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Newly learned novel cues to location are combined with familiar cues but not 1 

always with each other 2 

 3 

Abstract 4 

Mature perceptual systems can learn new arbitrary sensory signals (novel cues) to properties of the 5 

environment, but little is known about the extent to which novel cues are integrated into normal 6 

perception. In normal perception, multiple uncertain familiar cues are combined, often near-7 

optimally (reliability-weighted averaging), to increase perceptual precision. We trained observers to 8 

use abstract novel cues to estimate horizontal locations of hidden objects on a monitor. In 9 

Experiment 1, four groups of observers each learned to use a different novel cue. All groups 10 

benefitted from a suboptimal but significant gain in precision using novel and familiar cues together 11 

after short-term training (3 x ~1.5 hour sessions), extending previous reports of novel-familiar cue 12 

combination. In Experiment 2, we tested whether two novel cues may also be combined with each 13 

other. One pair of novel cues could be combined to improve precision but the other could not, at 14 

least not after three sessions of repeated training. Overall, our results provide extensive evidence 15 

that novel cues can be learned and combined with familiar cues to enhance perception, but mixed 16 

evidence for whether perceptual and decision-making systems can extend this ability to the 17 

combination of multiple novel cues with only short-term training.  18 

Keywords 19 

Cue combination, sensory integration, sensory augmentation 20 

Public Significance Statement  21 

 Human adults can learn novel relationships between arbitrary sensory signals and properties 22 

of the surrounding environment (novel cues). 23 

 Newly learned novel cues are combined with familiar cues (natural relationships between 24 

sensory signals and properties of the surrounding environment) to enhance perception and 25 

decision-making. 26 

 After repeated training, the enhancement from combining some novel cues with familiar 27 

cues is as good as it can. In other words, human adults make optimal use of the novel 28 

information. 29 

 Whether or not this ability can be extended to the combination of two novel cues may 30 

depend on the two novel cues to be combined. 31 

  32 
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Introduction 33 

A mature perceptual system can learn new mappings between arbitrary sensory signals and 34 

properties of the environment (novel cues), such as an artificial correlation between the brightness 35 

and stiffness of an object (Ernst, 2007) or an auditory cue to depth (Negen et al., 2018), among 36 

others (Di Luca et al., 2010; Haijiang et al., 2006; Harrison & Backus, 2012; Michel & Jacobs, 2008). 37 

However, little is known about the extent to which novel cues are integrated into the normal 38 

perceptual experience. In normal perception, there are often multiple uncertain familiar sensory 39 

cues (natural mappings between sensations and physical properties of the surrounding 40 

environment) providing similar information about the state of the surrounding world, such as 41 

disparity and texture cues to the slant of a surface (Knill & Saunders, 2003). An important feature of 42 

familiar cue use is that when multiple cues are available, rather than throwing one piece of 43 

information away and using only the most reliable cue, a mature perceptual system tends to 44 

combine the cues in line with reliability-weighted averaging - the Bayes-optimal solution to cue 45 

combination that maximises precision (Alais & Burr, 2004; Ernst & Banks, 2002; Hillis et al., 2004; 46 

Knill & Saunders, 2003).  47 

A limited number of studies suggest newly learned novel cues are also combined with familiar cues 48 

(Ernst, 2007; Gibo et al., 2017; Michel & Jacobs, 2008; Negen et al., 2018). Importantly, although 49 

combination of novel and familiar cues is often suboptimal, with the gain in precision from 50 

combining the two cues less than that predicted by reliability-weighted averaging (Ernst, 2007; Gibo 51 

et al., 2017; Negen et al., 2018), it is “Bayes-like” in the sense that it shows some signatures of 52 

Bayes-optimal combination, such as weighting by reliability (Negen et al., 2018).  53 

The ability to learn novel cues and combine them with familiar cues has vast applications for sensory 54 

substitution and augmentation. In the case of sensory substitution, it means that perceptual systems 55 

receiving disrupted familiar cues (for example, in partial vision loss) could not only learn to replace 56 

the disrupted input with a novel cue (Abboud et al., 2014; Auvray et al., 2007; Bach-y-Rita et al., 57 

1969; Maidenbaum et al., 2014), but could combine the novel cue with disrupted familiar cues to 58 

make more precise judgements than using either cue alone would allow. Similarly, in the case of a 59 

healthy perceptual system, novel cues can be introduced to enhance the normal perceptual 60 

experience. New technologies offer a variety of options for providing perceptual systems with new 61 

sensory signals. To make the best use of these technologies, the design of new sensory signals 62 

should be grounded in research that explores which novel cues are most efficiently learned and 63 

combined with familiar or other novel cues, as well as the training conditions that best promote 64 

integration of new sensory signals into the normal perceptual experience. 65 
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Here, we asked whether observers combine novel and familiar cues to increase precision above 66 

what is possible using the most reliable single cue alone, and how any such gains in precision differ 67 

from the optimal or maximum gain predicted by reliability-weighted averaging. In Experiment 1, we 68 

trained observers to use abstract novel cues to estimate the horizontal location of hidden objects on 69 

a computer screen. The novel cues were the colour of a pair of lines (colour cue), the angle between 70 

two lines (the angle cue), the axis ratio of an oval (the shape cue), and the height of a bar (the height 71 

cue). We refer to our novel cues as abstract as they do not have a natural relationship to location. 72 

This contrasts with previous studies where observers learned to use an echolocation cue to make 73 

depth judgements (Negen et al., 2018) or made movements with the assistance of a force cue that 74 

guided movements in a particular direction (Gibo et al., 2017).  75 

Observers completed a task that began with a short training period to teach (or reinforce) the 76 

mapping between the novel cue and location. After training, observers completed a series of trials 77 

where they were required to use either the novel cue, a familiar cue (e.g., a noisy dot-cloud), or the 78 

novel and familiar cues together to estimate the location of a hidden object. Forty observers were 79 

divided into equal groups so that each observer learned only one novel cue with each observer 80 

completing the same task on three different days (three sessions). This aspect of the design provided 81 

the observers with repeated training, allowing them not only to learn the mappings to location over 82 

time, but also to learn to discriminate finer differences in the novel cues (i.e. perceptual learning - an 83 

improvement in discrimination ability for a stimulus (cue) that was not previously well discriminated; 84 

Fahle & Poggio, 2002). We considered that it was important to allow for perceptual learning as single 85 

cue reliabilities may be changing as discrimination ability improves, and changing cue reliabilities 86 

could be a barrier to reliability-weighted averaging and Bayes-like combination (Alais & Burr, 2004; 87 

Ernst & Banks, 2002; Hillis et al., 2004; Knill & Saunders, 2003).  88 

Each group of observers in Experiment 1 benefitted from a gain in precision using the novel and 89 

familiar cues together by the third session. The gain in precision was suboptimal but significant; 90 

location estimates were significantly less variable when both the novel and familiar cues were 91 

available than when observers used their best single cue alone. Our results show that observers can 92 

learn abstract novel cues to location and combine them with a familiar cue. 93 

In Experiment 2, we tested if two novel cues may also be combined with each other. We tested this 94 

by teaching two different groups, each of ten observers, a different pairing of the abstract novel 95 

cues to location from Experiment 1 (the colour and angle cues or the colour and shape cues). In this 96 

experiment, observers received separate training with each novel cue. After training they completed 97 

a series of trials where they used either one of the novel cues, both novel cues, the familiar cue, or 98 
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one of the novel cues and the familiar cue to estimate the location of the hidden object. As in 99 

