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Abstract
High-dimensional limit theorems have been shown useful to derive tuning rules for finding the optimal scaling in random
walk Metropolis algorithms. The assumptions under which weak convergence results are proved are, however, restrictive: the
target density is typically assumed to be of a product form. Users may thus doubt the validity of such tuning rules in practical
applications. In this paper, we shed some light on optimal scaling problems from a different perspective, namely a large-sample
one. This allows to prove weak convergence results under realistic assumptions and to propose novel parameter-dimension-
dependent tuning guidelines. The proposed guidelines are consistent with the previous ones when the target density is close
to having a product form, and the results highlight that the correlation structure has to be accounted for to avoid performance
deterioration if that is not the case, while justifying the use of a natural (asymptotically exact) approximation to the correlation
matrix that can be employed for the very first algorithm run.

Keywords Bernstein–von Mises theorem · Large-sample theory · Markov chain Monte Carlo · Optimal tuning · Weak
convergence

1 Introduction

1.1 Randomwalk Metropolis algorithms

Consider a Bayesian statistical framework where one wants
to sample from an intractable posterior distribution π to
perform inference. This posterior distribution, also called
the target distribution in a sampling context, is considered
here to be that of model parameters θ ∈ Θ = R

d , given
a data sample of size n. We assume that π has a proba-
bility density function (PDF) with respect to the Lebesgue
measure; to simplify, we will also use π to denote this den-
sity function. Tools called random walk Metropolis (RWM)
algorithms (Metropolis et al. 1953), which are Markov chain
Monte Carlo (MCMC) methods, can be employed to sample
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from π . An iteration of such an algorithm can be outlined as
follows: given a current value of the chain θ , a proposal for
the next one is made using

θ ′ := θ + S ε, ε ∼ ϕ( · ; 0, 1),

where S is a scaling matrix and ϕ( · ; 0, 1) denotes the stan-
dard normal distribution; this proposal is accepted with
probability

α(θ , θ ′) := min

{
1,

π(θ ′)
π(θ)

}
;

if the proposal is rejected, the chain remains at the same state.

1.2 Optimal scaling problems

Often, S = λ1, where λ is a positive constant to be deter-
mined. In this case, λ is the only free parameter. Yet, this
parameter has to be tuned carefully because small values
lead to tiny movements of the Markov chain simulated by
RWM, while large values induce high rejection rates, both
being undesirable. Finding the optimal value is thus a non-
trivial problem. The last 20 years havewitnessed a significant
progress in the line of research studying such problems called
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optimal scaling problems, whether it is in RWM (Roberts
et al. 1997; Bédard 2007; Sherlock and Roberts 2009; Dur-
mus et al. 2017; Yang et al. 2020) or other algorithms
including a scaling parameter (Roberts and Rosenthal 1998;
Bédard et al. 2012; Beskos et al. 2013). In all these articles,
the authors derive tuning rules based on analyses in the high-
dimensional regime d → ∞.

In the seminal work of Roberts et al. (1997) on RWM, the
tuning rule for λ follows from the analysis of a Langevin
diffusion which is the limiting process of a re-scaled
continuous-time version of RWM. The rule is remarkably
simple: set λ = �/

√
d and tune � so that the acceptance

rate is 0.234. The resulting optimal value is universal, in
the sense that it minimizes the stationary integrated autocor-
relation time of any function of the limiting process. The
tuning rule is, however, derived under the assumption that
π(θ) = ∏d

i=1 f (θi ), where θ := (θ1, . . . , θd) and f satis-
fies some regularity conditions. Assuming independent and
identically distributed (IID) parameters considerably reduces
the scope of applicability. One may be tempted to search for
transformations/standardizations yielding IID parameters to
expand the scope, but they exist only in specific situations
(e.g. Gaussian target distributions). It will be seen that one of
the main contributions of this paper is to provide formal and
realistic conditions under which RWM algorithms targeting
π behave similarly to RWM targeting aGaussian distribution
with specific mean and covariance in an asymptotic regime.
Our results thus allow to demonstrate that standardizing the
parameters to expand the scope of applicability of the results
of Roberts et al. (1997) is valid under regularity conditions,
but only asymptotically.

The scope has been expanded otherwise in the past. For
example, Bédard (2007) and Durmus et al. (2017) proved
that the result is robust to departure from the identically dis-
tributed part of the assumption.Yang et al. (2020) proved that
the result is valid under assumptions that are more general
but difficult to verify. Empirical results in realistic scenarios
where the IID assumption is, thus, not satisfied show that an
acceptance rate of 0.234 is close to being optimal in these
scenarios (e.g. Shang et al. 2015; Zhang et al. 2016; Gagnon
et al. 2021), which can be seen as another demonstration of
the robustness of the original results.

1.3 Contributions

In this paper, we provide an alternative explanation of these
empirical results in realistic scenarios, based on Bayesian
large-sample theory. To achieve this, we revisit optimal
scaling problems in RWM by exploiting important results
underpinning that theory. In particular, we prove a weak con-
vergence result as n → ∞, with d being fixed, and derive
tuning rules from it. While this asymptotic regime is ubiqui-
tous in statistics, it is only recently that it was found useful

in the analysis of MCMC algorithms (Deligiannidis et al.
2018; Gagnon 2021; Schmon et al. 2021a). Intuitively, if n is
large enough and π is a posterior distribution resulting from
a sufficiently regular Bayesian model, then π is close to a
concentrating Gaussian, implying that RWM algorithms tar-
geting π behave like those targeting a Gaussian. This idea is
formalized in Sect. 2.

The proximity between π and a concentrating Gaussian
can be established by virtue of Bernstein–von Mises the-
orems (see, e.g. Theorem 10.1 in Van der Vaart 2000 and
Kleijn and Van der Vaart 2012). Verifying that a Bayesian
model is sufficiently regular is thus closely related to ver-
ifying that the assumptions of such theorems are satisfied
and has a priori nothing to do with whether the parame-
ters are IID or not. Instead, such theorems rely on local
asymptotic normality, meaning that a certain function of
the log-likelihood allows for a quadratic expansion (usu-
ally) around some “true” parameter value θ0. If the posterior
concentrates around θ0, the quadratic expansion of the log-
likelihood implies an asymptotically Gaussian posterior; this
happens under weak conditions such as IID data points with
regularity conditions on the distribution and positive prior
mass around θ0. The results in Roberts et al. (1997) actually
rely on a similar quadratic expansion, but one that requires
to impose a IID constraint on the parameters instead. We
discuss in more detail the resemblance between both expan-
sions in Sect. 3, allowing to establish a connection between
our guidelines and theirs.

An advantage of the approach adopted in this paper to
analyseMCMC algorithms is that a lot is known about which
models are sufficiently regular (e.g. LeCam 1953; Bickel and
Yahav 1969; Johnson 1970; Ghosal et al. 1995; Van der Vaart
2000; Kleijn and Van der Vaart 2012). Many models based
on the exponential family are, for instance, regular enough. A
notable example of such a model, namely Bayesian logistic
regression, is studied in Sect. 4.

We finish this section by outlining our main contributions:

(i) presentation of a large-sample asymptotic framework
and realistic assumptions under which a weak conver-
gence of RWM is proved (Sect. 2);

(ii) an extensive analysis of the limiting RWM algo-
rithm (Sect. 3) that allows to: (a) provide dimension-
dependent optimal tuning guidelines, (b) show that the
“0.234” rule-of-thumb is asymptotically valid from the
point of view adopted in this paper in certain situations
and that this rule is in fact quite robust to a departure
from the IID assumption when S = λ1, without provid-
ing any guarantee regarding the algorithmperformance;
the latter deteriorates when there is a significant depar-
ture from the IID assumption and S = λ1 because this
scaling matrix does not account for the correlation in
between the parameters (Sect. 3);
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(iii) justification of the use of natural asymptotically exact
approximations to the covariance matrix such as the
inverse Fisher information or its observed version that
can be employed for the very first algorithm run to avoid
deterioration of performance.

Our analysis is mainly based on an efficiency measure
called the expected squared jumping distance (ESJD). It is
defined as the average squared distance between two consec-
utive states (or a function of them). Optimizing this measure
does not yield a universally optimal scaling because it is opti-
mal forone function and thus not necessarily forall functions.
Typically, ESJD is optimized for the identity function; this
strategy has demonstrated on many occasions in the liter-
ature to lead to reliable conclusions (see, e.g., Yang et al.
(2020)). This choice also allows to establish a formal con-
nection between our results and those of Roberts et al. (1997)
in Sect. 3.

