system. The minimising state of the non-interacting
kinetic energy functional,

Ts[ρ] = min
Ψ→ρ
〈Ψ|T̂ |Ψ〉, (S5)

is the KS Slater determinant Φ[ρ]. We separate again the
minimisation in (S5) into two separate minimisations and
obtain that DFT’s non-interacting kinetic energy den-
sity functional can be obtained after an optimisation over
spin-densities from SDFT’s functional,

Ts[ρ] = min
(ρ↑,ρ↓)→ρ

Ts[ρ
↑, ρ↓] . (S6)

However, the minimising spin-density, (ρ↑[ρ], ρ↓[ρ]),
is the spin-density of Φ[ρ], which is different from the
spin-density of the real interacting system Ψρ. The
Euler-Lagrange equations which determine the minimis-
ing spin-density and the minimising SDFT-KS system
are (σ =↑, ↓):

∂Ts[ρ
↑, ρ↓]

∂ρσ(r)

∣∣∣∣
ρ↑[ρ],ρ↓[ρ]

+ ueff [ρ](r) = 0 (S7)

where again the local potential ueff [ρ](r) arises as a con-
tinuous set of Lagrange multipliers to satisfy the fixed
total density constraint. The functional derivative of
the SDFT non-interacting kinetic energy is equal to mi-
nus the spin-dependent KS potential. However in this
case, the functional derivative and the SDFT-KS poten-
tial lose their spin-dependence because ueff [ρ] is spin-
independent:

vσs
[
ρ↑[ρ], ρ↓[ρ]

]
(r) = ueff [ρ](r), σ =↑, ↓ . (S8)

By DFT’s HK theorem, the DFT-KS potential is equal
to ueff [ρ](r) in (S8), since there cannot be two local po-
tentials with the same ground state density.
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