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Abstract
The Z-genus of a link L in S3 is the minimal genus of a locally flat, embedded,
connected surface in D4 whose boundary is L and with the fundamental group of the
complement infinite cyclic. We characterise the Z-genus of boundary links in terms of
their single variableBlanchfield forms, andwepresent some applications. In particular,
we show that a variant of the shake genus of a knot, the Z-shake genus, equals the
Z-genus of the knot.

1 Introduction

A link in S3 is an oriented 1-dimensional locally flat submanifold of S3 homeomorphic
to a nonempty disjoint union of circles. For a link L , let XL := S3 \ νL be the link
exterior and let ML be the result of 0-framed surgery on L . An r -component link
L = L1 ∪ · · · ∪ Lr in S3 is a boundary link if the components bound a collection of
r mutually disjoint Seifert surfaces in S3, or equivalently if there is an epimorphism
π1(XL) � Fr onto the free group on r generators, sending the oriented meridian of
Li to the i th generator of Fr .

Throughout the articlewewrite� := Z[t, t−1] for the Laurent polynomial ring. Let
φ : Z

r → Z be the homomorphism that sends ei to 1 for each standard basis vector ei
ofZ

r . Let L be an r -component link with vanishing pairwise linking numbers. Use the

compositions π1(XL) → H1(XL ; Z)
∼=−→ Z

r φ−→ Z and π1(ML) → H1(ML ; Z)
∼=−→
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2 P. Feller et al.

Z
r φ−→ Z to define the homology of XL and ML with � coefficients. Here the middle

isomorphisms send each positive meridian to a different basis element ei . The module
H1(XL ;�) is called the (single variable) Alexander module of L . For L a boundary
link, as we show in Lemma 3.5, the Alexander module is canonically isomorphic
to H1(ML ;�). We will consider the Blanchfield pairing on H1(ML ;�), which is
technically simpler since ML is a closed 3-manifold.

Definition 1.1 A Z-surface for a link L is a locally flat, embedded, compact, oriented,
connected surface in the 4-ball D4 whose boundary coincides with L as oriented
submanifolds of S3. The Z-genus of a link L is the minimal genus amongst all Z-
surfaces for L and is denoted by gZ(L). We say a link is Z-weakly slice if its Z-genus
is zero.

We algebraically characterise the Z-genus of boundary links, extending work of
the first author with Lewark [9, Theorem1.1] on the knot case.

Theorem 1.2 Let L be an r-component boundary link and let ML be the 0-framed
surgery on L. Then the following are equivalent.

(1) The link L bounds a Z-surface of genus g.
(2) There is a size 2g Hermitian square matrix A(t) over � such that A(1) has signa-

ture 0 and such that A(t) presents the Blanchfield form of ML on T H1(ML ;�).
(3) There exists an embedding of the connected, oriented, genus g surface with (r +1)

boundary components into S3 such that r of the boundary components coincide
with L, and the final boundary component is a knot with Alexander polynomial 1.

Theorem 1.2 shows that for boundary links, having a genus g Z-surface implies
the existence of a genus g Z-surface given by a Z-disc in D4 union a collection of
2-dimensional 1-handles attached along the boundary and embedded in S3. It was
conjectured in [8] that this is the case for all links, in other words that (1) ⇔ (3) for
all links. Towards tackling this conjecture, we ask: what is the appropriate general-
ization of (2) that applies for all links? For example, in order to define the coefficient
system on ML we used that the pairwise linking numbers vanish, so the formulation
of Theorem 1.2 does not apply to all links.

For the proof of Theorem 1.2, (3) ⇒ (1) is a consequence of the fact that Alexan-
der polynomial 1 knots are Z-slice [12, Theorem 11.7B]. For (2) ⇒ (3), the proof
consists of reducing the statement for links to the statement for knots by performing
internal band sums. Finally, (1)⇒ (2) is an algebraic topology computation, involving
the intersection pairing of a suitably constructed 4-manifold with boundary ML and
fundamental group Z.

Noting that H1(ML ;�) ∼= H1(XL ;�) for L a boundary link, as we show in
Lemma 3.5, we deduce the following corollary, which is a natural generalisation of
the aforementioned result that a knot is Z-slice if and only if its Alexander module is
trivial.

Corollary 1.3 Aboundary link isZ-weakly slice if and only if it has torsion-free Alexan-
der module.

123



TheZ-genus of boundary... 3

Fig. 1 The link Ln . The dashed
boxes indicate ±n full twists
between the bands, without
introducing any internal twisting
to any of the bands

−nn

1.1 Applications

We describe several applications, whose proofs will be given in Sect. 5. The first
application exhibits a phenomenon for links with unknotted components. This uses
the obstruction in Corollary 1.3: we compute that the Alexander modules of the links
in question have nontrivial torsion submodules.

Corollary 1.4 The infinite family shown in Fig. 1 of 2-component links Ln, where
n �= 0, 1, are slice links, hence weakly slice, with unknotted components, but the Ln

are not Z-weakly slice.

Proof Let n �= 0, 1 be an integer and let Ln be the link in Fig. 1. It is not too hard to
check that Ln is a boundary link. Hence we get the following computation using the
obvious Seifert surface:

H1(MLn ;�) ∼= H1(XLn ;�) ∼= � ⊕ �/〈(n − 1)t − n〉 ⊕ �/〈nt − (n − 1)〉.

By Corollary 1.3, it follows that Ln is not Z-weakly slice. The fact that Ln is slice
can be seen by performing a saddle move corresponding to a dual band to the middle
band in Fig. 1. ��

Recall that a knot K is shake slice if the generator of second homology of the
4-manifold

X0(K ) := D4 ∪K×D2 D2 × D2,

obtained by attaching a 2-handle to the closed 4-ball D4 along K with framing zero,
known as the 0-trace of K , can be represented by a locally flat embedded 2-sphere S ⊆
X0(K ).Moreover we say that a knot isZ-shake slice if in additionπ1(X0(K )\S) ∼= Z,
generated by a meridian of S. This notion was introduced in [10].

Extending this, the Z-shake genus of a knot K is the minimal genus of a surface �

representing a generator of H2(X0(K ); Z) with π1(X0(K )\�) ∼= Z, again generated
by a meridian of �. Theorem 1.2 enables us to characterise this quantity.

Theorem 1.5 For all knots, the Z-genus equals the Z-shake genus.

The case r = 1 of Theorem 1.2, which is the main theorem of [9], describes the
Z-genus of a knot algebraically, so this yields an algebraic characterisation of the
Z-shake genus. Note that we can also define the shake genus and the slice genus of a
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knot by dropping the condition on the fundamental groups. It is not known whether
these two knot invariants differ in general. However, the shake genus and the slice
genus do not coincide in the smooth category [21, Corollary1.2].

Given a knot K , let Ka,b denote the (a, b)-cable of K , where a is the longitudinal
winding, and let Pp,n(K ) denote the link obtained by taking p + n parallel copies
of K , with pairwise vanishing linking numbers, where p components have the same
orientation as K and the remaining n-components have the opposite orientation. As
we show in Lemma 5.2, the Z-shake genus of K can be reinterpreted as the minimal
genus of a connected surface in D4 with boundary P�+1,�(K ), for some � ≥ 0. From
this point of view, the next corollary extends Theorem 1.5. We compute the Z-genus
for Pp,n(K ) for every pair of nonnegative integers p and n.

Corollary 1.6 Let p and n be nonnegative integers and let w = p − n. If w = 0, then
Pp,n(K ) is Z-weakly slice, and otherwise

gZ(Pp,n(K )) = gZ(Kw,1) = gZ(Kw,−1) ≤ gZ(K ).

Theorem 1.5 can be recovered from the case w = 1 and Lemma 5.2. The fact that
gZ(Kw,1) ≤ gZ(K ) follows from [11, Theorem 1.2] and [18, Theorem 4].