1.4 Notation and framework

We first note that within our framework the Bayesian poste-
rior π depends on n; therefore, from now on the target will
be denoted by πn . The target being a posterior distribution in
fact depends on a set of observations that will be denoted by
y1:n := (y1, . . . , yn) ∈ ∏n

i=1 Yi . We make this dependence
implicit to simplify. We assume y1:n to be the first n com-
ponents of a realization of some unknown data generating
process PY on

∏∞
i=1 Yi . Through its dependence on the data

points, the distribution πn is a random measure on Rd . Con-
sequently, everything derived from it (or in fact directly from
the data points) is random, such as integrals with respect to
πn and the distributions ofMarkov chains produced byRWM
targeting πn . In the following, we make statements about the
convergence of such mathematical objects in PY-probability.
We now briefly describe what we mean by this and refer to
Schmon (2020) and Schmon et al. (2021b, Section S1) for
more details on random measures and such convergences in
a MCMC context. We say, for instance, that an integral with
respect toπn , denoted by In , converges to I inPY-probability
when PY|In − I | → 0. A Markov chain produced by RWM
targeting πn is seen to weakly converge in P

Y-probability
towards another Markov chain when the finite-dimensional
distributions converge in PY-probability, where the latter can
be seen as random integrals involving πn and random transi-
tion kernels.

The matrix S will also depend on n and will thus be writ-
ten Sn . We use ϕ(θ;μ,Σ) to denote a Gaussian density with
argument θ , mean μ, and covariance matrix Σ and use Φ

to denote the cumulative distribution function of a standard
normal; I(θ) and θ̂n denote the Fisher information evalu-
ated at θ and a parameter estimator, respectively. Finally, the

norm of a vector μ with respect to a matrix Σ is denoted by
‖μ‖2Σ := μTΣμ. We simply write ‖μ‖2 when Σ = 1.

2 Large-sample asymptotics of RWM

We first present three conditions under which a weak con-
vergence of RWM can be established, and next, our result.
The first condition is that a Bernstein–von Mises theorem
holds, i.e. the concentration of the PDF πn around the true
model parameter value θ0, as n increases, with a shape that
resembles that of a Gaussian. For simplicity, we only con-
sider the case where the Bayesian model is well specified,
but our result remains valid under model misspecification;
however, in this case, θ0 is some fixed parameter value and
the covariance matrix of the Gaussian is different (see Kleijn
and Van der Vaart 2012).

Assumption 1 (Bernstein–von Mises theorem) As n → ∞,
we have the following convergences in PY-probability:

∫ ∣∣∣πn(θ) − ϕ(θ; θ̂n, I(θ0)
−1/n)

∣∣∣ dθ → 0

with θ̂n → θ0.

If the posterior concentrates at a rate of 1/
√
n, the scal-

ing of the random walk needs to decrease at the same rate.
Note that this is an analogous requirement to that in Roberts
et al. (1997); in that paper, the scaling diminishes with d like
1/

√
d. In both cases, it is to accommodate to the reality that,

as n or d increases, the acceptance rate rapidly deteriorates
if the scaling is not suitably reduced.

The scalingmatrix is more precisely considered here to be
of the following form: Sn = (λ/

√
n)Mn , with Mn a matrix

that is allowed to depend on n (and the data, but this depen-
dence is made implicit to simplify the notation). The second
assumption is now presented.

Assumption 2 (Proposal scaling) The proposal is scaled as
follows: Sn = (λ/

√
n)Mn , and there exists a matrixM such

thatMnMT
n → MMT in PY-probability, where we say that a

matrix converges in probabilitywhenever all entries converge
in probability.

A choice of matrix Mn that satisfies Assumption 2 is
the identity matrix 1. In the following, it will be seen that
choosing Mn to be the result of a Cholesky decomposi-

tion of I(θ̂n)
−1

, i.e. such that MnMT
n = I(θ̂n)

−1
, may

be preferable, depending on the strength of the correlation
between the parameters. When the correlation is significant,
the desirable property is that MnMT

n → MMT = I(θ0)
−1

in PY-probability, which is often the case for regular models

when MnMT
n = I(θ̂n)

−1
. Note that other choices of matri-

cesMn may have this property. For instance, it may be valid
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to choose Mn to be the result of a Cholesky decomposition
of the inverse observed information matrix instead.

Given that the target distribution concentrates and the pro-
posal scaling decreases, we need to standardize the Markov
chains simulated by RWM to obtain a non-trivial limit.
For each time step, we consider the transformation zn :=
n1/2(θn − θ̂n). The proposals after the transformation are
thus z′

n = zn + λMnε and the resulting Markov chains
have a stationary PDF πZn which is such that πZn (zn) =
πn(θ̂n + n−1/2zn)/nd/2. This implies that the proposals are
sampled from a Gaussian with a non-decreasing scaling and
the stationary distribution behaves like a Gaussian withmean
0 and covariance I(θ0)

−1, as n → ∞. Let Ξn := (
Zk,n

)
k≥0

be such a standardized Markov chain with Zk,n being the
state of the chain after k iterations.

An asymptotic result that we prove is a convergence ofΞn

towards Ξ := (
Zk
)
k≥0, which is a Markov chain simulated

by a RWM algorithm targeting a Gaussian with mean 0 and
covariance I(θ0)

−1 using proposals given by z′ = z+λMε.
To obtain the result, we assume that the chains start in

stationarity. If this is not the case, the result generally still
holds (at least approximatively), but for subchains formed
of states with iteration indices larger than a certain thresh-
old. Indeed, the chains produced by RWM are irreducible
and they are typically aperiodic (they are if there are positive
probabilities of rejecting proposals); therefore, they are typ-
ically ergodic (Tierney 1994). This implies that the chains
typically reach stationarity (at least approximatively) after a
large enough number of iterations.

Assumption 3 (Stationarity) Ξn and Ξ start in stationarity.

We are now ready to present the main theoretical results of
this paper.

Theorem 1 Under Assumptions 1, 2 and 3, we have the fol-
lowing convergences in P

Y-probability:

(i) Ξn converges weakly to Ξ ;
(ii) the expected acceptance probability converges,

E

[
min

{
1,

πZn (Z
′
n)

πZn (Zn)

}]

→ E

[
min

{
1,

ϕ(Z′; 0, I(θ0)
−1)

ϕ(Z; 0, I(θ0)
−1)

}]
,

with

Zn ∼ πZn , Z′
n ∼ ϕ( · ;Zn, λ

2MnMT
n ),

Z ∼ ϕ( · ; 0, I(θ0)
−1), Z′ ∼ ϕ( · ;Z, λ2MMT );

(iii) if additionally

MnMT
n = I(θ̂n)

−1 → MMT = I(θ0)
−1

in PY-probability, then the ESJD converges,

E

[
‖Zk+1,n − Zk,n‖2I(θ̂n)

]
→ E

[
‖Zk+1 − Zk‖2I(θ0)

]
.

The proof of Theorem 1 and the proof of all the following
theoretical results are deferred to Appendix A. Note that, as
shown in the proof, Result (iii) holds under a more general,
but more technical, assumption.

3 Tuning guidelines and analysis of the
limiting RWM

We first present in Sect. 3.1 special cases of the limiting
ESJD resulting from specific choices for M; these special
caseswill be seen to suggest tuning guidelines. Subsequently,
we turn to an extensive analysis of the limiting RWM in
Sect. 3.2 showing the relevance of these guidelines, but also
the robustness of the 0.234 rule whenM = 1. An interesting
feature of the proposed guidelines is that they are consistent
with this rule. An asymptotic connection with the results of
Roberts et al. (1997) as d → ∞ is established in Sect. 3.3.

3.1 Tuning guidelines

In the same spirit as Roberts et al. (1997) who optimize the
speed measure of their limiting diffusion as a proxy, we pro-
pose here to optimize

E

[
‖Zk+1 − Zk‖2I(θ0)

]
=: ESJD(λ,M)

with respect to the tuning parameter λ, for given M. There
exists a simple expression for ESJD(λ,M) for the typi-
cal choice M = 1 or when M results from a Cholesky
decomposition of I(θ0)

−1, i.e. when MMT = I(θ0)
−1.

The expressions are provided in Corollary 1, along with the
expected acceptance probabilities associated with these spe-
cial cases of M.