Experiment 1, each observer completed the task three times on three different days. We found that 100 

one pair of novel cues could be combined to improve precision but the other could not, even after 101 

three sessions of repeated training.  102 

Overall, our results provide extensive evidence that novel cues can be learned and combined with 103 

familiar cues to enhance perception, but mixed evidence for whether perceptual and decision-104 

making systems can extend this ability to the combination of multiple novel cues with only short-105 

term training. 106 

Experiment 1: Methods 107 

Overview 108 

Forty observers completed the same task three times on three different days (three sessions). The 109 

task required the observers to use a novel cue, a familiar cue, or the novel and familiar cues 110 

simultaneously to estimate the location of a hidden target by using a computer mouse to adjust the 111 

horizontal position of a bar on a computer screen. The task began with a block of training trials that 112 

taught observers the mapping between a novel cue and horizontal location on the screen. The forty 113 

observers were split into four groups of ten with each group learning a different novel cue to 114 

location (Figure 1). The colour group learned to use the average colour of eight pairs of lines as a cue 115 

to location (the colour cue), the angle group learned to use the average size of the angle between 116 

eight pairs of lines as a cue to location (the angle cue), the shape group learned to use the average 117 

axis ratio of eight ovals as a cue to location (the shape cue), and the height group learned to use the 118 

average height of eight vertical bars as a cue to location (the height cue). All groups used the same 119 

familiar cue, that can be thought of as a dot cloud, though we will refer to it as the spread cue. The 120 

spread cue always consisted of eight stimuli (shapes that varied for each group to avoid giving 121 

information that conflicted with the novel cue) with varying position on the screen. The best way to 122 

utilise this cue was for observers to take the average horizontal location of the eight stimuli. We say 123 

the spread cue is a familiar cue as it naturally maps to horizontal location on the screen. This is 124 

unlike the novel cues, where the mapping must be learned. 125 
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 126 

Figure 1: The task in Experiment 1. (A-B) The task began with a block of training trials where 127 

observers were taught a mapping between a novel cue (colour, angle size, the axis ratio of an oval, or 128 
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the height of a bar) and horizontal location on a computer screen. In the first set of training trials (A), 129 

observers could see the novel mapping on the screen and had to select the location along the 130 

mapping that corresponded to the average novel cue value of eight stimuli shown at the bottom of 131 

the screen. The direction of the mapping was randomly chosen for each observer. In the second set of 132 

training trials (B), the mapping was not shown but observers could continue to learn the mapping 133 

through feedback. (C) In test trials, observers used either the newly learned novel cue, a familiar 134 

spread cue (e.g., a dot cloud), or both the novel and familiar cue together to estimate the position of 135 

a hidden object (an octopus hiding in the sea). (D) After issuing a response by positioning a vertical 136 

bar horizontally across the screen, observers received feedback and, if they “caught” the octopus, 137 

saw an animation of the octopus moving into their bucket. 138 

In the training block, observers first completed a set of trials where the mapping between the novel 139 

cue and location was shown on the screen (Figure 1A). In these “with mapping” trials, the novel cue 140 

was presented at the bottom of the screen and observers were required to estimate the average 141 

colour, angle size, axis ratio, or height of the cue, indicating their response by moving a vertical bar 142 

to the correct location along the mapping. Observers then completed a set of “without mapping” 143 

trials (Figure 1B) that encouraged them to learn the relationship between the cues and location as 144 

the mapping was no longer shown. Learning of the mapping was reinforced through feedback in 145 

these trials, with observers shown the correct average colour, angle size, axis ratio, or height in the 146 

correct location as feedback. The direction of the mapping (left-to-right or right-to-left) on the 147 

screen was randomly determined for each observer.  148 

After observers completed the training block, the test trials began (Figure 1C). At the start of the test 149 

block, observers were instructed that they would now begin to use the newly learnt novel cue, along 150 

with a familiar cue (i.e., a dot-cloud, or the spread cue) to estimate the location of a hidden object – 151 

an octopus hiding in the sea. On each trial, observers were presented with either the novel cue 152 

(colour-only, angle-only, shape-only, or height-only trials), the familiar cue (spread-only trials), or the 153 

novel and familiar cue together (colour-spread, angle-spread, shape-spread, or height-spread trials). 154 

In colour-only and angle-only trials, observers were presented with eight pairs of lines (in fixed 155 

positions) at the bottom of the screen. The average colour of the pair of lines or angle between them 156 

provided a novel estimate of location according to a trained mapping. In shape-only trials observers 157 

were presented with eight ovals (in fixed positions) at the bottom of the screen. The average vertical 158 

to horizontal axis ratio of the ovals provided a novel estimate of location according to a trained 159 

mapping. In height-only trials observers were presented with eight vertical bars (in fixed positions) at 160 

the bottom of the screen. The average height of the vertical bars provided a novel estimate of 161 

location according to a trained mapping. In spread-only trials, eight pairs of parallel and grey lines 162 
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(colour and shape groups), grey squares (shape group), or grey circles (height group) were spread 163 

out across the screen. The position of each pair of lines, square, or circle was drawn from a Gaussian 164 

distribution, centred on the hidden location, such that the mean or centroid of the locations was the 165 

best estimate. In colour-spread or angle-spread trials, the eight pairs of lines were spread across the 166 

screen and had the property of the novel cue (either the relevant colours or angles between the 167 

lines). In shape-spread trials the eight ovals were spread across the screen and had the property of 168 

the novel cue (the relevant axis ratios). In height-spread trials the eight bars were spread across the 169 

screen and had the property of the novel cue (the relevant bar heights). 170 

Trials of all types were interleaved for each group (e.g., colour-only, spread-only, and colour-spread 171 

for the colour group). After the cue(s) appeared on each trial, observers adjusted the horizontal 172 

position of a vertical line (width 10 pixels), using a mouse, to their best guess of the hidden location 173 

(Figure 1D). Feedback was given indicating if the observers had “caught” the octopus along with an 174 

indicator of the true hidden location that displayed the corresponding novel cue values (the correct 175 

average colour, angle size, axis ratio, or height). If the octopus was caught, an animation showed the 176 

octopus move across the screen from its hidden location to the bucket. The octopus was caught if 177 

any part of the vertical line overlapped with the feedback marker, meaning there was a tolerance of 178 

26 pixels. 179 

Observers 180 

Forty observers were recruited using Durham Psychology Department’s Participant Pool programme 181 

or through word of mouth. Each observer was assigned to either the colour group, angle group, 182 

shape group, or height group such that there were ten observers in each group (colour group: 7 183 

female, age range 19-29 years; angle group: 8 female, age range 19-27 years; shape group: 9 female, 184 

age range 18-42 years; height group: 8 female, age range 18-21 years). All observers had normal or 185 

corrected to normal visual acuity (self-report) and no colour vision deficiencies (assessed using 186 

Ishihara Colour Plates). Each observer was given either £8 per hour or participant pool credits for 187 

their time.  188 

Apparatus 189 

Stimuli were shown on a 10-bit ASUS Proart LCD screen (ASUS, Fremont, CA) with observers seated 190 

so that their eyes were approximately 60 cm from the screen. The monitor was controlled using a 191 

64-bit Windows machine, equipped with an NVIDIA Quadro K600 10-bit graphics card (NVIDIA, Santa 192 

Clara, CA), running MATLAB scripts that used Psychtoolbox routines (Brainard, 1997; Kleiner et al., 193 

