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Abstract
Climate change,manifest via rising temperatures, extreme drought, and associated anthropogenic
activities, has a negative impact on the health and development of tropical dryland forests. Southern
Africa encompasses significant areas of dryland forests that are important to local communities but
are facing rapid deforestation and are highly vulnerable to biome degradation from land uses and
extreme climate events. Appropriate integration of remote sensing technologies helps to assess and
monitor forest ecosystems and provide spatially explicit, operational, and long-term data to assist the
sustainable use of tropical environment landscapes. The period from2010 onwards has seen the rapid
development of remote sensing research on tropical forests, which has led to a significant increase in
the number of scientific publications. This review aims to analyse and synthesise the evidence
published in peer review studies with a focus on optical and radar remote sensing of dryland forests in
SouthernAfrica from1997–2020. For this study, 137 citation indexed research publications have been
analysedwith respect to publication timing, study location, spatial and temporal scale of applied
remote sensing data, satellite sensors or platforms employed, research topics considered, and overall
outcomes of the studies. This enabled us to provide a comprehensive overview of past achievements,
current efforts,major research topics studies, EOproduct gaps/challenges, and to proposeways in
which challengesmay be overcome. It is hoped that this reviewwillmotivate discussion and encourage
uptake of new remote sensing tools (e.g., Google Earth Engine (GEE)), data (e.g., the Sentinel
satellites), improved vegetation parameters (e.g., red-edge related indices, vegetation optical depth
(VOD)) andmethodologies (e.g., data fusion or deep learning, etc.), where these have potential
applications inmonitoring dryland forests.

1. Introduction

1.1. Tropical dryland forest
Approximately 40%of the Earth’s tropical and subtropical land surface is covered by open or closed forests. Of
this, tropical dryland forests (TDFs) account for the largest share at 42%; the remaining 33% ismoist forest, and
only 25% is rain forest (Murphy and Lugo 1986, Janzen 1988). The largest proportion of dryland forests
ecosystems are found inAfrica, accounting for 60%–80%of the total biome area (three times the area
covered byAfrican rain forest) (figure 1) (Bullock et al 1995, Bodart et al 2013). Dryland forests hold a
significant amount of terrestrial organic carbon thatmay contributemore to climatemitigation and adaptation
than previously appreciated (Valentini et al 2014). Dryland forests also provide diverse ecosystem services,
includingwater regulation and erosion control, the provision of food, fuel, and tourismopportunities
(Djoudi et al 2015, Schröder et al 2021). On the other hand, dryland forests are subject to prolonged dry seasons
and their rate of conversion to secondary forests has historically been higher than other tropical forest types
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(Pennington et al 2018). According to the Intergovernmental Panel onClimate Change (IPCC), these changes
have impacts on carbon emissions to the atmosphere and forest biodiversity loss that reduce adaptive capacity
and resilience to the impact of high temperatures and varying precipitation (IPCC2014).

The definition of ‘dryland forest’ remains debatable and controversial, which contributes to the difficulty in
accurately assessing andmeasuring its distribution patterns and status (Blackie et al 2014). The lack of a clear and
comprehensive understanding of general terms including ‘drylands’ and ‘forests’makes it a challenge to
explicitly define dryland forests (Charles et al 2015). Given the fact that dryland forests progressively grade into
other vegetation types such asmoist tropical forests, woodlands, and savannas, alsomakes clear definitions
complex (Putz andRedford 2010).Walter and Burnett (1971)noted that the accuracy of estimates of all tropical
forest areas is constrained by uncertainty in the distribution of openwoodlands in dryland areas, which are
extensive inAfrica, Australia, and Latin America.

In the scientific literature,many different names have been applied to tropical dryland forests, including
savanna forests, Sudanianwoodland andmiombowoodland inAfrica,monsoon forest in Asia, neotropical dry
forests in SouthAmerica (Linares-Palomino et al 2011, Suresh et al 2011, Chidumayo 2013). The neotropical dry
forests in SouthAmerica have a plethora of names from ‘caatinga’ in northeast Brazil, to ‘bosque tropical
caducifolio’ inMexico, and ‘cuabal’ in Cuba, which in part hinders comparisons (Sánchez‐Azofeifa et al 2005,
Mayes et al 2017). For example, Dexter et al (2015) identified dry deciduous forest in India (Suresh et al 2011),
miombowoodland in southernAfrica (Chidumayo 2013), and deciduous dipterocarp forest in continental Asia
(Bunyavejchewin et al 2011) as a formof savanna, and not TDFs, despite the formal classification as TDFs by
these studies, and the FAO (FAO2001). TheCaatinga andChaco vegetation in Latin America is also considered
by some authors as part of the dry forests (Pennington andRatter 2006, Gasparri andGrau 2009), although
Olson et al (2001) classifies these regions as a shrubland ecosystem.

There are several definitions currently available for TDFs, but there is still a lack of consensus in developing a
commonunderstanding.Mooney et al (1995) definedTDFs as forests occurring in the tropical regions
characterized by pronounced seasonality in rainfall, where there are severalmonths of severe, or even absolute
drought. Sánchez‐Azofeifa et al (2005) broadly definedTDFs as a vegetation type typically dominated by
deciduous trees (at least 50%of trees present are drought deciduous), where themean annual temperature
is�25 °C, total annual precipitation ranges between 700 and 2000 mm, and there are three ormore drymonths
every year (precipitation<100 mmpermonth). Awidely accepted definition is that of the FAO,which has
identified TDFs as aGlobal Ecological Zone (GEZ), experiencing a tropical climate, with a dry period of 5 to 8
months and annual rainfall ranges from500 to 1500mm;GEZ includes the drier typembo and Sudanian
woodlands, savannah (Africa), caatinga and chaco (SouthAmerica), and dry deciduous dipterocarp forest and
woodlands (Asia) (FAO2001). For the scope of this present review, we followed the FAO (2001) definition of

Figure 1.The graphic illustration shows the relative distribution of tropical dry forests. Reproducedwith permission fromFAO
(1999).
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TDFs because it recognises forests occurring in the dry tropical climate globally including areas with relatively
open canopies such aswoodlands, andwoody stands, then those based entirely on climate definitions. The
growing body of evidence suggests that the current climate does not define the biogeography of TDFs or
determine biome distributions (Staver et al 2011, Sunderland et al 2015), particularly in the context of future
unprecedented climate change (IPCC2007). If climates become sufficiently warmer and drier in the tropics, dry
forestsmay expand into areas that are currently dominated bymoist tropical forests (Putz andRedford 2010).

