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1 Introduction

Understanding quantum field theory and quantum gravity in curved backgrounds such as
black holes and cosmological spacetimes is one of the most pressing questions in theoretical
physics. The AdS/CFT correspondence is a very powerful tool for this purpose since it
relates observables in curved backgrounds to correlation functions of a CFT in the bound-
ary [1]. Moreover, AdS is a useful toy model since AdS4 is related by Wick rotation to
dS4 which is relevant for cosmology [2], and AdS2×S2 describes the near-horizon geometry
of extremal black holes in four dimensions [3, 4]. While a great deal of technology has
been developed to compute CFT correlators, we would also like to be able to compute
things directly in the bulk in order to have a complete grasp of the physics. Carrying out
calculations directly in the bulk is very challenging however because of the complexity of
Witten diagrams and worldsheet calculations. Nevertheless, much progress has been made
for IIB string theory in AdS5× S5. For example, it was discovered that supergravity in this
background enjoys a 10d conformal symmetry, which is realised using 4-point correlators
of protected operators in the boundary CFT, N = 4 SYM [5].1 This property is inherited
from scale-invariance of the corresponding flat space scattering amplitude after a conformal
transformation to AdS5× S5 and has very non-trivial consequences for N = 4 SYM corre-
lators. Similar results were also found in AdS3× S3 [7–10] and AdS5× S3 [11]. Subsequent
work showed that 10d conformal symmetry is broken by string corrections [12]. In another
development, a simple 10d scalar effective action was conjectured to describe all 4-point
correlators of 1/2-BPS operators in N = 4 SYM dual to tree-level string theory in AdS5×
S5 to all orders in α′ [13]. This action successfully reproduced previous results obtained
using different methods [12, 14–17] and makes an infinite number of new predictions.

In this paper we will develop these methods in the context of AdS2×S2. One motivation
for doing so is to expand the toolbox for studying black holes in the real world. Another is
that the correlators in this background have very simple mathematical structure, which can
provide a toy model for better understanding 10d conformal symmetry in AdS5×S5 and its
breaking. On the other hand, much less is known about the AdS2/CFT1 correspondence
due to various subtleties such as the absence of a stress tensor in a conventional 1d CFT [18]
and a large backreaction when matter is introduced in the bulk [19–21]. We will therefore
consider a non-gravitational theory in the bulk. In particular, reducing N = 8 supergravity
on AdS2×S2 gives N = 2 graviton multiplets and hypermultiplets [22, 23] and we will
restrict our attention to 4-point tree-level correlators of the latter. We also study correlators

1All 4-point correlators of protected operators in N = 4 SYM in the supergravity approximation were
first computed in [6].
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of higher-derivative corrections to the interactions of hypermultiplets in AdS2×S2 analogous
to α′ corrections in AdS5×S5. From the point of view of the effective action, the two-
derivative interactions that arise from reducing supergravity on AdS2×S2 correspond to a
φ4 interaction and we refer to them as the 2-derivative sector. Higher-derivative interactions
are then described by applying derivatives to φ4. In addition there is a generalised free
theory described by non-interacting Witten diagrams in the bulk.

We can formally define correlators on the boundary which have SU(1, 1|2) supercon-
formal and crossing symmetry. Using these symmetries, we can then deduce the structure
of the lowest-charge correlators in the free, 2-derivative, and higher-derivative sectors. We
then use 4d conformal symmetry to obtain all higher-charge correlators in the free and
2-derivative sectors, which correspond to Kaluza-Klein modes on the S2, and match them
with the predictions of the effective action. A key ingredient in the realisation of 4d confor-
mal symmetry is the action of Casimirs of the superconformal group. On the other hand,
we find that only a special infinite class of correlators derived from the effective action with
higher derivative corrections can be reproduced by acting with Casimirs on 4d conformal
blocks, suggesting that 4d conformal symmetry is generically broken by higher derivative
corrections. This is further confirmed by the structure of anomalous dimensions of double
trace operators which we compute using a procedure for unmixing operators which are de-
generate at leading order in the central charge expansion reminiscent of [24]. Whereas the
anomalous dimensions are rational numbers in the 2-derivative sector and correspond to
eigenvalues of a Casimir operator, they are generically irrational in higher derivative sectors.

We find similar structure in 4-point correlators corresponding to α′ corrections to super-
gravity in AdS5×S5. In particular, α′3 corrections are analogous to the 2-derivative sector
in AdS2×S2 in that they are both described by a φ4 effective field theory and enjoy higher-d
conformal symmetry. Similarly, α′5 corrections are analogous to 6-derivative corrections in
AdS2×S2 and are shown to generically break 10d conformal symmetry, in the sense that
the predictions of the 10d effective action cannot be matched by acting with Casimirs on
10d conformal blocks. We do find a 6-derivative effective action for which the integrands
of the Witten diagrams exhibit 10d conformal symmetry, but the resulting correlators are
in disagreement with N = 4 SYM, specifically the coefficients fixed by localisation in [25].
This provides a new point of view on the 10d conformal symmetry breaking.

This paper is organised as follows. In section 2 we review the formalism for 1d CFT
correlators and the AdS2×S2 effective action and in section 3 we compute free theory
correlators and demonstrate their 4d conformal symmetry using Casimirs. In section 4, we
compute correlators in the 2-derivative sector and show agreement between the predictions
of 4d conformal symmetry and the effective action. We also provide an intuitive explanation
for the origin of this symmetry. Next, in section 5 we compute correlators in higher
derivative sectors and show that the 4d conformal symmetry is generically incompatible
with the predictions of the effective action, except for a special infinite class of correlators.
In section 6 we use an unmixing procedure to compute the anomalous dimensions of double
trace operators in the 2- and 6-derivative sectors, finding further evidence for the breaking
of 4d conformal symmetry by higher-derivative corrections. In section 7, we apply the
lessons we have learned in AdS2×S2 to AdS5×S5, realising 10d conformal symmetry for
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α′3 corrections using Casimirs and providing a new perspective on the breaking of this
symmetry by α′5 corrections. Finally, in section 8 we present our conclusions. We also have
a number of appendices providing more details about superconformal Casimirs, correlators
of descendent operators, and further examples of unmixing.

2 Overview

In this section, we will describe some aspects of superconformal correlators and SU(1, 1|2)
blocks in 1d. After that, we will review the effective action in AdS×S and how to compute
generalised Witten diagrams from this action.

2.1 1d correlators

Note that it is not possible to define a stress tensor in 1d since any conserved current
would simply be a constant. As a result, we only consider non-gravitational theories in
the bulk whose correlators have superconformal symmetry arising from the isometries of
the background, and can be formally thought of as correlators of a boundary CFT. It is
also possible to recast the expansion of bulk correlators in terms of Newton’s constant GN
as an expansion of boundary correlators in terms of a formally defined central charge c.
More precisely, we will associate GN ∼ l2P with 1/c, where lP is the Planck length. Free
theory correlators are then O(c0), while correlators in the 2-derivative sector correspond
to O(1/c). In addition to the lack of a stress tensor in the boundary, another subtlety
is that AdS2 has two disconnected timelike boundaries. In this paper, we only consider
correlators on a single boundary, but in principle one could consider correlators between
the two boundaries [26]. While the former have singularities when points in the boundary
collide, such singularities are absent in the latter.

In 1d, 4-point conformal correlators can be expressed in terms of conformal cross ratios
which take the following form:

zz̄ = u =
(
x12x34
x13x24

)2
, (1− z)(1− z̄) = v =

(
x23x14
x13x24

)2
(2.1)

where xij = xi − xj . Solving for z, z̄ in terms of u, v shows that

z = z̄ = 1
2(1 + u− v) (2.2)

which follows from the fact that the discriminant (1 + u − v)2 − 4u vanishes. Hence,
conformal cross ratios in 1d correspond to a holomorphic limit of the standard cross ratios
in higher dimensions. It is convenient to define z = z̄ = x in terms of which cross ratios
are given by

u = x2, v = (1− x)2. (2.3)

To describe superconformal correlators, we follow the formalism of [27] (with m = n =
1 in the notation of that paper) arising from analytic superspace [28, 29] and consider the
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super Grassmannian Gr(1|1, 2|2) of (1|1) planes in (2|2) dimensions. Coordinates on this
Grassmannian can be given as

Xi =
(
xi θi
θ̄i yi

)
(2.4)

where xi is the (1d) space-time coordinate, yi is a (complex) internal coordinate used to
deal with the SU(2) structure and θi, θ̄i are Grassmann odd coordinates. Since we will be
dealing with correlators of four operators on this space, we added a subscript i = 1, 2, 3, 4
to denote the particle number.

The 4d N = 2 hypermultiplet is the simplest to understand from a higher dimensional
perspective. This multiplet on an AdS2×S2 background is dual to an infinite tower of
fermionic 1d 1/2-BPS multiplets [22, 23]. These are fermionic superfields of scaling di-
mension and SU(2) rep ∆. They can be written on the above super Grassmannian and
decompose into the following component fields

Ψ∆(xi, θi, θ̄i, yi) = ψ∆ + θiφ∆+ 1
2

+ θ̄iφ̄∆+ 1
2

+ θiθ̄iλ∆+1 ∆ = 1
2 ,

3
2 ,

5
2 , . . . (2.5)

where in each case the subscript denotes the dimension of the field. The field ψ∆ has SU(2)
rep ∆, φ∆ has SU(2) rep ∆ − 1, λ∆ has SU(2) rep ∆ − 2. For the special multiplet Ψ1/2
the descendant λ3/2 is absent (it would have negative SU(2) weight). Expanding in the yi
coordinates manifests the SU(2) indices for these reps

ψ∆(xi, yi) = ψI1...I2∆(xi)yI1i . . . yI2∆
i ∆ = 1

2 ,
3
2 , . . .

φ∆(xi, yi) = φI1...I2∆−2(xi)yI1i . . . y
I2∆−2
i ∆ = 1, 2, . . .

λ∆(xi, yi) = λI1...I2∆−4(xi)yI1i . . . y
I2∆−4
i ∆ = {}, 5

2 , . . . (2.6)

where yIi = (1, yi).
We will be interested in the 4-point functions of four 1/2-BPS superconformal pri-

maries:
〈ψ∆1(x1, y1)ψ∆2(x2, y2)ψ∆3(x3, y3)ψ∆4(x4, y4)〉 = P̂∆i

Gψ∆i
(x, y), (2.7)

where

P̂∆i
= g∆1+∆2

12 g∆3+∆4
34

(
g24
g14

)∆21 (g14
g13

)∆43

(2.8)

gij = yij
xij

. (2.9)

It will also be useful shortly to define the 2-point function of ψ1/2 operators

g̃ij = yij
|xij |

, (2.10)

which is antisymmetric under i ↔ j, reflecting the fermionic statistics. The prefactor
in (2.8) by itself transforms correctly as a 〈ψ∆1ψ∆2ψ∆3ψ∆4〉 correlator under the bosonic
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subgroup, leaving a remaining function Gψ(x, y) which is invariant, and thus a function of
x, y, the space-time and internal cross-ratios:

x = x12x34
x13x24

y = y12y34
y13y24

. (2.11)

Throughout this paper we will consider 4-point functions of 1/2-BPS operators and
in some cases also the correlators of descendants. The 1/2-BPS operators are fermionic
primaries ψ∆ with dimensions and SU(2) charges ∆ = 1

2 ,
3
2 , . . . However, it will turn out to

be most useful to label the correlators in terms of the bosonic descendant operators φ∆+1/2
with dimensions 1, 2, . . . Therefore, we will define the 1/2-BPS operators as

Op := (−1)
p
2

ψp− 1
2√

2p− 1 , (2.12)

where p = 1, 2, . . . In this convention the half-BPS operators have dimension and SU(2)
representation p− 1

2 . Furthermore, it is useful to introduce the normalisation (−1)p/2 (2p−
1)−1/2 inspired by the higher-dimensional conformal symmetry [5]. It will become clear why
this is useful in the discussions below (3.14) and (3.20). We then also label the descendants
similarly, thus defining

Lp := (−1)
p
2

φp√
2p− 1 , (2.13)

so the superfield (2.5) becomes

Op(x, y) = Op(x, y) + θLp(x, y) + θ̄L̄p(x, y) + . . . , (2.14)

where Lp has dimension p and SU(2) charge p− 1.
The correlator of primaries (2.7) is written:

〈Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)〉 = Ppi ×Gp1p2p3p4(x, y) , (2.15)

where the prefactor (2.8) becomes

Ppi = P̂(2pi−1)/2 = gp1+p2−1
12 gp3+p4−1

34

(
g24
g14

)p21 (g14
g13

)p43

. (2.16)

In this form, the superconformal Ward identities are simply ∂xG(x, y)|x=y = 0, i.e. G(x, x)
is independent of x [27]. This implies that we can write

Gpi(x, y) = kpi(x, y) + x− y
xy

Hpi(x, y) ,

where kpi(x, y) = κ

(
x

y

)p43

, (2.17)

with H(x, x) finite and with kpi(x, y) defined such that it is annihilated by the super
Casimir (defined later in (3.10)), CSU(1,1|2)

1,2 (Ppikpi) = 0 with a constant κ.
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2.2 Conformal blocks

In this subsection we discuss the conformal blocks in 1d. 4-point functions can be expanded
in superconformal blocks B∆,p(x, y) as follows:

〈Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)〉

=
∞∑

∆=1

p1+p2−2∑
p=0

Ap1p2p3p4
∆,p gp1+p2−1

12 gp3+p4−1
34

(
g24
g14

)p21 (g14
g13

)p43

B∆,p,p12,p34(x, y) , (2.18)

where pij = pi − pj , gij is defined in (2.9), and the coefficient A∆,p is given in terms of a
sum of squares of OPE coefficients

Ap1p2p3p4
∆,p =

∑
O∆,p,Õ∆,p

COp1p2C
Õ
p3p4COÕ . (2.19)

The superconformal blocks were derived for a general conformal group SU(m,m|2n)
in [27]. Specialising to m = n = 1, the blocks for long multiplets are given by

Blong
∆,p,p12,p34

(x, y) = −(x− y)(−x)∆
2F1(∆ + 1− p12,∆ + 1 + p34; 2∆ + 2;x)

× y−p−1
2F1(−p+ p12,−p− p34;−2p; y) . (2.20)

For half-BPS multiplets ∆ = p, and the blocks are

Bhalf-BPS
p,p12,p34 (x,y) =

(
−x
y

)p(
1+(x−y)

k∑
i=1

[x−i 2F1(p+1− i−p12,p+1− i+p34;2p+2−2i;x)]

×yi−1
2F1(i−p+p12, i−p−p34;2i−2p;y)

)
, (2.21)

where k = min(p− p12, p+ p34) and the square bracket means we take the regular piece as
x→ 0.

