
Towards Intelligently Designed Evolvable
Processors

Benedict A. H. Jones benedict.jones@durham.ac.uk
Department of Engineering, Durham University, Durham, DH1 3LE, UK

John L. P. Chouard
Department of Engineering, Durham University, Durham, DH1 3LE, UK

Bianca C. C. Branco
Department of Engineering, Durham University, Durham, DH1 3LE, UK

Eléonore G. B. Vissol-Gaudin
Department of Engineering, Durham University, Durham, DH1 3LE, UK

Christopher Pearson
Department of Engineering, Durham University, Durham, DH1 3LE, UK

Michael C. Petty m.c.petty@durham.ac.uk
Department of Engineering, Durham University, Durham, DH1 3LE, UK

Noura Al Moubayed noura.al-moubayed@durham.ac.uk
Department of Computer Science, Durham University, Durham, DH1 3LE, UK

Dagou A. Zeze d.a.zeze@durham.ac.uk
Department of Engineering, Durham University, Durham, DH1 3LE, UK

Chris Groves chris.groves@durham.ac.uk
Department of Engineering, Durham University, Durham, DH1 3LE, UK

Abstract
Evolution-in-Materio is a computational paradigm in which an algorithm reconfig-
ures a material’s properties to achieve a specific computational function. This paper
addresses the question of how successful and well performing Evolution-in-Materio
processors can be designed through the selection of nanomaterials and an evolution-
ary algorithm for a target application. A physical model of a nanomaterial network is
developed which allows for both randomness, and the possibility of Ohmic and non-
Ohmic conduction, that are characteristic of such materials. These differing networks
are then exploited by differential evolution, which optimises several configuration pa-
rameters (e.g., configuration voltages, weights, etc.), to solve different classification
problems. We show that ideal nanomaterial choice depends upon problem complex-
ity, with more complex problems being favoured by complex voltage dependence of
conductivity and vice versa. Furthermore, we highlight how intrinsic nanomaterial
electrical properties can be exploited by differing configuration parameters, clarifying
the role and limitations of these techniques. These findings provide guidance for the
rational design of nanomaterials and algorithms for future Evolution-in-Materio pro-
cessors.

Keywords
Differential evolution, evolution in-materio, evolutionary materials, evolvable proces-
sors, material networks, nano computing.

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

B.A.H. Jones et al.

1 Introduction

The ever-increasing computational demands posed by big data problems, coupled with
the challenge of further improving silicon CMOS technology, has led to an urgent
need to develop new computing technologies (Conte et al., 2017). Evolution-in-Materio
(EiM) is one such paradigm, a flexible unconventional computing method which can
exploit a variety of physical substrates, not relying on increasingly limited silicon tech-
nology. Proposed by Miller and Downing (2002), EiM is inspired by the remarkably
complex and varied functions that simple nucleotides can perform when configured
by evolution into a genome. They proposed a form of evolutionary exploitable de-
vice as a kind of configurable analogue processor, which in this work we refer to as
an EiM processor. So, while a material system could be optimised for a particular
purpose, such as optimising the morphology of a soft robot’s gripper (Howard et al.,
2021), EiM processors consist of a system within which a material’s physical properties
are themselves exploited and leveraged towards the desired computational task. EiM
processors thus comprise of a material (or medium) whose characteristics are deter-
mined by its configuration, and programming (or re-programming) is achieved by an
Evolutionary Algorithm (EA) which optimises the material’s configuration for a target
application. While in-Materio processors could be configured using any external stim-
uli such as light (Viero et al., 2018) or radio waves (Linden, 2001), research often focuses
on materials which can be interacted with via the application and reading of voltages.
The electronic functionality of these EiM processors is not designed by the assembling
of discrete components, rather an optimal material configuration is sought after and
evolved through a supervised learning process. The human element of EiM processor
design is the selection of a configurable material, and an appropriate algorithm to ef-
ficiently exploit its properties for the target application (Vissol-Gaudin et al., 2016a,b;
Lawson and Wolpert, 2006; Dale et al., 2016a). The importance of material selection
in this process is underscored by the significant differences in computing function ob-
served when different configurable materials are optimised by the same algorithms to
solve the same problems (Dale et al., 2016a; Massey et al., 2015b; Dale et al., 2016b).
The fundamental question of which configurable material properties lead to better per-
forming EiM processors, and how they can best be exploited, is largely unanswered
and motivates the current paper. This is complicated by the many and varied styles
of EiM processor design, leading us to establish a simple EiM classifier structure. Dif-
ferent materials and more complex configurable parameters were slowly introduced,
allowing foundational questions about their possible benefits to be answered. We de-
velop a simulation of an EiM processor which allows us to directly relate the choice of
nanomaterial used, via the current-voltage characteristic, and algorithm configuration
parameters to the classification performance. We demonstrate that problem complex-
ity influences the most successful nanomaterial choice, and furthermore, that design
of the algorithm can lead to better exploitation of intrinsic properties. Together these
findings display how EiM processors can be designed to give better performance for
classification problems.

Evolution pursues its goal of increased fitness for a task by exploiting any aspect of
the system upon which it is operating. As such, Miller and Downing (2002) suggested
that good evolutionary material candidates are those with complex physics underpin-
ning their properties. This has encouraged the use of configurable nanomaterials (here-
after referred to as nanomaterials) with rich electronic and morphological complexity,
such as liquid crystals (Harding and Miller, 2004, 2007), metallic nanoparticles (Bose
et al., 2015; Greff et al., 2017) and single-walled carbon nanotube (SWCNT) compos-

2 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

Figure 1: High level diagram of a generic physical EiM processor showing how an
EA can interact with some custom hardware which can apply and read voltage sig-
nals from a material processor, generally with the use of precision Digital-to-Analogue
Converters (DACs) and Analogue-to-Digital Converters (ADCs).

ites (Massey et al., 2015b, 2016), all of which can be configured through the application
of a voltage. EiM processors can be fabricated by depositing the nanomaterial onto
a microelectrode array which allows input data and configuration voltages to be ap-
plied, and output voltages to be measured, as shown schematically in Figure 1. EiM
processors therefore utilise a nanoscale electronic network whilst only requiring basic
photolithographic processes. An EA is used to configure the electronic transfer func-
tion of the nanomaterial network to suit a target computational problem. In this paper
we focus on classifying non-temporal datasets, requiring the material processor’s out-
put voltages to settle before being read. Therefore, nanomaterials without memory
(traps, defects, etc.) will achieve larger bandwidths for data processing. In contrast, if
such a system was to process temporal data, then it is likely that nanomaterials with
memory might be desirable. The nanomaterial should produce useful output voltages
which can be exploited for the target application; although, advice on the selection of
conduction characteristics is lacking. As previously mentioned, different nanomate-
rials can be selected for a wide range of different properties, potentially allowing for
fast, power efficient unconventional computing. While some nanomaterials can alter
their internal connections (e.g., memristive materials (Strukov et al., 2008), and nano-
materials suspended in solution (Vissol-Gaudin et al., 2017)), these EiM processors lie
outside the scope of this article. Instead, we focus on ‘fixed’ material network EiM pro-
cessors, enabling their foundational operating principles to be established. This then
might inform future research on these more complex systems based on more ‘dynamic’
materials.