Recall that an r -component link is a good boundary link if there is a homomorphism
θ : π1(XL) → Fr sending the meridians to r generators of the free group Fr , such that
ker θ is perfect; see [13], [14], and [5] for more details. An important open question
related to topological surgery for 4-manifolds is whether every good boundary link
is freely slice, that is bounds a disjoint union discs in D4 such that the complement
has free fundamental group [12, Corollary 12.3C]. We show that at least every good
boundary link bounds a planar Z-surface.

Corollary 1.7 Every good boundary link is Z-weakly slice.

For a given link L , we can construct a new link called the Whitehead double,
denoted by Wh(L), by performing the untwisted Whitehead doubling operation on
each component of L . Note that Whitehead doubling involves a choice of the sign
for each clasp. Recall that every Whitehead double of a link with vanishing linking
numbers is a good boundary link, and hence by the previous corollary is Z-weakly
slice.

Corollary 1.8 If L = L1 ∪ L2 is a 2-component link, then for any choice of Whitehead
double we have

gZ(Wh(L)) =
{
0 if lk(L1, L2) = 0,
1 otherwise.

Moreover, if L = L1 ∪ L2 ∪ L3 is a 3-component link, thenWh(L) is Z-weakly slice
if and only if either (i) L has vanishing linking numbers, or (ii) for some i, j, k with
{i, j, k} = {1, 2, 3}:
(a) the signs of the clasps of Wh(Li ) and Wh(L j ) disagree,
(b) lk(Li , L j ) = 0, and
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TheZ-genus of boundary... 5

(c) | lk(Li , Lk)| = | lk(L j , Lk)|.
Let K and J be two oriented knots in S3 that can be separated by an embedded 2-

sphere. Set I = [0, 1]. Consider an embedded band b : I× I → S3 with b(I× I )∩K =
b(I × {0}) and b(I × I ) ∩ J = b(I × {1}), where the orientations on these intervals
coming from the orientations of the knots and from the intervals as a subset of the
circle ∂b(I × I ) agree. We obtain a new knot

K#b J := K ∪ J ∪ b ({0, 1} × I ) \ b ((0, 1) × {0, 1})

from band surgery along b, which is called the the band connected sum of K and J
along b. If b is trivial, that is if there exists an embedded 2-sphere separating K and
J such that the intersection of the sphere and the image of the band is an arc, then the
band connected sum yields the connected sum K#J . It was proven by Miyazaki [19,
Theorem1.1] that there is a ribbon concordance from K#b J to K#J for any band b.
In particular, gZ(K#J ) ≤ gZ(K#b J ). This result can be thought of as follows. Given
a two component split link, which is a particular kind of boundary link, the connected
sum of the components minimises the Z-genus among all possible internal band sums
on the link. We extend this to all boundary links.

Corollary 1.9 Let L be an r-component boundary link and let KL , K ′
L be knots, both

of which are obtained by performing r − 1 internal band sums on L. Furthermore,
suppose that internal bands for KL are performed disjointly from some collection of
disjoint Seifert surfaces for L. Then

gZ(L) = gZ(KL) ≤ gZ(K ′
L).

Organisation

Section 2 gives preliminaries on the Blanchfield form and Alexander duality in a
disc, a useful generalisation of Alexander duality in a sphere. Section 3 proves the
implications (2) ⇒ (3) ⇒ (1) in Theorem 1.2. Section 4 proves that (1) implies (2).
Section 5 proves the applications described in Sect. 1.1.

2 Blanchfield forms and Alexander duality

2.1 The Blanchfield form

Let M be a closed, oriented, connected 3-manifold equipped with a homomorphism
π1(M) → Z, giving rise to twisted homology and cohomology with coefficients in the
�-modules �, Q(t), and Q(t)/�. The Blanchfield form [4] BlM is the nonsingular,
sesquilinear, Hermitian form [22] defined on the torsion submodule T H1(M;�) of
H1(M;�).

BlM : T H1(M;�) × T H1(M;�) → Q(t)/�,
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6 P. Feller et al.

with adjoint x �→ BlM (−, x) given by the sequence of maps that we now describe;

compare also [3]. First, we use the Poincaré duality map PD−1 : T H1(M;�)
∼=−→

T H2(M;�). The universal coefficient spectral sequence (see [15, Sects. 2.1 and 2.4])
gives rise to an exact sequence as follows, where Ext denotes that the involution on �

determined by t �→ t−1 has been used to alter the �-module structure:

0 → Ext
1
�(H1(M,�),�) → H2(M;�) → Ext

0
�(H2(M,�),�).

Since Ext
0
�(H2(M,�),�) = Hom�(H2(M,�),�) is torsion-free, we obtain a map

T H2(M;�) → Ext
1
�(H1(M,�),�), which we then compose with the map

Ext
1
�(H1(M,�),�) → Ext

1
�(T H1(M,�),�)

induced by the inclusion from T H1(M;�) ⊆ H1(M;�). Next, the Bockstein long
exact sequence arising from the short exact sequence of coefficients 0 → � →
Q(t) → Q(t)/� → 0:

�� Ext
0
�(T H1(M;�), Q(t)) �� Ext

0
�(T H1(M;�), Q(t)/�) ��

�� Ext
1
�(T H1(M;�),�) �� Ext

1
�(T H1(M;�), Q(t)) ��

has first and last terms vanishing, the first since T H1(M;�) is �-torsion and the last
since Q(t) is an injective �-module. Thus there is a map

Ext
1
�(T H1(M;�),�) → Ext

0
�(T H1(M;�), Q(t)/�) = Hom�(T H1(M;�), Q(t)/�).

The composition of these maps gives a homomorphism

T H1(M;�) → Hom�(T H1(M;�), Q(t)/�),

which as promised is the adjoint of the Blanchfield pairing.

Definition 2.1 We say that the Blanchfield pairing is presented by a Hermitian square
matrix A(t) over � of size n if it is isometric to the pairing

�A(t) : �n/(A(t)�n) × �n/(A(t)�n) → Q(t)/�

(v,w) �→ vT A(t−1)−1w.

For an r -component link L , we write BlL for the Blanchfield form of the zero
surgery 3-manifold ML , defined using the homomorphism π1(ML) → Z sending
each oriented meridian to 1 ∈ Z.
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TheZ-genus of boundary... 7

2.2 Alexander duality in a disc

In this section we briefly recall a version of Alexander duality for the disc. Let X be a
submanifold properly embedded in a disc Dn , i.e. with ∂X ⊆ Sn−1 and assume that
X admits an open tubular neighbourhood νX with closure νX .

Proposition 2.2 For every k ∈ Z, we have:

Hk(D
n \ νX) ∼= H̃n−k−1(Sn−1 ∪ νX).

Proof We have

Hk(D
n \ νX) ∼= Hn−k(Dn \ νX , (Sn−1 \ ν∂X) ∪ (∂νX \ ν∂X)) ∼= Hn−k(Dn, Sn−1 ∪ νX)

by the composition of Poincaré-Lefschetz duality, and excision. We consider the
long exact sequence of the pair:

Hn−k−1(Dn) → Hn−k−1(Sn−1 ∪ νX) → Hn−k(Dn, Sn−1 ∪ νX) → Hn−k(Dn).

Thus, Hn−k−1(Sn−1 ∪ νX) ∼= Hn−k(Dn, Sn−1 ∪ νX) unless k = n − 1, n. For
k = n both the left and right hand sides in the statement of the proposition vanish:
Hn(Dn \ νX) = 0 = H̃−1(Sn−1 ∪ νX). In the case that k = n − 1, we obtain a short
exact sequence

0 → Z → H0(Sn−1 ∪ νX) → H1(Dn, Sn−1 ∪ νX) → 0,

so H̃0(Sn−1 ∪ νX) ∼= H1(Dn, Sn−1 ∪ νX) ∼= Hn−1(Dn \ νX). Therefore, we obtain
our statement for Alexander duality in a disc as claimed:

Hk(D
n \ νX) ∼= H̃n−k−1(Sn−1 ∪ νX).