It is useful to note that the block of an operator with dimension ∆ and SU(2) repre-
sentation p contributes as follows to the 4-point function

〈Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)〉

∼
∑
∆,p

Ap1p2p3p4
∆,p gp1+p2−1

12 gp3+p4−1
34

(
g24
g14

)p21 (g14
g13

)p43

(−x)∆y−p (1 +O(x, y)) , (2.22)

where the higher orders in x, y correspond to spacetime or SU(2) descendants.

2.3 4d effective action

In [13] a 10d scalar effective action was introduced which generates all half-BPS 4-point
correlators in N = 4 SYM described by tree-level string theory in AdS5×S5. In AdS×S
the effective action takes the form

V AdS×S(φ) = GN
4!
[
Aφ4 + l4s

(
3B(∇φ.∇φ)2 + 6C∇2∇µφ∇µφφ2

)
(2.23)

+ l6s

(
6D(∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) + 6E∇µ∇2∇νφ∇µ∇νφφ2

)
+ . . .

]

– 7 –
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where GN is Newton’s constant and ls is the analogue of the string length. These param-
eters can be written in terms of the AdS radius R as follows:

GN = R2/c, l4s = aR4, (2.24)

where R is the AdS radius, and c and a are analogous to the central charge and string
coupling, respectively. Some of the terms in the effective action can be uplifted directly
from the flat space action. It is important to note however that this uplift is not unique: the
action contains ambiguities because the covariant derivatives no longer commute with each
other leading to curvature corrections which vanish in the flat space limit. Furthermore
the coefficients B,C, . . . themselves can have an expansion in the dimensionless parameter
lP /R

2:

B(a) = B0 +B1
l2s
R2 + . . .

C(a) = C0 + C1
l2s
R2 + . . .

. . . (2.25)

For simplicity, we will set R = 1 from now on throughout this paper, but it will be
understood that terms suppressed by 1/R vanish in the flat space limit. Whereas in
AdS5×S5 case the φ4 interaction describes α′3 corrections to supergravity, in AdS2×S2 it
describes the 2-derivative sector obtained from dimensional reduction of supergravity, as
we will see in section 4.2. Hence, the effective action in AdS2×S2 treats the 2-derivative
sector on equal footing with higher-derivative corrections.

2.4 AdS×S Witten diagrams

Using the effective action, we can compute generalised Witten diagrams that treat AdS
and the sphere on equal footing. This is explained in detail in [13], so we will just state
the main formulae. The generalised bulk-to-boundary propagator in AdSd+1×Sd+1 is

G(X̂, Ŷ ;X,Y ) =
(
−2X̂.X − 2Ŷ .Y

)−∆
, (2.26)

where
{
X̂, Ŷ

}
are embedding coordinates for AdS and sphere, respectively, written in terms

of (d+2)-dimensional Minkowski and Euclidean space, respectively, and which satisfy X̂2 =
−Ŷ 2 = −1. Similarly, {X,Y } are boundary coordinates satisfying X2 = Y 2 = 0. These
are related to d-dimensional boundary coordinates via −2Xi ·Xj = x2

ij and −2Yi ·Yj = y2
ij ,

where {i, j} label a pair of points. Note that the sphere does not actually have a boundary
since it is compact, but the Y coordinates naturally describe 1/2-BPS operators in the
boundary of AdS. When ∆ = d, the generalised bulk-to-boundary propagator satisfies the
equations of motion for a massless scalar field:

∇2G = 0. (2.27)

– 8 –
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Since the effective action in AdS×S describes a massless 4d scalar field, we will therefore
set ∆ = d in practice. Note that the bulk-to-boundary propagators have a normalisation

C∆ = Γ (∆)
2πd/2Γ (∆− d/2 + 1)

. (2.28)

We will dress the generalised Witten diagrams with this normalisation to obtain correlators.
A generalised contact Witten diagram is then defined as

D
AdSd+1×Sd+1

∆1∆2∆3∆4
(Xi,Yi) = 1

(−2)2Σ∆

∫
AdS×S

dd+1X̂dd+1Ŷ

(P1 +Q1)∆1(P2 +Q2)∆2(P3 +Q3)∆3(P4 +Q4)∆4
,

(2.29)
where we introduce the shorthand

Pi = X̂.Xi , Qi = Ŷ .Yi . (2.30)

It is now straightforward to expand this AdS×S contact diagram into an infinite number
of standard AdS contact diagrams multiplied by spherical analogues. In particular, using

1
(P +Q)∆ =

∞∑
p=0

(−1)p (p+ 1)∆−1
Γ(∆)

Qp

P p+∆ (2.31)

four times gives the expansion:

DAdS×S
∆1∆2∆3∆4

(Xi, Yi) =
∞∑
pi=0

4∏
i=1

(−1)pi
(pi + 1)∆i−1

Γ(∆i)

×D(d)
p1+∆1,p2+∆2,p3+∆3,p4+∆4

(Xi)B(d)
p1p2p3p4(Yi) , (2.32)

where

D
(d)
∆1∆2∆3∆4

(Xi) = 1
(−2)2Σ∆

∫
AdS

dd+1X̂

(X̂.X1)∆1(X̂.X2)∆2(X̂.X3)∆3(X̂.X4)∆4
, (2.33)

B(d)
p1p2p3p4(Y1, Y2, Y3, Y4) = (−2)2Σp

∫
S
dd+1Ŷ (Ŷ .Y1)p1(Ŷ .Y2)p2(Ŷ .Y3)p3(Ŷ .Y4)p4 , (2.34)

with Σ∆ = (∆1+∆2+∆3+∆4)/2 and Σp = (p1+p2+p3+p4)/2. For more details, see section
2.3 of [13]. It is convenient to define normalised functions

D
(d)
∆1∆2∆3∆4

(Xi) = NAdSd+1
∆i

D∆1∆2∆3∆4(Xi) , B(d)
p1p2p3p4(Yi) = N Sd+1

pi
Bp1p2p3p4(Yi), (2.35)

where

NAdSd+1
∆i

=
1
2π

d/2Γ(Σ∆ − d/2)
(−2)Σ∆

∏
i Γ(∆i)

, N Sd+1
pi

= 2× 2Σp
πd/2+1∏

i Γ(pi+1)
Γ(Σp+d/2+1) . (2.36)

It is also conventional to write Witten diagrams in terms of D̄ functions which are closely
related to the D-functions described above. For more details, see for example appendix D
of [30].
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Note that the contact diagrams in (2.29) come from bulk interaction vertices without
derivatives. More generally, contact diagrams with derivatives take the form

1
4!

1
(−2)2Σ∆

∫
AdS×S

dd+1X̂dd+1Ŷ ×

∏
i

Q
nQ

i
i P

nP
i

i × (∆i)ni

(Pi +Qi)∆i+ni

×
∏
i<j

(Xi.Xj)n
X
ij (Yi.Yj)n

Y
ij

 ,

(2.37)
with ni = nPi + nQi +

∑
j n

X
ij +

∑
j n

Y
ij . Expanding them as above then gives

(−2)2ΣX+2ΣY

∞∑
pi=0

( 4∏
i=1

(−1)pi
(pi + 1)∆i+ni−1

Γ(∆i)
D

(d)
pi+∆i+ni−nP

i

(Xi)Bpi+nQ
i

(Yi)
)

×

∏
i<j

(Xi.Xj)n
X
ij (Yi.Yj)n

Y
ij

 , (2.38)

where ΣX ,ΣY represent the sum of all the nXij , nYij , respectively.

3 Free theory

In this section we will derive 1d free theory correlators and show that they are consistent
with 4d conformal symmetry. The free theory correlators can be computed from Wick
contractions. For equal charge operators we obtain

〈Op(x1, y1)Op(x2, y2)Op(x3, y3)Op(x4, y4)〉|c0

= 1
N (0)
pppp

[
(g̃12g̃34)2p−1 − (g̃13g̃24)2p−1 + (g̃14g̃23)2p−1

]
= 1
N (0)
pppp

(g̃12g̃34)2p−1
[
1 +

(
x

y

)2p−1
(

(−sgnx) +
(1− y

1− x

)2p−1
sgn [x (1− x)]

)]
, (3.1)

where g̃ is defined in (2.10),

N (0)
pi

= (−1)Σp

√
(2p1 − 1)(2p2 − 1)(2p3 − 1)(2p4 − 1) (3.2)

comes from the normalisation in (2.12) and Σp = 1
2 (p1 + p2 + p3 + p4). Choosing our

external points such that x1 < x2 < x3 < x4, then g̃12 = g12, g̃34 = g34 and 0 ≤ x ≤ 1 and
so comparing to (2.15), we find that

G(0)
pppp(x, y) = 1

N (0)
pppp

[
1 +

(
x

y

)2p−1
(
−1 +

(1− y
1− x

)2p−1
)]

(3.3)

where the superscript indicates free theory correlators. According to (2.17) this decomposes
into

k(0)
pppp(x, y) = 1

N (0)
pppp

, H(0)
pppp(x, y) = 1

N (0)
pppp

x y

x− y

(
x

y

)2p−1
[
−1 +

(1− y
1− x

)2p−1
]
. (3.4)
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Similarly, for unequal charges {pi} = pqpq, where p > q we obtain

〈Op(x1, y1)Oq(x2, y2)Op(x3, y3)Oq(x4, y4)〉c0 = − 1
N (0)
pqpq

g̃2p−1
13 g̃2q−1

24 , (3.5)

and G(0)
pqpq(x, y) = − 1

N (0)
pqpq

(
x

y

)p+q−1
, (3.6)

where the operators have dimensions and charges (2p−1)/2, (2q−1)/2 and we decompose
G

(0)
pqpq into

k(0)
pqpq(x,y) =− 1

N (0)
pqpq

(
x

y

)q−p
, H(0)

pqpq(x,y) = 1
N (0)
pqpq

xy

x−y

(
x

y

)q−p[
1−

(
x

y

)2p−1
]
. (3.7)

3.1 4d conformal symmetry

To realise 4d conformal symmetry in the free theory, we need to consider the correlators
of descendants Lp, L̄p rather than the super primaries Op. Remarkably, as we show in
appendix B, the two correlators are related by a simple second order differential operator
which is closely related to the quadratic Casimir of the superconformal group acting on
points 1 and 2:

〈Lp1Lp2L̄p3L̄p4〉 = I−1CSU(1,1|2)
1,2 〈Op1Op2Op3Op4〉 , (3.8)

where
I = x12x34y13y24 − y12y34x13x24 = (x− y)x13x24y13y24, (3.9)

and CSU(1,1|2)
1,2 denotes the superconformal quadratic Casimir:

CSU(1,1|2)
1,2 = Ppi ×

x− y
xy

∆(2) xy

x− y
P−1
pi

,

∆(2) = D+
x −D−y ,

D±z = z2∂z(1− z)∂z ± (p12 + p43)z2∂z − p12p43z . (3.10)

For a derivation of the quadratic Casimir, see appendix A.
In the decomposition given by (2.17) the Casimir only sees Hpi :

CSU(1,1|2)
1,2 〈Op1Op2Op3Op4〉 = Ppi

x− y
xy

∆(2)Hpi(x, y) = Ppi

x− y
xy

H̃pi(x, y) , (3.11)

where we define
H̃pi(x, y) = ∆(2)Hpi(x, y) . (3.12)

The correlator in (3.8) is then given by

〈Lp1Lp2L̄p3L̄p4〉 = Ppi

x12x34y12y34
H̃pi(x, y) . (3.13)

Let us first consider the case of equal charges given in (3.4). The action of ∆(2) then
yields

H̃pppp = x2p

y2p−2

(
1 + (1− y)2p−2

(1− x)2p

)
. (3.14)
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Note that acting with ∆(2) on H gives a factor of (2p − 1)2 which gets cancelled by the
normalisation 1/N (0)

pppp. This is how the normalisation in (2.12) was chosen, up to the sign
which will become clear shortly. From (3.13) and (3.14) we get

〈LpLpL̄pL̄p〉 = g2p−2
14 g2p−2

23
1

x2
14x

2
23

+ g2p−2
13 g2p−2

24
1

x2
13x

2
24
. (3.15)

Note that the correlator of bosonic descendants is given in terms of bosonic 2-point func-
tions gij (2.9). For the lowest case p = 1 we have

〈L1L1L̄1L̄1〉 = 1
x2

14x
2
23

+ 1
x2

13x
2
24
. (3.16)

To see the 4d conformal symmetry, now lift this to four dimensions by replacing x2
ij →

x2
ij + y2

ij = x2
ij(1 + g2

ij) which gives

〈LLL̄L̄〉c0 =
[ 1
x2

14x
2
23

+ 1
x2

13x
2
24

]
4d

= 1
x2

14x
2
23

1
(1 + g2

14)(1 + g2
23)

+ 1
x2

13x
2
24

1
(1 + g2

13)(1 + g2
24)

, (3.17)

where we have defined the generator of all operators Lp

L =
∞∑
p=1

Lp . (3.18)

This correlator is thus a 4d object which contains all 1d free theory correlators. In partic-
ular, if we expand (1 + g2)−1 = 1− g2 + g4 − g6 + . . . and keep the two terms proportional
to g2p−2

14 g2p−2
23 and g2p−2

13 g2p−2
24 , this indeed reproduces the prediction in (3.15).

As another example, let us consider correlators with unequal charges in (3.7). Acting
on this with ∆(2) gives

H̃pqpq(x, y) = (−1)p+q xp+q

yp+q−2 . (3.19)

Using (3.13) then yields

〈LpLqL̄pL̄q〉 = (−1)p+q g2p−2
13 g2q−2

24
1

x2
13x

2
24
, (3.20)

which agrees with the term proportional to g2p−2
13 g2q−2

24 in the expansion of the generating
function (3.17). Thus the choice of signs in our normalisation of the half-BPS opera-
tors (2.12) was inspired by the realisation of the 4d conformal symmetry in free theory,
similarly to the rest of the normalisation.