1.2. Recent research trends on tropical dry forests
1.2.1. Geographical research trends on tropical dry forests
Studies have pointed out that dryland forests generally receive a lower number of scientific publications and are
under-represented in research in comparisonwith tropicalmoist forests (Miles et al 2006,Quesada et al 2009).
Global reviews on dryland forests addressed the imbalance in the geographical coverage of dryland forest
publications using remote sensingwith certain tropical countries such as LatinAmerica receiving the highest
publications on dryland forests in comparison tomost places in Africa (Blackie et al 2014, Schröder et al 2021).
To investigate the geographical distribution of tropical dry forest studies, we initially searched for publications in
ISIweb of knowledge and Scopus on tropical dryland forests fromAsia, Africa, America, andAustralia. This
searchwas conducted by using the keywords ‘Dry Forest’, ‘Dryland Forest’ ‘Savan*Woodland’, ‘Savan*Tree’,
‘DrylandVegetation’, ‘DryVegetation’ ‘Satellite’, ‘Remote Sensing’, ‘Optical’, ‘Radar’, ‘Image’, ‘SAR’, ‘Earth
Observation’, ‘country/continent e.g., Africa’. In the search period from1997 to 2020, we identified 1662 papers
for Africa, 1639 for Australia, 1338 for America, and 1134 for Asia. In Africa, whenwe narrowed the search to
individual countries, the results showed that about 743 publications are from the Republic of SouthAfrica (RSA)
while 355 publicationswere from the Sahel region ofNigeria.We also investigated scientific publications from
other Southern African countries with dryland forest and 369 publications were identified, including from
Botswana (87), Zimbabwe (69),Mozambique (60), Namibia (68), Zambia (49), Angola (24), Lesotho (6),
Swaziland (5).Whenwe combined the scientific publications from the above 8 SouthernAfrican countries, the
results were 369 publications, indicating that publications on dryland forests for the Republic of SouthAfrica
were 2.01 times higher than all 8 SouthernAfrican countries combined. These results confirm thatmuch less
progress has beenmade in developing objectivemethods for assessing the rates of deforestation/conservation
and threats to dryland forests ecosystems inmost SouthernAfrican countries except for the Republic of South
Africa.

The dryland forests in other parts of theworld like Latin America are increasingly well studied at local,
regional, national and continental scale, particularly with regards to carbon/biomass (Marín-Spiotta et al 2008,
Chazdon et al 2016),fire (Pereira Júnior et al 2014,White 2019, Campos-Vargas andVargas-Sanabria 2021),
climate change (Mendivelso et al 2014, Castro et al 2018, González et al 2021),floristic and diversity composition
(Gillespie et al 2000, Alvarez‐Añorve et al 2012), ecosystem services (Castillo et al 2005, Paruelo et al 2016),
Payment for Environmental Services (PES) (Alcañiz andGutierrez 2020, Corbera et al 2009), novel conservation
approaches (e.g., sustainable intensification for protected/conservation areas) (Méndez et al 2007, Reynolds et al
2016) and has themost comprehensive forest change/deforestation and biophysical aspects including species
population changes, with extensive use of remote sensing (Trejo andDirzo 2000, Gasparri andGrau 2009,
Portillo-Quintero et al 2012, Stan and Sanchez-Azofeifa 2019, do Espírito-Santo et al 2020). In terms of
reviews,many remote sensing reviews are providing valuable information onTDF’s biophysical, ecological and
socioeconomic at a regional level of Latin America (Castro et al 2003, Sánchez‐Azofeifa et al 2003,
Sánchez‐Azofeifa et al 2005,Metternicht et al 2010, Portillo 2010, Sanchez-Azofeifa et al 2013,Quijas et al 2019,
Stan and Sanchez-Azofeifa 2019), andAustralia (Fensham and Fairfax 2002, Lawley et al 2016,Moore et al 2016).
Also, reviews of current progress on dryland forests in individual countries can be found inmany neotropics
countries such asMexico (Castillo et al 2005, Curry 2020), Venezuela (Fajardo et al 2005, Rodríguez et al 2008),
andCosta Rica (Frankie et al 2004, Stoner et al 2004) enabling the identification of knowledge gaps and aiding in
the development of a policy-relevant approach to conservation of these forests (Miles et al 2006).

Latin America is one of the best-represented areas for remote sensing research in dryland forests, for
example, Portillo-Quintero and Sánchez-Azofeifa (2010) utilised remote sensing data at continental America,
dryland forests ecoregion, and neotropics countries to show that 66%of tropical dry forest in the region has
already been converted and that in some countries the conversion rate is as high as 86% and 95%, respectively.
Aide et al (2012) usingModerate Resolution Imaging Spectroradiometer (MODIS) satellite data estimated that
200,000 km2 ofwoody vegetation of Latin American and theCaribbean regionwere lost due to deforestation
between 2001 and 2010.Nanni et al (2019) utilisedMODIS satellite data at 250m spatial resolution to assess
reforestation at the regional level and reported that the reforestation hotspots cover 167,667.7 km2 (7.6%) of
LatinAmerica between 2001 and 2014.While there are continental studies in Africa utilising remote sensing on
biophysical parameters such as biomass/deforestation (Bodart et al 2013, Bouvet et al 2018), as compared to
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LatinAmerica, these studiesmay not consider the empirical observations of dryland forests extent/change per
region or country level. In addition,most continental studies in Africa rather focus the attention on tropical
rainforest in Central Africa (e.g., core Congolese forest)whichmay under-represent dryland forest (e.g., Aleman
et al 2018). Global applications often report general land use/cover changewhich results in inaccurate or poor
estimates of dryland forest (Aleman et al 2018, Smith et al 2019).