The EA is an iterative process that seeks to improve a population of candidate
solutions using biologically inspired methods such as mutation, recombination, and
natural selection. Here, each member of the population represents a different set of
configuration parameters, which in the case of basic nanomaterial EiM processors are
evolvable configuration voltages. First, a training phase is used to evolve an initially
random population into a more favourable set of configuration parameters. This in-
volves sending a series of input data instances from a training dataset to the configured
nanomaterial in the form of voltages, and determining a corresponding error between
the actual and desired output voltages. Following training, a test phase is then used
to examine the performance of the best configuration (i.e., population member) using

Evolutionary Computation Volume x, Number x 3

B.A.H. Jones et al.

previously unseen data.
Although EAs are a powerful and flexible method to optimise a system for a task,

there are limits to what EiM processors can achieve. It has been demonstrated that
optimising different nanomaterials with the same EA for the same function has both
varying degrees of success and training time (Dale et al., 2016a; Massey et al., 2015b;
Dale et al., 2016b; Clegg et al., 2014). Nanomaterial ‘processors’ are analogue and often
have underlying physical properties that are difficult to model. This leads them to be
treated as black boxes, making investigation into which nanomaterial properties are
beneficial difficult. Even processors fabricated from nominally the same nanomaterial
and optimised by the same EA for the same computational problem vary in quality
of solution due to the inherent randomness of nanomaterial morphology (Clegg et al.,
2014) and EA convergence. Collating statistical data to further investigate this issue
is challenging due to the fabrication and training processes that are required for each
EiM processor (Greff et al., 2017). Whilst the impact of nanomaterial formulation on
computing performance has been examined for some composites (Dale et al., 2016a;
Massey et al., 2015b; Dale et al., 2016b), the general question of what nanomaterial
properties lead to better exploited performance remains an open question. This, in turn,
precludes the possibility of rational selection or design of nanomaterials to optimise
future EiM processors.

In this paper, our contributions to resolving these issues are as follows. We have
developed a model of an EiM processor which allows quantitative analysis of how
nanomaterial selection on the one hand, and EA design on the other, impact the quality
of solutions obtained. The framework developed enables significantly faster investi-
gation into EiM systems then would otherwise be possible with physical construction
and experimentation. The physical model of the nanomaterial network uses equivalent
circuits to allow examination of differing conduction mechanisms and randomness in
conductivity, whilst the allied EA is modified to examine the impact of evolving con-
figuration voltages, connections to the nanomaterial network, input weightings and
output weightings. To the best of our knowledge, this is the first time such a study has
been carried out. It is shown that the complexity of the classification problem posed in-
fluences the best choice of nanomaterial, with more complex problems being favoured
by more complex (non-linear) conductivity. Further, it is shown that evolving differ-
ent aspects of the material configuration have differing physical impacts upon how the
nanomaterial behaves and is exploited, in turn providing distinct (if limited) methods
to tune EiM performance to a target application. Hence, the presented model, and find-
ings discussed, provide actionable guidance as to how EiM materials and algorithms
can be co-designed in the future.

2 Problem Formulation

2.1 Physical Model

To examine the impact of nanomaterial selection and conductivity randomness upon
EiM performance, a verified electrical model was required to act as a proxy for the
physical nanomaterial. In this paper, the physical model was based on circuit net-
works which could be solved within a SPICE (Simulation Program with Integrated Cir-
cuit Emphasis) simulator. All code used to generate the data in the paper is available
on GitHub at https://github.com/benedictjones/EiM_MaterialProxy. The
material models developed in this section are either physically realisable circuits or are
based on measurements of real nanomaterials.

Many EiM processors utilise nanomaterials that provide complex morphology

4 Evolutionary Computation Volume x, Number x

https://github.com/benedictjones/EiM_MaterialProxy

Towards Intelligently Designed EiM Processors

Figure 2: Electrical model of an example EiM processor. Example of a 5 node fully
connected network used to model EiM devices, with three input nodes (x1, x2 and
x3) and two output nodes (y1 and y2). Input nodes can be allocated as data driven
voltages or configuration voltage stimuli. Between every pair of nodes is a component
modelling the material properties: a resistor for the RRN, a resistor in series with a
diode (of random direction) for the DRN, or a current source of non-linear characteristic
for the NLRN.

with random interconnections between electrodes. Thus, within the model, networks
are generated in which all nodes are interconnected via an equivalent circuit which
have IV (current-voltage) characteristics selected from a distribution similar to that of
a real nanomaterial. Each node, n represents an electrode that is either an input node
driven at a voltage (xn) or a measured output node (yn), the voltage of which is calcu-
lated using an operating point analysis. The input nodes can be used to input data or as
evolvable configuration voltage stimuli. An individual processor is thus characterised
by the equivalent circuits between nodes, and the number of physical connections re-
quired for the inputs and outputs. Figure 2 shows an example of a fully connected
network that represents a physical EiM processor with three input nodes and two out-
put nodes. The equivalent circuits between nodes are selected to replicate different
functional forms of conductivity and randomness therein. Thus, this model describes
the IV characteristics of an ensemble of nanoparticles between electrodes of the EiM
processor, rather than individual elements (Lawson and Wolpert, 2006) or junctions
(Greff et al., 2017). The motivation for this approach is that individual nanoparticles
are usually at least an order of magnitude smaller than the electrode array upon which
they are deposited (Massey et al., 2015b; Bose et al., 2015; Massey et al., 2015a) and so
it is generally only possible to experimentally characterise a network of nanoparticles,
rather than the nanoparticles themselves. In this paper, three material models are con-
sidered: (1) a Resistive Random Network (RRN), in which a randomly selected resistor
is between every node pair; (2) a Non-Linear Random Network (NLRN) in which a
current source of non-linear characteristic is between every node pair; and (3) a Diode
Random Network (DRN), in which a diode of random orientation is in series with a
randomly selected resistor between every node pair, as shown in Figure 2. Note that as
our focus is on the foundational issues of randomness and conductivity, the impact of
negative differential resistance offered by memristive materials (Strukov et al., 2008),
and physically reconfigurable materials such as nanomaterials suspended in solution

Evolutionary Computation Volume x, Number x 5

B.A.H. Jones et al.

(Vissol-Gaudin et al., 2017), are outside the scope of this article.
The non-linearity of the conduction within the materials increases from the RRN,

to NLRN, to DRN models. These models were chosen to represent a range of con-
duction mechanisms that could be realised with nanomaterials. RRN networks have
been reported in the literature (Dale et al., 2016a; Lykkebø et al., 2015). The NLRNs
are modelled after the behaviour of on SWCNT/PBMA composites. Assuming the IV
characteristic was symmetrical, Experiments (Supplementary Section I) found it could
be fitted well using current source equations defined as,

I =

{
aV 2 + bV , if V ≥ 0

−aV 2 + bV , if V < 0
(1)

where a& b are material properties, I is the current and V is the voltage between nodes.
Testing of the real SWCNT/PBMA material was carried out (Supplementary Section I)
to determine that a ∈ [33n, 170n] and b ∈ [280n, 960n]. These limits were used to gen-
erate uniformly distributed random a & b values for the simulated NL materials. The
DRN is a natural extension to the modelled NLRN, representing a highly non-linear
nanomaterials with a non-symmetrical IV characteristic. Further details regarding cir-
cuit properties and the limits used when uniformly randomly generating new material
networks, are given in Supplementary Table II. Finally, we note that physical mani-
festations of the RRN and DRN were constructed using discrete circuit components
and tested using a custom test bench to verify the model’s behaviour (Supplementary
Section IV).

When a new material is generated the SPICE netlist is saved, and so can be re-
loaded and re-used for different simulated experiments. These saved netlists could be
used to re-create the RRNs and DRNs physically. However, the NLRNs are theoretical,
representing the expected behaviour of the SWCNT composites described above.