Corollary 1 (Formulae for ESJD and acceptance probabili-
ties) Assume Ξ starts in stationarity and let ε ∼ ϕ( · ; 0, 1).
IfM = 1,

ESJD(λ,M) = 2λ2 E

[
‖ε‖2I(θ0)

Φ

(
−λ

‖ε‖I(θ0)

2

)]
, (1)

and the expected acceptance probability is

2E

[
Φ

(
−λ

‖ε‖I(θ0)

2

)]
.
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IfMMT = I(θ0)
−1,

ESJD(λ,M) = 2λ2 E

[
‖ε‖2 Φ

(
−λ

‖ε‖
2

)]
(2)

and the expected acceptance probability is

2E

[
Φ

(
−λ

‖ε‖
2

)]
.

In general, expressions (1) and (2) inCorollary 1 cannot be
optimized analytically, but can be approximated efficiently
using independent Monte Carlo sampling, and thus, numeri-
cally optimized using the resulting approximations. We note
that (1) and (2) coincide when I(θ0) = 1 and that, in gen-
eral, (1) depends on I(θ0), while (2) does not. This reveals
that the value of λ maximizing (1) is similar to that maxi-
mizing (2) when the model parameters are close to be IID,
but is expected to be different otherwise. More precisely, it
is expected that the value of λ maximizing (1) is small when
the parameters are strongly correlated, yielding inefficient
RWM algorithms; this is confirmed in Sect. 3.2. Corollary
1 also reveals that, when M is such that MMT = I(θ0)

−1,
the optimal value for λ is invariant to the covariance struc-
ture. In other words, Corollary 1 suggests the following
practical guideline: set Sn = (λ/

√
n)Mn with Mn such

that MnMT
n = I(θ̂n)

−1
. Aiming to match the proposal

covariance to the target covariance has a long history in
MCMC (see, e.g., Haario et al. (2001) in a context of adap-
tive algorithms). To exactly match the target covariance, Sn
is typically set to Sn = (λ/

√
n)1 and trial runs are performed

to estimate the covariance. This may turn out to be ineffec-
tive when RWM with this choice of scaling matrix performs
poorly. The guideline proposed here provides an alternative:
while the matrix used to build Sn does not correspond to the
target covariance, it is asymptotically equivalent to it (under
the assumptions mentioned in Sect. 2); the advantage is that
this alternative can be implemented for the very first algo-
rithm run.

In Table 1, we present the results of a numerical opti-
mization of ESJD(λ,M) when λ = �/

√
d and M is such

that MMT = I(θ0)
−1 based on Monte Carlo samples of

size 10,000,000 and a grid search, for several values of d.
The optimization is thus with respect to �, and the optimal
value is denoted by �̂. Note that we have observed empiri-
cally that optimizing the effective sample size (ESS) yields
similar results. Note also that the code to produce all numer-
ical results is available online1. In Table 1, additionally to
�̂, we present the acceptance rate, i.e. the Monte Carlo esti-
mate of the expected acceptance probability, of the RWM
using �̂. This table thus serves as guidelines to set � in

1 See ancillary files on https://arxiv.org/abs/2104.06384.

Sn = (�/
√
dn)Mn with Mn such that MnMT

n = I(θ̂n)
−1

.
Writing λ = �/

√
d allows to establish a connection with the

results of Roberts et al. (1997) in Sect. 3.3. The existence of
such a connection is highlighted by the values of the opti-
mal acceptance rates for large values of d. In Sect. 3.3, we
establish that ESJD converges as d → ∞ to the same expres-
sion which is optimized in Roberts et al. (1997) and which
leads within their framework to an optimal acceptance rate
of 23.38%. From this result, we prove that the asymptoti-
cally optimal acceptance rate derived within our framework
is 23.38% as well. What is remarkable is that, not only do we
retrievewithin our framework the same value asRoberts et al.
(1997) when the parameters are IID, i.e. when I(θ0)

−1 = 1,
but the limiting optimal acceptance rate is also 23.38%when
I(θ0) 
= 1, as long as MMT = I(θ0)

−1, which is a conse-
quence of the invariance of (2), a quality that the acceptance
rate also has.

From Table 1, we observe that when M is such that
MMT = I(θ0)

−1, the optimal acceptance rate is approxi-
mately 44% for d = 1, 35% for d = 2 and decreases towards
23.38% as d increases, regardless of the covariance structure.
A theoretical result allows to support our numerical findings.
Proposition 1 states that, for fixed �, the expected acceptance
probability decreases monotonically as d increases, which
confirms, for instance, that from d = 1 to d = 2 with
� = �̂ = 2.42 fixed, the expected acceptance probability
decreases.

Proposition 1 Let ε ∼ ϕ( · ; 0, 1). For d ≥ 2,

2E

⎡
⎣Φ

⎛
⎝− �

2

√√√√ 1

d

d∑
i=1

ε2i

⎞
⎠
⎤
⎦ ≤ 2E

⎡
⎣Φ

⎛
⎝− �

2

√√√√ 1

d − 1

d−1∑
i=1

ε2i

⎞
⎠
⎤
⎦ .

We finish this section by noting that for d = 1, the ESJD
and expected acceptance probability of a RWM targeting
a Gaussian distribution have closed-form expressions (see
Sherlock and Roberts 2009) and can thus be optimized using
these expressions.

3.2 Analysis of the limiting RWM

We now present the practical implications of the guidelines
proposed in Sect. 3.1 (in the asymptotic regime n → ∞)
through an analysis of the impact of different target covari-
ances on the performance and acceptance rate of the optimal
limiting RWM. More precisely, we analyse the behaviour
of the limiting RWM with M = 1 and M such that
MMT = I(θ0)

−1 under different target covariances; for
each of these covariances, the algorithms are made optimal,
in the sense that λ (or �) is tuned according to the expres-
sions in Corollary 1 (or Table 1). The algorithm withM such
that MMT = I(θ0)

−1 has a higher complexity because an
additional matrix multiplication is required every iteration.
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Table 1 Optimal value for � and
the acceptance rate of the
limiting RWM using this value
and M such that
MMT = I(θ0)

−1, as a function
of d

d 1 2 3 4 5 10 15 20 30 50

�̂ 2.42 2.42 2.42 2.42 2.40 2.40 2.39 2.39 2.38 2.38

Acc. rate. (in %) 44.00 35.00 31.30 29.29 28.39 25.78 25.07 24.61 24.34 23.97

However, in standard modern statistical computing frame-
works we found both algorithms to take roughly the same
amount of time to complete; it is the case for instance for
the numerical experiments presented in this paper that were
performed in R (R Core Team 2020) on a computer with an
i9 CPU.

For the analysis, we focus on showing what happens
when the correlation between themodel parameters increases
under a specific covariance structure: the (i, j)th entry of
I(θ0)

−1 is given by ρ|i− j |, where −1 ≤ ρ ≤ 1 is a varying
parameter. This covariance structure is often called autore-
gressive of order 1 and represents a situation where the
parameters are standardized, in the sense that their marginal
variances are all equal to 1, and the correlations between
them decline exponentially with distance, at a speed that
depends on ρ. In this setting, the target covariance matrix
is parametrized with only one parameter, ρ. The case where
0 ≤ ρ ≤ 1 is more interesting for the current purpose;
a value close to 0 leads to weak correlations between the
parameters, whereas a value close to 1 makes the correlation
persist with distance, yielding strong correlations between
the parameters. Note that the situation where parameters are
standardized and M = 1 is equivalent to that where the
parameters are non-standardized but M is a diagonal matrix
with diagonal entries equal to the marginal standard devia-
tions. The empirical results are presented in Fig. 1.

In Fig. 1, the algorithm performances are evaluated using
the minimum of the marginal ESSs, reported per iteration.
ESJD cannot be used to evaluate performance across differ-
ent values of ρ because using a normwith respect to I(θ0) in
ESJD standardizes this measure. We show the results for 0 ≤
ρ ≤ 0.9 as beyond 0.9, RWM with M = 1 becomes unre-
liable. As suggested by the expressions in Corollary 1, the
performance of RWM with M such that MMT = I(θ0)

−1

does not varywithρ, while it does forRWMwithM = 1; it in
fact deteriorates when ρ increases due to an optimal value for
� that decreases. As for the acceptance rate, it is invariant as
well for RWM with the Cholesky decomposition matrix and
increases slightly with ρ for RWM with the identity matrix.
The optimal acceptance rate becomes closer to 0.234 as d
increases when ρ = 0, which is not surprising given that the
target in this case satisfies the assumptions of Roberts et al.
(1997). It is, however, remarkable that, for M = 1, the opti-
mal acceptance rate only slightly increases as ρ gets closer
to 1.