Several studies using optical and passivemicrowave instruments in the African Sahel (Olsson et al 2005,
Horion et al 2014, Brandt et al 2016, Tian et al 2017) has reported that the density/size of woody vegetation
stands have increased, with few areas in northernNigeria reported to experience logging and agricultural
expansion into forest reserves. Deforestation in SouthernAfrica is amajor concern, with ca. 1.4million ha of net
forest loss annually, contributing to increased land degradation and the ensuant impacts on the balance of
ecosystem function (Lesolle 2012). A global study byTian et al (2017) utilising the optical NormalizedDifference
Vegetation (NDVI) index and passivemicrowaveVODacross tropical drylands has reported a decreasing trend
inwoody vegetation in SouthernAfrican countries such as Botswana andZimbabwe.Mitchard and Flintrop.
(2013) conducted a coarse-scale analysis of changes inwoody vegetation from1982 to 2006 usingNDVI time
series from theGlobal InventoryModeling andMapping Studies (GIMMS) dataset and found that significant
woody encroachment is occurring inmost west African countries, but, in contrast, in SouthernAfrica, a rapid
reduction inwoody vegetation (deforestation) is occurring. Bodart et al (2013)used Landsat satellite imagery
between 1990 and 2000 to estimate forest cover and forest cover changes in the African continent and found that
84%of the total deforested area occurred in the dry ecosystems of the SouthernAfrican region, with large
spatially concentrated areas of forest loss found inAngola,Mozambique, Tanzania, Zambia andZimbabwe,
and isolated hotspots found inNigeria and the border of the humid forest inGhana.While such global and
continental level studies are useful to highlight and reinforce the need to directmore attention and resources to
these threatened/poorly studied ecosystems, research efforts on forest change/deforestation and climate
change impacts of dryland forests at the regional level of Southern Africa aremuch harder to come by
(Blackie et al 2014).

1.2.2. Remote Sensing approaches research trends in tropical dry forests
In recent decades, satellite remote sensing or Earth observation (EO) has proved a valuable tool in forest ecology,
owing to its capability to perform systematic, frequent, and synoptic observation of the Earth, resulting in large
data volumes andmultiple datasets at varying spatial and temporal scales (Donoghue 2002, Zhu 2017). There are
several sensors includingmulti-spectral scanners, laser scanners (LiDAR), hyper-spectral scanners as well as
satellite-borne Synthetic Aperture Radar (SAR), that provide information on the colour and structure of forest
environments (Donoghue 2002). EOhas been applied tomapping the distribution, changes in cover, and
condition including deforestation, desertification, fire damage, and climate impact (Smith et al 2019,Dogru et al
2020). Additionally, these data have been used to estimate biophysical characteristics such as total above ground
biomass (AGB), leaf area index (LAI), woody area index, tree diameter, and canopy height which are key inputs
into a variety of ecologicalmodels, as well as calculations of carbon balance and primary production
(Donoghue 2000, Göksel et al 2018, Barbosa et al 2014). The continuous forestmetrics obtained using EOdata
can be extracted at leaf and crown level to evaluate spectral elements of leaf or species properties and at stand-
level and plot-level, or beyond to understand the variation between and among species, and through time
(Muraoka andKoizumi 2009).Monitoring of dryland forest cover and forestmetrics using EOdata also helps to
improve our understanding of the ecological drivers behind land cover change dynamics (Veldkamp and
Lambin 2001, Chambers et al 2007).

Biomass has extensively been estimated based on the spectral reflectance values from two ormore
wavelengths, and the sensitivity of optical and near-infraredwavelengths to photosynthetic canopy cover has
long been used for vegetation analyses (Rouse 1974, Tucker 1979). Spectral vegetation indices (VIs), including
theNDVI index, are commonly used as a proxy of vegetation cover and have been shown to relate closely to LAI,
biomass, and the fraction of photosynthetically active radiation absorbed by vegetation (fAPAR) (Curran 1980).
Several well-known limitations ofNDVI for robust estimation of biomass in drylands exist. NDVI is sensitive to
green components and insensitive towoody components where themajority of carbon is stored (Tucker 1979).
Also, AGBproduction is not always uniformly linked to either greenness or plant structure (herbaceous and
woody compositions), asmoisture content and vegetation species composition have been shown to impact the
biomass-NDVI relationship (Asner et al 2009,Wessels et al 2006). These observationsmay help explain
reportedly weak relationships betweenNDVI and tropical forest canopies, particularly for areas with complex
and high vegetation amounts as in TDFs (Foody et al 2001, Sader et al 1989). For example,Madonsela et al (2018)
investigated the interactions between seasonalNDVI andwoody canopy cover in the savanna of theKruger
National Park (NP) tomodel tree species diversity using a factorialmodel and found that the interaction
betweenNDVI andwoody canopy cover was insignificant. These challenges have led to the development of
alternative formulations which include correction factors or constants introduced to account for orminimize,
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the varying background reflectance (Gitelson et al 1996,Huete et al 1999). The EnhancedVegetation Index (EVI)
is amodification ofNDVI that provides complementary information about the spatial and temporal variations
of vegetationwhileminimizingmany of the contamination problems present in theNDVI, such as those
associatedwith canopy background and atmospheric influences (Huete et al 2002). Other closely related indices
include the Simple Ratio (SR), theGreenNormalizedDifference Vegetation Index (GNDVI), Soil-Adjusted
Vegetation Index (SAVI) amongst others. Xue and Su (2017) provide a detailed review of vegetation indices.