2007; Pelli, 1997). The stimuli were colourimetrically calibrated using a linearized calibration table 194 
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based on measurements of the monitor primaries made with a Konica Minolta CS2000 195 

spectroradiometer (Konica Minolta, Nieuwegein, Netherlands). Conversions to CIELUV used the 196 

measured white point of the monitor: (𝑌, 𝑥, 𝑦) = (205.24, .31, .34) in CIE 1931 𝑌𝑥𝑦 colour space.  197 

Stimuli 198 

In colour-only trials, the novel colour cue appeared in a fixed location at the bottom of the screen. 199 

The novel colour cue was a set of eight pairs of parallel lines (length 24, width 5 pixels) where each 200 

pair of lines varied slightly in colour. The colour of the dots or pairs of lines was governed by a colour 201 

gradient from pink to green that mapped from 15% to 85% of the way across the screen from left to 202 

right or right to left (randomly flipped for each observer). The gradient was defined as a chord of a 203 

hue circle (chroma = 85) in CIELUV chromaticity space. The start and end values of the chord had CIE 204 

1931 chromaticities of (𝑥, 𝑦) = (. 3386, .2821) and (𝑥, 𝑦) = (.3476, .3960) and a luminance of 𝑌 =205 

15 cd/m2. The colour gradient was defined in this way to ensure perceptual uniformity and defined a 206 

mapping from colour to location across the screen. The colours of the eight pairs of lines were 207 

defined by drawing eight horizontal positions from a Gaussian distribution centred on the hidden 208 

object’s location with a standard deviation of 3 pixels. The colours of the eight pairs of lines were 209 

then taken to be the colours that corresponded to each of the sampled locations according to the 210 

mapping. In the training trials, the mapping was shown on the screen as a colour gradient. 211 

In angle-only trials, the novel angle size cue appeared in a fixed location at the bottom of the screen. 212 

This cue was eight pairs of lines (length 24, width 5 pixels) where each pair formed an angle. Angles 213 

were always formed in either only the 1st or across both the 1st and 2nd quadrants such that one of 214 

the lines forming the angle was always the abscissa in the 1st quadrant. The size of the angle formed 215 

by each pair of lines was dictated by a pre-defined mapping of angle size to screen position. Angle 216 

sizes of 67.95° and 162.45° corresponded to 15% and 85% of the way across the screen, respectively, 217 

or vice versa (flipped at random for each observer). To set the angle sizes on each trial, eight 218 

horizontal positions were drawn from a Gaussian distribution centred on the hidden object’s 219 

location with a standard deviation of 0.7 pixels. The angle sizes were then taken to be those that 220 

corresponded to each of the sampled locations according to the mapping. In the training trials, the 221 

angles corresponding to locations 17% to 85% of the way across the screen in steps of 4% were 222 

shown across the screen at their correct locations. On angle-only trials, the angles were always grey, 223 

as were the angles shown as part of the mapping. On colour-angle trials, each angle was also 224 

assigned a colour by the same method as the colour-only cue. 225 

In shape-only trials, the novel shape cue appeared in a fixed location at the bottom of the screen. 226 

The novel shape cue was a set of eight ovals. The ratio of the vertical (𝑎) to horizontal (𝑏) axis varied 227 
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for each oval, while maintaining the total area, and was defined based on a mapping of axis ratio to 228 

location across the screen. A location 15% of the way across the screen, from left to right, 229 

corresponded to a ratio of 𝑎 𝑏⁄ =  12.191 22.979⁄ , while 85% of the way across the screen 230 

corresponded to 𝑎 𝑏⁄ =  22.979 12.191⁄  pixels, or vice versa (flipped randomly for each observer). 231 

To set the ratio for each oval, eight horizontal positions were drawn from a Gaussian distribution 232 

centred on the hidden object’s location with a standard deviation of 0.7 pixels. The ratios were then 233 

taken to be those that corresponded to each of the sampled locations according to the mapping. In 234 

the training trials, only the shapes corresponding to locations 17% to 85% of the way across the 235 

screen in steps of 4% were shown. When the novel shape cue was paired with the familiar spread 236 

cue, the eight symbols representing the shape cue were spread across the screen. 237 

In height-only trials, the novel bar height cue appeared in a fixed location at the bottom of the 238 

screen. The novel bar height cue was a set of eight vertical bars (width 5 pixels) whose heights 239 

varied. The heights were decided according to a linear mapping of bar height to screen position. A 240 

height of 8.69 pixels corresponded to 15% of the way across the screen, from left to right, and a 241 

length of 30.82 pixels to 85%, or vice versa (flipped randomly for each observer). To set the height of 242 

each bar, eight horizontal positions were drawn from a Gaussian distribution centred on the hidden 243 

object’s location with a standard deviation of 0.2 pixels. The heights of the bars were then taken to 244 

be those that corresponded to each of the sampled locations according to the mapping. In the 245 

training trials, the mapping was shown on the screen as a truncated 2D cone with the height of the 246 

cone at each location corresponding to the bar height that mapped there. When the novel bar 247 

height cue was paired with the familiar spread cue, the eight symbols representing the bar height 248 

cue were spread across the screen. 249 

In spread-only trials the familiar cue appeared on the screen. The familiar cue was effectively a “dot” 250 

cloud generated by drawing the position of each “dot” from a Gaussian distribution centred on the 251 

hidden object’s location with a standard deviation of 237 pixels and were scaled so that the standard 252 

deviation of the eight sampled locations matched the population standard deviation. However, we 253 

only displayed a dot at each location for the height group. In height-spread trials, the height group 254 

saw eight bars of varying heights spread across the locations. For the colour group and angle group, 255 

in spread-only trials, we displayed a pair of parallel vertical lines at each location. In spread-only 256 

trials for the colour and angle groups, the pairs of lines were all grey. In colour-spread and angle-257 

spread trials the pairs of lines spread across the screen were each assigned a colour by the same 258 

method as the colour-only cue or an angle size by the same method as the angle-only cue, 259 

respectively. In spread-only trials for the shape group, we displayed a grey square at each location. In 260 

shape-spread trials, eight ovals with varying axis ratios were shown at the different locations.  261 
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We used location estimation, with the spread of the stimuli being the familiar cue, as a framework to 262 

test for novel-familiar combination as this framework has been used multiple times to test the 263 

perceptual system’s ability to learn novel stimulus distributions, or location priors (Bejjanki et al., 264 

2016; Chambers et al., 2018; Kiryakova et al., 2020; Körding & Wolpert, 2004; Tassinari et al., 2006; 265 

Vilares et al., 2012). Those studies suggest that the spread of stimuli is an intuitive familiar cue to 266 

location that observers readily understand and can flexibly weight in relation to the mean of a novel 267 

location prior. We expect this to extend to combination with a novel cue. 268 

The standard deviation of the Gaussian distribution from which the eight stimulus values were 269 

drawn varied for each novel cue. The variation was needed to account for the fact that the ability of 270 

participants to average the eight stimulus values varied with novel cue type. For example, in pilot 271 

testing participants produced more precise colour estimates from the eight pairs of lines than they 272 

did angle estimates from the eight angles. This led us to set a higher standard deviation for the 273 

Gaussian governing the colour cue than the Gaussian governing the angle cue so that variability 274 

using the two cues was better matched. The values that we used were determined in pilot testing 275 

and set such that, on average across pilot participants, variability using each novel cue and the 276 

familiar cue alone was roughly matched. 277 

Task Parameters 278 

In the training block there were two repeats of each of 36 possible hidden locations (15% to 85% of 279 

the way across the screen from left to right, sampled every 2%) for both the “with mapping” and 280 