EiM processors have generally used smaller microelectrode arrays to contact the
material: often with sixty four (Miller et al., 2014), sixteen (Vissol-Gaudin et al., 2018;
Massey et al., 2016) or fewer electrodes (Kotsialos et al., 2014; Chen et al., 2020; Bose
et al., 2015). Smaller networks using only eight electrodes have shown promising re-
sults as physical realisations of high-capacity neurons (Ruiz-Euler et al., 2020). The
benefits of larger or smaller networks (i.e., the number of electrodes) is of interest.
However, this paper focuses on the foundational issues associated with EiM and only
considers networks containing ten nodes (i.e., electrodes) or fewer.

2.2 Basic Algorithm Implementation

Different types of EAs have been used for EiM such as Evolutionary Strategies (Dale
et al., 2017), Genetic Algorithms (Bose et al., 2015; Chen et al., 2020), Differential Evo-
lution (Vissol-Gaudin et al., 2017; Massey et al., 2016) or Particle Swarm Optimisation
Vissol-Gaudin et al. (2016a,b). Here, the physical model is combined with a Differ-
ential Evolution (DE) (Storn and Price, 1997; Sloss and Gustafson, 2019) EA. DE is
a derivative-free, stochastic, population-base, heuristic direct search method which
only requires a few robust control variables (Pedersen, 2010). The DE algorithm uses
the greedy criterion and involves evaluating the fitness of each member of a genera-
tion’s population, with those members of the population with better fitness being more
likely to proceed to the next generation. The characteristics of the population thus
change gradually over time due to the random mutation of characteristics and cross-
over with other population members. Each member of the population is defined by a

6 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

d-dimensional vector of decision variables X (sometimes known as the genome) that
contains the d number of configuration parameters which the DE algorithm optimises.
The basic set of decision variables considered are configuration voltages as shown in
Equation (2),

X = [Vc1 Vc2 ... VcP]T , (2)

where T is the transpose, Vcp is the voltage at a configuration node p, and the total
number of configuration nodes is P . Extensions to this set of decision variables are
discussed later in the paper.

In this work, we considered binary classification problems of varying difficulty. In
each problem, an input instance to be classified k contains a series of attributes ar(k).
These input attributes are converted to input data voltages V in

r (k) which are applied to
one of the input electrodes as follows,

V in
r (k) = ar(k), (3)

where r is a data driven input electrode corresponding to an input attribute, and a 1:1
conversion between the attribute unit and Volts is assumed. Thus, for each instance
of the dataset, input voltages are applied, and an operating point analysis is used to
determine output voltages.

The material outputs require some interpretation in order to classify a processed
input data instance. Here, the output voltages are collected using an output layer which
produces an overall network response Y , defined as the sum of the voltages V out

q (k) at
all the output nodes q,

Y (k) =

Q∑
q=1

V out
q (k), (4)

where Q is the total number of output nodes. The data instance is then designated a
class label using a simple threshold,

class(k) =

{
2, if Y (k) ≥ 0

1, if Y (k) < 0
. (5)

The structure of the proposed EiM processor is shown in Figure 3. Output signals
of physical EiM systems have been interpreted in many ways (e.g., a single output-
threshold comparison (Bose et al., 2015), output-output comparisons (Massey et al.,
2015b; Vissol-Gaudin et al., 2017), with or without evolvable thresholds and penalty
terms, etc.). This lack of consistency makes it difficult to compare techniques and isolate
which changes lead to more (or less) successful EiM systems. The interpretation scheme
used in this paper, defined by (4) and (5), was chosen to be conceptually simple, with
the aim of clarifying the role of material properties upon performance. The choice
of interpretation scheme can impact the performance of an EiM processor, and this is
discussed in further detail in §3.2. We note, however, that the framework developed
and used here could be modified to examine other arbitrary network topologies or
interpretation schemes.

During each generation, every member of the population is evaluated using some
training data, and an associated fitness is calculated using the EAs objective function
Φ. We define the objective function as the mean classification error of the processed
dataset,

Φ =
1

K

K∑
k=1

e(k), (6)

Evolutionary Computation Volume x, Number x 7

B.A.H. Jones et al.

Figure 3: Illustration of the proposed EiM processor structure. Input data is applied to
the material as voltages. Configuration voltages are applied to the material as evolvable
stimuli. The output voltages are summed to generate an overall response (Y) which is
used to determine the class. If enabled input weights (lr) and output weights (mq)
are applied, where R is the total number of data driven input electrodes and Q is the
total number of output nodes. A shuffle gene can re-arrange the applied location of the
inputs (both input data and configuration nodes).

where k is an instance within the dataset which has a total length ofK. Each data input
instance produces an error value e(k) of 0 or 1 for correct or incorrect classification
respectively. The objective of the EA is thus to minimise the objective function.

A DE/best/1/bin algorithm is used with a mutation factor of F = 0.8, crossover
rate of CR = 0.8 and population of NP = 20 (further details given in Supplementary
Table II). Selecting the optimum F and CR can prove challenging (Das and Suganthan,
2011), we have selected values which Vissol-Gaudin et al. (2017) found empirically to
work well. To perform classification on the dataset D, the data is split into two subsets:
training data Dtrain and test data Dtest. The training subset is used to evaluate and
update the population during the evolutionary optimisation. During this generational
loop, the best population member pbest is tracked and updated. Once the evolutionary
period has elapsed, the best member pbest (i.e., the final solution) is evaluated using the
test subset. Pseudocode describing the EiM optimisation process is presented in Algo-
rithm 1, where f(pop,Dataset) is a fitness function (e.g., Equation (6)) evaluating mem-
ber(s) of a particular population on a data subset, and BestF itness(pop,Dataset) re-
turns the population member with the best fitness on the selected data subset. The trial
and initial populations are generated by producing NP d-dimension vectors whose
contents are uniformly distributed ∈ [0, 1]. These vectors are then scaled appropriately
depending on the configuration parameters in use and their limits (found in Supple-
mentary Table II).

2.3 Datasets

To assess the performance of the various materials and algorithms four datasets were
used. Three of these datasets were generated. The first is a simple two-dimensional
dataset (2DDS) problem with two attributes, a1 and a2, and two classes, 1 and 2, as seen
in Figure 4(a). The second dataset is again two dimensional with two classes, but with

8 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

Algorithm 1: Pseudocode for DE based EiM.

Initialise a random population p;
Evaluate initial population fitnesses f(p,Dtrain);
pbest = BestF itness(p,Dtrain);
i = 0;
while i < MaxNumberIterations do

Generate trial population t;
Evaluate trial population f(t,Dtrain);
Update population p with respect to t;
pbest = BestF itness(p,Dtrain);
i = i+ 1;

end
Evaluate pbest using the test data f(pbest, D

test);

data generated concentrically, as seen in Figure 4(b). Both datasets contain 500 sam-
ples in each class, which were then split 80%− 20% to create balanced training and test
datasets respectively. The 2DDS presents a linearly separable problem which should be
easily solved by basic classifiers. The con2DDS is a more challenging dataset, requiring
a classifier to exploit non-linearities within its network to achieve better classification
results. The third dataset is identical to the 2DDS, except the classes are flipped (i.e.,
reversed), referred to as the flipped2DDS. This inverted dataset is used to investigate
whether the EiM processors have classification boundaries that are favourable to cer-
tain data orientations.

The final dataset considered is the UCI Mammographic Mass Data Set
(Dheeru Dua, 2017), refereed to here as the MMDS. The MMDS was split 80% − 20%
to create balanced training and test subset respectively, and is used to compare the
proposed EiM systems with other common classification techniques.

Figure 4: The randomly generated datasets used to evaluate the performance of the
different materials and algorithm configuration parameters. The (a) 2DDS and (b)
con2DDS datasets.

Evolutionary Computation Volume x, Number x 9

B.A.H. Jones et al.