3.3 Connection to scaling limits

The aim of this section is to establish a formal connection
between our guidelines and those of Roberts et al. (1997)
through an asymptotic analysis of features of the limiting
chain Ξ := (

Zk
)
k≥0 as d increases. In particular, it will

be pointed out using a theoretical argument that our guide-
lines are consistent in that we find equivalent asymptotically
optimal values for � and acceptance rate as these authors.
The stationary distribution of Ξ , which is a Gaussian with
mean 0 and covariance I(θ0)

−1, can be seen as a special case
of the product target studied by Roberts et al. (1997) when
I(θ0)

−1 = 1. As mentioned in the previous sections, it is
thus not surprising but reassuring to find the same asymptot-
ically optimal values within our framework for this special
case.

To find the optimal values for RWM in the high-
dimensional limit, we analyse the expected acceptance prob-
ability and ESJD(λ,M) by considering them as sequences
indexed by d, and let d → ∞. We provide a result estab-
lishing that ESJD(λ,M) converges towards a function that
is equivalent to that optimized in Roberts et al. (1997),
when λ = �/

√
d and the proposal covariance is set to

MMT = I(θ0)
−1. The ESJD is optimized by an equiv-

alent value for �, and the expected acceptance probability
converges to the same limiting acceptance rate as Roberts
et al. (1997), which is seen to imply that the asymptotically
optimal acceptance rate is the same. The asymptotically opti-
mal values are 2.38 and 0.234 for � and the acceptance rate,
respectively. Within our framework, these values are opti-
mal for any target covariance I(θ0)

−1 given that the limiting
acceptance rate and ESJD do not depend on I(θ0)

−1.
Before presenting the formal results, we provide an infor-

mal argument explainingwhy the connection exists andmore
preciselywhyESJD(λ,M) converges towards a function that
is equivalent to that in Roberts et al. (1997). Central to the
reason why the efficiency measures are asymptotically the
same are the convergences of the acceptance rates in both
contexts to a constant as d → ∞. To provide the informal
argument, we thus present the acceptance rates and show
how Taylor expansions explain their asymptotic behaviour.
We start with that in Roberts et al. (1997); we thus consider a
sequence of target densities {πd} with πd(θ) = ∏d

i=1 f (θi )
and θ ′ = θ + (�/

√
d)ε, f satisfying some regularity condi-

tions. Under these assumptions, it can be proved that for d
large,
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Fig. 1 Optimal (a) ESS and (b) acceptance rate of the limiting RWM with M = 1 and with M such that MMT = I(θ0)
−1 as a function of ρ in

the case where the (i, j)th entry of I(θ0)
−1 is given by ρ|i− j |, when d = 5, 10, 50

E

[
min

{
1,

πd(θ
′)

πd(θ)

}]

≈ E

[
min

{
1, exp

(
d∑

i=1

ψ(θi )(θ
′
i − θi ) − �2

2d
ψ(θi )

2

)}]

= 2E

⎡
⎣Φ

⎛
⎝−�

2

√√√√ 1

d

d∑
i=1

ψ(θi )2

⎞
⎠
⎤
⎦ , (3)

where “≈” is to be understood as a relationship asserting that
the expressions are asymptotically equivalent and

ψ(θi ) := ∂

∂x
log f (x)

∣∣∣∣
x=θi

;

for the equality (3), we used that the term in the exponential
has a conditional normal distribution given θ (because θ ′

i −
θi = (�/

√
d)εi ) and the closed-form of E[min{1, eX }] when

X ∼ ϕ. We establish a limit using that

2E

⎡
⎣Φ

⎛
⎝−�

2

√√√√ 1

d

d∑
i=1

ψ(θi )2

⎞
⎠
⎤
⎦ → 2Φ(−�

√
L/2),

with

L := E[ψ(θ1)
2].

In their context, �̂ = 2.38/
√
L and 2Φ

(
−�̂

√
L/2

)
=

0.234.
In our framework,wefirst consider a sequence of posterior

densities {πn} based on observations of IID random variables
Yi ∼ gθ , gθ satisfying some regularity conditions. Under
Assumptions 1 and 2 and setting Sn = (�/

√
dn)Mn with

MnMT
n = I(θ̂n)

−1
, it can be proved that for n large:

E

[
min

{
1,

πn(θ
′)

πn(θ)

}]
= E

[
min

{
1,

πn(θ̂n + n−1/2Z′
n)

πn(θ̂n + n−1/2Zn)

}]

≈ E

[
min

{
1,

πn(θ0 + n−1/2Z′
n)

πn(θ0 + n−1/2Zn)

}]

≈ E

[
min

{
1, exp

(
−1

2
‖Z′

n‖2În(θ0) + 1

2
‖Zn‖2În(θ0)

)}]
,

where

În(θ0) := 1

n

n∑
i=1

− ∂2

∂θ∂θT
log gθ (yi )

∣∣∣∣
θ=θ0

,

using that θ̂n → θ0 and that the local asymptotic normality
allows an expansion of logπn(θ0 + n−1/2zn) with vanishing
terms beyond order 2. The last expectation above is asymp-
totically equivalent to

E

[
min

{
1,

ϕ(Z′; 0, I(θ0)
−1)

ϕ(Z; 0, I(θ0)
−1)

}]
,

withZ ∼ ϕ( · ; 0, I(θ0)
−1) andZ′ ∼ ϕ( · ;Z, λ2MMT ). The

latter expectation is equal to (recall Corollary 1)

2E

[
Φ

(
−�‖ε‖
2
√
d

)]
→ 2Φ

(
−�

2

)
,

as d → ∞. When MnMT
n = I(θ̂n)

−1
, L = 1 because the

proposal covariance is set to asymptotically match the target

covariance exactly and thus �̂ = 2.38 with 2Φ
(
−�̂/2

)
=

0.234. If, alternatively, the proposal is set to an isotropic
Gaussian, i.e.Mn = 1, a constant analogous to L appears in
the limiting acceptance rate:

L ′ := lim
d→∞

‖ε‖2I(θ0)

d
,

provided that this limit exists (in distribution).
The formal results are presented in Proposition 2.
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Proposition 2 (Guideline consistency) IfΞ starts in station-
arity, λ = �/

√
d and MMT = I(θ0)

−1, then

ESJD(λ,M) := E

[
‖Zk+1 − Zk‖2I(θ0)

]

= 2�2 E

[‖ε‖2
d

Φ

(
−�‖ε‖
2
√
d

)]
→ 2�2 Φ

(
−�

2

)
,

and

E

[
min

{
1,

ϕ(Z′; 0, I(θ0)
−1)

ϕ(Z; 0, I(θ0)
−1)

}]

= 2E

[
Φ

(
−�‖ε‖
2
√
d

)]
→ 2Φ

(
−�

2

)
,

as d → ∞, with Z ∼ ϕ( · ; 0, I(θ0)
−1) and Z′ ∼

ϕ( · ;Z, λ2MMT ). Viewed as a function of �, 2�2 Φ (−�/2) is

maximized by � = �̂ := 2.38, and we obtain 2Φ
(
−�̂/2

)
=

0.234.

In theory, one can obtain a more general limiting expres-
sion for ESJD(λ,M) when M is not specified to be such
that MMT = I(θ0)

−1. However, one would need to know
how I(θ0)

−1 behaves when d grows because ESJD(λ,M)

depends, in general, on I(θ0)
−1. For example, from (1), it

can be observed that

2�2 E

[‖ε‖2I(θ0)

d
Φ

(
−�‖ε‖I(θ0)

2
√
d

)]
→ 2�2L ′ Φ

(
−�

√
L ′

2

)
,

whenever ‖ε‖2I(θ0)
/d → L ′ ∈ R as d → ∞ in probability,

that is, whenever the correlation in I(θ0) allows for a law of
large numbers of the squared norm ‖ε‖2I(θ0)

, as long as uni-
form integrability conditions hold. In the previous section,
for example, the autoregressive covariance matrix allows for
a law of large numbers and uniform integrability conditions
hold. This is a consequence of the form of I(θ0), which is a
tridiagonal matrix, turning ‖ε‖2I(θ0)

into a sum of correlated
random variables, but where the correlation exists only for
random variables that are close to each other; more precisely,
each random variable in the sum is correlated with those with
indices that differ by 1. The conditions aforementioned may
fail to hold when the matrix I(θ0) yields a sum of corre-
lated random variables where each of them is correlated to a
number of random variables that grows with d.