��

3 (2) Implies (3) implies (1)

We prove two of the implications in Theorem 1.2 in this section. We need a purely
algebraic lemma that shows up in this section and in Sect. 4.

Lemma 3.1 Let g ≥ 0 and r ≥ 1 be integers, and let Q be a �-module with a
presentation

�r−1+2g B(t)−−→ �r−1+2g → Q → 0

where B(t) is a square matrix over � of the form

B(t) =
(
0(r−1)×(r−1) 0(r−1)×2g
02g×(r−1) A2g×2g(t)

)
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8 P. Feller et al.

with det(A(t)) �= 0. Then the following holds.

(i) The torsion submodule of Q, denoted by T Q, is presented by �2g A(t)−−→ �2g →
T Q → 0. In particular, ord T Q = det A(t).

(ii) The �-module Q decomposes as T Q ⊕ �r−1.

Proof Let {e1, . . . , er−1+2g} be the standard basis of �r−1+2g , and write [ei ] for the
image of ei under the quotient �r−1+2g → Q. Consider the subgroup

T := 〈[er ], . . . , [e2g+1−1]〉

generated by the shown subset of the [ei ]. Each [ei ] for i = r , . . . , r − 1 + 2g is
det(A(t))-torsion; in particular, T consists entirely of torsion, hence T ⊆ T Q. On the
other hand, given the form of B, the remaining generators {[ei ]}r−1

i=1 generate a free
summand �r−1, and it is straightforward to see that Q = T Q ⊕ �r−1. ��

We fix the following setup. Let L be an r -component boundary link and let {Fi }ri=1
be a collection of disjoint Seifert surfaces for L . Tube the surfaces {Fi }ri=1 together
along r − 1 tubes disjoint from the surfaces to obtain a connected Seifert surface F ,
of genus g say. Let N be a Seifert matrix for L of size r − 1+ 2g obtained by picking
a basis {γ1, . . . , γr−1+2g} of H1(F; Z) of some Seifert surface for L as follows: the
first r − 1 elements are given by meridians for the tubes used in the construction of
F , while the next 2g elements are given by simple, oriented, closed curves disjoint
from the meridians of the tubes that form a symplectic basis of the closed surface
F/{Li }ri=1 given by crushing each component of L to a distinct point. Let V denote
the Seifert matrix representing the Seifert form restricted to span of the last 2g basis
elements. In particular, we have that det(V − V T ) = 1. We have that N has the form

N =
(
0(r−1)×(r−1) 0(r−1)×2g
02g×(r−1) V2g×2g

)
(3.2)

since meridians to the tubes link themselves and all other curves trivially.

Definition 3.3 Choose a separating curve KL on F , such that one of the components
of F \KL contains ∂F , while the other contains the simple closed curves representing
γi for r ≤ i ≤ r − 1 + 2g.

We can take KL to be a collection of push-offs of the components of L , banded
together along the tubes used in the construction of F . Hence KL is a knot obtained
by performing r − 1 internal band sums on L , where internal bands are disjoint from
{Fi }ri=1. Note that by construction KL has V as a Seifert matrix.

For i = 1, . . . , r − 1+ 2g, let ei ∈ H1(S3 \ F; Z) be the element that is Alexander
dual to γi ∈ H1(F; Z). We also write ei for ei ⊗ 1 ∈ H1(S3 \ F; Z) ⊗Z � ∼=
�r−1+2g . Recall that {ei }r−1+2g

i=1 generates the Alexander module H1(XL ;�); see e.g.
[17, Theorem 6.5]. Also, recall that given a �-module T with an n × m presentation
matrix A(t), with n ≥ m, the order ideal of T is defined to be the ideal of� generated
by allm×m minors of A(t). If A(t) is a square matrix, then the order ideal is principal
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TheZ-genus of boundary... 9

and it is generated by det(A(t)). In this case, det(A(t)) is called the order of T and
denoted by ord(T ) ∈ �. In more generality, the order of T is by definition a generator
of the smallest principal ideal on � that contains the order ideal.

Lemma 3.4 Let L be an r-component link boundary link. Then the following holds.

(i) Let T be the �-torsion submodule of H1(XL ;�). Then H1(XL ;�) ∼= �r−1 ⊕ T
and ord(T )(1) = ±1.

(ii) For any choice of Seifert surface F and basis {γi }r−1+2g
i=1 as above, giving rise to

an identification

H1(XL ;�) = �r−1+2g/((t N − NT )�r−1+2g)

generated by {[ei ]}r−1+2g
i=1 , the torsion submodule T of H1(XL ;�) is spanned by

[er ], . . . , [er−1+2g],

and presented by tV − V T .

Proof Identify H1(XL ;�) = �r−1+2g/((t N − NT )�r−1+2g). Note that t N − NT

has the form
(
0(r−1)×(r−1) 0(r−1)×2g
02g×(r−1) A2g×2g(t)

)
,

where A(t) = tV − V T , by (3.2). Since det(A(1)) = det(V − V T ) = 1, Lemma 3.1
applies with Q = H1(XL ;�). We deduce that H1(XL ;�) ∼= �r−1 ⊕ T , with T =
T H1(XL ;�) spanned by [er ], . . . , [er−1+2g] and presented by A(t) = tV−V T . Then
the order of T at t = 1 is ord(T )(1) = det(A(t))(1) = det(A(1)) = det(V − V T ) =
±1. ��
Lemma 3.5 For an r-component boundary link L, H1(XL ;�) ∼= H1(ML ;�).

Proof The zero framed longitudes of the components of L determine elements
{�1, . . . , �r } in H1(XL ;�) since the linking numbers are zero. It follows from a
straightforward Mayer-Vietoris computation that the homology of the zero surgery
is the quotient H1(XL ;�)/〈�1, . . . , �r 〉. Since the longitudes bound disjoint Seifert
surfaces, they live in the second derived subgroup of π1(XL), and are therefore trivial
in H1(XL ;�). It follows that H1(XL ;�) ∼= H1(ML ;�) as desired. ��

With Lemma 3.5 in mind, we will therefore be working with the Blanchfield form
BlL on the closed 3-manifold ML . Note that a knot KL is also evidently a boundary
link, so H1(XKL ;�) ∼= H1(MKL ;�) and we write BlKL for the Blanchfield form on
MKL .

Given two links L1 and L2, we say they cobound a embedded cobordism � in S3

if there is an oriented embedded surface � in S3 with boundary a link that consist
of the disjoint union of the two links L1 and L rev

2 , where L rev
2 is the link obtained by

reversing the orientation of each component of L2.
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10 P. Feller et al.

Theorem 3.6 Let L be a boundary link.

(i) The Blanchfield form on the torsion T H1(ML ;�) is isometric to the Blanchfield
form on the Alexander module H1(MKL ;�) of KL (Definition 3.3).

(ii) If there is a size 2g Hermitian square matrix A(t) over � such that A(t) presents
the Blanchfield form of ML on T H1(ML ;�) and A(1) has signature 0, then L
cobounds an embedded cobordism in S3, of genus g, with an Alexander polynomial
1 knot.

The second item proves the implication Theorem 1.2 (2) ⇒ (3).
Let S ⊆ � denote the smallest multiplicative subset containing t − 1. We write

�S := Z[t, t−1, (t − 1)−1] for the ring obtained from � by inverting the elements in
S. This is a commutative and therefore flat localisation.