Figure 5: Examples of the role that the material and configuration voltages have on
untrained EiM processor responses. Surface plot of the network response, Y as a
function of input attributes a1 and a2 for an untrained (a) RRN, (b) NLRN, and (c)
DRN processor, and the effect of varying their two configuration voltages Vc1 and Vc2.

3 Interaction between algorithm and materials

3.1 Role of Material Properties and Configuration Voltages

We first examine the role of the material properties on processor performance. The
networks considered had two input nodes, two outputs nodes and two configuration
nodes. Figure 5(a), 5(b) and 5(c) show surface plots of network response Y , relating
to the sum of voltages from output nodes, for a range of data inputs, a1 and a2, for
the RRN, NLRN and DRN models respectively. Here, the configuration voltages Vc1
and Vc2 are varied so that their role is highlighted. The network response Y is used as
the criterion by which classification is made (Equation (5)) and represents the output
space which the inputs have been mapped onto. We denote the line Y = 0, which
is the threshold between the classes, as the decision boundary. For the unconfigured
(Vc1 = Vc2 = 0V) RRN processor, the decision boundary is a straight line which passes
through the origin. Unlike the RRN, the NLRN processor can achieve a smooth curved
decision boundary due to its non-linear conduction characteristics. By contrast, for
DRN processors, the decision boundary has distinct bends or ‘kinks’ brought about by
rapid changes in conductivity when a diode is turned on. Hence, we observe that the
intrinsic properties of the nanomaterial, namely randomness and degree of (non-) lin-
earity in conduction, have significant effects upon the shape of decision boundaries in
untrained processors. Even nominally the same material can have significantly differ-
ent boundary shapes due to the differences in inter-node characteristics.

A material without any evolvable stimuli can be used to map some inputs to a new
output space. However, EiM processors have been shown to provide superior classi-
fication performance when trained configuration voltages are applied to the network
(Vissol-Gaudin et al., 2016b). Thus, in Figure 5 we also display the impact of chang-
ing the two configuration voltages for the considered networks. EiM processors can

10 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

Table 1: The mean test fitness, standard deviation, and best test fitness after 30 itera-
tions, for the different processor types using the basic algorithm.

Dataset Processor Type mean(Φtest) std(Φtest) Best Φtest

2DDS
RRN 0.000 0.000 0.000
NLRN 0.000 0.000 0.000
DRN 0.005 0.001 0.000

flipped2DDS
RRN 0.514 0.004 0.500
NLRN 0.500 0.000 0.500
DRN 0.500 0.000 0.500

often operate at low voltages (Vissol-Gaudin et al., 2018; Chen et al., 2020; Dale et al.,
2016a) so here we consider the effect of applying −5V to 5V. These voltage stimuli be-
have similarly to input biases, however not only ‘shifting’ the output, but also varying
how the inter electrode IV characteristics are being exploited, thereby altering how the
inputs are mapped to the output space. Within the linear RRN network, application of
configuration voltages only leads to a translation of the decision boundary, as a con-
sequence of superposition, and that in no cases is a rotation of the decision boundary
observed. For the NLRN and DRN network, again we observe a translation of the de-
cision boundary when configuration voltages are applied, together with some changes
in curvature, although not to an extent where the relative orientation of the two classes
is changed. These observations are of significant practical importance, as it shows that
the orientation of the decision boundary for both Ohmic and non-Ohmic solid nanoma-
terials is a function of the random IV characteristics determined during fabrication. An
inability to rotate the decision boundary via the configuration voltages to satisfy a par-
ticular classification problem may be expected to limit the fitness which an algorithm
could obtain.

To investigate this finding further, the performance of the different networks as
EiM processors was assessed for the 2DDS problem. Fifteen different individual RRN,
NLRN and DRN networks were considered and optimised as a classifier using the DE
algorithm as described in §2.2. Each network had two inputs, two outputs and three
configuration nodes. To ensure that randomness within the algorithm optimisation
process did not obscure other trends, the evolution process was repeated on each net-
work 5 times. The test fitness (Φtest) results for each of the processor types after 30
iterations are shown in Table 1. All the RRN and NLRN processors achieved a zero
fitness (i.e., 100% accuracy). However, some of the DRN processors failed to achieve
a zero fitness. The more linear networks have simpler decision boundaries which are
more favourable to the simple 2DDS. Examples of the network response for a trained
RRN, NLRN and DRN achieving 100% accuracy are shown in Figure 6.

Using the same material processors and repeating the experiment on the
flipped2DDS (Table 1) shows all the processor types becoming ‘stuck’, in this case being
unable to improve their fitnesses below 0.5. This is because the processors now have
unfavourable initial slopes of the decision boundary with respect to the dataset. As
the basic algorithm is unable to rotate the decision boundary or make large changes in
its curvature, the best that the EA can achieve is to misclassify 50% of the data. These
results provide an explanation as to why some experimental data (Clegg et al., 2014)
show that nanomaterial composites fail to achieve acceptable classification accuracies
following training.

Evolutionary Computation Volume x, Number x 11

B.A.H. Jones et al.

Figure 6: Example processor responses following training using the basic algorithm
for 30 iterations. Surface plot of the network response, Y as a function of input at-
tributes a1 and a2 for a (a) RRN, (b) NLRN, and (c) DRN processor, using the basic EiM
algorithm on the 2DDS. The same colour scale as Figure 5 is used.

3.2 Impact of Electrode Reconfiguration and Weighting

While on the one hand, the results in §3.1 suggest it should be possible to screen candi-
date processors prior to possibly lengthy and unsuccessful training, we argue that they
also suggest a method to exploit nanomaterial composites more effectively. The suc-
cess or not of the DE algorithm to exploit the nanomaterial is limited by the inter-node
IV characteristics, which for solid nanomaterials, is determined at creation. However,
it is possible to re-arrange the input and configuration nodes and thus realise differ-
ent arrangements of inter-node IV characteristics without changing the material. Input
electrodes can be used for data driven or configuration voltages, the function of an
input electrode and the ability to ‘shuffle’ or relocated different inputs can be easily
controlled while programming. On the other hand, a multiplexer could be used to
physically reconnect an electrode as either an input (e.g., to a DAC) or output (e.g., to
a ADC).

Indeed, some EiM approaches have this flexibility by allowing the EA to modify
node location (Bose et al., 2015; Clegg et al., 2014). We reason that changes to the inter-
node IV characteristics are likely to result in uncovering exploitable configurations of
the nanomaterial composite.

This supposition is explored in Figure 7 which shows the output response Y , with
no configuration voltages applied, but with randomly reordered input data and config-
uration connections to the same network. Here, only a few random arrangements are
shown and we note that these examples are not meant to be exhaustive. The number
of possible input permutations scales quickly with the number of inputs (e.g., for ma-
terials with four input nodes there are twenty four possible input arrangements etc.),
so here we focus on the limitations of this technique. It is observed that different ar-
rangements have a different shape of decision boundary that could be exploited to fit
classification data. Furthermore, some slight variations in the slope of the decision
boundary are observed, albeit in a discontinuous fashion. However, due to the inter-
pretation scheme defined by (4) and (5), it is always the case that (e.g.) two positive
inputs can only provide a positive (and therefore class 2) output. This in turn sug-
gests that introducing evolving multiplication factors or ‘weights’ for the applied input

12 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

Figure 7: Examples of the impact that electrode reconfiguration can have on un-
trained EiM processor responses. Surface plot of the network response Y as a function
of input attributes a1 and a2 for four randomly selected shuffle genes (i.e., permuta-
tions of the input voltage order) of an unconfigured (a) RRN, (b) NLRN, and (c) DRN
processor. The same colour scale as Figure 5 is used.

voltages or read output voltages may be beneficial, as this may allow unconstrained
rotation of the decision boundary. Other styles of interpretation scheme, previously
mention in §2.2, might prove similarly limited without their own additional evolvable
parameters.