The limiting behaviour of ESJD for the case M = 1
recently received detailed attention in Yang et al. (2020).
These authors perform analyses under the traditional asymp-
totic framework d → ∞; however, in contrast to earlier
work, their approach does not require the restrictive assump-
tion of IID model parameters. Instead, the authors perform
analyses under an assumption of partially connected graphi-
cal models. A keymathematical object there whichmeasures

the “roughness” of the log target density is

Id(θ) := 1

d

d∑
i=1

(
∂

∂θi
logπd(θ)

)2

.

It appears, for instance, in an expectation that is asymptoti-
cally equivalent to their expected acceptance probability:

2E

[
Φ

(
−�

2

√
Id(θ)

)]
, (4)

where the expectation is with respect to πd . It also appears in
an expectation analogous to (1) that is asymptotically equiv-
alent to their ESJD. There exists an interesting connection
between their optimization problem and that of optimizing
(1) that can be established by identifying the counterpart to
Id(θ) in (1) and the expected acceptance probability. The
optimal acceptance rates derived under their framework are
often close to 0.234, for large enough d, which is what
we observed under our framework as well, for instance, in
Sect. 3.2. We finish this section with a brief analysis which
highlights the existence of that connection by focussing on
similarities in between the acceptance rates.

We identify the counterpart to Id(θ) to be

‖ε‖2I(θ0)

d
= 1

d

d∑
i=1

d∑
j=1

εiε jI(θ0)i j ,

recalling that

I(θ)i j = E

[(
∂

∂θi
log gθ (Y)

)(
∂

∂θ j
log gθ (Y)

)]
.

Note that under regularity conditions, the normalized version

of
(

∂
∂θi

logπd(θ)
)2
, when seen as the square of the deriva-

tive of the sum of the log prior and log densities, converges
in distribution to I(θ)i i times a chi-square random variable
with 1 degree of freedom as n → ∞. For weak interactions
in between model parameters represented by sparse graphs,
‖ε‖2I(θ0)

/d thus encodes similar information to Id(θ). This
highlights that the expected acceptance probability under our
framework, given by

2E

[
Φ

(
−�‖ε‖I(θ0)

2
√
d

)]
,

and theirs, given by (4), are similar in essence. In general,
Jensen’s inequality allows to observe that

2E

[
Φ

(
−�‖ε‖I(θ0)

2
√
d

)]
≥ 2Φ

⎛
⎝−�

2

√√√√ 1

d

d∑
i=1

I(θ0)i i

⎞
⎠ ,
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given that x → Φ(−a
√
x) is convex for x ≥ 0 with a >

0. Acceptance rates derived within our framework are thus
expected to be larger than those derivedwithin the framework
of Yang et al. (2020), when πd concentrates around θ0. They
have for instance been observed to be larger than 0.234 in
Sect. 3.2, while in Yang et al. (2020) they are shown to be
smaller than or equal to 0.234.

We do not investigate the problem of convergence of
ESJD(λ,M) in full generality. In addition to Yang et al.
(2020), we refer the reader to Ghosal (2000), Belloni and
Chernozhukov (2009) andBelloni andChernozhukov (2014)
who conducted analyses of posterior distributions in asymp-
totic regimes where d is allowed to grow with n.

4 Logistic regression with real data

In this section, we demonstrate that the RWM algorithm
targeting πn behaves similarly to its asymptotic counter-
part, targeting a Gaussian distribution, in some practical
cases. To achieve this, we consider a specific practical case
and compare the asymptotically optimal value for � when
MMT = I(θ0)

−1 based on ESJD (which does not depend
on the unknown I(θ0)

−1) to that obtained from tuning the
non-limiting ESJD with MnMT

n set to be the inverse of the
observed information matrix. We also compare the optimal
acceptance rates and present results for the RWM algorithm
usingMn = 1. The practical case that we study is one where
the posterior distribution results from a Bayesian logistic
regression model and a patent data set from Fahrmeir et al.
(2007). We will see that for this example with a sample size
of n = 4,866 and d = 9 parameters, both the optimal val-
ues for � and acceptance rates coincide accurately, showing
that the limiting RWM represents a good approximation of
that targeting πn in situations where the Bayesian models
are regular and the sample sizes are realistically large. This
example also allows to show that the guidelines derived from
the limiting RWM and the performance analysis conducted
in Sect. 3.2 are relevant in such situations.

We denote the binary response variable and covariate vec-
tor data points by r1, . . . , rn and x1, . . . , xn , respectively,
with the first component of each xi being equal to 1. In logis-
tic regression, the parameters θ are regression coefficients.
Let us assume that Y1, . . . ,Yn = (R1,X1), . . . , (Rn,Xn)

are IID random variables and also that themodel is well spec-
ified in order to fit in the theoretical framework presented in
Sect. 2. Formally speaking, the latter assumption is certainly
not true, but the fact that the empirical results are close to the
theoretical (and asymptotic) ones suggests that the model
approximates well the true data generating process. We now
show that Theorem 1 can be applied by verifying the assump-
tions stated in Sect. 2. The logistic regression model is, as
mentioned in Sect. 1.3, regular enough; Assumption 1 is thus

satisfied. We set MnMT
n to be the inverse of a standardized

version of the observed information matrix evaluated at the
maximum a posteriori estimate θ̂n , i.e. the inverse of

1

n

n∑
i=1

xixTi pi (θ̂n)(1 − pi (θ̂n)), (5)

where

pi (θ̂n) := exp(xTi θ̂n)

1 + exp(xTi θ̂n)
.

Under weak regularity conditions,MnMT
n converges and we

set Sn = (λ/
√
n)Mn , implying that Assumption 2 is satis-

fied if these weak regularity conditions are verified. Theorem
1 therefore holds provided that the chains start in stationar-
ity (Assumption 3) and these weak regularity conditions are
verified.

When d = 9, the asymptotically optimal value for �when
MMT = I(θ0)

−1 is 2.39 and the acceptance rate of the lim-
iting RWM using this value is 26.26%. The optimal values
for the RWM algorithm withMn set as the inverse of (5) are
essentially the same: 2.37 and 26.68% for � and the accep-
tance rate, respectively. The value of � that maximizes the
ESS per iteration is 2.40; the maximum ESS per iteration
is 0.034, which is significantly higher than the maximum of
0.006 attained by the algorithm with Mn = 1. As explained
and shown in Sect. 3, a poor performance of the latter sam-
pler is due to a strong correlation in between the parameters.
For this sampler, a value of 6.89 is optimal for � based on
the ESS, whereas a value of 6.51 is optimal when the ESJD
is instead considered. The acceptance rate of the algorithm
using Mn = 1 and the latter value is 27.69%. Note that we
tried smaller models with less covariates and larger ones with
interaction terms, and the optimal values when Mn is set as
the inverse of (5) are consistent with the guidelines presented
in Table 1. The results in this numerical experiment follow
from a numerical optimization of ESJD and ESS based on
Markov chain samples of size 10,000,000 and a grid search.

5 Discussion

In this paper, we have analysed the behaviour of random
walk Metropolis (RWM) algorithms when used to sample
from Bayesian posterior distributions, under the asymp-
totic regime n → ∞, in contrast with previous asymptotic
analyseswhere d → ∞. Our analysis led to novel parameter-
dimension-dependent tuning guidelines which are consistent
with the well-known 0.234 rule. A formal argument allowed
to show that this rule can in fact be derived from the angle
adopted in this paper aswell.We believe that similar analyses
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to those performed in this paper can be conducted to develop
practical tuning guidelines for more sophisticated algorithms
like Metropolis-adjusted Langevin algorithm (Roberts and
Tweedie 1996) and Hamiltonian Monte Carlo (Duane et al.
1987), and to establish other interesting connections with
optimal scaling literature (e.g. Roberts and Rosenthal 1998;
Beskos et al. 2013).