Although vegetationmonitoring has been largely based on themultispectral ‘greenness’ indices, which have
proven invaluable formonitoring biophysical and biogeochemical parameters, it has beenwidely reported in the
literature that they suffer from several weaknesses in dryland ecosystems (Tian et al 2016, Shi et al 2008). Other
remote sensing systems such as the passivemicrowave-based satellite systems capture the biomass signal in the
parameter termed vegetation optical depth (VOD)which has been used tomonitor changes in vegetation
dynamics (Andela et al 2013, Brandt et al 2018a, 2018b). Unlike the optical remote sensing-based vegetation
indices that are sensitive to chlorophyll abundance and photosynthetically active biomass of the leaves, the
vegetation information (e.g., VOD)deriving frompassivemicrowave instruments is sensitive to thewater
content in the total aboveground vegetation, including both the canopy (e.g. woody plant foliage) and non-green
woody (e.g. plant stems and branches) components due to greater penetration and sensitivity (Shi et al 2008, Liu
et al 2011). The passivemicrowave observationsVOD is relatively insensitive to signal degradation from solar
illumination and atmospheric effects and provide a valuable alternative tool for rapidmonitoring of carbon
stocks and their changes (Jones et al 2011). One of the advantages of passivemicrowave-derivedVOD is that it
continues to distinguish biomass variations at a relatively high biomass density, as compared to optical-based
vegetation indices which are likely to become saturated over dense canopies (Jones et al 2011, Liu et al 2015). The
main disadvantage of passivemicrowave observations is the relatively coarse spatial resolution (>10km), as
compared to satellite data in the visible and near-infrared parts of the spectrum; however, these data still have
highly useful applications at regional and global scales (Liu et al 2015, Rahmoune et al 2013,Owe et al 2001).
Some recent global and local studies fromLatin America andAfrica in the dryland ecosystems foundVOD to be
more robust against theNDVI drawbacks of saturation effect and continues to distinguish structural differences
for vegetationwith a near-closed canopywhen used as a proxy for vegetation productivity (vanMarle et al 2016,
Cui et al 2015, Liu et al 2011, Tian et al 2016). Apart from theVODandNDVI, an intercomparison between
several vegetation indices including other passivemicrowave-based vegetation indices, such as theMicrowave
PolarizationDifference Index (MPDI) (Becker andChoudhury 1988), and theMicrowaveVegetation Indices
(MVIs) (Shi et al 2008)would be of benefit inmonitoring dryland biomes.

Due to the inherent trade-offs between spatial and temporal resolution in EOdata, and geographic coverage,
vegetation patterns on both spatial and temporal domains have been revealed by various technological advances
resulted in the growing availability of remote sensing data andmethods (Toth and Jóźków 2016, Zhou et al
2020). The application of non-parametricmachine learning regression algorithms, such as decision trees,
random forests (RF), support vectormachines (SVMs), and k-nearest neighbour have becomemore
predominant and demonstrate the ability to outperformwidely used parametric approaches, such as polynomial
andmultiple linear regression variables usedwith remotely sensed data in a forest environment (Breiman 2001,
Latifi et al 2010).More recently, deep learning, a branch ofmachine learning that stems from cognitive and
information theories (e.g., convolutional neural network (CNN) founded by Schmidhuber (2015) has been
highlighted as a feasible approach for handling complex data in remote sensing including large-scale image
recognition, semantic segmentation, classification, and object detection tasks (Kattenborn et al 2021, Shafaey
et al 2018). Non-parametricmachine and deep learningmodels are sufficiently versatile to uncover complicated
nonlinear relationships and able to extract combinations of the input data that are difficult to describe explicitly
by humans, particularly, in areaswith high structural variability such as dryland forests (Hastie et al 2009, Shao
et al 2017). Deep learning has been used bymany remote sensing studies to provide in-depth forest investigation
from the perspectives of hyperspectral image analysis, interpretation of SAR/ LiDAR images, interpretation of
high-resolution satellite images and classification, andmultimodal data fusion (e.g., the fusion ofHyperspectral,
SAR, LiDAR and optical data (Guirado et al 2020, Kussul et al 2017, Shao et al 2017, Liao et al 2018, Trier et al
2018,Narine et al 2019). Improved techniques in remote sensing such as VOD, andmachine and deep learning
have been utilised to estimate dryland forest attributes globally and other dryland ecosystems, however, very few
of these focused on the local and regional scale of SouthernAfrica (e.g., Symeonakis et al 2020). The uncertainties
reported inmany dryland forests studies (Bastin et al 2017), could be decreased following further development,
application, and comparison of these improved approaches in future works at local, regional, continental studies
in SouthernAfrica and other dryland forest ecosystems. Critically, an increase in the spatial, spectral, and
radiometric resolution of satellite sensors, increased availability of EOdata and computational resources
combinedwith themachine or deep learning techniques would enhance the potential dryland forest
information to be exploited (Ali et al 2015). For a detailed review ofmachine learning and deep learning for
remote sensing and SustainableDevelopment Goals, see Zhu et al (2017) andHolloway andMengersen (2018).
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1.3. Review focus justification
Themajority of the residents of Southern Africa are poor and about 75%of them live in rural areas with high
reliance on dryland forests (Bond et al 2010). Additionally, these dryland areas display a high susceptibility to
bush encroachment (O’Connor et al 2014) and economic reliance on tourism (Ferreira 2004) and forest
products (Kamwi et al 2020), whichmeans that both agriculture and tourismdevelopment encroach on the
dryland forests, resulting in loss of forest biodiversity and land degradation (Eva et al 2006, Petheram et al 2006).
Across SouthernAfrica, sustainablemanagement of dryland ecosystems is hindered by complex land tenure due
to historical legacy, weak links between policy andwoodland use andmanagement, and cultural drivers
(Dewees 1994, Balint andMashinya 2006). Also, the dryland ecosystems of SouthernAfrica are dominated by
private land ownership, a high concentration of wildlife and human populations, and agriculture where TDFs
occur (Child et al 2012). This review focuses on SouthernAfrica because there is a gap in knowledge on carbon
storage, biomass, and the long-term trend of forest distribution and degradation in dryland forests.Much of the
research on dryland forests in SouthernAfrican has concentrated on livelihoods, ecosystem services, energy
supply and demand, food security, livelihoods and community forestmanagement, and conservation/
development trade-offs (e.g., Chidumayo andMarunda 2010, Chidumayo andGumbo 2010, Chidumayo 2019,
Djoudi et al 2015,Dewees 1994, DuPreez 2014, Ryan et al 2016), leaving forests highly vulnerable to
deforestation and degradation (Keenan 2015). The social and economic aspects are important given the large
numbers of African people that rely on dry forests for their livelihoods and a range of goods and services.
However, the gap in biophysical aspects, threats status, and adaptation to climate change identified for Southern
African TDFs at the regional and national level (Blackie et al 2014, Sunderland et al 2015), presents an urgent
need for an assessment of the effectiveness of the EO scientific foundation on current understanding of TDFs in
SouthernAfrica; this can aid in the development of policy-relevant approaches and long-term, regional
perspective for planning and conservation of the TDFs.