4 2-derivative sector

In this section, we will derive all 4-point correlators corresponding to two-derivative inter-
actions of bulk hypermultiplets. There is an infinite tower of such correlators corresponding
to Kaluza-Klein modes on the S2. The basic strategy will be to first deduce the lowest
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charge correlator from superconformal symmetry and crossing, and then uplift it to ar-
bitrary charges using the assumption of 4d conformal symmetry. This result will then
be confirmed using Witten diagrams derived from the bulk effective action. Finally, we
will show that the 4d uplift of the lowest charge correlator corresponds to a 4d conformal
block, and provide a physical interpretation in terms of the partial wave expansion of the
4d bulk scattering amplitude arising in the flat space limit. This will have implications for
anomalous dimensions computed in section 6.

4.1 Lowest-charge correlator

In this subsection we determine the correlator for pi = 1 using crossing symmetry and
various other constraints. Note that crossing symmetry in 1d is subtle. For previous
treatments see [31, 32]. We make the following ansatz in terms of bosonic 2-point functions
gij (2.9):2

〈O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)〉|1/c = g12g34
x

y
(x− y)a(x) . (4.1)

If we exchange positions 1 and 3, which takes x→ 1− x and y → 1− y, and set the result
equal to minus the original expression (by Fermi statistics) we find the crossing constraint

a(1− x) = a(x) . (4.2)

Let us now consider exchanging 2 with 3, which takes x→ 1/x and y → 1/y:

〈O1(x1, y1)O1(x3, y3)O1(x2, y2)O1(x4, y4)〉|1/c = g12g34
x

y
(x− y)

(
− 1
x2a(1/x)

)
. (4.3)

Equating this with minus the original expression then implies

a

(1
x

)
= x2a(x) . (4.4)

Finally, for the third crossing condition, consider exchanging 1 with 3 in (4.3):

〈O1(x3, y3)O1(x1, y1)O1(x2, y2)O1(x4, y4)〉|1/c = g12g34
x

y
(x− y) 1

(1− x)2a

( 1
1− x

)
.

Equating this with the expression in (4.1) then gives the condition

a

( 1
1− x

)
= (1− x)2a(x) , (4.5)

which follows from (4.2) and (4.4).
Finally we consider the asymptotic structure of the correlator as x → 0 arising from

knowledge of the OPE. Since the operators are fermionic there is no exchange of the identity
2Although we are using bosonic 2-point functions, the 4-point function is still a valid solution to the

Ward identities with the correct crossing symmetry properties.
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operator and the lowest weight operator appearing has ∆ = 1. More precisely, consider
the conformal block expansion in (2.18) and (2.22)

〈O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)〉

=
∞∑

∆=1
A1111

∆,0 g12g34B
long
∆,0 (x, y)

∼
∞∑

∆=1
A1111

∆,0 g12g34 (−x)∆ (1 +O(x)) , (4.6)

and compare to (4.1) in the x→ 0 limit. This implies that a(x) must satisfy the additional
constraint

a(x) = O(1) (4.7)

as x→ 0 (neglecting terms containing log(x) arising from the perturbative expansion).
We now make the following ansatz for a(x) based on the perturbative OPE structure

a(x) = p(x) log x2 + p(1− x)log(1− x)2 + r(x) , (4.8)

where

p(x) = 1
x− 1

1
xk(1− x)k

m∑
i=0

bix
i, r(x) = 1

x− 1
1

xk(1− x)k
m∑
i=0

cix
i, r(x) = r(1−x), (4.9)

and k and m are integers. This ansatz is natural since the holomorphic limit of D̄ func-
tions takes this form. We then find the minimal solution to the constraints in (4.2), (4.4)
and (4.7):

a(x) = log x2

1− x + log(1− x)2

x
= −D̄hol

1111(x) , (4.10)

where D̄hol is the holomorphic limit of the D̄ function. We will obtain all higher-charge
correlators in the 2-derivative sector from 4d conformal symmetry in the next subsection.

4.2 4d conformal symmetry

Decomposing the lowest-charge correlator in (4.1) and (4.10) according to (2.17) gives

H
(2)
1111 = −uD̄hol

1111, k
(2)
1111 = 0, (4.11)

where the superscript (2) indicates that we are considering 2-derivative interactions in
the bulk. We can obtain all higher charge correlators in this sector using 4d conformal
symmetry. First lift the 1d cross-ratios and holomorphic D̄-function to the usual cross-
ratios and D̄-functions, using the relations (2.3) for the cross-ratios. To get an object that
transforms as a 4d conformal correlator, divide by x2

12x
2
34 and view all Lorentz invariants

as living in 4d. We then obtain

〈OOOO〉1/c = I ×
[
H

(2)
1111

x2
12x

2
34

]
4d
, (4.12)
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where O is the generator of all half BPS operators

O =
∞∑
p=1
Op . (4.13)

By the subscript 4d we mean that all Lorentz invariants live in 4d, so replace x2
ij →

x2
ij(1 + g2

ij):[
H

(2)
1111

x2
12x

2
34

]
4d

=
[
−uD̄1111(u, v)

x2
12x

2
34

]
4d

= −u4dD̄1111(u4d, v4d)
x2

12x
2
34

1
(1 + g2

12)(1 + g2
34)

, (4.14)

where
u4d = x2

12x
2
34

x2
13x

2
24

(1 + g2
12)(1 + g2

34)
(1 + g2

13)(1 + g2
24)

, v4d = x2
14x

2
23

x2
13x

2
24

(1 + g2
14)(1 + g2

23)
(1 + g2

13)(1 + g2
24)

. (4.15)

This 4d object in (4.12) then encodes all higher-charge correlators. To obtain correla-
tors with specific charges, expand in small gij and take the coefficients of the appropriate
powers of g2

ij . Before deriving the general formula for any correlator, let us consider the
explicit expansion for a few examples. For the first few cases with charges {pi} = ppqq this
looks like:

〈O1O1O1O1〉1/c = I × g12g34×
(
−D̄1111

)
,

〈O1O1O2O2〉1/c = I × g12g34×g2
34

(
uD̄1122

)
,

〈O1O1O3O3〉1/c = I × g12g34×
1
2g

4
34

(
−u D̄1133

)
,

〈O2O2O2O2〉1/c = I × g12g34×
(
u g2

12g
2
34 + g2

13g
2
24 + v g2

14g
2
23

) (
−u D̄2222

)
,

〈O2O2O3O3〉1/c = I × g12g34×
(1

2u g
2
12g

4
34 + g2

13g
2
24g

2
34 + v g2

14g
2
23g

2
34

)(
u D̄2233

)
,

〈O3O3O3O3〉1/c = I × g12g34×
(1

4u
2g4

12g
4
34 + 1

4g
4
13g

4
24 + 1

4v
2g4

14g
4
23 + u g2

12g
2
34g

2
13g

2
24

+ u v g2
12g

2
34g

2
14g

2
23 + v g2

13g
2
24g

2
14g

2
23

)(
−u D̄3333

)
. (4.16)

Note that after Taylor expanding, the right hand side of these equations is written directly
in terms of 1d kinematics and so the D̄ functions are automatically taken in the holomorphic
limit. Using the decomposition in (2.17) we find:

H
(2)
1122 = uD̄hol

1122 , H
(2)
1133 = −1

2uD̄
hol
1133 , H

(2)
2222 = −2u2 1− y + y2

y2 D̄hol
2222 ,

H
(2)
2233 = 1

2u
2 4− 4y + 3y2

y2 D̄hol
2233 , H

(2)
3333 = −3

2u
3 (1− y + y2)2

y4 D̄hol
3333 . (4.17)

There is a simple formula for all charges which is easiest to see if one first writes the
uplifted 4-point correlator (4.14) in terms of normalised D-functions in (2.35):[

H
(2)
1111

x2
12x

2
34

]
4d

=
[
−uD̄1111
x2

12x
2
34

]
4d

= [−D1111]4d . (4.18)
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The 4d D-function is a function of 4d [x2
ij ]4d = x2

ij(1 + g2
ij) and thus, for example, the

coefficient of
(
g2

12
)n is(
x2

12
)n

n!
dn

d
(
x2

12
)nD∆1∆2∆3∆4 =

(
−x2

12
)n

n! D∆1+n∆2+n∆3∆4 (4.19)

where we used the relation [30]

d

d x2
12
D∆1∆2∆3∆4 = −D∆1+1 ∆2+1 ∆3∆4 . (4.20)

Hence a general correlator with charges pi is given by

[
H

(2)
p1p2p3p4

x2
12x

2
34

]
4d

=
∑
{dij}

∏
i<j

(−1)dij

(
g2
ij

)dij

(
x2
ij

)dij

dij !

 (−Dp1p2p3p4)

=
∑
{dij}

∏
i<j


(
y2
ij

)dij

dij !

 (−1)Σp+1Dp1p2p3p4

= (−1)Σp+1Dp1p2p3p4 ×Bp1−1 p2−1 p3−1 p4−1 , (4.21)

where the normalised B-function is defined in (2.35) and∑
i<j

dij = pi − 1 , 0 ≤ dij = dji , dii = 0 . (4.22)

Hence, expanding the 4d formula (4.12), we find that correlators with arbitrary charge in
the 2-derivative sector are given by

〈Op1Op2Op3Op4〉1/c = I × (−1)Σp+1Dp1p2p3p4 ×Bp1−1 p2−1 p3−1 p4−1 . (4.23)

We will derive this formula from the 4d effective action in the next subsection.
Finally it will be useful to understand the implications of the 4d symmetry for the

correlator of descendants 〈LLL̄L̄〉. Notice that (4.12) with (3.8) implies that

〈LLL̄L̄〉1/c = I−1CSU(1,1|2)
1,2 〈OOOO〉1/c = I−1CSU(1,1|2)

1,2 I ×
[
H

(2)
1111

x2
12x

2
34

]
4d
. (4.24)

Now note that I−1CSU(1,1|2)
1,2 I is simply equal to the Casimir for the maximal bosonic

subgroup SO(1, 2) × SO(3) of SU(1, 1|2) (see appendix A and in particular (A.9)). So we
see that the 4d symmetry manifests itself for the correlator 〈LLL̄L̄〉1/c as

〈LLL̄L̄〉1/c = CSO(1,2)×SO(3)
1,2

[
H

(2)
1111

x2
12x

2
34

]
4d
. (4.25)

In other words the generator of the correlator of descendants is a SO(1, 2)×SO(3) Casimir
acting on a 4d object.
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4.3 Effective action

All 4-point half-BPS correlators in the 2-derivative sector can be computed from the first
term in the effective action (2.23), which is simply a φ4 interaction:

S2 = 1
4! A×

∫
AdS×S

d2X̂d2Ŷ φ(X̂, Ŷ )4 . (4.26)

Using the generalised bulk-to-boundary propagators in (2.26) we obtain the AdS2×S2 Wit-
ten diagram for this φ4 contact interaction, leading to the following correlators (where recall
O generates all the 1/2-BPS operators (4.13)):

〈OOOO〉(2)
int = 1

4! A
(C1)4

(−2)4

∫
AdS×S

d2X̂d2Ŷ

(P1 +Q1)(P2 +Q2)(P3 +Q3)(P4 +Q4)

= 1
4! A (C1)4 ×DAdS2×S2

1111 . (4.27)

Recall that Pi = X̂.Xi, Qi = Ŷ .Yi, C∆ is defined in (2.28), and the AdS×S D-functions are
defined in (2.29).

To extract correlators with specific charges one expands in the appropriate powers in
Yi using the Taylor expansion of the 4d bulk-to-boundary propagators

(Pi +Qi)−1 =
∞∑
p=1

(−1)p−1(Pi)−p(Qi)p−1 . (4.28)

We then obtain:3

〈Op1Op2Op3Op4〉
(2)
int

= 1
4! A

(C1)4

(−2)4

∫
AdS2

d2X̂
∏
i

1
(Pi)pi

×
∫

S2
d2Ŷ

∏
i

(Qi)pi−1

= A′ (−1)Σp+1Dp1p2p3p4 ×Bp1−1 p2−1 p3−1 p4−1 , (4.29)

which matches the result we obtained using 4d conformal symmetry in (4.21).

4.4 Physical interpretation

In this section we will clarify the origin of 4d conformal symmetry. So far we found
that both the free theory (3.17) and 2-derivative sector (4.12) and (4.25) have a four-
dimensional origin. Both cases are in fact written in terms of 4d conformal 4-point functions
for operators with dimension 1. Any such conformal 4-point function has a simple expansion
in terms of 4d bosonic conformal blocks of the form [33]:

〈LLL̄L̄〉 = 1
x2

12x
2
34

∑
∆,l

A∆,lG∆,l(u, v) , (4.30)

3This is (2.32) with ∆i = d = 1 and with pi → pi − 1 to account for the fact that the lowest correlator
is labelled with pi = 1 rather than pi = 0. We do not need to worry about the minus signs in the factors
(−1)p in (4.28) since Bp1p2p3p4 = 0 if p1 + p2 + p3 + p4 is odd.
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where

G∆,l(z, z̄) = 1
z − z̄

u
1
2 (∆−l)

((
−1

2z
)l
z 2F1

(1
2(∆ + l), 1

2(∆ + l); ∆ + l; z
)

× 2F1

(1
2(∆− l − 2), 1

2(∆− l − 2); ∆− l − 2; z̄
)
− (z ↔ z̄)

)
. (4.31)

For the free theory correlator in (3.17), the 4d conformal block expansion is then given
by

u+ u

v
=
∑
n,l

A
(0)
∆0,l

G∆0,l(u, v) (4.32)

and we only find non-zero coefficients if ∆0 = l + 2:

A
(0)
l+2,l = 21+l(l!)2

(2 l)! . (4.33)

This can be understood by recalling that this is the block expansion of a 4d scalar field of
dimension 1, which is therefore massless. So the only operators one can construct out of
its OPE are the spin l currents L∂lL.

Next let’s do a 4d conformal block expansion of the log u part of the 4d correlator
describing the 2-derivative sector (4.12), (4.25):

− uD̄1111|log u =
∑
∆0,l

A
(0)
∆0,l

γ∆0,lG∆0,l(u, v). (4.34)

We find that only the 4d block with spin-0 contributes, with ∆0 = 2 and anomalous
dimension γ2,0 = 1. In other words the log u part of the 2-derivative sector is simply a
single spin-0 block G2,0 so (using (4.12))

〈OOOO〉1/c = I ×
[
G2,0(u, v) log u+ . . .

x2
12x

2
34

]
4d
. (4.35)

This agrees with the partial wave coefficient of the corresponding flat space scattering
amplitude, as we will now explain.