“without mapping” trials (72 trials of each type). In the test block, the same 36 unique hidden 281 

locations were used, with each repeated five times for each trial type (e.g., colour-only, spread-only, 282 

and colour-spread for the colour group; 180 trials each). Trials of all types were interleaved and 283 

presented in a random order. 284 

Data Analysis 285 

Any response that was issued less than 500 ms after presentation of the cue(s) was considered a 286 

lapse and excluded from analysis. Detection of lapses was not performed online, but post-hoc in 287 

data analysis. Thus, participants were not informed when a response was classified as a lapse. To 288 

check that observers could use the cue(s), we calculated the correlation coefficient between the 289 

responses and the hidden location for each trial type (e.g., colour-only, spread-only, and colour-290 

spread for the colour group) and for each observer within each session. Our a priori learning criteria 291 

were as follows. If 𝑟 ≥ 0.7 (Pearson’s correlation) for all trial types within a session for a given 292 

observer, we conclude that the observer learned to use the cue(s) and they are included in all 293 
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analyses including data from that session. However, if 𝑟 < 0.7 for any trial type in a session, we 294 

conclude that the observer did not learn to use the cue(s) well enough, and they are excluded from 295 

analyses involving that session.  296 

Our main research questions were: (1) do observers combine the novel and familiar cues to increase 297 

precision above what is possible using the most reliable single cue alone, and (2) if so, does the gain 298 

in precision using both cues compared to the best single cue differ from the optimal or maximum 299 

gain predicted by reliability-weighted averaging? Thus, our main measure of interest is precision or, 300 

equivalently, variability. We calculate measures of variability according to a method we recently 301 

described elsewhere (Aston et al., 2021). The method is designed to account for central biases in 302 

continuous responses that may reduce statistical power for detecting a gain in precision using 303 

multiple cues. To calculate measures of variability according to the method, we regress responses 304 

for each trial type on the true hidden object locations and calculate the standard deviation of the 305 

residuals. If the slope of the fitted regression line is significantly less than one, the standard 306 

deviation of the residuals is divided by the fitted slope of the regression line to correct for a central 307 

bias. Importantly, if there is no evidence of a central bias (the slope is not significantly less than one), 308 

no correction is performed. The mean strengths of the central bias for each trial type in the third 309 

session of each task (averaged across sessions and observers) were: colour-only 𝛽 = 0.04, angle-310 

only 𝛽 =  0.06, shape-only 𝛽 =  0.05, height-only 𝛽 =  0.1, spread-only (colour group) 𝛽 = 0.07, 311 

spread-only (angle group) 𝛽 = 0.07, spread-only (shape group) 𝛽 = 0.08, spread-only (height group) 312 

𝛽 = 0.08, colour-spread 𝛽 =  0.04, angle-spread 𝛽 =  0.02, shape-spread 𝛽 =  0.03, and height-313 

spread 𝛽 =  0.04. 314 

We will refer to our measures of variability as variable error. Our second main research question 315 

requires the comparison of variable error using both cues to the optimal prediction under the 316 

assumption of reliability-weighted averaging. Given variable errors for two single cues, 𝜎1 and 𝜎2, we 317 

can predict the optimal variable error using both cues, 𝜎𝑏, using the equation below (Ernst & Banks, 318 

2002). 319 

𝜎𝑏
2 =  

𝜎1
2𝜎2

2

(𝜎1
2 + 𝜎2

2)
 320 

Pilot Experiment and Power Analysis 321 

Five observers (4 female, age range 18-24 years) completed a pilot experiment using the novel 322 

colour cue to location. By the third session of the experiment, all five observers issued less variable 323 

(more precise) responses in the novel-familiar cue trials compared to trials where they used their 324 



13 
 

most reliable cue alone. The mean reduction in variable error in the third session (in terms of screen 325 

proportion) was 0.013 with standard deviation 0.013. Based on this pilot data, we used G*Power 326 

(Faul et al., 2007) to calculate the statistical power that different sample sizes would allow for our 327 

most important research question: do observers issue less variable (more precise) responses using 328 

the novel and familiar cues together compared to the most reliable, or best, single cue. We planned 329 

to address this question by comparing variable error using the best single cue to variable error using 330 

the novel and familiar cues together using a one-tailed Wilcoxon signed-rank test. Based on the pilot 331 

data, we required 9 participants for 80% power. We chose to recruit ten observers for each novel 332 

cue type in the main experiment. 333 

Open Practices Statement 334 

This experiment was not pre-registered. The raw data files and analysis script are available online at 335 

https://osf.io/gj92a/. 336 

Experiment 1: Results 337 

Each row of plots in Figure 2 shows the data that pertains to a single group of observers. The top 338 

row shows data from the colour group, the second row is the angle group, the third is the shape 339 

group, and the bottom row is the height group. The left panel of plots shows variable error using the 340 

familiar and novel cues alone across sessions (Figure 2A-D). These plots show that variable error 341 

using the familiar cue is stable across sessions for all groups of observers but that some groups get 342 

better using the novel cue with increased training and exposure to the task. The right panel of plots 343 

shows variable error in each session using the worst of the two single cues (highest variable error), 344 

the best of the two single cues (lowest variable error), both cues together, and the optimal variable 345 

error using both cues together that would be achieved by taking a reliability-weighted average of 346 

estimates from the two single cues (Figure 2E-H). A visual inspection of Figure 2E-H shows lower 347 

median variable error using both cues together than the best single cue in all groups by the third 348 

session of the experiment, suggesting all groups of observers combined the newly learned novel cue 349 

with the familiar cue. However, the median variable errors using both cues are all higher than the 350 

optimal variable error from reliability-weighted averaging, suggesting that combination of novel and 351 

familiar cues was still suboptimal. 352 

https://osf.io/gj92a/
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 353 

Figure 2: Results of Experiment 1. (A-D) Variable errors using the familiar and novel cues alone for 354 

each group of observers across sessions. (E-H) Variable errors for each group of observers in each 355 

session using the worst single cue (novel or familiar), the best single cue (familiar or novel), both cues 356 

together, and the optimal variable error that could be achieved using both together by taking a 357 

reliability-weighted average of estimates from each single cue. The whiskers of the boxplots extend 358 

to adjacent values (the most extreme data points that are not more than 1.5 times the interquartile 359 

range above or below the upper and lower quartiles or that are not outliers). Outliers are indicated 360 

by black crosses and the black line across the box is the median value. Grey circles show individual 361 

variable errors for each observer. * indicates significant difference at the 5% significance level when 362 

testing for a difference in variable error across sessions. † indicates significant difference at the 5% 363 

significance level when testing for evidence of combination (best > both). ‡ indicates significant 364 

difference at the 5% significance level when testing for a difference from optimal (both ≠ optimal). 365 

Observers quickly learned to use the novel cues, and variability using the cues decreased with 366 

repeated training and exposure to the task 367 
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Thirty-eight of thirty-nine observers passed the a priori learning criteria in the first session of the 368 

experiment and each following session. To pass the learning criteria, an observer was required to 369 

show a correlation coefficient greater than 0.7 between their responses and the hidden target 370 

locations for each trial type. One observer’s data from the first session (in the shape group) was lost 371 

as the computer crashed while the data was saving. That observer passed the learning criteria in 372 

both subsequent sessions. The remaining observer (in the angle group) also passed the learning 373 

criteria in the second and third sessions. Thus, observers quickly learned the mappings between the 374 

novel cues and location and could use the novel cues to complete the task. 375 

We were interested in whether the observers’ performance changed over the sessions as they 376 

gained more practice with the novel cues. To address this question, we performed a Friedman’s Test 377 

to compare variable errors over time (session number was the independent variable) for each group 378 

separately. We used a Friedman’s Test as variable errors were not normally distributed and, as the 379 

test relies on ranking the data rather than absolute values, does not depend on the measure of 380 

variable error that we use (we chose to use standard deviation, but could have used variance 381 

instead, leading to increased absolute differences between conditions). Both the angle group and 382 

height group significantly reduced their variable error over time using the novel cues (angle group: 383 