We investigated the impact of varying output weights on the material response Y
for an unconfigured RRN, NLRN and DRN processor, as seen in Figure 8. Inverting
the polarity of one output weight allowed the introduction of more complex behaviour
into the material’s response, such as the gradient for the RRN processor, and complex
boundary shapes of the NLRN and DRN processors. As expected due to symmetry,
inverting the polarity of both output weights caused the classes to swap. Using out-
put weights of opposing polarities generally made the decision boundary less ‘sharp’
since subtracting values leads to Y values closer to zero, which in turn would make
a physical EiM processor more susceptible to noise. Figure 8 also shows the effect of
input weights to the same RRN, NLRN and DRN networks. It is notable that changing
input and output weights yield different responses, since input weights cause a change
in input voltages which must propagate though the material network. This is particu-
larly important for the DRN, since due to its asymmetric non-linear IV characteristics,
changing the input weights impacts when diodes are turned on, so inverting the polar-
ity of both input weights will not simply cause the classes to swap. Thus, we can draw
a distinction between the effect of using input and output weights: input weights allow
for variability on how the nanomaterials currently selected inter-node IV characteristic
is exploited, whereas output weights allow for variation in how the output signals are
interpreted and combined.

4 Advanced EiM Algorithm

To exploit the distinct impacts of re-arranged electrodes, and changing input or output
weights upon the decision boundary, we modified the vector of decision variables as
follows:

X = [Vc1 Vc2 ... VcP Gsh m1 m2... mQ l1 l2 ... lR]T . (7)

Evolutionary Computation Volume x, Number x 13

B.A.H. Jones et al.

Wout [1,1] Wout [1,-1] Wout [-1,1] Wout [-1,-1]

Win [1,1] Win [1,-1] Win [-1,1] Win [-1,-1]

Output
Weights

Input
Weights

�5

0

5

a
2

�5

0

5

a
2

�5 0 5

a1

�5 0 5

a1

�5 0 5

a1

�5 0 5

a1

R
R
N

N
L
R
N

D
R
N

Output
Weights

Input
Weights

�5

0

5

a
2

�5

0

5

a
2

�5 0 5

a1

�5 0 5

a1

�5 0 5

a1

�5 0 5

a1

Wout [1,1] Wout [1,-1] Wout [-1,1] Wout [-1,-1]

Win [1,1] Win [1,-1] Win [-1,1] Win [-1,-1]

Output
Weights

Input
Weights

�5

0

5

a
2

�5

0

5

a
2

�5 0 5

a1

�5 0 5

a1

�5 0 5

a1

�5 0 5

a1

Wout [1,1] Wout [1,-1] Wout [-1,1] Wout [-1,-1]

Win [1,1] Win [1,-1] Win [-1,1] Win [-1,-1]

(a)

(b)

(c)

Figure 8: Examples of the effect of varying the input and output weightings on un-
trained EiM processor responses. Surface plot of the network response Y as a function
of inputs a1 and a2 for an unconfigured (a) RRN, (b) NLRN, and (c) DRN processor
with various output or input weightings applied. The same colour scale as Figure 5 is
used.

14 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

Here, Gsh is termed the ‘shuffle’ gene, which allows for reassignment of input elec-
trodes to access different inter-node arrangements as shown in Figure 7. Gsh is an
integer which defines a particular permutation of the ordering for where input and
configuration voltages are applied. The input weights, lr ∈ [−1, 1] scale the input volt-
ages V in

r applied at the data driven input electrodes r due to an input attribute ar, such
that:

V in
r (k) = lr × ar(k), (8)

where the total number of data driven input electrodes isR. Finally, the output weights,
mq ∈ [−2, 2] for each output electrode, q allow for changes in the network response, Y ,
as follows:

Y (k) =

Q∑
q=1

mqV
out
q (k). (9)

This well-defined framework allows a reliable investigate into the roles and benefits
that additional algorithm configuration parameters may have on the of different mate-
rials.

5 Simulation Results

5.1 Electrode Allocation and Material Properties

Understanding how many configuration and output electrodes are required for good
classifier performance will enable more reliable EiM processor construction. To inves-
tigate this, fifteen RRN, NLRN and DRN processors were generated, each with a fixed
size of ten nodes. The classification performance of these systems was considered us-
ing the con2DDS, where the advanced EiM algorithm ran for 50 iterations, and was
repeated five times on each network to mitigate randomness in convergence. Results
displayed in Supplementary Figure 1 show that after four repetitions of the DE algo-
rithm the standard deviation of a materials performance is both low and settles. Sim-
ilarly, the effect of averaging over a number of the same type but different randomly
generated materials was considered (Supplementary Figure 2), where low standard
deviations are achieved and the performance started to settle if more then five to ten
materials where considered. Therefore, in these experiments, fifteen of each processor
type were chosen to ensure that the average capability of a particular material type
could be analysed without any one high or low performance processor skewing the
results, while the simulation times could remain within reasonable lengths. Two nodes
were designated as data inputs; the remaining eight nodes were designated as either
configuration nodes, output nodes, or if unused were left floating. The effect of varying
the number of configuration and output nodes was then investigated, with the results
presented in Figure 9.

First we observe that the difference between nanomaterial conductivities (i.e.,
whether they are RRN, NLRN or DRN) is more important in determining performance
than electrode allocation. The number of configuration nodes seems to play a less im-
portant role when evolving the RRN, NLRN and DRN materials, and suggests that
only a few voltage stimuli are required. However, we speculate that materials with
more complex properties, or large sparsely connected networks, will benefit more from
the voltage configuration stimuli.

The DRN and NLRN EiM processors perform better than the RRN processors, this
is because the materials non-linear IV characteristics are being exploited to better curve
the decision boundary and fit to the concentric data. The RRN processors can only

Evolutionary Computation Volume x, Number x 15

B.A.H. Jones et al.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Mean Test Fitness

(a) (b)

1 2 3 4

Output Nodes

1

2

3

4

#
 C

o
n

fi
g

 N
o

d
e

s

1 2 3 4

Output Nodes

1

2

3

4

1 2 3 4

Output Nodes

1

2

3

4

(c)

RRN NLRN DRN

Figure 9: Effect of varying which nodes are allocated as either configuration or output
electrodes on the final test fitness after training. Surface plot of the mean test fitness
(from 15 material processors, each with 5 DE repetitions) after 50 iterations using the
advanced EiM algorithm on the (a) RRN, (b) NLRN, and (c) DRN networks to classify
the con2DDS. The materials all had a fixed size of ten nodes, but the number of nodes
allocated as configuration or outputs was varied. Unallocated nodes were left floating.

produce linear decision boundaries which can only be placed tangentially to the data,
similar to that shown in Figure 10(a), thus severely limiting the final fitness. The NLRN
processors, however, only achieve marginally better results than the RRN processors.
The materials non-linearities help fit the data, as shown in Figure 10(b), but neither ad-
ditional configuration nodes nor additional output nodes lead to significant improve-

Figure 10: Example processor responses following training using the advanced EiM
algorithm for 50 iterations. Surface plot of the network response, Y as a function
of input attributes a1 and a2 for a (a) RRN, (b) NLRN and (c) DRN processor, using
the advanced EiM algorithm with all the additional configuration parameters, on the
con2DDS. The same colour scale as Figure 5 is used.