The guidelines developed in this paper for RWM algo-
rithms are valid under weak assumptions; we essentially only
require a Bernstein–von Mises theorem to hold for the tar-
get distribution. This is in stark contrast to scaling limit
approaches. To our knowledge, there is one contribution,
Yang et al. (2020), that provides guidelines for a realistic
model based on a scaling limit argument, and it requires
the posterior distribution to concentrate, which is in line
with the argument of this paper. The guidelines proposed
in our paper are in theory valid in the limit n → ∞; we
have demonstrated that they are nevertheless applicable in
realistic scenarios with typical data sizes using an example
of logistic-regression analysis of real data. This example,
together with our analysis of the limiting RWM, also allows
to support the findings about the robustness of the 0.234 rule
to non-independent and identically distributed (IID) model
parameters when the scaling matrix is a diagonal matrix.
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A Proofs

Proof (Theorem 1) Result (i).Toprove this result,weuseThe-
orem 2 of Schmon et al. (2021a).We thus have to verify three
conditions.

1. As n → ∞, the following convergence holds in P
Y-

probability: Z0,n converges weakly to Z0.
2. Use Pn and P to denote the transition kernels of Ξn and

Ξ , respectively. These are such that

∫
|Pnh(z) − Ph(z)| πZn (z) dz → 0,

in P
Y-probability as n → ∞, for all h ∈ BL, the set of

bounded Lipschitz functions.
3. The transition kernel P is such that Ph( · ) is continuous

for any h ∈ Cb, the set of continuous bounded functions.

We start with Condition 1. It suffices to verify that

|P(Z0,n ∈ A) − P(Z0 ∈ A)| → 0,

in PY-probability, for any measurable set A. We have that

|P(Z0,n ∈ A) − P(Z0 ∈ A)| ≤
∫

|πn(θ)

−ϕ(θ; θ̂n, I(θ0)
−1/n)

∣∣∣ dθ → 0

in P
Y-probability by Assumption 1, using Jensen’s inequal-

ity, that A ⊆ R
d , and a change of variable θ = z/n1/2 + θ̂n .

We turn to Condition 2. We have that

Pn(z, dz′) = αn(z, z′) ϕ(dz′; z, λ2MnMT
n ) + ρn(z) δz(dz′),

and

P(z, dz′) = α(z, z′) ϕ(dz′; z, λ2MMT ) + ρ(z) δz(dz′),

where here

αn(z, z′) := min

{
1,

πZn (z
′)

πZn (z)

}
,

ρn(z) is the corresponding rejection probability, and

α(z, z′) := min

{
1,

ϕ(z′; 0, I(θ0)
−1)

ϕ(z; 0, I(θ0)
−1)

}
,

ρ(z) is the corresponding rejection probability. Thus,

Pnh(z) =
∫

h(z′) αn(z, z′) ϕ(dz′; z, λ2MnMT
n )

+h(z) ρn(z),

and

Ph(z) =
∫

h(z′) α(z, z′) ϕ(dz′; z, λ2MMT ) + h(z) ρ(z).

Therefore, using the triangle inequality,

∫
|Pnh(z) − Ph(z)| πZn (z) dz

≤
∫ ∣∣∣∣

∫
h(z′) αn(z, z′) ϕ(dz′; z, λ2MnMT

n )

−
∫

h(z′) α(z, z′)
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ϕ(dz′; z, λ2MMT )

∣∣∣ πZn (z) dz

+
∫

|h(z) ρn(z) − h(z) ρ(z)| πZn (z) dz.

We prove that the first integral on the right-hand side (RHS)
converges to 0 in P

Y-probability. The other integral is seen
to converge using similar arguments.

We have that

∫ ∣∣∣∣
∫

h(z′) αn(z, z′) ϕ(dz′; z, λ2MnMT
n )

−
∫

h(z′) α(z, z′) ϕ(dz′; z, λ2MMT )

∣∣∣∣
πZn (z) dz

≤ K
∫∫ ∣∣∣αn(z, z′) ϕ(dz′; z, λ2MnMT

n )

−α(z, z′) ϕ(dz′; z, λ2MMT )

∣∣∣
πZn (z) dz

≤ K
∫∫ ∣∣∣αn(z, z′) ϕ(dz′; z, λ2MnMT

n ) − αn(z, z′)

ϕ(dz′; z, λ2MMT )

∣∣∣
πZn (z) dz

+ K
∫∫ ∣∣∣αn(z, z′) ϕ(dz′; z, λ2MMT )

−α(z, z′) ϕ(dz′; z, λ2MMT )

∣∣∣ πZn (z) dz, (6)

using Jensen’s inequality, that there exists a positive constant
K such that |h| ≤ K , and the triangle inequality. We now
prove that each of the last two integrals converges to 0. We
begin with the first one:

∫∫ ∣∣∣αn(z, z′) ϕ(dz′; z, λ2MnMT
n ) − αn(z, z′)

ϕ(dz′; z, λ2MMT )

∣∣∣ πZn (z) dz

≤
∫∫ ∣∣∣ϕ(dz′; z, λ2MnMT

n )

−ϕ(dz′; z, λ2MMT )

∣∣∣ πZn (z) dz

≤
[
tr((MMT )−1MnMT

n − 1)

− log det(MnMT
n (MMT )−1)

]1/2 → 0,

in P
Y-probability by Assumption 2, using that 0 ≤ αn ≤ 1

and Devroye et al., (2018, Proposition 2.1), where tr( · ) and
det( · ) are the trace and determinant operators, respectively.
Note that by Assumption 2 we have that MnMT

n → MMT

in probability, meaning that all components converge, which

implies that the trace and the log of the determinant both
vanish.

Next,

∫∫ ∣∣∣αn(z, z′) ϕ(dz′; z, λ2MMT )

−α(z, z′) ϕ(dz′; z, λ2MMT )

∣∣∣ πZn (z) dz

≤
∫∫ ∣∣αn(z, z′) πZn (z)

−α(z, z′) ϕ(z; 0, I(θ0)
−1)

∣∣∣ ϕ(dz′; z, λ2MMT ) dz

+
∫∫ ∣∣∣α(z, z′) ϕ(z; 0, I(θ0)

−1)

−α(z, z′) πZn (z)
∣∣ ϕ(dz′; z, λ2MMT ) dz,

using the triangle inequality. The second integral is seen to
converge to 0 because

∫∫ ∣∣α(z, z′) ϕ(z; 0,

I(θ0)
−1) − α(z, z′) πZn (z)

∣∣∣ ϕ(dz′; z, λ2MMT ) dz

≤
∫ ∣∣∣ϕ(z; 0, I(θ0)

−1) − πZn (z)
∣∣∣ dz

=
∫ ∣∣∣ϕ(θ; θ̂n, I(θ0)

−1/n) − πn(θ)

∣∣∣ dθ → 0 (7)

inPY-probability byAssumption 1, using that 0 ≤ α ≤ 1 and
a change of variable θ = z/n1/2 + θ̂n . For the first integral,
we write
∫∫ ∣∣∣αn(z, z′) πZn (z) − α(z, z′) ϕ(z; 0, I(θ0)

−1)

∣∣∣
ϕ(dz′; z, λ2MMT ) dz

=
∫∫ ∣∣min{πZn (z), πZn (z

′)}

−min{ϕ(z; 0, I(θ0)
−1), ϕ(z′; 0, I(θ0)

−1)}
∣∣∣

ϕ(dz′; z, λ2MMT ) dz

≤
∫∫ ∣∣∣πZn (z) − ϕ(z; 0, I(θ0)

−1)

∣∣∣ ϕ(dz′; z, λ2MMT ) dz

+
∫∫ ∣∣∣πZn (z

′) − ϕ(z′; 0, I(θ0)
−1)

∣∣∣
ϕ(dz′; z, λ2MMT ) dz,

using that |min{a, b} − min{c, d}| ≤ |a − c| + |b − d|
for any real numbers a, b, c and d. It is seen that both inte-
grals on the RHS vanish as above (recall (7)) after noticing
that ϕ(dz′; z, λ2MMT ) dz = ϕ(dz; z′, λ2MMT ) dz′, which
is used in the second integral.

There remains to verify Condition 3: the continuity of Ph.
Without loss of generality, consider a non-random sequence

123



28 Page 12 of 16 Statistics and Computing (2022) 32 :28

of vectors (en)n≥1 withmonotonically shrinking components
(in absolute value) such that supn e

T
n (MMT )−1en < ∞. We

now prove that Ph(z + en) → Ph(z) as n → ∞.
We have that

Ph(z + en) =
∫

h(z′) α(z + en, z′) ϕ(dz′; z
+en, λ2MMT ) + h(z + en) ρ(z + en).