Let us first review how this works in N = 4 SYM and then adapt it to the present
case. In [5], it was observed that in the flat space limit supergravity correlators in AdS5×S5

reduce to the following scattering amplitude:

A10 = GNδ
16(Q)
stu

→ GN
s3

tu
, (4.36)

where we have taken the dilaton component. The 10d conformal symmetry of the corre-
sponding N = 4 SYM correlators is then inherited from the flat space scattering amplitude
after noting that GNδ16(Q) is dimensionless and AdS5×S5 is conformally flat. It is then
possible to relate the anomalous dimensions deduced from these correlators to partial wave
coefficients of the scattering amplitude.

In more detail, the partial wave expansion is given by

Ad(s, cos θ) = 1
s(d−4)/2

∑
l

(l + 1)d−4Cl(cos θ)Adl (s) (4.37)
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where cos θ = 1 + 2t
s . Writing (4.36) in terms of s and θ, we find

A10(s, cos θ) = 4GNs
sin2 θ

. (4.38)

The single power of s in the numerator indicates 2-derivative interactions, as expected
for supergravity. Comparing this to (4.37) implies that the partial wave coefficients are
schematically

A10
l (s) ∼ 1 + R8

c

s4

(l + 1)6
, (4.39)

where Newton’s constant GN ∼ R8/c in 10d, R is the AdS radius, and c is the central
charge. Remarkably, this has the same form as the N = 4 SYM anomalous dimensions
first derived in [24] after unmixing operators whose scaling dimensions are degenerate at
leading order in the 1/c expansion:

e
1
c
γ

(2)
4d ∼ 1 + 1

c

δ(8)

(l + 1)6
, (4.40)

where δ(8) is a certain factor corresponding to the eigenvalues of an eighth order differential
operator which corresponds to a Casimir of the superconformal group SU(2, 2|4).

Let us now adapt this discussion to AdS2×S2. In this case, the flat space amplitude
for hypermultiplets with 2-derivative interactions is given by [7]

A4 = GNδ
4(Q)→ GNs, (4.41)

where we have taken the scalar component. Note that GNδ4(Q) is dimensionless in 4d, so
this amplitude has 4d conformal symmetry. The factor of s indicates 2-derivative interac-
tions. In contrast to the 10d amplitude, it has no θ dependence which implies that only
l = 0 contributes to the partial wave expansion, in agreement with the conformal block
analysis above. Hence, the partial wave coefficients are given by

A4
l=0(s) ∼ 1 + R2

c
s , (4.42)

where GN ∼ R2/c in 4d. This argument suggests that the corresponding anomalous
dimensions obtained after unmixing degenerate operators in the 1d CFT should be given by

e
1
c
γ1d ∼ 1 + 1

c
δ(2) , (4.43)

where δ(2) is a second-order superconformal Casimir. We will verify this in section 6.

5 Higher-derivative corrections

In this section, we will generalise the analysis of the previous section to 4-point correlators
describing higher-derivative interactions of hypermultiplets in AdS2×S2. First we deduce
the lowest-charge correlators from crossing and relate them to the holomorphic limit of anal-
ogous correlators in AdSd>2 found in [34]. Then we compute higher-charge correlators using
the effective action and explore the extent to which they exhibit 4d conformal symmetry by
trying to reproduce them by acting with superconformal Casimirs on 4d conformal blocks.
We find that this is not generically possible except for a special class of correlators, sug-
gesting that 4d conformal symmetry is broken by higher-derivative interactions in the bulk.

– 19 –



J
H
E
P
0
3
(
2
0
2
2
)
0
7
6

5.1 Lowest-charge correlators

In this section we will generalise the 〈O1O1O1O1〉 correlator in the two-derivative sector
in (4.11) to higher-derivative interactions in the bulk. Following the method of section 4.1,
we make the ansatz

〈O1O1O1O1〉 = g12g34(x/y)(x− y)a(x) (5.1)

where
a(1− x) = a(x), a(1/x) = x2a(x), a(x) = O(1), (5.2)

as required by crossing symmetry and the constraint that the correlator doesn’t encode
the exchange of the identity operator (for more details, see section 4.1). Taking a(x) of the
form in (4.8) and (4.9), we then find that (5.2) only has solutions for k = 2q where q is a
non-negative integer, and m = 3k. The k = 0 solution is the one previously found in the
2-derivative sector in (4.11).

Further insight into these solutions can be obtained by computing the average anoma-
lous dimensions of operators contributing to their conformal block expansion. The average
anomalous dimensions are obtained from the conformal block expansion of the part of the
correlator proportional to ln u:

a(x)|lnu =
∑
∆=1

A
(0)
∆ γ∆F∆(x), F∆(x) = x∆−1

2F1(∆ + 1,∆ + 1, 2∆ + 2, x), (5.3)

where we expand in terms of standard non-supersymmetric 1d conformal blocks which
follow from setting pi = 1 in (2.20). The OPE coefficients are obtained by expanding the
free theory correlator in (3.3) with p = 1 in terms of these blocks and are given by

A
(0)
∆ = 2 (∆!)2 / (2∆)!, ∆ ∈ odd. (5.4)

Plugging (5.4) into (5.3), we then find that the anomalous dimensions γ∆ scale like ∆2k =
∆4q as ∆ → ∞ for the solutions found in the previous paragraph. In [34] it was shown
that the large-∆ scaling of anomalous dimensions is tied to the number of derivatives in
the corresponding bulk interactions. Since the k = 0 solution corresponds to 2-derivative
bulk interactions, it follows that solutions with general k correspond to interactions with
2k + 2 = 4q + 2 derivatives. Furthermore, using the decomposition in (2.17), solutions
corresponding to (4q + 2)-derivative interactions in the bulk can be written as

H
(4q+2)
1111 = x2a(x) = −u (1 + uq + vq)D̄hol

q+1 q+1 q+1 q+1, (5.5)

modulo lower-derivative solutions.
Let us explain the relation to higher-derivative 4-point interactions in AdSd>2. In that

case, the solutions to the crossing equations for the dual CFT correlators are labelled by
spin l = 0, 2, 4, . . ., and for spin l there are l/2 + 1 solutions corresponding to interaction
vertices of a bulk effective action with 2l, 2l + 2, . . . , 3l derivatives [34]. Reducing these
solution to AdS2 by taking the holomorphic limit, one finds that the l/2 + 1 solutions
collapse to a single solution, modulo lower-spin solutions [35]. This solution corresponds to
a 2l derivative interaction i.e. lowest number of derivatives in the spin-l tower of solutions,
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and is consistent with the result obtained in the previous paragraph. For example in
AdSd>2 the solutions for l = 0, 2 are given by

〈1111〉l=0,∂0 = D̄1111,

〈1111〉l=2,∂4 = (1 + u+ v)D̄2222,

〈1111〉l=2,∂6 = D̄3232 + D̄2323 + u2D̄3322 + uD̄2233 + v2D̄2332 + vD̄3223, (5.6)

where the subscript indicates the spin and number of derivatives in the bulk effective action,
and we have taken the scaling dimensions of the external operators to be ∆ = 1. Taking
the holomorphic limit of the 6-derivative solution then gives a linear combination of the
4-derivative and l = 0 solutions:

〈1111〉l=2,∂6

∣∣∣
hol

= 17
7 (1 + u+ v) D̄2222

∣∣∣
hol
− 1

7 D̄1111
∣∣∣
hol
. (5.7)

Hence, in the holomorphic limit there is only a 4-derivative solution at l = 2 plus a zero
derivative solution. In the present context, these correspond to 2-derivative and 6-derivative
interactions of bulk hypermultiplets.

5.2 Effective action

As explained in section 4.3, two-derivative interactions of the bulk theory are described by
a φ4 interaction in the effective action. Higher derivative corrections are then obtained by
applying covariant derivatives to the φ4 vertex. 4-point correlators can then be computed
from generalised Witten diagrams in terms of unfixed coefficients of the effective action.

In the previous subsection, we showed that the lowest higher derivative corrections
appear at six derivatives, which correspond to four-derivative corrections in the effective
action. In this subsection we will use the effective action to compute the associated 1d
CFT correlators for arbitrary charges of the external operators. As shown in [13], there
are only two linearly independent terms in the 4-derivative effective action (corresponding
to six derivative corrections to the Lagrangian for bulk hypermultiplets):

S6 = B0S
main
6 + C0S

amb
6 , (5.8)

with

Smain
6 = 3

4!

∫
AdS×S

d2X̂d2Ŷ (∇φ.∇φ) (∇φ.∇φ) ,

Samb
6 = 6

4!

∫
AdS×S

d2X̂d2Ŷ∇2∇µφ∇µφφ2 . (5.9)

We refer to the second interaction as an ambiguity because it vanishes in the flat space
limit. In this limit we can commute the ∇2 to the right, and then use ∇2φ = 0. The
Witten diagram for the main interaction is

〈OOOO〉(6)
main

= 1
4!

(C1)4

(−2)4

∫
AdS×S

d2X̂d2Ŷ
N12N34 +N13N24 +N14N23

(P1 +Q1)2 (P2 +Q2)2 (P3 +Q3)2 (P4 +Q4)2 , (5.10)
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where
Nij = Xi.Xj + Yi.Yj + PiPj −QiQj . (5.11)

Furthermore, the Witten diagram for the ambiguity is

〈OOOO〉(6)
amb

= − 1
4!

(C1)4

(−2)4

∫
AdS×S

d2X̂d2Ŷ∏
i (Pi +Qi)

∑
i<j

Lij
(Pi +Qi) (Pj +Qj)

, (5.12)

where
Lij = Xi.Xj − Yi.Yj + PiPj +QiQj . (5.13)

Using (2.37) and (2.38), we can expand (5.10) and (5.12) in terms of D- and B-
functions, and then take the holomorphic limit of the D̄-functions. Using the decomposition
in (2.17), the explicit expressions for some of the correlators are:

H
(6)
1111 = 3u

(
D̄hol

1111 − 5 (1 + u+ v) D̄hol
2222

)
,

H
(6)
pp11 = (−1)p+1 up

(p− 1)!
(
f1(p)D̄hol

pp11 + f2(p)u D̄hol
p+1 p+1 11 + f3(p) (1 + u+ v) D̄hol

p+1 p+1 22

)
,

H
(6)
p1p1 = (−1)p+1 u

p+1
2

(p− 1)! yp−1

(
f1(p)D̄hol

p1p1 + f2(p) D̄hol
p+1 1 p+1 1 + f3(p) (1 + u+ v) D̄hol

p+1 2 p+1 2

)
,

H
(6)
p11p = (−1)p+1 u

p+1
2

(p− 1)! yp−1

(
f1(p)D̄hol

p11p + f2(p) D̄hol
p+1 11 p+1 + f3(p) (1 + u+ v) D̄hol

p+1 22 p+1

)
,

H
(6)
2222 = 2u

2

y2

( [
−8C0

(
1− y + y2

)
+ 2

(
41− 6y + 6y2

)]
D̄hol

2222 + 35u
(
y2 − 1

)
D̄hol

3322

+ 35 (y − 2) yD̄hol
3223 − 63 (1 + u+ v)

(
1− y + y2

)
D̄hol

3333

)
, (5.14)

where

f1(p) = 2C0 p(p− 1) + p2 (4 p2 − 8 p+ 1) , f2(p) = −(1 + 2p)(2 p2 − 3 p+ 1) ,
f3(p) = (1 + 2p)(3 + 2p) . (5.15)

In the above expressions, we have set B0 = 4 for convenience. Note that H(6)
1111 agrees

with the prediction (5.5) for q = 1, modulo the 4-point correlator in the 2-derivative sector
given in (4.11). In the next subsection, we will explore the extent to which 4d conformal
symmetry is realised for higher-derivative corrections.

5.3 4d conformal symmetry

In the free theory, 4d conformal symmetry was realised by acting on the correlators
〈Op1Op2Op3Op4〉 with a second-order Casimir, while in the 2-derivative sector it was realised
directly on the correlators without acting with a Casimir. In section 4.4, it was further
observed that the infinite tower of 2-derivative correlators can be assembled into a 4d spin-0
block, which reduces to a scale-invariant amplitude in the flat space limit. Since higher-
derivative corrections will give scattering amplitudes that are no longer scale-invariant, this
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suggests that they can be obtained by acting with Casimirs on 4d conformal blocks. More
precisely, we expect that a correlator corresponding to a 2N -derivative interaction in the
effective action should come from acting with a Casimir of order 2N . In this subsection,
we find that this can indeed be realised for a subset of higher-derivative correlators.

Let us consider correlators in the six-derivative sector computed in the previous sub-
section. Since they are obtained from four-derivative interactions in the effective action
(which can have 4d spin-0 or spin-2 as explained in section 5.1), we expect that they can
be obtained by acting with a fourth-order Casimir on the holomorphic limit of 4d spin-0
and spin-2 blocks:

H(6)
p1p2p3p4 |log u = ∆(4)

0 (4d spin-0 block)hol
p1p2p3p4

+ ∆(4)
2 (4d spin-2 block)hol

p1p2p3p4
, (5.16)

where the left-hand-side is computed from the effective action in (5.8) with B0 = 4 for
convenience, and the Casimirs on the right-hand-side are given by

∆(4)
i = ai + bi∆(2) + ci∆(2)Dx + di∆(2)Dy , (5.17)

where ∆(2), Dx, Dy were defined in (3.10) and {ai, bi, ci, di} are unfixed coefficients. See
section A.2 for a discussion of general higher order Casimirs. We restrict the left-hand-side
of (5.16) to the ln u part of the correlator since this encodes the scattering amplitude in
the flat space limit and is therefore the part of the correlator that is expected to have
4d conformal symmetry. In the right-hand-side, we first Taylor expand the 4d conformal
blocks in gij and choose coefficients corresponding to correlators with the desired charges
as explained in section 4.2.