Proof We prove (i) first. Define HL := (1 − t)N + (1 − t−1)NT and HKL := (1 −
t)V + (1 − t−1)V T . By [6, Theorem 1.1], we have an isomorphism

φ : H1(ML ;�) ⊗� �S → �
r−1+2g
S /HL(t)T�

r−1+2g
S

such that φ induces an isometry between BlL ⊗�S and the linking form

λHL := Tor(�r−1+2g
S /HT

L �
r−1+2g
S ) × Tor(�r−1+2g

S /HT
L �

r−1+2g
S ) → Q(t)/�S,

where

λHL ([v], [w]) = − 1

�2 vT HL(t)w

for � = t−g det(tV − V T ) = �KL ∈ � the order of T H1(ML ;�). However, by
Lemma 3.4, there is an isometry between the abstract pairings λHL and λHKL

, since

both correspond to tV − V T .
We know that λHL corresponds to the Blanchfield pairing on ML over �S . Since

λHKL
is isometric to Bl(KL) ⊗ �S (again by [6, Theorem 1.1]), we conclude that

BlL ⊗�S is isometric to BlKL ⊗�S . However, by [16, Proposition 1.2] multiplication
by t − 1 induces an isomorphism on

H1(XKL ;�) ∼= T H1(MKL ;�) ∼= T H1(ML ;�).

We therefore have that BlL ⊗�S is isometric to BlKL ⊗�S if and only if BlL is
isometric to BlKL ; see e.g. [9, Proposition A.2]. So indeed BlL is isometric to BlKL ,
completing the proof of (i).

For (ii), we use that KL is cobordant via a genus g cobordism � in S3 to an
Alexander polynomial 1 knot if and only if there exists a Hermitian matrix A(t) of
size g, with signature of A(1) zero, that presents the Blanchfield form of KL [9,
Theorem 1.1]. By hypothesis and (i) such a Hermitian matrix exists. Thus a genus g
cobordism� ⊆ S3 to anAlexander polynomial 1 knot.Moreover, by the classification
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TheZ-genus of boundary... 11

of compact surfaces, this cobordism may be assumed to be constructed from KL × I
union 2g 2-dimensional 1-handle attachments to KL × {1}.

We may and shall choose � such that KL × I induces the 0-framing of KL × {0},
i.e. extends to a Seifert surface for KL . Compare [8, Lemma 18].

Let C be the connected cobordism in S3 of genus 0 from L to KL given by the
component of F \ KL containing ∂F . By general position, we may and shall assume
that the 1-handles of� are disjoint fromC . Then, using that both KL × I andC induce
the 0-framing on KL , by further isotopy arrange that (KL × I ) ∩C = KL . Therefore,
the union C ∪KL � is the embedded cobordism we seek between L and the Alexander
polynomial 1 knot. ��

The proof of Theorem 1.2 (3) ⇒ (1) is by a standard argument; compare e.g.
[7,9,24].

Proof of Theorem 1.2 (3) ⇒ (1) Glue together:

• The hypothesised connected cobordism C of genus g from L to an Alexander
polynomial 1 knot J , pushed into S3 × I so that L = C ∩ (S3 × {0}) and J =
C ∩ (S3 × {1});

• A Z-disc D in D4 for the Alexander polynomial 1 knot J .

This yields a genus g surface S := C ∪J D ⊆ D4 = (S3 × I ) ∪ D4 with boundary
L . Since C is obtained from pushing a surface in S3 into S3 × I , we may assume
that it is obtained from J by band moves. Hence the exterior of C can be built from
S3 \ν J by attaching 4-dimensional 2-handles to (S3 \ν J )× I . Hence π1(S3 \ν J ) →
π1(S3 × I \ νC) is surjective. Since π1(D4 \ νD) ∼= Z and π1(S3 \ ν J ) are both
normally generated by the meridian of J , it follows from the Seifert-Van Kampen
theorem that π1(D4 \ νS) ∼= Z, so that S is the desired Z-surface of genus g for L . ��

4 (1) Implies (2)

Let L be an ordered, oriented, r -component link. Write XL := S3 \ νL for the
exterior of the link. As above, we use the representation π1(XL) → Z defined by
φ : π1(XL) → H1(XL ; Z) ∼= Z

r → Z given by concatenating the abelianisation
homomorphism, the identification with Z

r given by sending the i th ordered, oriented
meridian to ei , and the map

∑r
i=1 ai ei �→ ∑r

i=1 ai . This is sometimes called the
total linking number representation [15, Sect. 2.5]. Note that this representation is
independent of the ordering of L , so it is well-defined for unordered links. In this
section we show that (1) implies (2) in Theorem 1.2. As always, we identify � with
Z[Z].

We will prove this implication for a slight generalisation of boundary links, in order
to make clear precisely which properties we are using in the proof. Note that all the
links we consider will in particular have pairwise linking numbers vanishing, so that
the coefficient system φ extends to the zero-surgery manifold ML .

Definition 4.1 We say that an r -component link L in S3 with pairwise linking numbers
zero has a Z-trivial surface system if there is a collection of Seifert surfaces {Fi }r−1

i=1
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12 P. Feller et al.

for all but one of the components of L , each of whose interiors is embedded in S3 \ L
(the surfaces may intersect one another), such that for every i , for every simple closed
curve γ on Fi , and for every basing of γ , we have that φ(γ ) = 0 ∈ Z. We refer to a
link that admits a Z-trivial system of surfaces as a ZTS link.

Lemma 4.2 Every boundary link is a ZTS link.

Proof Curves in the interior of a boundary link Seifert surface are trivial in H1(S3 \
L; Z). ��

Wewill prove the following result in this section, which combined with Lemma 4.2
implies that (1) implies (2) in Theorem 1.2.

Theorem 4.3 Let L be an r-component ZTS link that bounds a connected Z-surface
of genus g in D4. Let ML be the 0-framed surgery on L. Then

H1(ML ;�) ∼= �r−1 ⊕ T H1(ML ;�)

and ord(T H1(ML ;�))(1)
.= 1. Moreover there is a size 2g Hermitian square matrix

A(t) over � such that A(t) presents the Blanchfield form of ML on T H1(ML ;�) and
A(1) has signature 0.

Let P ⊆ D4 be the hypothesised connected, compact, oriented surface, locally flat
embedded into D4. We note the following about the homology of D4 \ νP .

Lemma 4.4 The nonvanishing homology groups of D4 \ νP are as follows.

Hi (D
4 \ νP; Z) ∼=

{
Z i = 0, 1

Z
2g+r−1 i = 2.

Proof This follows from Alexander duality in a disc, Proposition 2.2, with X = P
and n = 4. ��
Remark 4.5 We shall not assume that π1(D4 \ νP) ∼= Z. Instead we will assume
H1(D4 \ νP;�) = 0, or equivalently that π1(D4 \ νP) has perfect commutator
subgroup. Similar remarks apply to the manifold WP constructed below. This gen-
eralisation will be useful later in the proof of Lemma 5.2, and helps to clarify the
proof.

As in Remark 4.5, we assume that there is a short exact sequence 1 → 
 →
π1(D4 \ νP) → Z → 0 with the surjection equal to the abelianisation, with the
commutator subgroup 
 a perfect group. This implies that π1(D4 \ νP) ∼= Z � 
,
with theZ action determined by conjugation, and it implies that H1(D4 \νP;�) = 0.
Here we use the abelianisation π1(D4 \ νP) → Z to extend the � coefficient system.

Towards understanding the twisted homology, we start with the following general
computation.
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TheZ-genus of boundary... 13

Lemma 4.6 Let W be a compact, connected, oriented, topological 4-manifold with
π1(W ) ∼= Z, and suppose that ∂W is nonempty, connected, oriented, and that
π1(∂W ) → π1(W ) is onto. Then

Hi (W ;�) ∼=

⎧⎪⎨
⎪⎩

Z i = 0

�β2(W ) i = 2

0 otherwise.

The same holds if instead of π1(W ) ∼= Z we assume H1(W ;�) = 0.

Proof Note that Hi (W ;�) ∼= Hi
(
W̃ ; Z

)
for all i , where W̃ is the universal cover.