With the prospects ofmultiple free datasets fromoptical and SAR sensors being available; combining
information fromoptical sensors on photosynthetic activity (e.g., through various vegetation indices)with SAR-
derived information on forest structure and volume brings the benefits of higher spectral resolution, and
compensating for the shortcomings of using single data products alone. Based on this hypothesis, this review
focuses on examining the studies using optical and SAR sensors, both individually and the combination of the
two types of EOdata inmonitoring tropical forests.While forest distribution, carbon storage, and reducing
emissions fromdeforestation and forest degradation (REDD+) related research exists in African dryland forests,
the geographical focus has tended to be confined to severalWest/Central African countries, whereas Southern
Africa is relatively poorly analysed (Lewis et al 2013, Sunderland et al 2015). Although numerous reviews have
been conducted discussing the application of optical and radar remote sensing, they are either concentrated on
mangroves forests (Kuenzer et al 2011,Wang et al 2019), rain forests (Dupuis et al 2020), or ecosystem services
(Barbosa et al 2015). To date, reviews on remote sensing andEO in SouthernAfrica have focused on research
conducted in the Republic of SouthAfrica (Hoffman andTodd 2000,Mutanga et al 2009,Mutanga et al 2016).

As shown infigure 2, the climate threats coupledwith a growing human population and future anticipated
changes in land use are predicted to lead to severe dry forest biome shifts and degradation across thewhole of
SouthernAfrica, hence the need to expand the geographical scope of this review fromprevious work
(IPCC 2014, King 2014). This paper provides a systematic review of the scientific literatures related to the use of
Earth observation data including SAR and optical sensors used to study dryland forests, with a focus on Southern
Africa. To achieve this, we present examples from the literature that summarise past achievements, current
efforts, and knowledge gaps. The objectives of this review are to (i) to provide a detailed overview of the current
approaches and limitations formonitoring dryland forests using optical and radar remote sensing data. (ii) to
provide a critical evaluation and synthesis of the literaturemonitoring dryland forests using remote sensing data
and discuss howEOdata can contribute to dryland forestmonitoring and forest conservation in Southern
Africa. (iii) to identify knowledge gaps andmake recommendations for research that will enhancemonitoring of
dryland forests using remote sensing data.

2. Remote sensing applications in dryland forest

2.1.Optical data
In broad terms, the satellite platforms developed over the past 40 years (since 1972) have carried two broad types
of sensor systems; passive optical and active synthetic aperture radar (SAR). Successful change detection and
parameter estimation over tropical dryland forests require: (a) correct selection and application of sensor type;
(b) couplingwithfield observation data for calibration and validation, and (c)data integration and appropriate
techniques formodelling (figure 3). Optical sensors have beenwidely used for land cover and forest resource
mapping, providing access to long-termdata dating back to the launch of Landsat ERTS (EarthResources
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Figure 3. Interactionmechanisms for dryland forest canopies and source of variability and challenges related to each stage of remote
sensingmonitoring tropical dryland forest extents. Reproduced fromBarbosa et al 2014. CCBY 3.0.