Remarkably, if the coefficient of the ambiguity C0 = 0 then we find a solution to (5.16)
for pi = pp11 and the other correlators related by crossing:

∆(4)
0 = 1

12

(
2 ∆(2) + 5

(
∆(2)

)2
)
, ∆(4)

2 = 1
90

(
−2 ∆(2) +

(
∆(2)

)2
)
. (5.18)

Using these Casimir operators, 4d conformal symmetry can be realised by correlators in the
6-derivative sector with {pi} = pp11 and crossing versions. This is highly non-trivial, since
neither the Casimir operators nor the 4d blocks preserve crossing symmetry beyond 1↔ 2
exchange, but acting with the former on the latter produces crossing-symmetric correlators.
On the other hand, we do not find crossing-symmetric solutions to (5.16) for other charge
configurations. This suggests that 4d conformal symmetry is generically broken by higher-
derivative corrections. We will see further evidence of this when we compute anomalous
dimensions in the next section, and will make further comments about this in the context
of N = 4 SYM in section 7.

6 Anomalous dimensions from unmixing

In this section we will classify double-trace operators appearing in the conformal partial
wave expansion of 4-point correlators which have degenerate quantum numbers at leading
order in 1/c. We then review a procedure for resolving this degeneracy and computing
the anomalous dimensions of double-trace operators after unmixing. For correlators in the
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2-derivative sector we find that the anomalous dimensions are eigenvalues of a second order
conformal Casimir, as anticipated in section 4.4, but for correlators in the 6-derivative sector
some anomalous dimensions contain square roots suggesting that 4d conformal symmetry
is generically broken in agreement with the analysis of section 5.3.

6.1 Degenerate operators

Let us start by considering all long double-trace operators in the OPE of two half-BPS
operators, Op1 ,Op2 . In the free theory the space of operators appearing in the OPE will
take the form

Oq1q2 = [Oq1∂∆+1−q1−q2Oq2 ]p , q1 ≤ q2 , (6.1)

where p1−q1 = p2−q2 and where [_]p denotes projection onto the p+1 dimensional SU(2)
representation. Recall the operators Oq1 and Oq2 have half-integer scaling dimensions
(2q1 − 1)/2 and (2q2 − 1)/2, labelled by integers q1 and q2, according to the conventions
introduced in (2.12). Thus the scaling dimension of the exchanged operators Oq1q2 is ∆ and
the SU(2) charge is p (p can take any value from the set p = q1 +q2, q1 +q2−2, . . . , q2−q1).
There are many operators with the same weight (∆, p) which we now enumerate similarly
to those in N = 4 SYM in [36].

There are two classes of operators in the spectrum, we call them class A and class B.
We will also distinguish between the cases where t = ∆−p odd or t = ∆−p even. We label
the allowed values of pairs of q1 and q2 for class A and class B operators with odd or even
t with (qA1 , qA2 ), (qBto

1 , qB
to

2 ) and (qBte
1 , qB

te
2 ) respectively. There are d = dA + dBto + dBte

operators Oq1q2 labelled by sets of pairs (q1, q2), where dA counts class A and dBto , dBte

class B operators with odd and even t respectively. The operators for odd and even t are
summarised in figures 1a and 1b, respectively.

For t odd we have both class A and class B operators:

qA1 = 1 + iA + rA , qB
to

1 = 1 + iBto + rBto ,

qA2 = 1 + iA + p− rA , qB
to

2 = 1 + iBto + (p− 1)− rBto ,

iA = 0, . . . , t− 1
2 , iBto = 1, . . . , t− 1

2 ,

rA = 0, . . . , µA − 1
2 , rBto = 0, . . . , µB

to − 1
2 , (6.2)

where

µA =

p+ 1 p even
p p odd

, µBto =

p− 1 p even
p p odd

, (6.3)

with dA = 1
4(µA + 1)(t + 1) and dBto = 1

4(µBto + 1)(t − 1) . Class A operators have even
numbers of derivatives while class B operators have odd numbers of derivatives at t odd.
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For even t, there are only class B operators. These operators are parametrised as

qB
te

1 = iBte + brB
te + 1
2 c ,

qB
te

2 = iBte + p− brB
te

2 c ,

iBte = 1, . . . , t2 ,

rBte = 0, . . . , p− 1 , (6.4)

with dBte = 1
2 t p .

6.2 Unmixing

We have seen above that there can be many different double-trace operators with the same
quantum numbers (∆, p) at leading order in 1/c. To solve this mixing problem we follow
the method developed for N = 4 SYM in [12, 24].

First we expand the correlator in terms of long blocks as follows:

H(x, y) = x y

x− y
∑
∆,p

Api

∆,pB
long
∆,p,p12,p34

(x, y) , (6.5)

where the superconformal blocks are given in (2.20). The coefficients of the decomposition
are given as a sum of squares of OPE coefficients as follows

Api

∆,p =
∑
O∆,p

Cp1p2OCp3p4O , (6.6)

where the sum goes over the degenerate operators. Expanding the OPE data in 1/c and a
(which is the analogue of a string coupling introduced in section 2.3), gives

∆O = ∆(0) + 1
c

(
γ(2) + a γ(6) + . . .

)
+O(c−2) ,

CppO = C
(0)
ppO +

(
aC

(6)
ppO + . . .

)
+O(c−1) , (6.7)

where the anomalous dimensions γ depend on {∆, p, i, r}, and the superscripts {0, 2, 6}
label the free, 2-derivative, and 6-derivative sectors, respectively. Note that we allow for
O(a) corrections to the OPE coefficients which are not suppressed in 1/c. Such corrections
could in principle arise and were shown to be non-zero in N = 4 SYM [12].

Plugging (6.7) into (6.5) then gives

H(x,y) = xy

x−y
∑

∆(0),p

[
A

(0)
∆(0),p

Blong
∆(0),p,p12,p34

(x,y) (6.8)

+ 1
c

logu
∑

∆(0),p

(
M

(2)
∆(0),p

+aM
(6)
∆(0),p

+ . . .
)
Blong

∆(0),p,p12,p34
(x,y)+ . . .

]
,
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qA1 , qB
to

1

qA2 , qB
to

2

rA, rBto
iA, iBto

A

B

C

D

E

F

G

H

A = (1, 1 + p)
B =

(
1
2 (µA + 1) , 1

2 (−µA + 2p+ 3)
)

C =
(

1
2 (µA + t) , 1

2 (−µA + t+ 2p+ 2)
)

D =
(

1
2 (t+ 1) , 1

2 (t+ 2p+ 1)
)

E = (2, 1 + p)
F =

(
1
2 (µBto + 3) , 1

2 (−µBto + 2p+ 3)
)

G =
(

1
2 (µBto + t) , 1

2 (−µBto + t+ 2p)
)

H =
(

1
2 (t+ 1) , 1

2 (t+ 2p− 1)
)

Figure 1 (a). Exchanged operators Oq1q2 for odd t parametrised according to (6.2). The black
and white nodes denote class A and class Bto operators, respectively. The only operator acquiring
non-zero anomalous dimension in the 2-derivative sector is the one denoted by A. The nodes in
the grey rectangle correspond to operators which acquire non-zero anomalous dimensions in the
six-derivative sector.

qB
te

1

qB
te

2 rBte

iBte

I

J

K

L

M

N

O

P

I = (1, 1 + p)
J =

(
bp+1

2 c, p− b
p+1

2 c+ 2
)

K =
(
bp+1

2 c+ t−2
2 , p− bp+1

2 c+ t+2
2

)
L =

(
t
2 ,

t
2 + p

)
M = (2, 1 + p)
N =

(
bp+2

2 c, p− b
p+2

2 c+ 3
)

O =
(
bp+2

2 c+ t−2
2 , p− bp+2

2 c+ t+4
2

)
P =

(
1 + t

2 ,
t
2 + p

)

Figure 1 (b). The exchanged operators Oq1q2 for even t parametrised according to (6.4). All
operators contributing at even t belong to class B and are split into two groups which do not mix with
each other. The black and white nodes denote operators with even and odd rBte , respectively. The
nodes in the grey rectangle correspond to operators which acquire non-zero anomalous dimensions
in the six-derivative sector.
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where

A
(0)
∆,p =

∑
O∆,p

C
(0)
p1p2OC

(0)
p3p4O , M

(2)
∆,p =

∑
O∆,p

γ(2)C
(0)
p1p2OC

(0)
p3p4O ,

M
(6)
∆,p =

∑
O∆,p

(
γ(6)C

(0)
p1p2OC

(0)
p3p4O + γ(2)C

(0)
p1p2OC

(6)
p3p4O + γ(2)C6

p1p2OC
(0)
p3p4O

)
,

0 =
∑
O∆,p

C
(0)
p1p2OC

(6)
p3p4O + C

(6)
p1p2OC

(0)
p3p4O , (6.9)

and we denote ∆(0) by ∆ for simplicity. The last line follows from the fact that there are no
O(a) corrections to the correlator since in the bulk stringy states only appear on internal
lines and are therefore accompanied by Newton’s constant to give O(a/c) corrections.
Note that A(0), M (2), M (6) are determined from the conformal partial wave expansions of
correlators in the free, 2-derivative, and 6-derivative sectors, respectively. Given this data,
one then solves the above equations for the anomalous dimensions and OPE coefficients γ
and C, respectively. These are referred to as the unmixing equations.

It is convenient to write (6.9) in matrix form as follows:

O(1) : Â(0)
∆,p = C(0)

(
C(0)

)T
,

O (1/c) : M̂ (2)
∆,p = C(0)γ̂(2)

(
C(0)

)T
,

O(a) : 0 = C(0)
(
C(6)

)T
+ C(6)

(
C(0)

)T
,

O (a/c) : M̂ (6)
∆,p = C(0)γ̂(6)

(
C(0)

)T
+ C(0)γ̂(2)

(
C(6)

)T
+ C(6)γ̂(2)

(
C(0)

)T
. (6.10)

In more detail, the matrices are ((dA + dBto)× (dA + dBto)) and (dBte × dBte) for odd and
even t, respectively. Note that γ̂ is a diagonal matrix of anomalous dimensions, Â(0) is a
diagonal matrix, and M̂ (2) and M̂ (6) are symmetric matrices. When t is odd, the matrices
are block-diagonal, so class A and B operators can be treated independently, and similarly
when t is even operators with rBte even or odd can be treated independently.

In practice, it is useful to define a matrix c̃ such that

c̃c̃T = Id , C(0) =
(
Â(0)

) 1
2 · c̃ . (6.11)

The unmixing equations in the 2-derivative sector then become:

c̃ · γ̂(2) · c̃T =
(
Â(0)

)− 1
2 · M̂ (2) ·

(
Â(0)

)− 1
2 . (6.12)

From this we see that the columns of c̃ are eigenvectors of the matrix
(
Â(0)

)− 1
2 · M̂ (2) ·(

Â(0)
)− 1

2 and the corresponding eigenvalues are the anomalous dimensions. The anomalous

dimensions can also be computed directly as the eigenvalues of the matrix M̂ (2) ·
(
Â(0)

)−1
.

Similarly, the anomalous dimensions in the 6-derivative sector are the O(a) eigenvalues of(
M̂ (2) + aM̂6-deriv

)
·
(
Â(0)

)−1
.
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Let us illustrate the method with a few simple examples in the 2-derivative sector. For
the simplest case (∆, p) = (1, 0) there is only one exchanged operator of the form (6.1):
O1O1. Performing the conformal block expansion of the correlator H(2)

1111 in (4.11) and
comparing to (6.8), we find that the coefficients of the expansion for (∆, p) = (1, 0) are

A
(0)
1111(1, 0) = 1 , M

(2)
1111(1, 0) = 2. (6.13)

The unmixing equations in (6.10) are then simply

A
(0)
1111(1, 0) =

(
C

(0)
1,0

)2
, M

(2)
1111(1, 0) = γ

(2)
1,0

(
C

(0)
1,0

)2
. (6.14)

Solving these equations then gives

γ
(2)
1,0 = 2 , C

(0)
1,0 = 1 . (6.15)

The next simplest example is (∆, p) = (3, 0). In this case, there are two possible
exchanged operators, O2O2 and O1∂

2O1, and we have

Â
(0)
3,0 =

(
A

(0)
1111 0
0 A

(0)
2222

)
(3,0)

=
(

1
10 0
0 1

18

)
, M̂

(2)
3,0 =

(
M

(2)
1111 M

(2)
1122

M
(2)
1122 M

(2)
2222

)
(3,0)

=
(

1
5

1
3

1
3

5
9

)
. (6.16)

Solving the unmixing equations in (6.10):

γ̂
(2)
3,0 =

(
12 0
0 0

)
, C(0)

3,0 =

 1
2
√

15
1

2
√

3√
5

6
√

3 −
1

6
√

3

 . (6.17)

Note that there is only one non-zero anomalous dimension. This structure extends to gen-
eral ∆ and p in the 2-derivative sector: at each weight there is only one non-zero anomalous
dimension, which is a rational number. In the 6-derivative sector all the anomalous dimen-
sions will generically be non-zero and contain square roots. We will provide an explanation
for this in the next subsection. See appendix C for further examples of unmixing.

6.3 Anomalous dimensions

We will now apply the unmixing procedure described in the previous subsection to compute
anomalous dimensions of double trace operators contributing to the conformal partial wave
expansion of 4-point correlators in the 2-derivative and 6-derivative sectors. We obtain
general formulas for the anomalous dimensions by working out many examples.

Let us start with the 2-derivative sector. In that case we find that only class A operators
acquire anomalous dimensions while class B operators decouple. In more detail, we find
that only one operator acquires a non-zero anomalous dimension for each (∆, p), and the
value is given by

γ
(2)
∆,p = δ(2) = (∆− p)(∆ + 1 + p). (6.18)

We recognize this to be the eigenvalue of the Casimir ∆(2) in (3.10) acting on superconfor-
mal blocks:

∆(2)
(

x y

x− y
Blong

∆,p,p12,p34

)
= δ(2)

(
x y

x− y
Blong

∆,p,p12,p34

)
. (6.19)
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This was anticipated from 4d conformal symmetry in (4.43). The fact that only one
operator acquires a non-zero anomalous dimension for each (∆, p) can be understood from
the following formula relating 4d spin to 1d quantum numbers:

l4d = 2
(
iA + rA + iBto + iBte + rBte − 1 + (−1)rBte+1

2

)
, (6.20)

which has an analogous form in N = 4 SYM [12]. In particular, recalling that correlators
in the 2-derivative sector come from the 4d spin-0 block (as explained in section 4.4) and
setting l4d = 0, we see that class B operators cannot contribute since iB ≥ 1 and only the
class A operator with iA = rA = 0 can contribute.