𝜒2(2) =  10.4, 𝑝 =  .006, Figure 2B; height group: 𝜒2(2) =  8.6, 𝑝 =  .014, Figure 2D). Variable 384 

error using the angle size cue significantly decreased from sessions one to three (𝑊 = 54, 𝑝 =  .004) 385 

and two to three (𝑊 = 53, 𝑝 =  .006) in the angle group. Variable error using the bar height cue 386 

significantly decreased from sessions one to two (𝑊 = 51 𝑝 =  .014) for the height group. There 387 

was no change in variable error using the novel cue over time for the colour or shape groups (colour 388 

group: 𝜒2(2) =  1.4, 𝑝 =  .497, Figure 2A; shape group: 𝜒2(2) =  2.89, 𝑝 =  .236, Figure 2C); 389 

although we note that the median variable error reduces from 0.084 in session one to 0.064 in 390 

session three for the shape group with the lack of significance likely caused by the outlier values in 391 

sessions two and three (Figure 2C).  392 

Variable error using the familiar spread cue did not change over time for any group of participants 393 

(colour group: 𝜒2(2) =  1.4, 𝑝 =  .497, Figure 2A; angle group: 𝜒2(2) =  1.4, 𝑝 =  .497, Figure 2B; 394 

shape group: 𝜒2(2) =  4.67, 𝑝 =  .0.97, Figure 2C; height group: 𝜒2(2) =  2.4, 𝑝 =  .301, Figure 2D). 395 

Novel cues were combined with the familiar cue by, at most, the third session, but combination was 396 

often suboptimal 397 

Recall that our main research questions were: (1) do observers combine the novel and familiar cues 398 

to increase precision above what is possible using the most reliable single cue alone, and (2) if so, 399 
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does the gain in precision using both cues compared to the best single cue differ from the optimal or 400 

maximum gain predicted by reliability-weighted averaging? To answer (1), we performed a one-401 

tailed Wilcoxon Signed-Rank test comparing variable error with the best of the novel and familiar 402 

cues to performance with both cues together for each group in each session of the experiment. If 403 

variable error using both cues was significantly less than variable error using the best single cue, we 404 

conclude that the observers in that group and session showed evidence of combination (green 405 

dagger and lines in Figure 2). To answer (2), we performed a two-tailed Wilcoxon Signed-Rank test 406 

comparing variable error using both cues to the optimal prediction (calculated from measured 407 

variable error using each single cue alone). If variable error using both cues differed significantly 408 

from the optimal prediction, we concluded that the observers in that group and session were, on the 409 

hole, sub-optimal (red double dagger and lines in Figure 2). If not, we conclude that they optimally 410 

combined the novel and familiar cues. 411 

In the first session, only the colour group showed evidence of combination and all groups were 412 

suboptimal (rows 1-4 of Table 1; third column of plots in Figure 2). In the second session, all except 413 

the height group showed evidence of combination, but all groups remained suboptimal (rows 5-8 of 414 

Table 1; forth column of plots in Figure 2). In the third session, all groups showed evidence of 415 

combination, with only the angle and shape groups remaining suboptimal (rows 9-12 of Table 1; fifth 416 

column of plots in Figure 2). 417 

Table 1: Statistical tests for evidence of combination and a difference from optimal for each group in 418 

each session of Experiment 1. A one-tailed Wilcoxon Signed-Rank test was used to test for evidence 419 

of combination and a two-tailed test was used to test for a difference from optimal. The columns 420 

“Best > Both” and “Both > Optimal” show the number of participants whose individual data satisfy 421 

the inequality out of the total number of participants included in the analysis of that session for that 422 

group. 423 

Row 
No. 

Group Session Best > 
Both 

𝑾 𝒑 Combine? Both > 
Optimal 

𝑾 𝒑 Subopti
mal? 

1 Colour 1 8/10 51 .007 Yes 9/10 53 .006 Yes 

2 Angle 1 4/10 20 .784 No 10/10 55 .002 Yes 

3 Shape 1 7/9 36 .064 No 9/9 45 .004 Yes 

4 Height 1 5/10 31 .385 No 10/10 55 .002 Yes 

5 Colour 2 10/10 55 .001 Yes 10/10 55 .002 Yes 

6 Angle 2 8/10 49 .014 Yes 9/10 54 .004 Yes 



17 
 

7 Shape 2 10/10 55 .001 Yes 8/10 50 .02 Yes 

8 Height 2 6/10 38 .161 No 9/10 53 .006 Yes 

9 Colour 3 10/10 55 .001 Yes 7/10 43 .131 No 

10 Angle 3 7/10 47 .024 Yes 10/10 55 .002 Yes 

11 Shape 3 9/10 49 .014 Yes 7/10 49 .027 Yes 

12 Height 3 9/10 54 .002 Yes 7/10 38 .322 No 

 424 

Experiment 1: Summary 425 

In Experiment 1, we showed that observers can combine newly learned novel cues (colour, angle 426 

size, shape, and the height of a bar) to horizontal location with a familiar cue (a dot cloud) to 427 

improve location estimate precision. Variable error using the novel cues alone decreased across 428 

sessions, likely due to extra training and increased exposure to the task. Importantly, by the third 429 

session of the experiment, all four groups of observers had significantly lower variable error using 430 

the novel and familiar cues together compared to their best single cue (35/40 observers were better 431 

with both cues than their best single cue in total across the groups in the third session), a feature of 432 

integration of familiar cues. For two groups of observers, those who learned the colour and height 433 

cues, variable error using the novel and familiar cues together in the third session was not 434 

significantly different to the optimal variable error of an ideal observer who takes a reliability-435 

weighted average of estimates from the two single cues. 436 

These findings complement the limited number of previous studies showing that the human 437 

perceptual system can combine newly learned novel cues with familiar cues to improve precision. 438 

They extend the previous results to instances where observers must learn to use abstract novel cues 439 

to aid estimates of horizontal position on a computer screen.  440 

In Experiment 2, we tested whether observers would also combine two newly learned novel cues 441 

(colour and angle size or colour and shape) to location with each other, as well as with a familiar cue 442 

(dot cloud). 443 

Experiment 2: Methods 444 

Overview 445 

Two separate groups, each of ten observers, completed a task three times in three separate 446 

sessions. The task required the observers to use one of two novel cues, a familiar cue, or two of the 447 
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cues simultaneously to estimate the location of a hidden target by using a computer mouse to adjust 448 

the horizontal position of a bar on a computer screen. As in Experiment 1, the task began a training 449 

period. However, there were now two blocks of training trials that taught observers the mapping 450 

between each novel cue and location separately. Observers completed the two novel cue training 451 

blocks in a random order. They were identical to the training blocks in Experiment 1 (Figure 1). 452 

After observers completed both novel cue training blocks, the test trials began (Figure 3). At the 453 

start of the test block, observers were instructed that they would now begin to use the newly learnt 454 

novel cues, along with a familiar cue (a dot-cloud, or the spread cue) to estimate the location of a 455 

hidden object – an octopus hiding in the sea. The two different groups of ten observers (the colour-456 

angle-spread group and the colour-shape-spread group) saw different combinations of trials. 457 