Figure 2. (a)Projected biome change from the periods 1961–1990 to 2071–2100 using theMC1DynamicVegetationModel. (b)
Vulnerability of ecosystems to biome shifts based on historical climate (1901–2002) and projected vegetation (2071–2100).
Reproducedwith permission from IPCC2014.
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Technology Satellite) satellites in 1972. Landsat and several other coarse/medium spatial resolution optical
sensormissions (NationalOceanic andAtmospheric Administration (NOAA) - AdvancedVeryHigh-
ResolutionRadiometer (AVHRR); IndianRemote Sensing Satellites-1C/1D (ISRO-IRS-1C/D); theNational
Aeronautics and Space Administration (NASA) -Aqua/Terra-MODIS; Sentinel-2)provide well-calibrated,
nadir-viewing, near-global systematic coveragewhich have built up a valuable archive of image data that can be
used to analyse ecosystemdynamics (Donoghue 2000, Congalton 2018). In 2014, ESA launched the
Multispectral Instrument (MSI) onboard Sentinel-2 as part of its Copernicus EOmission. Sentinel-2MSI uses
two identical satellite sensors tomeasure the Earth’s reflected radiancewith a revisit time of 5 d and a high spatial
resolution of 10–20mpixel size. The length of the Sentinel-2 archive is short (from2015), compared to the
Landsatmission from1972-present, NOAA-AVHRR1979-present, Satellite Pour l’Observation de la Terre
VEGETATION (SPOT/VGT) (1998-present), IRS-1C/1D (ISRO-IRS-1C/D) (1995–2010), ENVISAT -
MediumResolution Imaging Spectrometer (MERIS) (2002–2010), theNASA -MODIS (2000-present) and the
French Space Agency (CNES-Centre national d’études spatiales) high-resolution SPOT satellite constellation (6
m–20mpixel size) - SPOT-1 in 1986–1990, SPOT-2 in 1990–2009, SPOT-3 in 1993–2009; SPOT-4 in
1990–2013; SPOT-5 in 2002-present; SPOT-6 in 2012-present; SPOT-7 in 2014-present. TheVEGETATION1
(VGT1) (1998–2012) andVEGETATION2 (VGT2) (2002–2014) instrument on the SPOT4 and SPOT5
(SPOT/VGT) satellites provided global dailymonitoring of vegetation cover, and it is successor the European
PROBA-V satellite (2013-present), with a pixel size of 1 km, 300m and 100m are supplied by the
VEGETATION image ProcessingCentre (CTIV) of VITO (Belgium), which can be accessed through the
internet site http://free.vgt.vito.be. Although a large number of satellite sensors have been launched that are
capable of observing land dynamics, and their pixel size has increased from80mof the Landsat-1 to 0.41–1.65m
of theGeoEye-1 satellites (Aguilar et al 2013), very few sensors provide well-calibratedmultispectral, nadir-
viewing observations and even fewer systematically capture all global data and provide a long-term archive of
data free of charge to the public. Except for AVHRR and Landsat, no other sensor or sensor line offers the chance
of long-termmonitoring of an area to bemonitored back in time to the 1970s, covering about four decades.

There are several non-systematic commercial high-resolution satellites that allow the detection of individual
trees or populations.Maxar Technologies Inc. launched 4 very high resolution satellites -WorldView-1 in 2007,
WorldView-2 in 2009,WorldView-3 in 2010, andWorldView-4 in 2019 that acquire images with spatial
resolution of 0.5, 0.41, and 0.31m, respectively. From2009 onward, Planet labs launched a swarmofmicro-
satellites including PlanetScope (PS), RapidEye (RE), and SkySat (SS)Earth-imaging constellationswith
multispectral imaging capability with the aimof acquiring daily image capture for any part of theworld at a
spatial resolution of 3.125m to 6.5m (Marta 2018). In 2011 and 2012, the Space Agency of France (CNES)
launched the Pléiades—high resolution optical imaging satellite constellation (Pléiades-1A and Pléiades-1B),
with a high spatial resolution of 0.7–2.8m.Other very high resolution commercial space imaging satellites
include Earlybird (1997), EROS-A (1998), IKONOS (1999), QuickBird (2001), OrbView (2001), GeoEye (2008)
(Maglione 2016). InAfrica, SouthAfrica started satellite developments in the 1990s, with the successful launch
of SunSat-1with a spatial resolution of 15m in 1999 and SumbandilaSat loworbit satellite with a high spatial
resolution of 6.25m in 2009 (Cho et al 2012,Mutanga et al 2016).While thefirstNigerian satellite, a
microsatellite calledNigeriaSat-1, was successfully launched into low earth orbit in 2003, followed byNigeriasat-
2with a higher spatial resolution of 2.5–5m, built by Surrey Satellite Technology Limited (SSTL) ofUK
(Agbaje 2010).

Nevertheless, the use of data acquired by higher spatial resolution optical sensors, particularly at regional and
global scales, can be limited by their relatively high cost, huge data volumes, and low frequency of data
acquisition compounded further in tropical regionswhere cloud cover is prevalent (Zhu andWoodcock 2012,
Lehmann et al 2015). The temporal resolution of sensors has also increased from, for example, 16 d for Landsat
to nearly 1 d for theNOAA-AVHRR,NASA-Aqua/Terra-MODIS, SPOT/VGT, and/or ENVISAT-MERIS data,
butwith a coarse spatial resolution of 250m to 1 km (Arino et al 2007,Herold et al 2008). Although lacking high
spatial detail, the daily temporal resolution of such sensors enables frequent estimation of deforestation,
detection of disturbances using dense time series data, and enables gaps due to cloud cover to be overcome
(Mbow et al 2015). It is important tomention that the acquisitions of some satellites such as IRS-1C/1D, and
MERIS ceased operations, however, the Sentinel,MODIS,NOAA-AVHRR, SPOT, SPOT-VGT (PROBA-V),
and Landsat series continue to operate, with ongoing continuity of data collection ensuredwith the recent
launch of Landsat-9 in September 2021.

2.2. Synthetic aperture radar (SAR)
SAR sensors for civilian applications first appeared in 1978withNASA’s SeaSat but have grown in importance as
a tool for forest studies. SAR sensors can operate at different frequencies and polarisations; these system
parameters provide information on the roughness and scattering properties of forest canopies and data can be
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captured day and night independent of weather conditions (Durden et al 1989). Since SAR can penetrate cloud,
rain, smoke, and haze, and it is a valuable source of data when atmospheric conditions hamper optical data
capture, particularly in the tropical dryland forest such as Southern Africa where the cloud and smoke from
forestfires are prominent features (LeCanut et al 1996). Radar signals are sensitive tomoisture, variations,
surface roughness, and vegetation structure properties, whereas data fromoptical systems use characteristics
related to reflected solar illumination or surface temperature (for thermal infrared sensors) as a basis for
discrimination of the land cover (Kasischke et al 1997,Mitchard et al 2009). Cloud cover-free SAR images have
great potential in the dryland tropical areas but have been used less often for forestmonitoring applications
compared to optical imagery, partly because of the scarcity of data (Castro et al 2003). Since the launch of the
Sentinel-1A andB, dense SAR time-series data are now available over tropical forest areas freely and openly, with
systematic acquisitions at a 10m spatial resolution and a 6–12 d revisit time (dependent on the location) in all
weather conditions.