We can similarly see that both class A and class B operators acquire anomalous di-
mensions in the six derivative sector, since the corresponding correlators can be expanded
in terms of 4d blocks with spin-0 and spin-2, as explained in section 5.1. It is useful to sepa-
rately consider the cases where t = ∆−p is odd or even. In the results below we have set the
coefficient B0 = 4 in (5.8) for notational simplicity. One can obtain anomalous dimensions
for general B0 by inserting a factor of B0/4 in all terms that are not multiplied by C0.

Odd t. As explained above, there are two possibilities: l4d = 0, 2. The condition l4d = 0
can only be satisfied by class A operators with quantum numbers iA = rA = 0 and in this
case the anomalous dimensions are(

γA
)∆,p

0,0
= δ(2)

(2
9 (1− 6C0) + 1

18 (1 + 12C0) δ(2) + 5
12
(
δ(2)

)2
+ 1

9 (1 + 12C0) δ(y)
)
,

(6.21)
where δ(2) and δ(y) are the eigenvalues of ∆(2) and Dy in (3.10), respectively:

δ(2) = (∆− p)(∆ + p+ 1) , δ(y) = p(p+ 1) . (6.22)

For l4d = 2, there are three possible non-zero anomalous dimensions: (iA, rA) ∈
{(1, 0) , (0, 1)} for class A, and iBto = 1 for class B, and the corresponding anomalous
dimensions are(

γA
)∆,p

1,0
= 1

180 δ
(2)
(
4− 2 δ(2) + 3

(
δ(2)

)2
− 4 δ(y) (6.23)

− 4
√

8 p3 + 4 p4 − 4 p2∆(1 + ∆)− 4 p (1 + ∆ + ∆2) + (−1 + 2 ∆ + 2 ∆2)2
)
,(

γA
)∆,p

0,1
= 1

180 δ
(2)
(
4− 2 δ(2) + 3

(
δ(2)

)2
− 4 δ(y) (6.24)

+ 4
√

8 p3 + 4 p4 − 4 p2∆(1 + ∆)− 4 p (1 + ∆ + ∆2) + (−1 + 2 ∆ + 2 ∆2)2
)
,(

γB
to)∆,p

1
= 1

60 δ
(2)
(
−2 δ(2) +

(
δ(2)

)2
− 4 δ(y)

)
. (6.25)

Unlike in the 2-derivative sector, all operators have non-zero anomalous dimensions and
the latter contain square roots, which signals the breaking of 4d conformal symmetry. This
is consistent with the conclusions in section 5.3.

– 29 –



J
H
E
P
0
3
(
2
0
2
2
)
0
7
6

Even t. For even t, operators only start to contribute for l4d = 2 and we get two different
non-zero anomalous dimensions for quantum numbers (iBte , rBte) ∈ {(1, 0) , (1, 1)}:(

γB
te)∆,p

1,0
= 1

60
(
δ(2)

)2 (
δ(2) − 2

)
, (6.26)(

γB
te)∆,p

1,1
= 1

60
(
δ(2)

)2 (
δ(2) + 2

)
. (6.27)

Note that (6.26) is proportional to the eigenvalue of ∆(4)
2 in (5.18).

7 Comments on N = 4 SYM

The main focus of this paper has been on 1d N = 4 SCFT, its relation to a bulk theory
on AdS2×S2 and in particular the investigation of a hidden 4d symmetry. The primary
motivation for this came from the 4d N = 4 SCFT context, related to string theory in
AdS5×S5, which was shown to possess a hidden 10d symmetry [5]. This 10d symmetry
has been further investigated in a number of works (see e.g. [13, 17, 37, 38]). It was also
generalised to AdS3×S3 in [7–10]. Thus we can view the AdS2×S2 setting here as a toy
model for the AdS5×S5 case. In this section we then draw out some of the lessons learned
in AdS2×S2 and apply them to N = 4 SYM.

We will only very briefly review the N = 4, AdS5×S5 story here, and will do so mainly
by comparison to the 1d story detailed in earlier parts of the paper. Indeed the entire
formalism we have used makes the generalisation particularly natural, needing minimal
modification. The SCFT (N = 4 SYM) naturally lives on analytic superspace [27–29]
which has the same matrix form as in the 1d case (2.4) but where each term x, y, θ, θ̄

becomes itself a 2× 2 matrix. The half BPS superfield of (2.14) thus has more component
fields in its expansion — since there are now four θs and four θ̄s — but we will still focus
on just two important component fields: the highest weight state Op(x, y) and the highest
term in the θ (only) expansion, Lp(x, y):

Op(x, y) = Op(x, y) + . . .+ θ4Lp(x, y) + . . .+ θ̄4L̄p(x, y) + . . . . (7.1)

Here Op has scaling dimension p and SU(4) rep [0, p, 0] whereas Lp has dimension p + 2
and SU(4) rep [0, p− 2, 0].

As in the 1d case (see (3.18), (4.13)) we define a single object which generates all
(appropriately normalised) half BPS operators Op and their descendants Lp:

O =
∞∑
p=2
Op L =

∞∑
p=2

Lp . (7.2)

Then the 10d symmetry of free and 1/c (tree level supergravity) discovered in [5] takes
the form (compare this with the 1d SCFT equivalent cases with manifest 4d symme-
try (3.17), (4.12))

〈LLL̄L̄〉c0 =
[ 1
x8

14x
8
23

+ 1
x8

13x
8
24

]
10d

, (7.3)

〈OOOO〉1/c = IN=4 ×
[
D̄2422
x8

13x
8
24

]
10d

, (7.4)
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where we are neglecting overall numerical coefficients,

IN=4 = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)x4
13x

4
24y

4
13y

4
24, (7.5)

and
x2

12x
2
34

x2
13x

2
24

= xx̄
x2

14x
2
23

x2
13x

2
24

= (1− x)(1− x̄)

y2
12y

2
34

y2
13y

2
24

= yȳ
y2

14y
2
23

y2
13y

2
24

= (1− y)(1− ȳ) . (7.6)

Now similarly to the 1d case (see (3.8)), the correlator of descendants is related to the
correlator of primaries by a Casimir acting at points 1 and 2. This time the Casimir is
eighth order [5, 39]

〈Lp1Lp2L̄p3L̄p4〉 = I−1
N=4 C

(8);SU(2,2|4)
1,2 〈Op1Op2Op3Op4〉 , (7.7)

where C(8);SU(2,2|4)
1,2 denotes an eighth order superconformal Casimir defined explicitly as:

C(8);SU(2,2|4)
1,2 = P̂pi

((x−y)(x−ȳ)(x̄−y)(x̄−ȳ)
xx̄yȳ(x−x̄)(y−ȳ)

)
∆(8)

(
xx̄yȳ(x−x̄)(y−ȳ)

(x−y)(x−ȳ)(x̄−y)(x̄−ȳ)

)
P̂−1
pi

,

∆(8) =
(
D+
x −D−y

) (
D+
x̄ −D−y

) (
D+
x −D−ȳ

) (
D+
x̄ −D−ȳ

)
, (7.8)

with D±z defined in (3.10c) and P̂pi in (2.8) (but with now gij = y2
ij/x

2
ij). The supercon-

formal Casimirs are related to Casimirs for the maximal bosonic subgroup via conjugation
with IN=4 as discussed in (A.20):

CSU(2,2|4)
1,2 =

((x−y)(x−ȳ)(x̄−y)(x̄−ȳ)
(xx̄yȳ)2

)
CSO(1,5)×SO(6)

1,2

(
(xx̄yȳ)2

(x−y)(x−ȳ)(x̄−y)(x̄−ȳ)

)
.

(7.9)
Putting all this together we see that for the descendant correlator at order 1/c (i.e. the

supergravity approximation) the 10d symmetry manifests as a SO(1, 5) × SO(6) Casimir
acting on a 10d symmetric function (again similarly to in 1d - compare with (4.25))

〈LLL̄L̄〉1/c = C(8);SO(1,5)×SO(6)
1,2

[
D̄2422
x8

13x
8
24

]
10d

. (7.10)

We now examine whether higher-derivative corrections can be written as higher-order
Casimirs acting on 10d functions. We find that the answer is yes for the α′3 correction,
but for higher corrections things are not so simple.

7.1 10d conformal symmetry at O(α′3)

Recently the 4-point correlators of all 1/2-BPS operators at O(α′3/c) have been obtained
in Mellin space [14–16] and translated to position space [13]. We now claim that these α′3

corrections can be written as a fourteenth order Casimir of the maximal bosonic subgroup
acting on a 10 dimensional function:〈

LLL̄L̄
〉
|α′3/c = C(8+6);SO(1,5)×SO(6)

1,2

[
D̄4411(u, v)
x8

13x
8
24

]
10d

. (7.11)
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where the fourteenth order Casimir factors C(8+6) = C(8)C(6) into the above eighth order
Casimir C(8) times a sixth order Casimir C(6) which is defined similarly to (7.8) but in
terms of

∆(6) = −1
8
(
D+
x +D+

x̄ −D−y −D−ȳ
)3

+
(
(D+

x )2+(D+
x̄ )2−(D−y )2−(D−ȳ )2

)
− 3

2
(
D+
x +D+

x̄ −D−y −D−ȳ
)
. (7.12)

The form (7.11) follows naturally from the 10d structure of the free theory (7.3) and
the supergravity correction (7.10) together with the hint that dimensional analysis of the
corresponding term in the effective action translates into a Casimir of a certain order (here
sixth order beyond supergravity due to the dimension six coefficient α′3). Further just as
the supergravity correction can be expanded in 10d blocks [5] so can the α′3 correction.
On the other hand, the α′3 correction arises from an effective 10d AdS5×S5 scalar contact
Witten diagram [13], and thus the classic arguments of [34] lifted to the 10d situation imply
that only a 10d spin-0 block should appear. Indeed the log u part of D̄4411 is precisely the
10d spin-0 block, just as the 1d CFT correlators in the two-derivative sector arise from a
4d spin-0 block (4.35).

The precise form of the sixth order Casimir (7.12) was found by taking an arbitrary
linear combination of the Casimirs of order six and below (or more accurately Casimirs of
order 14 down to 8 containing a ∆(8) factor using the basis in (A.17)). We then evaluated
the action of these operators on the log u part of the 10d function D̄4411 expanded into
4d superblocks. In fact, since the 4d blocks are eigenfunctions of the Casimirs and the
eigenvalues are explicitly known [48] this becomes simple algebra. The resulting anomalous
dimensions were then compared with the results for these anomalous dimensions found
in [12]. Matching the results gave the above unique Casimir.

The result (7.11) can instead be written in terms of the correlator of primaries via (7.7)

〈OOOO〉|α′3/c = IN=4 × C(6);SO(1,5)×SO(6)
1,2

[
D̄4411(u, v)
x8

13x
8
24

]
10d

. (7.13)

One can also check explicitly that the component correlators agree with known results, for
example for the lowest component term one can check that

xx̄yȳ

(x− x̄)(y − ȳ)∆(6) (x− x̄)(y − ȳ)
xx̄yȳ

(
u4D̄4411

)
= 60D̄4444 . (7.14)

This then reproduces the result of [14] for this correction. One can also verify higher charge
correlators by comparing with the results in Mellin space derived in [12, 15] or in position
space derived in [13].

7.2 10d conformal symmetry at O(α′5)

We now wish to see if the above structure generalises to O(α′5). Similarly to the 6-derivative
sector in AdS2×S2, we will find that it is not possible to reproduce the predictions of the
effective action by acting with Casimirs on 10d conformal blocks except for a certain infinite
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class of operators. We then consider an alternative approach by constructing an integrand
with 10d conformal symmetry from the generalised Witten diagrams of the effective action.
Remarkably, here we do find a unique candidate possessing 10d symmetry at the level of the
integrand. The combination of terms in the effective action which possess this integrand-
level symmetry do not agree with the predictions arising from localisation results [25] in
N = 4 SYM however. These results do provide an alternative point of view on the breaking
of 10d conformal symmetry by α′5 corrections, which was first suggested by the structure
of anomalous dimensions obtained after unmixing [12], and will hopefully lead to a more
systematic understanding of how this symmetry is broken.

Conformal functions from 10d Casimirs. Let us then see if all 1/2-BPS correlators
packaged together can be written as Casimirs acting on 10d conformal functions at O(α′5).
More concretely, since the effective action at O(α′5) contains four derivatives (see [13]),
following the general arguments of [34] we might expect the 10d function to be related
to 10d spin-0 and spin-2 blocks (just as the O(α′3) correction was related to a 10d spin-0
block). Furthermore, since the α′5 corrections correspond to 10-derivative corrections to
supergravity, we expect to act on these blocks with Casimirs of order 10 + 8 = 18. We
therefore propose the following structure (similar to the one proposed in 1d (5.16)):

〈
LLL̄L̄

〉
|α′5/c|log u = C(8+10)

1,2

[
blockd=10

2
X4

12X
4
34

]
10d

+ C′(8+10)
1,2

[
blockd=10

0
X4

12X
4
34

]
10d

, (7.15)

where the 10d blocks can be found in [5].
Interestingly we find a unique and remarkably simple solution which correctly re-

produces all the 1/2-BPS correlators of the form 〈22pp〉 arising from the simplest four-
derivative effective action

∫
d10x(∇φ.∇φ)2 (called Smain in (5.9a)). The solution is

〈
LLL̄L̄

〉
|main|log u = C(8)

1,2C
(8)
1,2

(
2− 1

2C
(2)
1,2

)(blockd=10
2 + 28blockd=10

0
X4

12X
4
34

)

− 72 C(8)
1,2C

(8)
1,2

(
blockd=10

0
X4

12X
4
34

)
, (7.16)

and we note that all the high order Casimirs reduce to products of the eighth order
Casimir (7.8) together with the quadratic Casimir C(2)

1,2 .4 However it does not correctly
give the more general half BPS operators 〈p1p2p3p4〉 resulting from Smain. This is in com-
plete analogy with what happens in the 1d case (see section 5.3 in particular the last
paragraph) where as soon as derivatives first appear in the effective action, the 4d con-
formal symmetry is broken. Furthermore there is no solution of the form (7.15) which
yields the α′5/c correlators predicted by localisation in N = 4 SYM [25], even for the case
of 〈22pp〉 correlators. It therefore appears that breaking of 10d conformal symmetry is
related to the presence of derivatives in the effective action.