We prove that the first term on the RHS converges to

∫
h(z′) α(z, z′) ϕ(dz′; z, λ2MMT );

the convergence of the second term follows using similar
arguments.

We write
∫

h(z′) α(z + en, z′) ϕ(dz′; z + en, λ2MMT )

= exp

{
−eTn (λ2MMT )−1en

2

}
∫

h(z′) α(z + en, z′) exp
{
−eTn (λ2MMT )−1(z′ − z)

}

ϕ(dz′; z, λ2MMT )

= exp

{
−eTn (λ2MMT )−1en

2

}

Ez
[
h(Z′) α(z + en,Z′)

exp
{
−eTn (λ2MMT )−1(Z′ − z)

}]
,

where the expectation is with respect to ϕ( · ; z, λ2MMT );
we highlight a dependence on z using the notation Ez.

We have that

exp

{
−eTn (λ2MMT )−1en

2

}
→ 1,

and

h(Z′) α(z + en,Z′) exp
{
−eTn (λ2MMT )−1(Z′ − z)

}
→ h(Z′) α(z,Z′),

almost surely, given the continuity of α and the exponential
function.

To prove that the expectation converges to

Ez
[
h(Z′) α(z,Z′)

] =
∫

h(z′) α(z, z′) ϕ(dz′; z, λ2MMT ),

we thus only need to prove that

h(Z′) α(z + en,Z′) exp
{
−eTn (λ2MMT )−1(Z′ − z)

}

is uniformly integrable. To prove this, we show that

sup
n

E

[(
h(Z′) α(z + en,Z′) exp

{
−eTn (λ2MMT )−1(Z′ − z)

})2]

< ∞.

We have that

E

[(
h(Z′) α(z + en,Z′) exp

{
−eTn (λ2MMT )−1(Z′ − z)

})2]

≤ K 2
E

[
exp

{
−2 eTn (λ2MMT )−1(Z′ − z)

}]

= K 2 exp
{
2 λ−2 eTn (MMT )−1en

}
.

This concludes the proof of Result (i).
Result (ii).We want to prove that

∣∣∣∣
∫∫

αn(z, z′) ϕ(dz′; z, λ2MnMT
n ) πZn (z) dz

−
∫∫

α(z, z′) ϕ(dz′; z, λ2MMT ) ϕ(dz; 0, I(θ0)
−1)

∣∣∣∣
→ 0,

inPY-probability as n → ∞. Using the triangle and Jensen’s
inequality and that 0 ≤ α ≤ 1,

∣∣∣∣
∫∫

αn(z, z′) ϕ(dz′; z, λ2MnMT
n ) πZn (z) dz

−
∫∫

α(z, z′) ϕ(dz′; z, λ2MMT ) ϕ(dz; 0, I(θ0)
−1)

∣∣∣∣
≤
∣∣∣∣
∫∫

αn(z, z′) ϕ(dz′; z, λ2MnMT
n ) πZn (z) dz

−
∫∫

α(z, z′) ϕ(dz′; z, λ2MMT ) πZn (z) dz

∣∣∣∣
+
∣∣∣∣
∫∫

α(z, z′) ϕ(dz′; z, λ2MMT ) πZn (z) dz

−
∫∫

α(z, z′) ϕ(dz′; z,

λ2MMT ) ϕ(dz; 0, I(θ0)
−1)

∣∣∣
≤
∫∫ ∣∣∣αn(z, z′) ϕ(dz′; z, λ2MnMT

n )

−α(z, z′) ϕ(dz′; z, λ2MMT )

∣∣∣ πZn (z) dz

+
∫ ∣∣∣πZn (z) − ϕ(z; 0, I(θ0)

−1)

∣∣∣ dz.
We have shown in the proof of Result (i) that both integrals
converge to 0 (recall (6) and (7)), which concludes the proof
of Result (ii).

Result (iii). To prove this result, we show that

E

[
‖λMnε‖2I(θ̂n)

αn(Zn,Zn + λMnε)
]
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−E

[
‖λMε‖2I(θ0)

α(Z,Z + λMε)
]

→ 0,

in P
Y-probability, where Zn ∼ πZn and Z ∼ ϕ( · ; 0,

I(θ0)
−1), under the assumption that

∣∣∣E [‖λMnε‖2I(θ̂n)
αn(Zn,Zn + λMnε)

]

−E

[
‖λMε‖2I(θ0)

αn(Zn,Zn + λMε)
]∣∣∣ → 0,

which will be seen to imply Result (iii). Indeed, this assump-

tion is more general than MnMT
n = I(θ̂n)

−1 → MMT =
I(θ0)

−1; we will show below that it is verified when

MnMT
n = I(θ̂n)

−1 → MMT = I(θ0)
−1.

Using the triangle inequality,

∣∣∣E [‖λMnε‖2I(θ̂n)
αn(Zn,Zn + λMnε)

]

−E

[
‖λMε‖2I(θ0)

α(Z,Z + λMε)
]∣∣∣

≤
∣∣∣E [‖λMnε‖2I(θ̂n)

αn(Zn,Zn + λMnε)
]

−E

[
‖λMε‖2I(θ0)

αn(Zn,Zn + λMε)
]∣∣∣

+
∣∣∣E [‖λMε‖2I(θ0)

αn(Zn,Zn + λMε)
]

−E

[
‖λMε‖2I(θ0)

α(Z,Z + λMε)
]∣∣∣ .

The first absolute value on the RHS vanishes by assump-
tion. We now prove that the second absolute value on the
RHS vanishes. We have

∣∣∣E [‖λMε‖2I(θ0)
αn(Zn,Zn + λMε)

]

−E

[
‖λMε‖2I(θ0)

α(Z,Z + λMε)
]∣∣∣

=
∣∣∣∣
∫∫

‖λMε‖2I(θ0)
min{πZn (z), πZn (z

+λMε)} ϕ(dε; 0, 1) dz
−
∫∫

‖λMε‖2I(θ0)
min{ϕ(z; 0, I(θ0)

−1),

×ϕ(z + λMε; 0, I(θ0)
−1)} ϕ(dε; 0, 1) dz

∣∣∣
≤
∫∫

‖λMε‖2I(θ0)∣∣min{πZn (z), πZn (z + λMε)}
−min{ϕ(z; 0, I(θ0)

−1), ϕ(z + λMε; 0, I(θ0)
−1)}

∣∣∣
× ϕ(dε; 0, 1) dz

≤
∫∫

‖λMε‖2I(θ0)∣∣∣πZn (z) − ϕ(z; 0, I(θ0)
−1)

∣∣∣ ϕ(dε; 0, 1) dz

+
∫∫

‖λMε‖2I(θ0)

∣∣πZn (z + λMε)

−ϕ(z + λMε; 0, I(θ0)
−1)

∣∣∣ ϕ(dε; 0, 1) dz,

using Jensen’s inequality and |min{a, b}−min{c, d}| ≤ |a−
c| + |b − d| for any real numbers a, b, c and d.

The first integral on theRHSvanishes for the same reasons
we have seen before (recall (7)). We rewrite the second one
as:

∫∫
‖z′ − z‖2I(θ0)

∣∣πZn (z
′) − ϕ(z′; 0,I(θ0)

−1)
∣∣

× ϕ(dz′; z, λ2MMT ) dz

=
∫∫

‖λε‖2 ∣∣πZn (z
′) − ϕ(z′; 0,I(θ0)

−1)
∣∣ ϕ(dε; 0, 1) dz′, (8)

using that ϕ(dz′; z, λ2MMT ) dz = ϕ(dz; z′, λ2MMT ) dz′
and a change of variables ε = (λM)−1(z − z′). The last
integral vanishes as seen before (recall (7)).

We finish the proof by showing that the assumption

∣∣∣E [‖λMnε‖2I(θ̂n)
αn(Zn,Zn + λMnε)

]

−E

[
‖λMε‖2I(θ0)

αn(Zn,Zn + λMε)
]∣∣∣ → 0,

is verified when MnMT
n = I(θ̂n)

−1 → MMT = I(θ0)
−1.