Over the last 30 years, several satellite-borne SARhas been launched, including theUnited State Spaceborne
Imaging Radar-Synthetic Aperture Radar (SIR-C/X-SAR), EuropeanRemote Sensing (ERS-1/-2), ESA’s
Envisat ASAR (Advanced Synthetic Aperture Radar), Advanced Synthetic Aperture Radar (ASAR), Japanese
EarthResources Satellite (JERS-1), Advanced LandObservation Satellite (ALOS/PALSAR-1/-2), German
TerraSAR-X, Italy’s Cosmo SkyMed, and theCanadian RADARSAT-1/-2 (Shimada 2018). Depending on the
sensor configuration, a single channel (wavelength/frequency) ormultiple channelsmay be recorded in either
single ormultiple polarizations. Generally, studies have reported that the longer thewavelength (e.g., P (30–100
cm) and L (15–30 cm)), the further is its penetration into the forest and the greater the importance of scattering
beyond the upper canopy (Huang et al 2015). Besides the greater sensitivity of longer radar wavelengths to forest
structure, different studies indicate that cross-polarized backscatter (HV-horizontally transmitted, and
vertically received, VH-vertically transmitted and horizontally received) often exhibits greater sensitivity to
forest biomass than like-polarized backscatter (co-polarized bands:HH-horizontally transmitted and
horizontally received, VV-vertically transmitted and vertically received) (Kasischke et al 1997).

2.3. Limitations of optical and radar, and benefits of combining sensors
Despite the different generations and types of satellite sensors, no one sensor currentlymeets fully the
requirements of a comprehensive forest resource assessment EO system. The selection of an appropriate source
of data requiresfirst the identification of the ecological question being asked, identification of the limitations and
advantages of each sensor. The varying temporal, spatial, spectral, and radiometric resolutions unique to the
individual sensor system, result in different advantages and disadvantages to themonitoring of dryland
ecosystems (Lu 2006). Optical data are limited in themonitoring of this forest type. For example (1) cloud and
smoke severely limit the use of optical products (LeCanut et al 1996); (2)Dramatic seasonal changes in the
dryland forests conditions including droughts and leaf sheddingmake it unsuitable for systematic all-season
monitoring of this forest type (Boggs 2010). One of the reasons for this is associatedwith the seasonality of the
tropical vegetation: during thewet season, cloud-free satellite imagery is difficult to acquire, while during the dry
seasonwhen the imagery ismore available, the leaf-off configuration of the forest causesmisclassificationwith
savanna shrubland or grassland; (3Optical data is sensitive at the early stages of growth but as forest canopies
close, reflected radiation is no longer sensitive to biomass as the reflectance signal saturates at higher biomass
values (Lu 2006); (4)Passive optical sensors only detect the surface top layer,meaning that forest canopy
obscures the understory, and similarly grasses/crops obscure soil; (5)Changes in the spectral properties of the
soil and atmosphere can also hinder the inference of forest cover properties (Wang et al 1998, Santos et al 2002).

Similarly, there are a number of challenges to analysing and interpreting radar images for tropical forest
applications, which include: (1)Difficulty in interpreting radar backscatter, including, for example, speckle,
which is unwanted randomnoise inherent in all SAR images, whichmay increasemeasurement uncertainty and
make interpretation difficult (Klogo et al 2013); (2)Topography is amajor limitation inmountainous regions
due to geometric and radiometric effects such as radar shadowing caused by foreshortening and layoverwhen
the satellite is not able to illuminate thewhole ground surface (Mitchard et al 2009); (3) SARobservations often
lack a long-term and dense time series because they demand a relatively high energy provision on satellite
platforms.Until recently, satellite-based SARdata formulti-temporal assessments over large areas were
constrained by low spatial and temporal coverage atmedium resolution, although this nowmay be overcome
with acquisitions from the recently launchedC-band Sentinel-1 and L-bandALOS-2 satellitemissions
(Reiche et al 2016).

Rather than using EOdata from a single satellite sensor, the synergy of remotely sensed data frommultiple
sensors, particularly SAR systemswith those acquired by optical sensors, has been shown to be beneficial for
forest resource assessment (Lehmann et al 2015). Because optical data is capable ofmeasuring the reflectance of
the topmost layer of the forest canopy and SARdata deliver useful within-canopy biophysical parameters
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without being affected by cloud cover andweather conditions, one datasetmay compensate for the
shortcomings of the other (Reiche et al 2016). Previous research indicated that integration of optical and radar
can improve land and forest cover characterisation (Symeonakis et al 2018a). For example, the fusion of optical
and radar sensor data has the potential to improve AGB estimation because itmay compensate for themixed
pixels and data saturation problems in a tropical forest area. In addition to the spectral synergy afforded, the
cloud penetrating capability ofmicrowave radar sensors allows areas that havemissing optical data to be
included in analyses, particularly ifmulti-temporalmethods are being employed (Reiche et al 2016).