4The quadratic Casimir is defined in a similar way to (7.8) in terms of ∆(2) = D+
x +D+

x̄ −D−y −D−ȳ .
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A 10d conformal integrand. This leads one to ask whether instead the higher confor-
mal symmetry might remain at the level of the integrand of the sum of generalised Witten
diagrams derived from the effective action rather than explicitly at the functional level via
Casimir operators.5

It turns out that this is the case for a specific four-derivative effective action, although
this action does not apparently coincide with the actual one predicted by the localisation
results of [25]. We will write the result for a SCFT with general dimension d, corresponding
to higher dimensional conformal group SO(2, 2d + 2). For N = 4 SYM we have d = 4
whereas for the 1d CFT we have d = 1. In detail, we find that the following higher
dimensional effective Lagrangian:

Lconf =
(
2d2∇µ∇2∇µφφ3 − 2d(1 + d)∇2∇µφ∇µφφ2 − 2d2∇ν∇µφ∇ν∇µφφ2

+ 4d(1 + d)∇ν∇µφ∇µφ∇νφφ− (1 + d)(1 + 2d)∇µφ∇µφ∇νφ∇νφ
)
, (7.17)

has a corresponding Witten diagram expression which has integrand-level 10d conformal
symmetry.

Replacing each scalar in (7.17) by the higher dimensional bulk to boundary propaga-
tor (2.26) and summing over permutations yields the Witten diagram integrand

1
6d

2(1 + d) (7.18)

×
∑
S4

( 1+d
4 P

2
1P

2
2X

2
34 − 1+d

2 P
2
1P2P3X34X24 + 1+2d

8 P1P2P3P4X34X12 − 1
8P

2
1P

2
2P

2
3P

2
4

P 6
1P

6
2P

6
3P

6
4

)
,

where Xij := Xi.Xj +Yi.Yj , Pi := Pi+Qi = X̂.Xi+ Ŷ .Yi . We see that this can be written
entirely in terms of higher dimensional propagators P +Q = X̂.Xi+ Ŷ .Yi and SO(2, 2d+2)
invariants Xi.Xj + Yi.Yj . Furthermore it has uniform weight -4 in each of the projective
coordinates (Xi, Yi). Thus the integrand possesses 10d conformal symmetry. Compare this
for example with the Witten diagrams arising from the simplest forms of the four-derivative
Lagrangians in (5.10) and (5.12) where the numerators can be seen to destroy the higher
dimensional conformal symmetry even at the integrand level. This is reminiscent of the
integrand level 10d conformal symmetry of perturbative half BPS 4-point functions [40]
noticed in [38].

Now the integration of this integrand is over AdS5×S5 rather than the Weyl equivalent
10d flat space, and so the breaking of the symmetry must arise from this measure. In the
case of α′3 given by a φ4 interaction we found that the corresponding integral possesses
10d conformal symmetry, but only after acting with a sixth order Casimir (7.15). This
Casimir then presumably arises as a consequence of performing the Weyl transformation
from AdS5 × S5 to flat space. In the current case the Weyl transformation is no longer
so simple however (indeed notice that the weights in the integration variables X̂, Ŷ is non
uniform in (7.18)) and a Casimir acting on a 10d function no longer works.

Note that to obtain the Lagrangian in (7.17) we wrote down an ansatz involving all
possible 4-derivative Lagrangians (so all possible ways of acting with 4 non commuting

5We thank Simon Caron-Huot and Frank Coronado for suggesting this possibility.
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derivatives on 4 scalars) and imposed that the result be a function of Pi, Qi through the
combinations Pi := Pi+Qi only. Interestingly, the result was then automatically a function
of Xi.Xj , Yi.Yj through the combination Xij := Xi.Xj + Yi.Yj only, without us having to
impose this condition directly. Using integration-by-parts the effective Lagrangian possess-
ing the integrand level symmetry (7.17) can be written as a specific linear combination of
Lmain and Lamb (5.9) as

Lconf ∼ (1+3d)
(
− (1+2d)∇µφ∇µφ∇νφ∇νφ− 2d∇2∇µφ∇µφφφ

)
. (7.19)

Putting d = 4 this combination is however not the one predicted by the localisation results
of [25] (compare with the combination in [13] eq. (71)). Thus we see that although there
is a unique four derivative effective action which implies an integrand with 10d conformal
symmetry, it is apparently not the one chosen by N = 4 SYM.

8 Conclusion

In this paper we explored two complementary approaches for computing correlators of
hypermultiplets in AdS2×S2. The first makes use of 4d conformal symmetry in the free
and 2-derivative sectors of the theory, which makes it possible to deduce 4-point correlators
of protected operators in the dual 1d CFT with arbitrary charges by lifting the lowest
charge correlator to 4d. Note that the dual CFT is defined only formally since we are
not considering gravity in the bulk. In order to realise 4d conformal symmetry, a crucial
role is played by Casimirs of the superconformal group SU(1, 1|2). For example, we must
act with these Casimirs on free theory correlators before lifting to 4d, and after unmixing
correlators in the 2-derivative sector, the resulting anomalous dimensions turn out to be
eigenvalues of the Casimirs.

The second approach we develop is based on a 4d scalar effective action analogous
to the 10d effective action for IIB string theory in AdS5×S5 [13]. Using the effective
action, one can compute generalised Witten diagrams which treat AdS and S on equal
footing, giving a whole tower of 4-point correlators corresponding to harmonics on the
sphere. Whereas the 10d effective action describes α′ corrections to supergravity, the 4d
effective action treats the 2-derivative sector (which arises from dimensional reduction
of supergravity) on equal footing with higher derivative corrections. We find that the
predictions of the 4d effective action are in perfect agreement with those of 4d conformal
symmetry in the 2-derivative sector, but are generally incompatible with 4d conformal
symmetry for higher derivative corrections except for a special infinite class of correlators.
Moreover, after unmixing the correlators obtained from the higher-derivative effective
action, we find that the resulting anomalous dimensions are no longer rational which
further suggests that 4d conformal symmetry is broken.

We then apply the lessons we learned in 1d to N = 4 SYM, for which there is a
lot more data to compare to. Using superconformal Casimirs of SU(2, 2|4), we find that
α′3 corrections enjoy 10d conformal symmetry, similarly to 2-derivative interactions in
AdS2×S2, while α′5 corrections generically break the 10d conformal symmetry, similarly
to 6-derivative corrections in AdS2×S2. So it is not in general possible to reproduce the

– 35 –



J
H
E
P
0
3
(
2
0
2
2
)
0
7
6

predictions of the 10d effective action by acting with Casimirs on 10d conformal blocks
beyond α′3, except for a special class of correlators. We do on the other hand find that
there exists a 6-derivative action (corresponding to a four-derivative scalar effective action)
for which the integrand of the corresponding Witten diagrams has 10d conformal symmetry,
although this combination does not appear to be consistent with the results of localisation
in N = 4 SYM at O(α′5).

There are a number of directions for future work. First of all it would be interesting
to have a more systematic understanding of the (breaking of) 10d conformal symmetry
by stringy corrections in AdS5×S5. Since α′3 corrections enjoy 10d conformal symmetry
and are described by a φ4 interaction in the effective action, the breaking seems to be
associated with derivative interactions in the effective action. It would be interesting to
derive the appearance of the sixth order Casimir at O(α′3) from first principles using a Weyl
transformation from AdS5×S5 to flat space, and to use similar reasoning to understand the
breaking of 10d conformal symmetry at O(α′5) more systematically. In [5], 10d conformal
symmetry was also used to deduce the leading logarithmic part of all 4-point correlators
of 1/2-BPS operators in N = 4 SYM to all loops in the supergravity approximation, so
it would be interesting to use 4d conformal symmetry to do the analogue of this for 1d
correlators, which we expect to have a simpler structure. For example, whereas 1-loop
correlators in N = 4 SYM have transcendentality four, recent results [35] suggest that
they should have transcendentality two in 1d.

Moreover since AdS2×S2 describes the near-horizon geometry of extremal 4d black
holes, we hope this work will provide new tools for studying realistic black holes. As a
first step, it would be interesting to study correlators of graviton multiplets AdS2×S2 and
their relation to N = 4 SYK models [41, 42], N = 4 JT supergravity and the associated
N = 4 Schwarzian theory deduced in [43]. Another important aspect of AdS2 is that it has
two disconnected timelike boundaries. In this paper, we have only considered correlators
on a single boundary, but it would be interesting to generalise our results to correlators
connecting the two boundaries and explore the effects of higher-derivative corrections in
this context, which may have implications for black hole entropy [26, 44] or the weak gravity
conjecture [45, 46].
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A Casimirs

In this appendix we will derive various properties of superconformal Casimir operators in
1d and 4d.

A.1 The quadratic Casimir in SU(1, 1|2)

Superblocks are eigenfunctions of the quadratic super Casimir at points 1 and 2 acting
on the correlator. To consider this we develop the formalism slightly in order to consider
the coordinates Xi explicitly as sections on the super Grassmannian of 1|1 planes inside
a 2|2 dimensional vector space. Note that the formalism and super Casimir outlined be-
low generalises naturally from the supergroup SU(1, 1|2) to any supergroup of the form
SU(m,m|2n) [27].

Our space is the Grassmannian Gr(1|1, 2|2) , the space of 1|1×2|2 matrices uαA. Here
the small Greek indices refer to the local isotropy group GL(1|1) whilst the big Latin indices
refer to the global group GL(2|2). Explicitly, one can put coordinates on this Grassmannian
as

(ui)αB =
(
δαβ , (Xi)αβ̇

)
, ūBα̇ =

(
−(Xi)βα̇

δβ̇α̇

)
, (Xi)αβ̇ =

(
xi θi
θ̄i yi

)
. (A.1)

We thus have uαiBūBjα̇ = Xα
ijα̇. Then the generators of the superconformal group, SU(1, 1|2),

(at point i) are given simply as
DA
iB = uαiA

∂

∂uαiB
. (A.2)

The quadratic Casimir operator acting on the 4-point function at points 1 and 2 is then
given as

CSU(1,1|2)
1,2 = 1

2(DA
1B +DA

2B)(DB
1A +DB

2A). (A.3)

Acting with the Casimir on the supercorrelator in the form (B.3) and commuting
through the prefactor gives

CSU(1,1|2)
1,2 〈Ψp1Ψp2Ψp3Ψp4〉=Ppi

[(
(p12−p34)

(
x2 ∂

∂x
+y2 ∂

∂y

)
+p34p12(x−y)

)
f+1

2C
SU(2|2)
1,2 f

]
.

(A.4)
To obtain this we used that sdet(M) = exp(str log(M)) to deal with differentiating the
propagators gij := sdet(X−1

ij ) and then just applied the double derivative directly using
DA

12Bu
α
iC = uαiBδ

A
C and DB

12Aū
C
iδ̇

= −δCA ūBiδ̇ for i = 1 or 2.
We now consider the Casimir acting on f(Z) = f(x, y) = the conjugation invariant

function of the cross-ratio matrix Z, which is thus a function of the eigenvalues of Z only
as discussed above (B.5). By examining the action of the Casimir on arbitrary products
of traces of powers of Z,

∏
i tr(Zi)ai , and the corresponding expressions as polynomials of

eigenvalues we find that

CSU(2|2)
1,2 f(x,y) =

[(
x2 ∂

∂x
− 2xy
x−y

)
(1−x) ∂

∂x
−
(
y2 ∂

∂y
− 2yx
y−x

)
(1−y) ∂

∂y

]
f(x,y) (A.5)

= x−y
xy

(
x2∂x(1−x)∂x−y2∂y(1−y)∂y

) xyf(x,y)
x−y

(A.6)
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Putting this together, we then obtain the action of the quadratic super Casimir on the
correlator:

CSU(1,1|2)
1,2 = Ppi ×

x− y
xy

∆(2) xy

x− y
P−1
pi

∆(2) = D(p12,p43)
x −D(−p12,−p43)

y

D(p12,p43)
x = x2∂x(1− x)∂x + (p12 + p43)x2∂x − p12p43x . (A.7)

Similar (simpler) computations give us the Casimirs of the subgroups SU(1, 1) and
SU(2) acting on the correlator as

CSU(1,1)
1,2 = PpiD(p12,p43)

x P−1
pi

CSU(2)
1,2 = PpiD(−p12,−p43)

y P−1
pi
, (A.8)

and so we can write the action of superconformal Casimir on the correlator directly in
terms of the Casimir of the subgroups:

CSU(1,1|2)
1,2 = x− y

xy

(
CSU(1,1)

1,2 − CSU(2)
1,2

) xy

x− y
= I

(
CSU(1,1)

1,2 − CSU(2)
1,2

)
I−1 , (A.9)

where in the second line we recall (3.9) and use that x12, x34, y12, y34 commute with C12.

A.2 Higher order Casimirs in SU(m,m|2n) CFTs

The above formulae in fact generalise very nicely in two ways (see [48] for more details).
All higher order Casimirs for 4-point functions in an SU(m,m|2n) CFT for arbitrary m,n
(where we are interested in m = n = 1 for the 1d CFT case and m = n = 2 for the N = 4
SYM case) are given in terms of supersymmetric functions of the differential operators
D±z defined in (3.10). A symmetric function f(x1, . . . , xn) is one which is invariant under
permutations of the n variables. It can equivalently be viewed as a function of an n × n
matrix M invariant under conjugation, f(M) = f(G−1MG). The equivalence of these
descriptions occurs by identifying the variables xi with the eigenvalues of M . Similarly a
supersymmetric function can be viewed as a function of an (m|n)× (m|n) supermatrix M
invariant under conjugation f(M) = f(G−1MG). In terms of the eigenvalues of M which
we label (x1, . . . , xm|y1, . . . , yn) the space of such functions is equivalent to the space of
doubly symmetric functions (symmetric separately in the two sets of variables xi and yj)
which also satisfies the additional constraint ∂f(t, x2, . . . |t, y2, . . .)/∂t = 0 (see e.g. [49]
and references therein). A nice basis for the supersymmetric functions is provided by
super Schur polynomials.

Any higher order Casimir for a 4-point function in an SU(m,m|2n) theory (or more
precisely its action on conformally invariant functions) is simply a supersymmetric func-
tion f of appropriate differential operators D±z , conjugated with a super Vandermonde
determinant (and appropriate prefactor):

f(x1, . . . , xm|y1, . . . , yn)→ PpiV
−1f(D+

x1 , . . . ,D
+
xm
|D−y1 , . . . ,D

−
yn

)V P−1
pi
, (A.10)
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where the super Vandermonde determinant is

V =
∏

1≤i<j≤m(x−1
i − x

−1
j )

∏
1≤i<j≤n(y−1

i − y
−1
j )∏

1≤i≤m
1≤j≤n

(x−1
i − y

−1
j )

. (A.11)

The bosonic case (n = 0) of this result follows from the results of Shimeno [50] for BCm
hypergeometric functions (see theorem 2.1) following the identification of the higher order
Casimirs for blocks with the defining system of higher order differential equations for these
hypergeometric functions in [48]. The supersymmetric generalisation is then naturally given
by the above expression. The corresponding eigenvalues for superblocks of this Casimir are
also given in [48].