16 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

ment. We speculate that the voltage outputs from the NLRN are too similar, meaning it
is harder to combine the outputs to produce an enclosed decision boundary. The DRN
networks contain more abrupt non-linearities within its IV characteristics, allowing its
output voltages to be more easily combined to generate enclosed decision boundaries
and achieve better fitnesses, similar to the response shown in Figure 10(c). However,
Figure 9 shows that it is necessary to combine more than one output to achieve an en-
closed area, and for consistently good results more than two output nodes are required.

We note that the materials discussed here all have monotonically increasing IV
characteristics. In this case, a material with only a single output cannot successfully
classify the con2DDS (or an XOR problem); instead, at least 2 outputs are required.
However, materials containing a Negative Differential Region (NDR) can be exploited
to solve the XOR problem with only one output (Bose et al., 2015; Chen et al., 2020).

5.2 Modifying the Decision Vector

In the following we investigate the impacts of including the ‘shuffle’ gene, input weight
and output weight configuration parameters into the decision vector, both individually
and in combination, for the three networks, when solving the classification problems.
Considering the results discussed in §5.1, and using the same fifteen RRN, NLRN and
DRN material processors, three nodes were allocated as outputs, two nodes as inputs,
and the remaining five as configuration nodes.

The con2DDS was used to train the systems for 50 iterations, but with the differ-
ing combinations of decision parameters. The convergence of the mean best member
(pbest) training fitness at each iteration from the 75 recorded fitnesses (the 15 different
materials considered, each of which had the DE algorithm repeated 5 times) is shown
in Fig 11(a), 11(c) and 11(e) for the RRN, NLRN and DRN processor types respectively.
Box plots of the corresponding processor final test fitnesses are also shown in Fig 11(b),
11(d) and 11(f). For clarity, results are only displayed for the different individual ad-
ditional configuration parameters (i.e., ‘shuffle’, input weights or output weights) in
conjunction with configuration voltages. Additionally, the performance when all con-
figuration parameters are enabled is displayed. Results for all remaining combinations
of configuration parameters are shown in Supplementary Figures 3 and 4.

Using only configuration voltages leads to poor fitnesses in all the processor types
considered. The inability of this evolutionary scheme to explore different IV charac-
teristics or rotate the decision boundary leads to similar behaviour observed in §3.1
when using the flipped2DDS led to ‘stuck at’ faults. By contrast, using shuffle or in-
put weights in the decision vector allows for a wider exploitation of the material char-
acteristics, improving performance; although in some cases this leads to some mild
overfitting. The ability of shuffle to discover useful IV characteristics and the use of in-
put weights to exploit them is therefore fundamentally limited by the EiM processors
material properties. This is easily distinguished by the fact that only schemes which
used output weights could achieve test fitnesses below 0.160 (Supplementary Table
IV). Therefore, for processors to achieve better fitnesses, it becomes essential that the
interpretation scheme can evolve to successfully combine the material’s outputs. This
enables the introduction of more complex boundary features, such as a fully enclosed
area which is needed for the concentric dataset.

While the scheme using all the additional configuration parameters achieved good
eventual performance after the 50 iterations, it converged significantly slower than the
output weight only scheme used for the NLRN and DRN processors. This suggests that
not all the configuration parameters are needed, and their introduction can be either

Evolutionary Computation Volume x, Number x 17

B.A.H. Jones et al.

(a) (b)

(c) (d)

(e) (f)

Input
WeightsShuffle

Output
Weights

✘

✘

✘

✔

✔

✘

✔

✘

✘

✔

✘

✘

✔

✘

✔

Config
Voltage

✔

✔

✔

✔

✔

RRN

0 10 20 30 40 50

Iteration

0.24

0.25

0.26

0.27

0.28

0.29

0.30

M
e
a
n

B
e
s
t
fi
tn

e
s
s

NLRN

0 10 20 30 40 50

Iteration

0.24

0.25

0.26

0.27

0.28

0.29

0.30

M
e
a
n
 B

e
s
t
fi
tn

e
s
s

DRN

0 10 20 30 40 50

Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
e
a
n
 B

e
s
t
fi
tn

e
s
s

RRN

Input
WeightsShuffle

Output
Weights

✘

✘

✘

✔

✔

✘

✔

✘

✘

✔

✘

✘

✔

✘

✔

Config
Voltage

✔

✔

✔

✔

✔

Paramater

0.0

0.1

0.2

0.3

0.4

T
e
s
t
F

it
n
e
s
s

NLRN

Paramater

0.0

0.1

0.2

0.3

0.4

T
e
s
t
F

it
n
e
s
s

DRN

Paramater

0.0

0.1

0.2

0.3

0.4

T
e
s
t
F

it
n
e
s
s

Figure 11: Evolution of training fitness and final test fitness for EiM processors us-
ing different materials and configuration parameters, classifying the con2DDS. The
mean best training fitness & standard error (from 15 material processors, each with 5
DE repetitions) over 50 iterations, with different DE algorithm configuration parame-
ters enabled, for (a) RRN, (c) NLRN, and (e) DRN processors using the con2DDS. These
are paired with boxplots of the final test fitness results for the (b) RRN, (d) NLRN, and
(f) DRN processors.

18 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

counter productive and/or inflates the search space. However, we would propose that
a marginal decrease in convergence speed is worth the significant gains in flexibility
which a solution can take.

This experiment was repeated for the 2DDS and flipped2DDS as seen in Supple-
mentary Figure 5 and 6 respectively. Most configuration schemes solved the 2DDS and
achieved a zero fitness within less than 10 iterations. However, all the processor types
fail to optimise the flipped2DDS unless either input or output weights are used. This
again highlights the limitations of the configuration voltages and shuffle gene which
may only exploit the complexities of the given EiM processors’ material properties. As
discussed in §3.2, to enable the decision boundary to ‘flip’ or rotate, input or output
weightings must be used.

These results support Miller and Downing’s conjecture that materials with rich,
complex physics should be good candidate EiM processors (Miller and Downing, 2002).
We have shown that the form of non-linear conduction within the nanomaterial pro-
cessor will play a role in eventual performance. The relative performance of one EiM
processor with respect to another depends sensitively upon the EA and configuration
parameters used, and furthermore, that the inherent capability of a nanomaterial for
EiM may be ‘hidden’ or obstructed if an inappropriate algorithm is used. Design of al-
gorithm and selection of nanomaterial are thus necessary to achieve good performance
for a target application.

5.3 Performance Benchmarking

For the sake of comparison, the performance of the basic (configuration voltage only)
and advanced (all additional configuration parameters) EiM algorithm was compared
to some common classification techniques. The results are presented in Table 2, and
include classification results on the con2DDS and also the MMDS. The con2DDS results
are taken from the work discussed in §5.2. The MMDS results were generated using the
same 15 ten node materials (with 5 repetitions) as in §5.1 but using 100 iterations.

The advanced EiM algorithm can lead to a performance increase in excess of 40%

Table 2: Classification performance of the discussed basic and advanced EiM algo-
rithms, other common algorithms, and other work.

Dataset Processor Type mean(Φtest) std(Φtest) Best Φtest

con2DDS

Basic EiM (NLRN) 0.270 0.002 0.265
Basic EiM (DRN) 0.191 0.004 0.175
Logistic Regression - - 0.490
Random Forest - - 0.000
Advanced EiM (NLRN) 0.266 0.029 0.155
Advanced EiM (DRN) 0.000 0.058 0.000

MMDS

Basic EiM (NLRN) 0.485 0.000 0.485
Basic EiM (DRN) 0.485 0.000 0.485
Logistic Regression - - 0.228
Random Forest - - 0.269
Advanced EiM (NLRN) 0.236 0.020 0.204
Advanced EiM (DRN) 0.245 0.037 0.210
EiM (SWCNT/LC) (Vissol-
Gaudin et al., 2017)

0.2051 - 0.1885

Evolutionary Computation Volume x, Number x 19

B.A.H. Jones et al.

compared to the ‘basic’ EiM algorithm. However, if the nanomaterial processors’ prop-
erties are unsuitable to the computational task, a better exploiting algorithm cannot
achieve significant performance gains. Notably, when properly harnessed, these sim-
ple physically realisable networks can outperform both Logistic Regression and the
Random Forest (100 trees) algorithm.