 458 
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Figure 3: The test trials in Experiment 2. (A-B) In test trials, observers used either one of the newly 459 

learned novel cues, a familiar spread cue, both the novel cues together, or one of the novel cues and 460 

the familiar cue together to estimate the position of a hidden object (an octopus hiding in the sea).  461 

On each trial, the colour-angle-spread group of observers were presented with either the colour cue, 462 

angle cue, or spread cue alone (colour-only, angle-only, or spread-only trials), or with a pairing of 463 

two cues (colour-spread, angle-spread, or colour-angle trials). In colour-only and angle-only trials, 464 

observers were presented with eight pairs of lines (in fixed positions) at the bottom of the screen. 465 

The average colour of the pair of lines or angle between them provided a novel estimate of location 466 

according to the trained mappings. In spread-only trials, eight pairs of parallel and grey lines (no 467 

novel cue information) were spread out across the screen. The position of each pair of lines was 468 

drawn from a Gaussian distribution, centred on the hidden location, such that the mean or centroid 469 

of the locations was the best estimate. In colour-spread or angle-spread trials, the eight pairs of lines 470 

were spread across the screen and had the property of the novel cue (either the relevant colours or 471 

angles between the lines). In colour-angle trials, the eight pairs of lines appeared in their fixed 472 

positions at the bottom of the screen and had the property of both novel cues (both the relevant 473 

colours and angles between the lines).  474 

The colour-shape-spread group of observers also experienced the colour-only, spread-only, and 475 

colour-spread trials, with the small difference that cues were no longer presented as pairs of lines 476 

but as grey or coloured squares. This group of observers also experienced shape-only, shape-spread, 477 

or colour-shape trials. In shape-only and colour-shape trials, observers were presented with eight 478 

ovals (in fixed positions) at the bottom of the screen. Either the average axis ratio of the ovals alone 479 

(shape-only trials) or both the average axis ratio and colour of the ovals (colour-shape trials) 480 

provided a novel estimate of location according to the trained mappings. In shape-spread trials, the 481 

eight ovals were spread across the screen and had the property of the novel cue (the relevant axis 482 

ratios). 483 

For both groups of observers, trials of all types were interleaved. After the cue(s) appeared on each 484 

trial, observers adjusted the horizontal position of a vertical line, using a mouse, to their best guess 485 

of the hidden location. Feedback was given indicating if the observers had “caught” the octopus 486 

along with an indicator of the true hidden location that displayed the corresponding novel cue 487 

values (the colour or angle size, or the colour and shape). If the octopus was caught, an animation 488 

showed the octopus move across the screen from its hidden location to the bucket. 489 

Observers 490 
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Ten observers were recruited for the colour-angle-spread group (6 female, age range 22-28 years) 491 

and ten for the colour-shape-spread group (9 female, age range 19-36 years) using Durham 492 

Psychology Department’s Participant Pool programme or through word of mouth. All observers had 493 

normal or corrected to normal visual acuity (self-report) and no colour vision deficiencies (assessed 494 

using Ishihara Colour Plates). Each observer was given either £8 per hour or participant pool credits 495 

for their time. All observers gave written, informed consent prior to taking part in the study. Ethical 496 

approval was received from the Durham University Psychology Department Ethics Board (reference 497 

number: 17/07). 498 

Apparatus and Stimuli 499 

The apparatus and stimuli were the same we have already described for Experiment 1. 500 

Task Parameters 501 

In the colour, angle, and shape cue training blocks there were two repeats of each of 36 possible 502 

hidden locations (15% to 85% of the way across the screen from left to right, sampled every 2%) for 503 

both the “with mapping” and “without mapping” trials (72 trials of each type). In the test block, the 504 

same 36 unique hidden locations were used, with each repeated three times for each trial type 505 

(colour-angle-spread group: colour-only, angle-only, spread-only, colour-spread, angle-spread, 506 

colour-angle; colour-shape-spread group: colour-only, shape -only, spread-only, colour-spread, 507 

shape-spread, colour- shape; 108 trials each). Trials of all types were interleaved and presented in a 508 

random order. 509 

Data Analysis 510 

The analysis procedure was identical to Experiment 1. The mean strengths of the central bias for 511 

each trial type in the third session for the colour-angle-spread group (averaged across sessions and 512 

observers), where zero would indicate no bias and larger numbers indicate increasing bias, were: 513 

colour-only 𝛽 = 0.1, angle-only 𝛽 =  0.05, spread-only 𝛽 = 0.09, colour-spread 𝛽 =  0.06, angle-514 

spread 𝛽 =  0.02, and colour-angle 𝛽 =  0.01. The mean strengths of the central bias for each trial 515 

type in the third session for the colour-shape-spread group were: colour-only 𝛽 = 0.13, shape-only 516 

𝛽 =  0.11, spread-only 𝛽 = 0.1, colour-spread 𝛽 =  0.05, shape-spread 𝛽 =  0.05, and colour-shape 517 

𝛽 =  0.01. 518 

Open Practices Statement 519 

This experiment was not pre-registered. The raw data files and analysis script are available online at 520 

https://osf.io/gj92a/. 521 

https://osf.io/gj92a/
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Experiment 2: Results 522 

Each row of plots in Figure 4 shows the data that pertains to each possible cue pairing for the colour-523 

angle-spread group. In the top row, we plot data from the colour-only, spread-only, and colour-524 

spread trials. In the second row, we plot data from the angle-only, spread-only, and angle-spread 525 

trials. In the third row, we plot data from the colour-only, angle-only, and colour-angle trials. The left 526 

panel of plots shows variable error using the familiar and novel cues alone across sessions (Figure 527 

4A-C). These plots show that variable error using the familiar spread cue and novel colour cue is 528 

stable across sessions but that observers get better using the novel angle cue with increased training 529 

and exposure to the task. The right panel of plots shows variable error in each session using the 530 

worst of the two single cues (highest variable error), the best of the two single cues (lowest variable 531 

error), both cues together, and the optimal variable error using both cues together that would be 532 

achieved by taking a reliability-weighted average of estimates from the two single cues (Figure 4D-F). 533 

A visual inspection of Figure 4D-F suggests that the median variable error using both cues together 534 

may be lower than the best single cue in the third session of the experiment when using the angle 535 

and spread cues together but not the other pairs of cues. We also see that the median variable 536 

errors using both cues are all higher than the optimal variable error from reliability-weighted 537 

averaging, suggesting that even if some pairing of cues resulted in combination, the combination 538 

was suboptimal. 539 

 540 
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Figure 4: Results of the colour-angle-spread group in Experiment 2. (A-C) Variable errors using the 541 

familiar and novel cues alone for each group of observers across sessions. (D-F) Variable errors for 542 

each group of observers in each session using the worst single cue, the best single cue, both cues 543 

together, and the optimal variable error that could be achieved using both together by taking a 544 

reliability-weighted average of estimates from each single cue. The whiskers of the boxplots extend 545 

to adjacent values (the most extreme data points that are not more than 1.5 times the interquartile 546 

range above or below the upper and lower quartiles or that are not outliers). Outliers are indicated 547 

by black crosses and the black line across the box is the median value. Grey circles show individual 548 

variable errors for each observer. * indicates significant difference at the 5% significance level when 549 

testing for a difference in variable error across sessions. † indicates significant difference at the 5% 550 

significance level when testing for evidence of combination (best > both). ‡ indicates significant 551 

difference at the 5% significance level when testing for a difference from optimal (both ≠ optimal). 552 