Since W is connected we have that H0
(
W̃ ; Z

) ∼= Z and H1
(
W̃ ; Z

) = 0. Next we
show that H2(W ;�) is free. H2(W ;�) ∼= H2(W , ∂W ;�) by Poincaré-Lefschetz
duality. The universal coefficient spectral sequence (UCSS) computing cohomology
in terms of homology has E2-page

E p,q
2 = Extq�(Hp(W , ∂W ;�),�)

and converges to the cohomology H∗(W , ∂W ;�). Since ∂W is connected and
π1(∂W ) → π1(W ) is onto, it follows that H0(∂W ;�) ∼= Z. Therefore the long
exact sequence of the pair

0 = H1(W ;�) → H1(W , ∂W ;�)

→ H0(∂W ;�) ∼= Z
∼=−→ H0(W ;�) ∼= Z → H0(W , ∂W ;�) → 0

implies that Hi (W , ∂W ;�) = 0 for i = 0, 1. It follows that the p = 0 and p = 1
columns of the E2 page of the UCSS vanish, and thus the remaining nonzero term
Ext0�(H2(W , ∂W ;�),�) on the 2-line equals H2(W , ∂W ;�). Note that the van-
ishing of the p = 0, 1 columns also precludes the possibility of any differentials
influencing this outcome. By [1, Lemma 2.1], Ext0�(H ,�) is a free �-module for
every �-module H . So H2(W ;�) is a free �-module as claimed. We will compute
its rank later.

Now H3(W ;�) ∼= H1(W , ∂W ;�). Again Hi (W , ∂W ;�) = 0 for i = 0, 1, fed
into the UCSS, implies that H1(W , ∂W ;�) = 0.

To complete the computation of the homology it remains to compute the rank of
H2(W ;�), in other words the dimension of H2(W ;�) ⊗� Q(t) ∼= H2(W ; Q(t)).
First we show that this equals the Euler characteristic χ(W ). We used above that Q(t)
is flat as a �-module. This also implies that Hi (W ; Q(t)) ∼= Hi (W ;�) ⊗� Q(t) = 0
for i �= 2. Therefore χ(W ) = dim H2(W ; Q(t)), and so the rank of H2(W ;�) equals
χ(W ) as asserted.

It remains to compute theEuler characteristic ofW by computing its rational homol-
ogy. First H0(W ; Q) ∼= Q ∼= H1(W ; Q). We have H3(W ; Q) ∼= H1(W , ∂W ; Q) ∼=
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14 P. Feller et al.

H1(W , ∂W ; Q) by Poincaré-Lefschetz and universal coefficients. Then the long exact
sequence:

H1(∂W ; Q) � H1(W ; Q) ∼= Q → H1(W , ∂W ; Q) → H0(∂W ; Q) ∼= Q
∼=−→ H0(W ; Q) ∼= Q

implies that H1(W , ∂W ; Q) = 0. It follows that

χ(W ) = β2(W ) − β1(W ) + β0(W ) = β2(W ) − 1 + 1 = β2(W ).

So in fact the rank of H2(W ;�) is β2(W ). This completes the proof of the lemma. ��
Let F := P ∪∂P

⋃r
i=1 D

2, a closed surface of genus g. Let G be a handlebody
with ∂G = F . Define

WP := D4 \ νP ∪P×S1 (G × S1).

For this gluing wemust choose a suitable diffeomorphism of P×S1 ⊆ F×S1 relative
to the boundary of P . There are self-diffeomorphisms of P × S1 corresponding to
changes in framing for the trivial bundle νP ∼= P × D2. We choose the framing to
satisfy that curves of the form γk ×{pt}, where γk ⊆ P is a simple closed curve, lie in
the commutator subgroup of π1(D4 \ νP), and use this for our gluing. In the case that
π1(D4 \νP) ∼= Z, this means that the curves γk ×{pt} are null-homotopic in D4 \νP .
Note that ∂WP = ML , the zero surgery on L . Note that there are further choices in
the gluing, for example we can compose a given gluing map with g × IdS1 , where g
is a rel. boundary self-diffeomorphism of P . But all such gluing maps are suitable for
our purposes: we make one such choice and so from now on fix the manifold WP .

Construction 4.7 We construct a collection of surfaces in D4 \ νP. Let {γk}r−1+2g
k=1 be

a basis for H1(P; Z), consisting of r −1 curves parallel to r −1 of the components of
L, and a symplectic collection of 2g curves disjoint from those. Consider their push-
offs {γk × {pt}}r−1+2g

k=1 in P × S1. Each γk lies in the (perfect) commutator subgroup
of π1(D4 \ νP) by our choice of framing of the normal bundle of P made above. For
each k let Dk � D4 \ νP be an immersed Z-trivial surface with boundary γk × {pt}.
That is the induced map π1(Dk) → π1(D4 \ νP)

φ−→ Z is the trivial homomorphism.
Use Dk to surger the torus γk × S1 to an immersed surface, that we call

∑
k .

Recall that we write �S := Z[t, t−1, (t − 1)−1].
Lemma 4.8 The nonvanishing homology groups of D4 \ νP are as follows.

Hi (D
4 \ νP;�) ∼=

{
Z i = 0

�2g+r−1 i = 2.

A basis for H2(D4 \ νP;�S) is given by the collection of immersed surfaces
{∑k}r−1+2g

k=1 .
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TheZ-genus of boundary... 15

Proof By Lemma 4.4, β2(D4 \ νP) = r − 1+ 2g. The computation of the homology
groups with � coefficients then follows from Lemma 4.6, noting that W = D4 \ νP
indeed satisfies the hypotheses of that lemma.

We show that the {∑k} are a basis over �S . To do this we consider the exact
sequence

H2(P × S1;�) → H2(D
4 \ νP;�)

→ H2(D
4 \ νP, P × S1;�) → H1(P × S1;�) → 0. (4.9)

We know that

Hi (P × S1;�) ∼= Hi (P × R; Z) ∼= Hi (P; Z)

for i = 1, 2. For i = 1 we therefore have Hi (P × S1;�) ∼= Z
r−1+2g generated by

the {γk × {pt}}r−1+2g
k=1 , while for i = 2 we have H2(P × S1;�) ∼= H2(P; Z) = 0.

Therefore Hi (P × S1;�S) = 0 for i = 1, 2, so over �S

H2(D
4 \ νP;�S)

∼=−→ H2(D
4 \ νP, P × S1;�S) (4.10)

is an isomorphism.
Since H2(D4 \ νP;�) ∼= �r−1+2g it follows that H2(D4 \ νP, P × S1;�S) ∼=

�
r−1+2g
S . We claim the following. ��

Claim We have that H2(D4 \νP, P× S1;�) ∼= �r−1+2g is a free module of the same
rank as H2(D4 \ νP;�).

To see this note that H2(D4 \ νP, P × S1;�) ∼= H2(D4 \ νP, S3 \ νL;�). Now

H0(S
3 \ νL;�) ∼= Z

∼=−→ H0(D
4 \ νL;�) ∼= Z

is an isomorphism.Combinedwith H1(D4\νP;�) = 0 and the long exact sequence of
the pair we deduce that Hi (D4\νP, S3\νL;�) = 0 for i = 0, 1. Then similarly to the
proof of Lemma 4.6, theUCSS and [1, Lemma 2.1] imply that H2(D4\νP, P×S1;�)

is a free module. The rank must be r − 1+ 2g since we know that this is the rank over
�S , so indeed H2(D4 \ νP, P × S1;�) ∼= �r−1+2g as claimed.

We have now seen that the exact sequence (4.9) is equivalent to

0 → �r−1+2g → �r−1+2g → Z
r−1+2g → 0.

Herewe considerZ as a�-modulewhere t acts as the identity. Representing generators
of Z

r−1+2g by curves γk × {pt} in P × S1, we can lift them to a basis of �2g+1−r , by
extending them to elements of H2(D4 \ νP, P × S1;�). That is, choose a Z-trivial
surface Dk � D4 \ νP with boundary γk × {pt}, for each k = 1, . . . , 2g + 1 − r , as
in Construction 4.7.