In this case,

∣∣∣E [‖λMnε‖2I(θ̂n)
αn(Zn,Zn + λMnε)

]

−E

[
‖λMε‖2I(θ0)

αn(Zn,Zn + λMε)
]∣∣∣

=
∣∣∣E [‖λε‖2αn(Zn,Zn + λMnε)

]

−E

[
‖λε‖2αn(Zn,Zn + λMε)

]∣∣∣
=
∣∣∣∣
∫∫

‖λε‖2 min{πZn (z), πZn (z

+λMnε)} ϕ(dε; 0, 1) dz
−
∫∫

‖λε‖2 min{πZn (z), πZn (z + λMε)}
ϕ(dε; 0, 1) dz|

≤
∫∫

‖λε‖2 ∣∣min{πZn (z), πZn (z + λMnε)}
−min{πZn (z), πZn (z + λMε)}∣∣ ϕ(dε; 0, 1) dz

≤
∫∫

‖λε‖2 ∣∣πZn (z + λMnε)

−πZn (z + λMε)
∣∣ ϕ(dε; 0, 1) dz,

using Jensen’s inequality and |min{a, b}−min{c, d}| ≤ |a−
c| + |b − d| for any real numbers a, b, c and d.
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Now, using the triangle inequality,

∫∫
‖λε‖2 ∣∣πZn (z + λMnε)

−πZn (z + λMε)
∣∣ ϕ(dε; 0, 1) dz

≤
∫∫

‖λε‖2 ∣∣πZn (z + λMnε)

−ϕ(z + λMnε; 0, I(θ0)
−1)

∣∣∣ ϕ(dε; 0, 1) dz

+
∫∫

‖λε‖2
∣∣∣ϕ(z + λMnε; 0, I(θ0)

−1) − ϕ(z

+λMε; 0, I(θ0)
−1)

∣∣∣ ϕ(dε; 0, 1) dz

+
∫∫

‖λε‖2
∣∣∣ϕ(z + λMε; 0, I(θ0)

−1)

−πZn (z + λMε)
∣∣ ϕ(dε; 0, 1) dz. (9)

We now prove that each of the integrals on the RHS van-
ishes. We start with the first one,

∫∫
‖λε‖2 ∣∣πZn (z + λMnε)

−ϕ(z + λMnε; 0, I(θ0)
−1)

∣∣∣ ϕ(dε; 0, 1) dz

=
∫∫

‖z′ − z‖2I(θ̂n)

∣∣∣πZn (z
′) − ϕ(z′; 0, I(θ0)

−1)

∣∣∣
ϕ(dz′; z, λ2MnMT

n ) dz,

using the change of variable z′ = z + λMnε. As we have
seen before, the last integral vanishes (recall (8)). The third
integral on the RHS in (9) vanishes for similar reasons.

For the second one, we use that Mn → M in P
Y-

probability. This is true because MnMT
n → MMT in

P
Y-probability and theCholesky decomposition yields a con-

tinuous map. Now, using Devroye et al., (2018, Proposition
2.1) and Cauchy–Schwarz inequality,

∫∫
‖λε‖2 ∣∣ϕ(z;−λMnε,I(θ0)

−1) − ϕ(z;−λMε,I(θ0)
−1)

∣∣
ϕ(dε; 0, 1) dz

≤
∫

‖λε‖2λ
[
εT (M−1Mn − 1)T (M−1Mn − 1)ε

]1/2

ϕ(dε; 0, 1)

≤ λ3
[∫

‖ε‖4 ϕ(dε; 0, 1)
]1/2 [∫

εT (M−1Mn − 1)T (M−1Mn

−1)ε ϕ(dε; 0, 1)]1/2 .

The first integral on the RHS is bounded.Wewrite the second
one as an expectation:

E[εTAnε] = E[εTQnΛnQT
n ε]

= E

⎡
⎣ d∑

j=1

λ j,nξ
2
j,n

⎤
⎦ =

d∑
j=1

λ j,n = tr(An) → 0,

using an eigendecomposition ofAn and that ξn := (ξ1,n, . . . ,

ξd,n)
T := QT

n ε is a random vector with independent
standard normal components, where An := (M−1Mn −
1)T (M−1Mn−1),Qn is an orthogonalmatrixwhose columns
are the eigenvectors ofAn , andΛn is a diagonalmatrixwhose
entries λ1,n, . . . , λd,n are the eigenvalues of An . This con-
cludes the proof. ��
Proof (Corollary 1) We first denote S := λM and thus note
that Z′ = Z + Sε, where Z ∼ ϕ( · ; 0, I(θ0)

−1) and ε ∼
ϕ( · ; 0, 1). We have

ESJD(λ,M)

= E

[
‖Sε‖2I(θ0)

min

{
1,

ϕ(Z + Sε; 0, I(θ0)
−1)

ϕ(Z; 0, I(θ0)
−1)

}]

= E

[
‖Sε‖2I(θ0)

min

{
1, exp

(
− 1

2
εTST I(θ0)Sε

+ ZTST I(θ0) ε

)}]

= E

[
‖Sε‖2I(θ0)

E

[
min

{
1, exp

(
− 1

2
εTST I(θ0)Sε

+ ZTST I(θ0) ε

)}
| ε

]]
.

In the following, we make use of the fact that for a uni-
variate normal random variable X with X ∼ ϕ( · ;m, s2), we
have that

E
[
min{1, exp(X)}] = Φ

(m
s

)
+ exp

(
m + s2

2

)
Φ
(
−s − m

s

)
.

In particular, if m = −s2/2,

E
[
min{1, exp(X)}] = 2Φ

(
− s

2

)
. (10)

Consider the case where M = 1. Thus, given ε,
− 1

2ε
TST I(θ0)Sε + ZTST I(θ0) ε = −λ2

2 εT I(θ0) ε +
λZT I(θ0) ε is a Gaussian random variable with m =
−λ2

2 εT I(θ0) ε and s2 = λ2εT I(θ0) ε, implying that

E

[
‖Sε‖2I(θ0)

E

[
min

{
1, exp

(
− 1

2
εTST I(θ0)Sε

+ ZTST I(θ0) ε

)}
| ε

]]

= 2λ2E

[
‖ε‖2I(θ0)

Φ

(
−λ

‖ε‖I(θ0)

2

)]
.
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The formulae for ESJD with M such that MMT = I−1
θ0

and the expected acceptance probabilities are derived analo-
gously. ��

Proof (Proposition 1) The result follows directly from a result
in the convex order literature, stating that, for any d ≥ 2
exchangeable random variables X1, . . . , Xd and any convex
function φ, we have

E

[
φ

(
1

d

d∑
i=1

Xi

)]
≤ E

[
φ

(
1

d − 1

d−1∑
i=1

Xi

)]
,

whenever the expectations exist (Müller and Stoyan 2002,
Corollary 1.5.24). We are thus able to conclude by setting
Xi = ε2i and φ(x) = Φ

(−(�/2)
√
x
)
for all x ≥ 0 given that

this function is convex. ��

Proof (Proposition 2) We prove that

2λ2 E

{
‖ε‖2 Φ

(
−λ

‖ε‖
2

)}
= 2�2

E

{‖ε‖2
d

Φ

(
−�

‖ε‖/√d

2

)}
→ 2�2 Φ

(
−�

2

)
.

The convergence

2E

{
Φ

(
−λ

‖ε‖
2

)}
= 2E

{
Φ

(
−�

‖ε‖/√d

2

)}

→ 2Φ

(
−�

2

)

follows using similar arguments.
By the strong law of large numbers, we have that

‖ε‖2/d → 1 almost surely, and then

‖ε‖2
d

Φ

(
−�

‖ε‖/√d

2

)
→ Φ

(
−�

2

)
,

almost surely. To prove that the expectation converges, we
show that

‖ε‖2
d

Φ

(
−�

‖ε‖/√d

2

)

is uniformly integrable. To prove this, we show that

sup
d

E

{(‖ε‖2
d

Φ

(
−�

‖ε‖/√d

2

))2
}

< ∞.

Using that 0 ≤ Φ ≤ 1 and that ‖ε‖2 has a chi-square distri-
bution with d degrees of freedom,

E

{(‖ε‖2
d

Φ

(
−�

‖ε‖/√d

2

))2
}

≤ E

{(‖ε‖2
d

)2
}

= 2d + d2

d2
,

which has a finite supremum. This concludes the proof that

2�2 E

{‖ε‖2
d

Φ

(
−�

‖ε‖/√d

2

)}
→ 2�2 Φ

(
−�

2

)
.

The function 2�2 Φ
(− �

2

)
can be optimized numerically

and is maximized by � = �̂ := 2.38. ��
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