Vissol-Gaudin et al. (2017) used a SWCNT/LC EiM processor to classify the
MMDS. These carbon nanotubes suspended in a liquid crystal mixture could move
and form new connections using evolved voltage stimuli. Classification decisions
were made using two output electrodes and an evolvable classification threshold. The
SWCNT/LC EiM processor achieves a lower error then the simulated materials dis-
cussed in this paper. We hypothesise that the increase in performance is due to the
materials ability to internally re-configure inter-node connections, altering the materi-
als IV characteristics. The material processors considered in this paper all have fixed IV
characteristics. While this might present a less flexible in-materio processor, it allows
for a single processor to be trained on many tasks, and switch between tasks by simply
re-calling the trained configuration parameters.

6 Discussion

These findings can be interpreted as confirmation of the suitability of nanomaterials
for EiM processors due to the variation in conduction mechanisms and conductivity
(Conte et al., 2017). Depending upon the material and device geometry chosen, the
conduction pathways in a nanomaterial may have conduction that is Ohmic (I ∝ V) or
Poole-Frenkel (I ∝ V exp(−(Ed − β

√
V)/kT)) in nature, or be limited by space-charge

(I ∝ V 2) or a Shottky/pn junction (I ∝ exp(V)), to name a few examples. Nanoma-
terials may also display a range of conduction mechanisms within the same composite
as well as variation in their conductivity. However, the inter-electrode IV character-
istic of many nanomaterial-based EiM processors reported to date are due to a perco-
lation network of individual nanoparticles (Miller and Downing, 2002; Vissol-Gaudin
et al., 2016a,b), and in turn, the apparent diversity in conduction mechanisms that a
type of nanoparticle may offer will be reduced due to averaging along the conduction
path. We suggest that higher performance EiM processors may be realised as the inter-
electrode distance approaches that of individual nanoparticles. One of the possible
benefits of nano-structured devices, is the possibility of negative differential resistance
(NDR) which can be used to classify the XOR problem while only using a single ma-
terial output (Bose et al., 2015; Chen et al., 2020). The material networks considered
in this work were each assumed to have similar inter-node characteristics like those
found in the literature. However, while maybe more challenging to produce, materials
with heterogeneous properties might provide a more exploitable and better performing
material network, and warrants further research.

Further to the modes of conduction observed, the nanomaterials used in EiM pro-
cessors fall into one of two categories: static materials with fixed IV characteristics and
dynamic materials which have variable IV characteristics. In this paper we only con-
sidered models of static nanomaterials, examples of which include carbon nanotubes
suspended in polymer matrices (Dale et al., 2016a; Massey et al., 2015b; Clegg et al.,
2014; Dale et al., 2017; Kotsialos et al., 2014) and random resistor networks (Dale et al.,
2016a,b). However, nanomaterials can also be dynamically changed by applying a volt-
age, as in the case of liquid crystals (Harding and Miller, 2004, 2007), CNTs suspended
in a liquid crystal matrix (Vissol-Gaudin et al., 2016b; Massey et al., 2016; Volpati et al.,
2015), and memristors (Sillin et al., 2013). When processing non-temporal data, mate-

20 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

rials with no memory and a fast settling time are desirable to allow a large bandwidth
(Chen et al., 2020). Although comparisons between static and dynamic EiM proces-
sors are sparse (Vissol-Gaudin, 2020), it appears that dynamic materials have better
performance in some circumstances. We propose that reconfiguration of the electrical
network in dynamic materials allows different inter-node IV characteristics to be con-
tinuously explored by the evolutionary algorithm, in much the same way as the shuffle
algorithm parameter operates here, and that this may be at least part of the reason why
some dynamic materials have better EiM performance. However, many dynamic mate-
rials cannot be reset to a previous configuration (e.g. as is the case for CNTs suspended
in liquid crystal (Massey et al., 2016)), whereas the trained configuration parameters
of a static material can be simply recalled. Whether the benefits of configuration recall
in static materials or a dynamic, irreversible search space are more beneficial to EiM
performance appears to be worthy of further study.

7 Conclusion

While Evolution in-Materio (EiM) is a promising unconventional computing paradigm,
analysis of EiM systems remains limited due to slow fabrication and training processes.
In this paper, EiM classifiers are produced by combining Differential Evolution with an
electrical model which is used as a proxy for real EiM material processors. This allowed
for fast and efficient in-simulo experimentation of EiM processors. Using this frame-
work, foundational issues with EiM processors were investigated. Different materials
and evolvable configurable parameters were investigated in succession, allowing their
effect to be isolated and analysed.

The findings presented explain why some nanomaterial based EiM processors fail
to achieve good performance, and how the exploiting algorithm can be modified to
mitigate these effects. Significantly, it is observed that the complexity of the ‘ideally se-
lected’ material scales with the complexity of the problem, with acceptable solutions to
simple classification problems being found more quickly with simple random resistor
networks, and the solution of more complex problems being favoured by more com-
plex random non-linear networks. Furthermore, differing modes of reconfiguring the
material, weighting the input data, and interpreting the material outputs are shown
to have distinct advantages and limitations. Significantly, we have demonstrated how
these methods can be used in concert to better exploit the material processor and lever-
age better performance for EiM classifiers.

Looking forward, these results show that to create high performance EiM proces-
sors, rational design of algorithm and selection of nanomaterial for a target application
is necessary. The framework presented allows one to quantify these trade-offs and
make informed decisions in the design of future EiM processors.

Acknowledgements

BB thanks the Department of Engineering, Durham University for research internship
funding.

References

Bose, S. K., Lawrence, C. P., Liu, Z., Makarenko, K. S., van Damme, R. M. J., Broersma, H. J., and
van der Wiel, W. G. (2015). Evolution of a designless nanoparticle network into reconfigurable
Boolean logic. Nature Nanotechnology, 10(12):1048–1052.

Chen, T., van Gelder, J., van de Ven, B., Amitonov, S. V., de Wilde, B., Euler, H.-C. R., Broersma,

Evolutionary Computation Volume x, Number x 21

B.A.H. Jones et al.

H., Bobbert, P. A., Zwanenburg, F. A., and van der Wiel, W. G. (2020). Classification with a
disordered dopant-atom network in silicon. Nature, 577(7790):341–345.

Clegg, K. D., Miller, J. F., Massey, M. K., and Petty, M. C. (2014). Practical issues for configuring
carbon nanotube composite materials for computation. In 2014 IEEE International Conference
on Evolvable Systems, pages 61–68.

Conte, T. M., DeBenedictis, E. P., Gargini, P. A., and Track, E. (2017). Rebooting Computing: The
Road Ahead. Computer, 50(1):20–29.

Dale, M., Miller, J. F., Stepney, S., and Trefzer, M. A. (2016a). Evolving Carbon Nanotube Reser-
voir Computers. In Amos, M. and CONDON, A., editors, Unconventional Computation and
Natural Computation, Lecture Notes in Computer Science, pages 49–61, Cham. Springer Inter-
national Publishing.

Dale, M., Stepney, S., Miller, J., and Trefzer, M. (2016b). Reservoir computing in materio: An
evaluation of configuration through evolution. 2016 IEEE Symposium Series on Computational
Intelligence (SSCI).