The surfaces
∑

k from Construction 4.7 satisfy [∑k] = (t − 1) · [Dk] ∈ H2(D4 \
νP, P×S1;�). Therefore the {∑k} also represent a basis for H2(D4\νP, P×S1;�)
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16 P. Feller et al.

over �S . Since the {∑k} are closed surfaces they lift to H2(D4 \ νP;�S). Then by

(4.10) it follows that the {∑k} also represent a basis for H2(D4\νP;�S) ∼= �
r−1+2g
S .

Recall that WP := D4 \ νP ∪P×S1 (G × S1).

Lemma 4.11 The inclusion induced map Hi (D4 \ νP;�S) → Hi (WP ;�S) is an
isomorphism for every i . The nonvanishing homology groups of WP are as follows.

Hi (WP ;�) ∼=
{

Z i = 0

�2g+r−1 i = 2.

Over �S, a basis for H2(WP ;�S) is given by the collection of immersed surfaces
{∑k}r−1+2g

k=1 .

Proof Lemma 4.6 tells us the homology ofWP with� coefficients, except for the rank
of H2(WP ;�). For Q ∈ {P,G}wehave Hi (Q×S1;�) ∼= Hi (Q×R; Z) ∼= Hi (Q; Z)

for every i . Therefore Hi (Q × S1;�) is annihilated by t − 1 and so

Hi (Q × S1;�S) ∼= Hi (Q × S1;�) ⊗� �S = 0.

It then follows from the Mayer-Vietoris sequence for homology with �S coeffi-
cients, using the decomposition WP := D4 \ νP ∪P×S1 (G × S1), that Hi (D4 \
νP;�S)

∼=−→ Hi (WP ;�S) is an isomorphism for all i . In particular this implies that
H2(WP ;�S) ∼= H2(D4 \ νP;�S) ∼= �

r−1+2g
S , so indeed H2(WP ;�) ∼= �r−1+2g as

claimed. The fact that the inclusion induced map is an isomorphism over �S implies
that the same immersed surfaces {∑k}r−1+2g

k=1 for H2(D4 \νP;�) in Construction 4.7
and Lemma 4.8 also represent a basis for H2(WP ;�S) = H2(WP ;�) ⊗� �S . ��
Construction 4.12 We use aZ-trivial surface system (Definition 4.1) to modify the

∑
k

for k = 1, . . . , r − 1. We may suppose that there is a collar S3 × I ⊆ D4 and that
P∩(S3×I ) = L×I . For j = 1, . . . , r−1, we consider γ j := L×{ j/r} ⊆ L×I ⊆ P.
Push the Seifert surface Fj for the j th component of L to the level S3 × { j/r}. Now
use Fj in place of the immersed surface D j in Construction 4.7 to surger γ j × S1 to
another embedded surface

∑
Fj
. Since Fj is part of a Z-trivial surface system, the

embedded surface
∑

Fj
has the property that every curve on it represents the trivial

element of π1(WP ) ∼= Z. Therefore
∑

Fj
represents a homology class in H2(WP ;�).

Note that this is a special case of the surfaces from Construction 4.7.
By using these surfaces that originate from surfaces in S3, we obtain some crucial

control on intersections. For j �= k, we have
∑

Fj
∩∑

Fk = ∅. Moreover, in the

construction of the rest of the surfaces
∑

k , for k = r , . . . , r −1+2g, as in Construc-
tion 4.7, we may assume without loss of generality that the surfaces Dk are disjoint
from the collar S3 × I . It follows that

∑
Fj

∩∑
k = ∅ for every j ∈ {1, . . . , r − 1}

and for every k ∈ {r , . . . , r − 1 + 2g}.
Lemma 4.13 λ(

∑
Fi ,

∑
Fi ) = 0.
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TheZ-genus of boundary... 17

Proof The torus in the construction of
∑

Fi can be pushed off itself. Since the Fi
induce the zero framing, this can be extended to two disjoint parallel copies of Fi in
S3 × {i/r}. ��

Now we use these surfaces to compute the intersection form.

Lemma 4.14 The intersection form λ : H2(WP ;�) × H2(WP ;�) → � can be rep-
resented by a matrix of the form

(
0(r−1)×(r−1) 0(r−1)×2g
02g×(r−1) A2g×2g(t)

)

for some matrix A(t) over � such that A(1) has signature 0 and det(A(1)) �= 0.

Proof Let

S := {
�Fi

}r−1
i=1 ∪ {

� j
}2g
j=1 .

Let {ei }r−1+2g
i=1 be a basis for the homology H2(WP ;�) ∼= �r−1+2g , and suppose

that, for integers yi , we have that (t − 1)yi ei = ∑
Fi for i = 1, . . . , r − 1, and that

(t − 1)yi ei = ∑
i for i = r , . . . , r − 1+ 2g. We may make this supposition since we

know that S represents a basis for H2(WP ;�S) ∼= H2(WP ;�) ⊗� �S .
Since for every i ∈ {1, . . . , r − 1}, we have that ∑Fi is disjoint from all the other

surfaces in S, it follows that for i = 1, . . . , r−1 and for every j ∈ {1, . . . , r−1+2g}
we have

0 = λ((t − 1)yi ei , (t − 1)y j e j ) = (t − 1)yi λ(ei , e j )(t
−1 − 1)y j

= (t − 1)yi λ(ei , e j )(−t)−y j (t − 1)y j = (−t)−y j (t − 1)yi+y j λ(ei , e j ).

Since � is an integral domain, it follows that λ(ei , e j ) = 0. The matrix representing
λ is therefore of the form claimed.

To see that the matrix A(1) has nonzero determinant, we consider the long exact
sequence

H2(WP ; Q) → H2(WP , ML ; Q) → H1(ML ; Q) → H1(WP ; Q)

which reduces to

Q
r−1+2g λQ−→ Q

r−1+2g → Q
r → Q → 0.

The map λQ can be represented by a matrix for the ordinary Q-valued intersection
form of WP , which can in turn be represented by

(
0 0
0 A(1)

)
,
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18 P. Feller et al.

because the basis S descends to a basis for H2(WP ; Q) ∼= H2(WP ;�) ⊗� Q, where
this isomorphism follows from theUCSS for homology. Since ker(Qr → Q) ∼= Q

r−1,
it follows by exactness that A(1) is nonsingular over Q and so det(A(1)) �= 0.

Finally, it was shown in [20, Proof of Lemma 5.4] that the signature of the inter-
section form ofWP is zero for links whose pairwise linking numbers are all zero. The
proof there was for a pushed in Seifert surface, but the part that computes the ordinary
signature works for any Z-surface. ��

Lemma 4.16 below completes the proof of Theorem 1.2 (1) ⇒ (2), which was the
last remaining implication we needed to prove. It uses the following result.

Theorem 4.15 Let L be a boundary link. The intersection form of a compact, con-
nected, oriented 4-manifold W with ∂W ∼= ML, and the inclusion induced map
φ : π1(∂W ) → π1(W ) ∼= Z onto, presents the Blanchfield form on the torsion part
T H1(ML ;�S), where the � coefficients are determined by φ.

Proof Most proofs of variants of this, such as in [2], assume that H1(∂W ;�) is �-
torsion. However Conway [6] works with link exteriors, and shows how to compute
the Blanchfield pairing on H1(XL ;�S) in terms of a totally connected C-complex,
by computing the intersection pairing of the complementW of the C-complex pushed
in to D4, and relating the homology of ∂W to the homology of XL . But we have
H1(XL ;�S) ∼= H1(ML ;�S) by Lemma 3.5. In the proof, the only property that
Conway uses of the complement W of the totally connected C-complex is that
H1(W ;�) = 0, and π1(∂W ) → π1(W ) ∼= Z is onto. So in fact his proof also
proves the statement we want, for a more general 4-manifold with boundary ML . ��

Lemma 4.16 The rank of H1(ML ;�) is r − 1, and the Blanchfield form on
T H1(ML ;�) is presented by the Hermitian matrix A(t), which is of size 2g and
has σ(A(1)) = 0.