Higher order Casimirs in the 1d SCFT. The supersymmetric functions in the case
m = n = 1 (relevant for the 1d SCFT) are straightforward to classify: they take the form

f (a,b)(x|y) = (x− y)xayb , (A.12)

together with the trivial constant function. Thus we classify all higher order Casimirs in
the 1d SCFT as

C(a,b);SU(1,1|2)
1,2 = P̂pi

x− y
xy

∆(a,b) xy

x− y
P̂−1
pi

∆(a,b) =
(
D+
x −D−y

)
(D+

x )a(D−y )b . (A.13)

The case a = b = 0 is then precisely the 1d quadratic Casimir of (3.10) and higher order
Casimirs in 1d are considered in (5.17) and the following.

Let us compare this with the higher order Casimirs for the maximal bosonic subgroup
SU(1, 1)×SU(2). These correspond to the product of the cases (m,n) = (1, 0) and (m,n) =
(0, 1) in the general case (A.10) and take the form

C
(a,b);SU(1,1)×SU(2)
1,2 = P̂pi (D+

x )a(D−y )b P̂−1
pi
. (A.14)

We then find the relation

C(a,b)
1,2 = x− y

xy

(
C

(a+1,b)
1,2 − C(a,b+1)

1,2

) xy

x− y
, (A.15)

of which (A.9) is a special case.

Higher order Casimirs in N = 4 SYM. The space of supersymmetric functions in
the case m = n = 2 (relevant for N = 4 SYM) is more intricate, but a nice basis for them
is given by the super Schur polynomials, labelled by Young diagrams. They fall into two
classes: short and long. We only discuss the long ones as they are the only ones needed
here, but all cases, both long and short, can be found in [47]. The long supersymmetric
functions in the case m = n = 2 are spanned by the functions6

f (a,ā|b,b̄)(x, x̄|y, ȳ) = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)(xax̄ā + xāx̄a)(ybȳb̄ + yb̄ȳb) . (A.16)
6This basis is equivalent to but not identical to the Schur polynomial basis for long supersymmetric

polynomials.

– 39 –



J
H
E
P
0
3
(
2
0
2
2
)
0
7
6

Noting that the first four factors translate directly to ∆(8) (7.8) under the prescrip-
tion (A.10), we see that the space of corresponding higher order Casimirs is spanned by
the operators

C(a,ā|b,b̄);SU(2,2|4)
1,2 = P̂pi

((x−y)(x−ȳ)(x̄−y)(x̄−ȳ)
xx̄yȳ(x−x̄)(y−ȳ)

)
∆(8)∆(a,ā|b,b̄)

×
(

xx̄yȳ(x−x̄)(y−ȳ)
(x−y)(x−ȳ)(x̄−y)(x̄−ȳ)

)
P̂−1
pi

(A.17)

∆(a,ā|b,b̄) =
(
(D+

x )a(D+
x̄ )ā + (D+

x )ā(D+
x̄ )a

)(
(D−y )b(D−ȳ )b̄ + (D−y )b̄(D−ȳ )b

)
. (A.18)

This is the basis of higher order Casimirs used to find the 14th order Casimir in the α′3

correction (7.15)–(7.12) as well as the higher order Casimirs considered at higher orders in
α′ in section 7.2.

Let us compare this super Casimir with the higher order Casimirs for the maximal
bosonic subgroup SU(2, 2)× SU(4) which are obtained from the general formula (A.10) by
taking the product of the cases (m,n) = (2, 0) and (m,n) = (0, 2) and take the form

C
(a,ā|b,b̄);SU(2,2)×SU(4)
1,2 = P̂pi

(
xx̄yȳ

(x−x̄)(y−ȳ)

)
∆(a,ā|b,b̄)

((x−x̄)(y−ȳ)
xx̄yȳ

)
P̂−1
pi
, (A.19)

where ∆(a,ā|b,b̄) is in (A.18). We find that super Casimirs are related to the bosonic Casimirs
via

C(a,ā|b,b̄);SU(2,2|4)
1,2 =

((x−y)(x−ȳ)(x̄−y)(x̄−ȳ)
(xx̄yȳ)2

)
C

(∗);SU(2,2)×SU(4)
1,2

×
(

(xx̄yȳ)2

(x−y)(x−ȳ)(x̄−y)(x̄−ȳ)

)
, (A.20)

where C(∗)
1,2 is a linear combination of the bosonic Casimirs in (A.19) obtained by multiplying

by ∆(8) and expanding, so the first and last terms for example are

C
(∗)
1,2 = C

(a+2,ā+2|b,b̄)
1,2 − · · ·+ C

(a,ā|b+2,b̄+2)
1,2 . (A.21)

B Correlators of descendants

In this appendix we wish to compute the correlator of superconformal descendants
(see (2.5)):

∂θ1∂θ2∂θ̄3∂θ̄4〈Ψp1Ψp2Ψp3Ψp4〉|θi=θ̄i=0 (B.1)

and prove the result (3.8).
We must first understand the general form the supercorrelator must take according

to the superconformal Ward identities. Superconformal symmetry SU(1, 1|2) fixes the
correlator in terms of a conjugation invariant function of a cross ratio matrix (see [27, 47])
The general arguments in [27, 47] show that superconformal symmetry SU(1, 1|2) fixes the
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correlator to Ppi×f(Z) where f(Z) is a conjugation invariant function (f(Z) = f(G−1ZG))
of the cross-ratio matrix Z

Z := X12X
−1
24 X43X

−1
31 =

(
x ξ

ξ̄ y

)
, Xij := Xi −Xj , Xi :=

(
xi θi
θ̄i yi

)
. (B.2)

It thus becomes a function of the eigenvalues of Z only, x̂, ŷ so

〈Ψp1Ψp2Ψp3Ψp4〉 = Ppi × f(x̂, ŷ) (B.3)

where
x̂ = x+ ξξ̄

x− y
ŷ = y + ξξ̄

x− y
(B.4)

That the eigenvalues of Z are given by (B.4) can be easily checked by verifying that they
give the same super trace and super determinant:

str(Z) = x− y = x̂− ŷ, sdet(Z) = (x− ξξ̄/y)/y = x̂/ŷ. (B.5)

Plugging these definitions into Mathematica with the help of the Grassmann pack-
age [51] to deal with the Grassmann odd variables one finds that the Grassmann odd
derivatives acting on f are consistent with the following differential operator:

∂θ1∂θ2∂θ̄3∂θ̄4f(x̂, ŷ)|θi=θ̄i=0 = 1
x12x34y12y34

(
D(0,0)
x̂ −D(0,0)

ŷ

) x̂ŷ

x̂− ŷ
f(x̂, ŷ) . (B.6)

Pulling this through the prefactor then gives the action on the correlator itself:

∂θ1∂θ2∂θ̄3∂θ̄4〈Ψp1Ψp2Ψp3Ψp4〉|θi=θ̄i=0

= Ppi

x12x34y12y34

(
D(p12,p43)
x −D(−p12,−p43)

y

)
P−1
pi

xy

x− y
〈Ψp1Ψp2Ψp3Ψp4〉|θi=θ̄i=0

= I−1CSU(1,1|2)
1,2 〈Ψp1Ψp2Ψp3Ψp4〉|θi=θ̄i=0 , (B.7)

with I defined in (3.9). This is precisely the result claimed in (3.8). It would be interesting
to understand in a more direct way precisely why the Casimir appears in this context.

C Further unmixing examples

In the end of section 6.2 we described some simple examples of unmixing in the 2-derivative
sector. In this appendix, we will describe more complicated examples. First we will describe
unmixing in the 2-derivative sector with non-zero SU(2) charge p and then we will describe
some examples in the 6-derivative sector.

C.1 2-derivative sector

The simplest case with p > 0 is (∆, p) = (2, 1), for which there is only one exchanged
operator in the double-trace spectrum, O1O2. Performing the conformal block expansion
of H1212 and comparing to (6.8), we find that the coefficients for (∆, p) = (2, 1) are

A
(0)
1212(2, 1) = 1

4 , M
(2)
1212(2, 1) = 1. (C.1)
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The unmixing equations in (6.10) are then solved by

γ
(2)
2,1 = 4 , C

(0)
2,1 = 1

2 . (C.2)

Next, let us solve the mixing problem for (∆, p) = (4, 1) where two types of operators
are exchanged, O1∂O2 andO2O3. Performing the conformal block expansion of the relevant
correlators then gives

Â
(0)
4,1 =

(
A

(0)
1212 0
0 A

(0)
2323

)
(4,1)

=
(

5
84 0
0 1

30

)
, M̂

(2)
4,1 =

(
M

(2)
1212 M

(2)
1223

M
(2)
1223 M

(2)
2323

)
(4,1)

=
(

5
21

1
3

1
3

7
15

)
. (C.3)

Solving the unmixing equations gives the following anomalous dimensions and OPE coef-
ficients:

γ
(2)
4,1 = 18 , C(0)

4,1 =

 √
5

3
√

42 −
√

5
6
√

3√
7

3
√

30
1

3
√

15

 . (C.4)

Note that there is only one non-zero anomalous dimension, as expected.

C.2 6-derivative sector

Let us first consider t = ∆−p odd. For the simplest case (∆, p) = (1, 0) only one exchanged
operator O1O1 contributes. Performing the conformal block expansion of H(6)

1111 in (5.14),
we find that the coefficient for (∆, p) = (1, 0) is

M
(6)
1111(1, 0) = 4 . (C.5)

The unmixing equations are

M
(6)
1111(1, 0) = γ

(6)
1,0

(
C

(0)
1,0

)2
+ 2 γ(2)

1,0C
(0)
1,0C

(6)
1,0 , 0 = C

(0)
1,0C

(6)
1,0 . (C.6)

We can solve these equations using (6.15), which yields(
γ

(6)
A

)1,0

0,0
= 4 , C

(6)
1,0 = 0 . (C.7)

For (∆, p) = (3, 0) there are two possible exchanged operators, O2O2 and O1∂
2O1. In

this case we find

M̂
(6)
3,0 =

(
M4-deriv

1111 M4-deriv
1122

M4-deriv
1122 M4-deriv

2222

)
(3,0)

=
(

72
5

4
3(15 + C0)

4
3(15 + C0) 8

9(38 + 5C0)

)
. (C.8)

Solving the unmixing equations using (6.17) then gives

γ
(6)
3,0,i =

{16
3 (137 + 15C0), 64

3

}
, C(6)

3,0 = (−1 + 3C0)

 −√5
9
√

3
1

9
√

3√
5

27
√

3
5

27
√

3

 . (C.9)

Recall that C0 is the coefficient of the ambiguity in (5.8). While there is only one non-zero
anomalous dimension for each (∆, p) in the 2-derivative sector, we see that there are two
non-zero anomalous dimensions in the 6-derivative sector for (∆, p) = (3, 0).
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The first example where square roots appear in the 6-derivative sector is (∆, p) = (5, 2).
In this case there are four class A operators,

{
O1∂

2O3,O2O4,O2∂
2O2,O3O3

}
, and one

class B operator, O2∂O3. Class A and B operators do not mix with each other and the
class A operators will have square roots in their anomalous dimensions after unmixing.
Performing the conformal block expansion of the relevant correlators at O(a/c) then leads
to the symmetric matrix:

M̂
(6)
5,2 =



M
(6)
1313 M

(6)
1324 M

(6)
1322 M

(6)
1333 M

(6)
1323

M
(6)
2424 M

(6)
2422 M

(6)
2433 M

(6)
2423

M
(6)
2222 M

(6)
2233 M

(6)
2223

M
(6)
3333 M

(6)
3323

M
(6)
2323


(5,2)

(C.10)

=



2
25(774 + 35C0) 6

35(416 + 35C0) 4
45(942 + 35C0) 36

35(90 + 7C0) 0
6

245(3910 + 441C0) 36
35(90 + 7C0) 468

245(62 + 7C0) 0
8

135(1955 + 56C0) 8
105(1707 + 112C0) 0

72
245(657 + 56C0) 0

672
25

 .

Solving the unmixing equations then gives(
γ

(6)
A

)5,2

0,0
= 32

3 (545 + 51C0) ,
(
γ

(6)
A

)5,2

1,0
= 8

15(415−
√

2881) ,(
γ

(6)
A

)5,2

0,1
= 8

15(415 +
√

2881) ,
(
γ

(6)
Bto

)5,2

1
= 1008

5 . (C.11)

Note the appearance of square roots, which signal the breaking of 4d conformal symmetry.
Finally, let us describe a few examples of unmixing for t = ∆ − p even. At weight

(∆, p) = (3, 1) there is only one operator present, O1∂O2, and we get

A
(0)
1212(3, 1) = 2

15 , M
(6)
1212(3, 1) = 16

9 . (C.12)

Solving the unmixing equations then gives the anomalous dimension and OPE coefficients(
γ

(6)
Bte

)3,1

1,0
= 40

3 , C
(0)
3,1 =

√
2
15 , C

(6)
3,1 = 0 . (C.13)

For (∆, p) = (5, 1) there are two operators that contribute, O1∂
2O2 and O2∂O3, and

performing the conformal block expansion of the relevant correlators gives

Â
(0)
5,1 =

(
A

(0)
1212 0
0 A

(0)
2323

)
(5,1)

=
(

1
42 0
0 9

175

)
,

M̂
(6)
5,1 =

(
M

(6)
1212 M

(6)
1223

M
(6)
1223 M

(6)
2323

)
(5,1)

=
(

52
45

104
25

104
25

1872
125

)
. (C.14)

Solving the unmixing equations for this case gives the anomalous dimension(
γ

(6)
Bte

)5,1

1,0
= 5096

15 . (C.15)
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For this case again, as for the whole p = 1 sector, there is exactly one non-zero anomalous
dimension, which corresponds to the operator with iBte = 1, rBte = 0. Going to p ≥ 2,
there will be two non-zero anomalous dimensions, the additional one being for the operator
with iBte = 1, rBte = 1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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