Dale, M., Stepney, S., Miller, J. F., and Trefzer, M. (2017). Reservoir computing in materio: A
computational framework for in materio computing. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 2178–2185.

Das, S. and Suganthan, P. N. (2011). Differential Evolution: A Survey of the State-of-the-Art.
IEEE Transactions on Evolutionary Computation, 15(1):4–31.

Dheeru Dua, E. K. T. (2017). UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

Greff, K., van Damme, R. M. J., Koutnik, J., Broersma, H. J., Mikhal, J. O., Lawrence, C. P., van der
Wiel, W. G., and Schmidhuber, J. (2017). Using neural networks to predict the functionality
of reconfigurable nano-material networks. In International Journal on Advances in Intelligent
Systems, volume 9, pages 339–351. IARIA.

Harding, S. and Miller, J. (2004). Evolution in materio: A tone discriminator in liquid crystal. In
Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), volume 2,
pages 1800–1807 Vol.2.

Harding, S. and Miller, J. F. (2007). Evolution In Materio: Evolving Logic Gates in Liquid Crystal.
International Journal of Unconventional Computing, 3:243–257.

Howard, D., O’Connor, J., Letchford, J., Brett, J., Joseph, T., Lin, S., Furby, D., and Delaney,
G. W. (2021). Getting a Grip: In Materio Evolution of Membrane Morphology for Soft Robotic
Jamming Grippers. arXiv:2111.01952 [cs].

Kotsialos, A., Massey, M. K., Qaiser, F., Zeze, D. A., Pearson, C., and Petty, M. C. (2014). Logic
gate and circuit training on randomly dispersed carbon nanotubes. International journal of
unconventional computing., 10(5-6):473–497.

Lawson, J. W. and Wolpert, D. H. (2006). Adaptive Programming of Unconventional Nano-
Architectures. Journal of Computational and Theoretical Nanoscience, 3(2):272–279.

Linden, D. (2001). A system for evolving antennas in-situ. In Proceedings Third NASA/DoD Work-
shop on Evolvable Hardware. EH-2001, pages 249–255.

Lykkebø, O. R., Nichele, S., and Tufte, G. (2015). An Investigation of Square Waves for Evolution
in Carbon Nanotubes Material. Artificial Life Conference Proceedings, 27:503–510.

Massey, M., Volpati, D., Qaiser, F., Kotsialos, A., Pearson, C., Zeze, D., and Petty, M. (2015a).
Alignment of liquid crystal/carbon nanotube dispersions for application in unconventional
computing. AIP Conference Proceedings, 1648(1):280009.

Massey, M. K., Kotsialos, A., Qaiser, F., Zeze, D. A., Pearson, C., Volpati, D., Bowen, L., and Petty,
M. C. (2015b). Computing with carbon nanotubes: Optimization of threshold logic gates using
disordered nanotube/polymer composites. Journal of Applied Physics, 117(13):134903.

22 Evolutionary Computation Volume x, Number x

Towards Intelligently Designed EiM Processors

Massey, M. K., Kotsialos, A., Volpati, D., Vissol-Gaudin, E., Pearson, C., Bowen, L., Obara, B.,
Zeze, D. A., Groves, C., and Petty, M. C. (2016). Evolution of Electronic Circuits using Carbon
Nanotube Composites. Scientific Reports, 6(1):32197.

Miller, J. and Downing, K. (2002). Evolution in materio: Looking beyond the silicon box. In
Proceedings 2002 NASA/DoD Conference on Evolvable Hardware, pages 167–176, Alexandria, VA,
USA. IEEE Comput. Soc.

Miller, J. F., Harding, S. L., and Tufte, G. (2014). Evolution-in-materio: Evolving computation in
materials. Evolutionary Intelligence, 7(1):49–67.

Pedersen, M. E. H. (2010). Good Parameters for Differential Evolution.

Ruiz-Euler, H.-C., Alegre-Ibarra, U., van de Ven, B., Broersma, H., Bobbert, P. A., and van der
Wiel, W. G. (2020). Dopant Network Processing Units: Towards Efficient Neural-network
Emulators with High-capacity Nanoelectronic Nodes. arXiv:2007.12371 [cs, stat].

Sillin, H. O., Aguilera, R., Shieh, H.-H., Avizienis, A. V., Aono, M., Stieg, A. Z., and Gimzewski,
J. K. (2013). A theoretical and experimental study of neuromorphic atomic switch networks
for reservoir computing. Nanotechnology, 24(38):384004.

Sloss, A. N. and Gustafson, S. (2019). 2019 Evolutionary Algorithms Review. arXiv:1906.08870
[cs].

Storn, R. and Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):341–359.

Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. (2008). The missing memristor
found. Nature, 453(7191):80–83.

Viero, Y., Guérin, D., Vladyka, A., Alibart, F., Lenfant, S., Calame, M., and Vuillaume, D. (2018).
Light-Stimulatable Molecules/Nanoparticles Networks for Switchable Logical Functions and
Reservoir Computing. Advanced Functional Materials, 28(39):1801506.

Vissol-Gaudin, E. (2020). Evolutionary Computation Based on Nanocomposite Training: Application to
Data Classification. Doctoral, Durham University, Durham University.

Vissol-Gaudin, E., Kotsialos, A., Groves, C., Pearson, C., Zeze, D., and Petty, M. (2017). Comput-
ing Based on Material Training: Application to Binary Classification Problems. In 2017 IEEE
International Conference on Rebooting Computing (ICRC), pages 1–8, Washington, DC. IEEE.

Vissol-Gaudin, E., Kotsialos, A., Groves, C., Pearson, C., Zeze, D., Petty, M., and Al Moubayed,
N. (2018). Confidence Measures for Carbon-Nanotube / Liquid Crystals Classifiers. In 2018
IEEE Congress on Evolutionary Computation (CEC), pages 1–8.

Vissol-Gaudin, E., Kotsialos, A., Massey, M. K., Zeze, D. A., Pearson, C., Groves, C., and Petty,
M. C. (2016a). Data Classification Using Carbon-Nanotubes and Evolutionary Algorithms. In
Handl, J., Hart, E., Lewis, P. R., López-Ibáñez, M., Ochoa, G., and Paechter, B., editors, Parallel
Problem Solving from Nature – PPSN XIV, Lecture Notes in Computer Science, pages 644–654,
Cham. Springer International Publishing.

Vissol-Gaudin, E., Kotsialos, A., Massey, M. K., Zeze, D. A., Pearson, C., Groves, C., and Petty,
M. C. (2016b). Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolution-
ary Algorithms. In Amos, M. and CONDON, A., editors, Unconventional Computation and
Natural Computation, Lecture Notes in Computer Science, pages 130–141, Cham. Springer In-
ternational Publishing.

Volpati, D., Massey, M. K., Johnson, D. W., Kotsialos, A., Qaiser, F., Pearson, C., Coleman, K. S.,
Tiburzi, G., Zeze, D. A., and Petty, M. C. (2015). Exploring the alignment of carbon nan-
otubes dispersed in a liquid crystal matrix using coplanar electrodes. Journal of Applied Physics,
117(12):125303.

Evolutionary Computation Volume x, Number x 23

	Introduction
	Problem Formulation
	Physical Model
	Basic Algorithm Implementation
	Datasets

	Interaction between algorithm and materials
	Role of Material Properties and Configuration Voltages
	Impact of Electrode Reconfiguration and Weighting

	Advanced EiM Algorithm
	Simulation Results
	Electrode Allocation and Material Properties
	Modifying the Decision Vector
	Performance Benchmarking

	Discussion
	Conclusion