Figure 5 shows the data in the same way for the colour-shape-spread group. These plots show that 553 

variable error using all cues was stable across sessions for this group of observers (Figure 5A-C). A 554 

visual inspection of Figure 5D-F suggests that the median variable error using both cues together 555 

may be lower than the best single cue in the second and third session for all cue pairs and that 556 

median variable errors using both cues seem to approach the optimal variable error from reliability-557 

weighted averaging, suggesting combination may be optimal for this group of observers. 558 

 559 
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Figure 5: Results of the colour-shape-spread group in Experiment 2. (A-C) Variable errors using the 560 

familiar and novel cues alone for each group of observers across sessions. (D-F) Variable errors for 561 

each group of observers in each session using the worst single cue, the best single cue, both cues 562 

together, and the optimal variable error that could be achieved using both together by taking a 563 

reliability-weighted average of estimates from each single cue. The whiskers of the boxplots extend 564 

to adjacent values (the most extreme data points that are not more than 1.5 times the interquartile 565 

range above or below the upper and lower quartiles or that are not outliers). Outliers are indicated 566 

by black crosses and the black line across the box is the median value. Grey circles show individual 567 

variable errors for each observer. * indicates significant difference at the 5% significance level when 568 

testing for a difference in variable error across sessions. † indicates significant difference at the 5% 569 

significance level when testing for evidence of combination (best > both). ‡ indicates significant 570 

difference at the 5% significance level when testing for a difference from optimal (both ≠ optimal). 571 

Observers quickly learned to use the novel cues and variability using some of the cues decreased with 572 

repeated training and exposure to the task in the colour-angle-spread group 573 

Nine of the ten colour-angle-spread observers passed the learning criterion in all three sessions of 574 

the experiment. The remaining observer passed the learning criterion in the second and third 575 

sessions. Six of the ten colour-shape-spread observers passed the learning criterion in all three 576 

sessions. Of the remaining four, three of them passed the criterion in the second and third sessions, 577 

but one only passed the learning criterion in the second but not third session. Thus, overall, 578 

observers quickly learned the mappings between the novel cues and location and could use the 579 

novel cues to complete the task.  580 

The colour-angle-spread observers reduced their variable error over time using the colour cue 581 

(𝜒2(2) =  6.89, 𝑝 =  .032, Figure 4A) and angle cue (𝜒2(2) =  14.6, 𝑝 =  .001, Figure 4B), but not 582 

the spread cue (𝜒2(2) =  2.89, 𝑝 =  .236, Figure 4A). Using the angle cue, variable errors reduced 583 

significantly from session one to three (𝑊 = 55, 𝑝 =  .002) and two to three (𝑊 = 54, 𝑝 =  .004). 584 

None of the pairwise comparisons were significant for the colour cue, but the median variable error 585 

showed the same trend of reducing across sessions. 586 

The colour-shape-spread observers did not reduce variable error over time for any of the cues 587 

(spread cue: 𝜒2(2) =  1.8, 𝑝 =  .407, Figure 5A; colour cue: 𝜒2(2) =  0.25, 𝑝 =  .882, Figure 5B; 588 

shape cue: 𝜒2(2) =  1, 𝑝 =  .607, Figure 5C) 589 
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Novel and familiar cues were consistently combined in the colour-shape-spread group but not the 590 

colour-angle-spread group, and novel colour and shape cues were combined while novel colour and 591 

angle cues were not 592 

Table 2 summarises the results for the colour-angle-spread group. In the first session, this group did 593 

not show evidence of combination for any cue pairing but were only suboptimal in colour-spread 594 

and colour-angle trials (rows 1-3 in Table 2; Figure 5). In the second session, they showed evidence 595 

of combination in colour-spread and angle-spread trials but not colour-angle and did not differ from 596 

optimal for any trial type (rows 4-6 in Table 2; Figure 5). In the third session, the colour-angle-spread 597 

group only showed evidence of combination in angle-spread trials and were suboptimal in all trial 598 

types (rows 7-9 in Table 2; Figure 5). 599 

Table 2: Statistical tests for evidence of combination and a difference from optimal for the colour-600 

angle-spread group in Experiment 2. A one-tailed Wilcoxon Signed-Rank test was used to test for 601 

evidence of combination and a two-tailed test was used to test for a difference from optimal. The 602 

columns “Best > Both” and “Both > Optimal” show the number of participants whose individual data 603 

satisfy the inequality out of the total number of participants included in the analysis of that session. 604 

Row 
No. 

Cue 
Pairing 

Session Best > 
Both 

𝑾 𝒑 Combine? Both > 
Optimal 

𝑾 𝒑 Subopti
mal? 

1 Colour-
spread 
(N-F) 

1 7/9 34 .102 No 9/9 45 .004 Yes 

2 Angle-
spread 
(N-F) 

1 7/9 30 .213 No 8/9 38 .074 No 

3 Colour-
angle   
(N-N) 

1 6/9 27 .326 No 8/9 40 .039 Yes 

4 Colour-
spread 
(N-F) 

2 7/10 48 .019 Yes 8/10 43 .131 No 

5 Angle-
spread 
(N-F) 

2 9/10 45 .042 Yes 7/10 43 .131 No 

6 Colour-
angle   
(N-N) 

2 7/10 36 .216 No 8/10 41 .193 No 

7 Colour-
spread 
(N-F) 

3 6/10 42 .08 No 8/10 47 .049 Yes 
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8 Angle-
spread 
(N-F) 

3 9/10 45 .042 Yes 9/10 53 .006 Yes 

9 Colour-
angle   
(N-N) 

3 3/10 22 .722 No 9/10 54 .004 Yes 

 605 

Table 3 summarises the results for the colour-shape-spread group. In the first session, this group also 606 

did not show evidence of combination for any cue pairing but were only suboptimal in colour-spread 607 

and shape-spread trials (rows 1-3 in Table 3; Figure 6). In the second session, they showed evidence 608 

of combination and did not differ from optimal for any trial type (rows 4-6 in Table 3; Figure 6). This 609 

was also true in the third session (rows 7-9 in Table 3; Figure 6). 610 

Table 3: Statistical tests for evidence of combination and a difference from optimal for the colour-611 

shape-spread group in Experiment 2. A one-tailed Wilcoxon Signed-Rank test was used to test for 612 

evidence of combination and a two-tailed test was used to test for a difference from optimal. The 613 

columns “Best > Both” and “Both > Optimal” show the number of participants whose individual data 614 

satisfy the inequality out of the total number of participants included in the analysis of that session. 615 

Row 
No. 

Cue 
Pairing 

Session Best > 
Both 

𝑾 𝒑 Combine? Both > 
Optimal 

𝑾 𝒑 Subopti
mal? 