Proof By Lemmas 4.14 and 3.1, we deduce that H1(ML ;�) ∼= �r−1⊕T H1(ML ;�),
where T H1(ML ;�) satisfies ord T H1(ML ;�)(1) = ±1 and is presented by A(t),
where

(
0(r−1)×(r−1) 0(r−1)×2g
02g×(r−1) A2g×2g(t)

)

represents the intersection formover�of the compact, oriented4-manifoldWP ,whose
boundary is ML and with π1(WP ) ∼= Z and π1(ML) → π1(WP ) onto. It therefore
follows fromTheorem4.15 that A(t), which is of size 2g, presents theBlanchfield form
on T H1(ML ;�S). By Lemma 3.5, T H1(ML ;�) ∼= T H1(XL ;�), and by Lemma 3.4
we know that ord T H1(XL ;�)(1) = ±1. Therefore ord T H1(ML ;�)(1) = ±1. As
in the proof of Theorem 3.6, this implies that multiplication by t − 1 induces an
isomorphism on T H1(ML ;�), so in fact A(t) computes the Blanchfield form over �

as well. ��
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5 Applications

In this section we prove the applications stated in the introduction. First we recall the
notion of the algebraic genus of a knot, and present a corollary to Theorem 1.2 about
it.

The algebraic genus of a knot K , denoted by galg(K ), is defined by

galg(K ) := min

⎧⎨
⎩m − n

∣∣∣∣K admits an 2m × 2m Seifert matrix of the form

(
A ∗
∗ ∗

)
,

whereAis a 2n × 2n submatrix with det(t A − AT ) = tn

⎫⎬
⎭ .

It was proven in [9, Corollary 1.5] that gZ(K ) = galg(K ), and moreover [9, Theorem
1.1] that galg(K ) is equal to the minimal g for which the Blanchfield pairing of K
can be presented by a size 2g Hermitian matrix A(t) over � with the signature of
A(1) zero. Using the above terminology, we can prove Corollary 1.9. We restate the
corollary.

Corollary 5.1 Let L be an r-component boundary link and let KL , K ′
L be knots, both

of which are obtained by performing r − 1 internal band sums on L. Furthermore,
suppose that internal bands for KL are performed disjoint from some collection of
disjoint Seifert surfaces for L. Then

gZ(L) = gZ(KL) ≤ gZ(K ′
L).

Proof As in the proof of Theorem 1.2 (3)⇒ (1), if K ′
L bounds a Z-surface� of genus

g, then L also bounds aZ-surface of genus g obtained by gluing the genus 0 cobordism
from L to K ′

L with �. Hence gZ(L) ≤ gZ(K ′
L) and similarly gZ(L) ≤ gZ(KL).

By Theorem 1.2, if L bounds a Z-surface of genus g, then the torsion part of the
Blanchfield form of ML is presented by a size 2g Hermitian square matrix A(t) over
� with the signature of A(1) zero. Moreover, by Theorem 3.6, A(t) also presents the
Alexander module of KL . This implies that gZ(KL) ≤ gZ(L) and concludes the proof.

��

5.1 Shake genus and generalised cabling

We start with a reformulation of the Z-shake genus of a knot K , denoted by gsh
Z

(K ).
Recall that the Z-shake genus of a knot K is the minimal genus of a surface �

representing a generator of H2(X0(K ); Z) with π1(X0(K ) \ �) ∼= Z, generated by
a meridian of �. Also recall that Pp,n(K ) denotes the generalisation of a cable link
obtained by p+n parallel copies of K with pairwise vanishing linking numbers, where
p-components have the same orientation as K and the remaining n-components have
the opposite orientation.

Lemma 5.2 The Z-shake genus of K satisfies

gsh
Z

(K ) = min
{
gZ(P�+1,�(K )) | � ∈ N0

}
.
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Proof First we show that gsh
Z

(K ) ≥ min
{
gZ(P�+1,�(K )) | � ∈ N0

}
. Let S be a locally

flat surface of genus g in the 0-trace, denoted by X0(K ), representing a generator of
H2(X0(K ); Z) ∼= Z, such that π1(X0(K ) \ νS) ∼= Z. To prove this we construct a
4-manifold W with ∂W = MPk+1,k (K ) for some k, using the same construction as in
Sect. 4. Moreover W will satisfy that π1(W ) ∼= Z and H2(W ;�) ∼= �2g+2k . The
proof of Theorem 4.3 will imply that there is a size 2g Hermitian square matrix A(t)
over� such that A(1) has signature 0 and such that A(t) presents the Blanchfield form
of MPk+1,k(K ) on T H1(MPk+1,k (K );�). It will then follow that

min
{
gZ(P�+1,�(K )) | � ∈ Z

} ≤ gZ(Pk+1,k(K )) ≤ g.

To achieve this, make S transverse to the cocore of the 2-handle, and remove a
neighbourhood N of the cocore. This yields a 4-manifold homeomorphic to D4 with
the link Pk+1,k(K ) = ∂N ∩ S in ∂D4 = S3, for some k, extending to a locally flat
genus g surface in D4. Since we removed a disjoint union of discs N ∩ S, the result
is a connected genus g surface P .

Apply the Seifert-Van Kampen theorem to the union

X0(K ) \ νS = (D4 \ νP) ∪ (N \ νS),

where the union is over the complement in S1 × D2 of 2k + 1 parallel copies of the
core S1 × {0}. This yields a push out

F2k+1 × Z ��

��

π1(D4 \ νP)

��
F2k+1 �� Z,

where F2k+1 is the free group on 2k + 1 generators. The Z in the top left corner is
generated by a zero-framed longitude of K , while the Z in the bottom right corner is
generated by a meridian of P . Hence we have that π1(D4 \ νP)/〈〈λ〉〉 ∼= Z, where λ

represents a longitude of K . Since λ lies in the second derived subgroup, it follows
that the commutator subgroup, or first derived subgroup, equals the second derived
subgroup, and is therefore perfect.

Let G be a handlebody with ∂G = P ∪∂P
⋃2k+1

i=1 D2, a closed surface of genus g,
and then define

W = WP := D4 \ νP ∪P×S1 (G × S1),

as in Sect. 4. As before, choose the framing of the normal bundle of P so that every
simple closed curve on P × {pt} ⊂ P × S1 lies in the commutator subgroup of
π1(D4 \ νP). Since gluing on G × S1 kills the longitude of each component of
Pk+1,k(K ), it follows that

π1(W ) ∼= π1(D
4 \ νP)/〈〈λ, γ1, . . . , γg〉〉
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Fig. 2 Performing 3 internal
band sums on P3,1(K ) yields
the cabled knot K2,1. Solid
boxes indicate that all the
strands passing through the box
are tied into 0-framed parallels
of the knot K

→K K

whereλ represents the longitude of K as above, andγ1, . . . , γk ⊆ P×{pt} are push offs
to the normal circle bundle of curves on P that generate ker(H1(∂G; Z) → H1(G; Z)).
Sincewe know thatπ1(D4\νP)/〈〈λ〉〉 ∼= Z, and the γi lie in the commutator subgroup
of π1(D4 \ νP), we deduce that π1(W ) ∼= Z.

In the proof of Theorem 4.3, as noted in Remark 4.5, it was sufficient to assume
that π1(D4 \ νP) is of the form Z � 
, where the commutator subgroup 
 is perfect,
and that π1(WP ) ∼= Z. The proof of Theorem 4.3 then implies that there is a size
2g Hermitian square matrix A(t) over � of the required form as in Theorem 1.2 (2).
Thence Theorem 1.2 implies that gZ(Pk+1,k(K )) ≤ g, as required.

For the other inequality, cap off aZ-surface for P�+1,�(K )with 2�+1 appropriately
oriented parallel copies of the core of the 2-handle of X0(K ), to construct a Z-shake
surface of genus g in X0(K ). ��

As a tangent, and to point to a subtlety which necessitates the above proof, we ask
the following questions. Does there exist a locally flat surface P in D4, with boundary
P�+1,�(K ) ⊆ S3 for some K , �, such that π1(D4 \νP)/〈〈λ〉〉 ∼= Z, where λ represents
a longitude of K , but for which π1(D4 \ νP) is not cyclic? A negative answer to this
question would imply that every surface whose complement has cyclic fundamental
group, representing a generator of H2(X0(K ); Z), is isotopic to the union of parallel
copies of the core of the 2-handle and a Z-surface in D4.

Using Corollary 5.1, we prove Theorem 1.5 and Corollary 1.6. We prove them
together, since the proofs are similar. We recall the statements.

Corollary 5.3

(i) For every knot K , the Z-genus of K equals the Z-shake genus of K .
(ii) Let p and n be integers and let w = p − n. If w = 0, then Pp,n(K ) is Z-weakly

slice, and otherwise

gZ(Pp,n(K )) = gZ(Kw,1) = gZ(Kw,−1) ≤ gZ(K ).

Proof Weprove (ii) first. Note that Pp,n(K ) is a (p+n)-component boundary link, and
(p + n) disjointly embedded Seifert surfaces are obtained by taking parallel copies
of a Seifert surface for K with appropriate orientations. Let w = p − n. Perform
w − 1 = p + n − 1 internal band sums on L to obtain the unknot if w = 0, and the
knot Kw,1 ifw �= 0 (see Fig. 2). Similarly, we can also construct Kw,−1 by performing
w = p + n − 1 internal band sums on L . It follows that Pp,n(K ) is Z-weakly slice
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if w = 0. For w �= 0, by Corollary 5.1, in particular the equality gZ(L) = gZ(K ),
where the knot K is obtained from the r -component link K by r − 1 internal band
sums away from a collection of disjoint Seifert surfaces for L , we conclude that
gZ(Pp,n(K )) = gZ(Kw,1) = gZ(Kw,−1). The fact that gZ(Kw,1) ≤ gZ(K ) follows
from [11, Theorem1.2] and [18, Theorem4]. This completes the proof of Corollary 1.6.

Now we prove (i), which is Theorem 1.5. By Lemma 5.2 and (ii), we have

gsh
Z

(K ) = min
{
gZ(P�+1,�(K )) | � ∈ Z

} = gZ(P1,1(K )) = gZ(K ).

This completes the proof of Theorem 1.5. ��

5.2 Good boundary links

Next we prove Corollary 1.7, whose statement we recall.

Corollary 5.4 Every good boundary link is Z-weakly slice.

Proof By Corollary 1.3, every boundary link L with T H1(ML ;�) = 0 is Z-weakly
slice. Let L be an r -component good boundary link and let F be the free group on r gen-
erators. Since L is a boundary link, there is a surjective homomorphism π1(XL) → F
sending oriented meridians to generators and 0-framed longitudes to the identity.
This extends to a surjective homomorphism π1(ML) → F , which then induces a left
Z[π1(ML)]-module structure onZF thatwe use to define the twisted homology groups
H∗(ML ; ZF). By definition of a good boundary link, ker(π1(ML) → F) is perfect,
i.e. equals its own commutator subgroup. Then H1(ML ; ZF) is the abelianisation of
ker(π1(ML) → F), and so H1(ML ; ZF) = 0. We apply the universal coefficient
spectral sequence [23, Theorem 10.90] with E2 page TorZFp (Hq(ML ; ZF),�), com-
puting Hp+q(ML ;�). Since

H1(ML ; ZF) ⊗ZF � ∼= TorZF0 (H1(ML ; ZF),�) = 0,

we have:

H1(ML ;�) ∼= TorZF1 (H0(ML ; ZF),�) ∼= H1(∨r S1;�) ∼= �r−1.

Since �r−1 is free, T H1(ML ;�) = 0, so L is Z-weakly slice by Corollary 1.3. ��

5.3 Whitehead doubles

Finally we prove Corollary 1.8. Here is the statement.

Corollary 5.5 If L = L1 ∪ L2 is a 2-component link, then

gZ(Wh(L)) =
{
0 if lk(L1, L2) = 0,
1 otherwise.
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Moreover, if L = L1 ∪ L2 ∪ L3 is a 3-component link, thenWh(L) is Z-weakly slice
if and only if either (i) L has vanishing linking numbers, or (ii) for some i, j, k with
{i, j, k} = {1, 2, 3}:
(a) the signs of the clasps of Wh(Li ) and Wh(L j ) disagree,
(b) lk(Li , L j ) = 0, and
(c) | lk(Li , Lk)| = | lk(L j , Lk)|.

Proof Suppose L = L1 ∪ L2 is a 2-component links with lk(L1, L2) = n. Let F1, F2
be the standard disjoint genus 1 Seifert surfaces for Wh(L). Then by performing an
internal band sum, where the band does not intersect F1 and F2, we get a knot K with
a genus two Seifert surface and Seifert matrix

M =

⎛
⎜⎜⎝
0 a1 n n
0 0 n n
n n 0 a2
n n 0 0

⎞
⎟⎟⎠ ,

where a1, a2 ∈ {1,−1}. By Corollary 5.1, we have gZ(Wh(L)) = galg(K ). The
computation

det(tM − MT ) =
2∑

i=0

ci t
i + (4n2a1a2) · t3 + (−n2a1a2) · t4,

where c0 = −n2a1a2, c1 = 4n2a1a2, and c2 = a21a
2
2 − 6n2a1a2 implies that

gZ(Wh(L)) = 0 if and only if n = 0. Moreover, note that there is a 2 × 2 submatrix

A =
(
0 a1
0 0

)
so that det(t A − AT ) = t .

Hence, if n �= 0, then gZ(Wh(L)) = 1.
Now, suppose L = L1 ∪ L2 ∪ L3 is a 3-component links with lk(L1, L2) =

n3, lk(L1, L3) = n2, and lk(L1, L3) = n1. Again, performing two internal band
sums, where the bands do not intersect the standard disjoint Seifert surfaces, we obtain
a knot K with a genus three Seifert surface and a Seifert matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a1 n3 n3 n2 n2
0 0 n3 n3 n2 n2
n3 n3 0 a2 n1 n1
n3 n3 0 0 n1 n1
n2 n2 n1 n1 0 a3
n2 n2 n1 n1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where a1, a2, a3 ∈ {1,−1}. Again, we have gZ(Wh(L)) = galg(K ).
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A straightforward computation yields that

det(tM − MT ) =
4∑

i=0

ci t
i + (12n1n2n3a1a2a3 − n21a2a3 − n22a1a3 − n23a1a2) · t5

+(−2n1n2n3a1a2a3) · t6,

where

c0 = −2n1n2n3a1a2a3

c1 = 12n1n2n3a1a2a3 − n21a2a3 − n22a1a3 − n23a1a2

c2 = 4n21a
2
1a2a3 + 4n22a1a

2
2a3 + 4n23a1a2a

2
3 − 30n1n2n3a1a2a3

c3 = a21a
2
2a

2
3 − 6n21a

2
1a2a3 − 6n22a1a

2
2a3 − 6n23a1a2a

2
3 + 40n1n2n3a1a2a3

c4 = 4n21a
2
1a2a3 + 4n22a1a

2
2a3 + 4n23a1a2a

2
3 − 30n1n2n3a1a2a3.

Note that gZ(Wh(L)) = galg(K ) = 0 if and only if det(tM − MT ) = t3, and that this
implies either n1 = n2 = n3 = 0 or

ai = −a j , nk = 0, and |ni | = |n j | for {i, j, k} = {1, 2, 3}.

Furthermore, it can be easily verified that the above assumptions imply that det(tM −
MT ) = t3. This completes the proof of Corollary 1.8. ��
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