1 Colour-
spread 
(N-F) 

1 5/8 28 .098 No 8/8 36 .008 Yes 

2 Shape-
spread 
(N-F) 

1 5/8 23 .273 No 8/8 36 .008 Yes 

3 Colour- 
shape   
(N-N) 

1 4/6 13 .344 No 5/6 18 .156 No 

4 Colour-
spread 
(N-F) 

2 8/10 51 .007 Yes 5/10 32 .695 No 

5 Shape-
spread 
(N-F) 

2 9/10 53 .003 Yes 9/10 46 .064 No 

6 Colour- 
shape   
(N-N) 

2 8/10 51 .007 Yes 8/10 46 .064 No 
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7 Colour-
spread 
(N-F) 

3 9/10 51 .007 Yes 6/10 42 .16 No 

8 Shape-
spread 
(N-F) 

3 8/9 37 .049 Yes 6/9 39 .055 No 

9 Colour- 
shape   
(N-N) 

3 9/9 45 .002 Yes 6/9 25 .82 No 

 616 

Experiment 2: Summary 617 

We found that observers quickly learned to use the novel cues to location. Although use of some 618 

novel cues improved over time (location estimate variability reduced), observers were able to use 619 

the cues in the first session of the experiment, implying that they had leaned the association after 620 

only a small number of training trials. Observers were able to combine the newly learned novel cues 621 

with a familiar cue to improve precision (reduce variability) regardless of the pair of cues that they 622 

learned, but combination of novel and familiar cues was inconsistent for the colour-angle-spread 623 

group and often suboptimal. While the colour-shape group combined the two novel cues with each 624 

other to improve precision, the colour-angle-spread group did not. 625 

General Discussion 626 

It is clear that a mature perceptual system can learn new mappings between novel cues and 627 

properties of the environment (Di Luca et al., 2010; Ernst, 2007; Haijiang et al., 2006; Harrison & 628 

Backus, 2012; Michel & Jacobs, 2008; Negen et al., 2018), with a limited number of studies 629 

suggesting that novel cues can be integrated into the normal perceptual experience by combining 630 

them with familiar cues in a “Bayes-like” way to increase perceptual precision (Ernst, 2007; Gibo et 631 

al., 2017; Michel & Jacobs, 2008; Negen et al., 2018). Here, we trained observers to use abstract 632 

novel cues to estimate the horizontal location of hidden objects on a computer screen. In 633 

Experiment 1, observers benefitted from a suboptimal but significant gain in precision using novel 634 

and familiar cues together, extending previous reports of novel-familiar cue combination. We found 635 

evidence of a reduction in variable error from combining novel and familiar cues in the third session 636 

of the experiment for all four of the abstract novel cues we tested. In Experiment 2, we tested for 637 

the first time whether two novel cues may also be combined with each other. We found that one 638 

pair of novel cues could be combined to improve precision but the other could not, even after three 639 

sessions of repeated training.  Taken together, our results add to the current literature on the 640 

integration of novel cues into the normal perceptual experience by showing that abstract novel cues 641 



27 
 

to location are quickly learned and combined with familiar cues to increase perceptual precision, but 642 

that whether two novel cues to location are combined may depend on the choice of cues. 643 

Why might some pairs of novel cues be easier to combine than others? 644 

Whether or not two cues are combined can depend on the strength of the belief that the two cues 645 

are coupled (Ernst, 2006) or that they come from the same source (Körding et al., 2007). It is 646 

possible that, in Experiment 2, the colour-shape group were able to combine the two novel cues, but 647 

the colour-angle group were not because our observers were more likely to expect a coupling or 648 

correspondence between colour and shape than they were between colour and angle size. There are 649 

many natural associations between different shapes and colours, but it is harder to think of similar 650 

associations between different angle sizes and colours. Indeed, in the colour perception literature 651 

there several reports of object shape modulating colour perception, such as when a grey banana 652 

appears slightly yellow (Hansen et al., 2006; Olkkonen et al., 2008; Witzel et al., 2011; Witzel & 653 

Hansen, 2015), an effect that can also be conceptualised within a reliability-weighted averaging 654 

framework where shape is an extra cue to colour (Witzel et al., 2018). This could explain why 655 

observers combined colour and shape cues but not colour and angle size cues in Experiment 2. 656 

Why is combination of novel and familiar cues often suboptimal? 657 

To take a reliability-weighted average of novel and familiar cues, observers must learn the novel 658 

cue’s reliability. Obtaining an accurate estimate of the novel cue’s reliability may require more time 659 

(feedback) than is offered in our experiments. In contrast, this is not an issue in experiments where 660 

an observer is presented with two familiar cues, where we can expect that, through a lifetime of 661 

repeated exposure, they have good internal estimates of the cue reliabilities. Such an explanation is 662 

in line with the inability of children to combine cues before the age of 10 (Gori et al., 2008; Nardini 663 

et al., 2010) unless they receive explicit training (Negen et al., 2019). In our task, variable error using 664 

some of the novel cues decreases over time, so not only might repeated exposure be needed to 665 

develop good internal estimates of the cue reliabilities, but the learning the correct reliabilities is 666 

made harder by the fact that they are still to stabilise.  667 

Another possibility is that optimal combination in not possible for the type of information provided 668 

to observers in our task. In classic cue combination experiments, low-level sensory cues are 669 

combined to increase perceptual precision and enhance discrimination (Alais & Burr, 2004; Ernst & 670 

Banks, 2002; Knill & Saunders, 2003). In other words, observers are able to account for low-level 671 

sensory noise when combining cues. However, there is evidence to suggest that the brain may not 672 

be able to perform the same calculation across more complex, higher-level information (Jarvstad et 673 
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al., 2014; Summerfield & Tsetsos, 2012; Wu et al., 2009). Indeed, the results of a recent study 674 

suggest that as we displayed the novel cues in our experiments in a way that required “cognitive 675 

integration” of the eight novel stimulus values, this could cause the suboptimalities we see in our 676 

data (Castañón et al., 2019), see also Dakin et al. (2005). However, we must also note that even low-677 

level sensory cue combination is not always optimal (Rahnev & Denison, 2018). 678 

Limitations 679 

As explained in the methods section, the standard deviation of the Gaussian distribution from which 680 

the eight stimulus values were drawn varied for each novel cue to account for the fact that the 681 

ability of observers to average the eight stimulus values varied with novel cue type. We determined 682 

the different values that we used in pilot testing such that, on average across pilot observers, 683 

variability using each novel cue and the familiar cue alone was roughly matched. As can be seen in 684 

Figure 2, the values that we used did not transfer across observer groups. The values that worked in 685 

piloting to match cue variabilities did not extend to the main experiments, where observers were 686 

generally worse with the novel cues compared to the familiar cue. Future experiments could 687 

attempt to match the cue variabilities better by scaling the cues individually for each observer based 688 

on some pre-testing. 689 

In a previous paper, we discussed the issues surrounding the use of continuous responses to test for 690 

combination of multiple cues using measures of variability (Aston et al., 2021). That paper focused 691 

on the need to account for central biases in continuous responses and how that could be done, 692 

introducing a method we adopted in the analyses of the data presented here. In that paper, we also 693 

discussed the effects of additional response noise (e.g., motor noise). We showed that if the 694 

additional noise is equivalent across all trial types (single and combined cue trials), then it does not 695 

disrupt a researcher’s ability to detect a reduction in variability using both cues compared to the 696 

best single – what we termed the “combination effect” (see equation 3 in Aston et al., 2021). 697 

However, the equivalence between the optimal prediction and measured variability using both cues 698 

(where the optimal prediction is calculated from the measured single cue variabilities) is not 699 

preserved. Specifically, the calculated optimal prediction will suggest that variability could be lower 700 

than is possible (see footnote 3 in Aston et al., 2021). Here, this means that while we can be 701 

confident in our ability to detect a reduction in variability using both cues compared to the best 702 

single cue, we cannot be confident in our ability to test for optimal combination (or deviance from 703 

it), as our optimal predictions may be lower than can be achieved by our observers. Future 704 

experiments could seek to separate out measures of variability in continuous response data into the 705 
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parts due to sensory error and additional sources of noise. For more discussion of early vs late or 706 

motor noise during cue combination, see Hillis et al. (2004) and Knill and Saunders (2003). 707 

Conclusion 708 

Overall, our results provide extensive evidence that novel cues can be learned and combined with 709 

familiar cues to enhance perception, but mixed evidence for whether perceptual and decision-710 

making systems can extend this ability to the combination of multiple novel cues with only short-711 

term training. Whether the ability can be extended to the case of two novel cues may depend on the 712 

choice of cues. 713 
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