3.Methodology

This review focused on scientific papers studying tropical dryland forests andmade use of remote sensing data to
monitor and estimate changes in dryland forests. Airborne remote sensing studies were excluded from this
review process, since the review’smajor focus lies on satellite Earth observation of dryland forests and because
the acquisition of airborne sensors have low area coverage and high cost per unit area of ground coverage (e.g.,
the airborne hyperspectral images), making them spatially and temporally limited inmost African countries.
The systematic search approach taken to querying the literature was carried out bymaking use of selective
keyword searches in the formof structured queries usingfield tags and Boolean operators through theWeb of
Science (http://apps.webofknowledge.com) and Scopus (http://www.scopus.com) databases. At each query,
terms, and keywords such as ‘Dryland forests’, ‘Savan*’, ‘Woodland’, ‘Tree’, ‘Vegetation’, ‘Satellite’, ‘Remote
Sensing’, ‘Optical’, ‘Radar’, ‘Image’, ‘SAR’, and ‘EarthObservation’were used to produce an extensive list of
articles, where * is a wildcard search. The results were further refinedwith keywords such as ‘Forest change’,
‘Degradation’, ‘Deforestation’, ‘Trend’, ‘Biodiversity’, ‘Phenology’, ‘Biomass’, ‘Structural parameter’, and also
keywords representing the countries in SouthernAfrica, such as ‘Botswana’, ‘Namibia’, ‘Mozambique’, ‘South
Africa’, to provide a comparison in terms of the numbers of studies undertaken across the region.Within the
context of this review, all research articles were categorized into eight categories, including: ‘Land-use/land-
cover’, ‘Forest cover/types’, ‘Biomass’, ‘Forest structure’, ‘Biodiversity/habitats’, ‘Phenology’, ‘Plant traits’, and
‘Disturbances’. Articles with a publication date between 1997 and 2020were considered, capturing a period of
two decades within the review, based on a broad set of inclusion criteria:

1. The paper should address dryland forests and remote sensing as eithermain or secondary subjects.

2. The selection terms and keywords should exist as a whole in at least one of the fields: title, keywords, and
abstract.

3. The paper should be published in a peer-reviewed scientific journal.

4. The paper should bewritten in the English language.

During our data extraction process and literature search, we aimed tofind studiesmeeting the criteria for
peer-reviewed publications, available through the chosen indexed bibliographic databases. For this reason, our
literature search did not include general non-scientific reports, books, grey literature, thesis documents or
dissertations, extended abstracts, or presentations. The initial steps of the search process returned 1,478
published articles. Additional publicationswere added to the total set of studies by identifying relevant literature
found in the reference lists of these selected papers that conform to the inclusion criteria. The review
methodologywas guided by theGuidelines for Systematic Review and Evidence Synthesis in Environmental
Management (Collaboration for Environmental Evidence 2013). A systematic review andmeta-analysis were
undertaken and framed based on the PICO (population, intervention, comparison, outcomes)model
(McKenzie et al 2019) and reported using PRISMA (Preferred Reporting Items for Systematic reviews andMeta-
Analyses)flowdiagram (Moher et al 2009). The 1,478 articles were reduced to 870 articles as we selected for
inclusion in the review only the studies that had a full text available in English, papers published in peer-reviewed
journals, and removing all repetitions across databases. Initially, the titles and abstracts were screened to assess
eligibility by searching for predefined keywords and terms of the abstract or summary, identifying terms ‘dry or
dryland forests’ and the country or countries where the research took place. In this way, studies not conducted in
SouthernAfrica or dryland forests were filtered out, which reduced papers from870 to 599 papers. The
screeningwas followed by a full-text assessment that reduced the papers to 270 by excluding studies that, for
example,mentioned the term ‘dryland forest’ once in the abstract but did not investigate dryland forests, as
outlined in the PRISMA flowdiagram infigure 4. The searchwas subsequently refined by assigning the papers to
each of the study aims they addressed and to each category for the variables identified in the search protocol,
reviewing themethodologies of each publication, excluding them from further analysis if they did notmeet the
inclusion criteria on review. These steps reduced the total number of entries to 137 scientific publications. The
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selected literaturewas reviewed systematically, searching for specific information regarding the publication
temporal development, study location, remote sensing sensor/platformused, spatial and temporal coverage,
remote sensing product (e.g., biophysical indices) used, and application areas of the study (e.g., land cover, forest
biomass). The parameters used to extract relevant information from the remaining 137 identified scientific
publications are in table 1. Figure 4 is a PRISMA schematic representation of themethodology used and the
derivation of thefinal number of articles selected.

4. Results

4.1. Temporal development of publications and author affiliations
After the literature search, we found that the cumulative number of published research papers integrating
remote sensing data in dryland forests of SouthernAfrica grew exponentially from2 in 1997 to 155 in 2020. The
temporal development of the 137 investigated research articles is illustrated infigure 5. The graphic shows that
the number of studies has increased significantly over the last 23 years, with themajority of the studies published
from2013.More than 105 (80%) of articles were published from2009 to 2020 and only 4 (3%) of articles were
published before 2000. The growth in number is also related to the increased availability of remote sensing
platforms, sensors, data, for example, Landsat 8 in 2013 and Sentinel satellite in 2014, respectively.

Figure 4.PRISMA follow diagram (Moher et al 2009) showing theflowof information through the different phases of the systematic
review.
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In the review, we have only considered studies within Southern Africa; however, themajority of first authors,
83 (61%) of 137 investigated papers, aremainly scientists from international research institutions outside of the
focus region,mainly theUSA,UK, Portugal, Germany, andTheNetherlands (figure 6). Conversely, themajority
offirst author institutions fromAfrica, 37 (27%) of published papers, were fromRSA research institutions. The
state funded research institutions in SouthernAfrica shown infigure 6 include SouthAfricanCouncil for

Figure 5.Number of papers included in the review integrating remote sensing and dryland forests in SouthernAfrica published
annually between 1997 and 2020.

Table 1.Parameters used to extract relevant information for this review.

General information

Paper Id

1st author’s institution

Research institute city

Publication year

Publishing Journal

Journal category

No ofCitation

Study type

Site specific information

Location of the study area

Study country

Forestmanagement area

Predominant forest type

Information on remote sensing data

Sensor Type

Instrument name

Image resolution

Time period observed

Temporal resolution of EOdata

Database used

Information on research

Research topic considered:

Forest cover/type, disturbance, phenology, biodiversity/habitats, plant traits, land cover/land use

Parameters examined in the study

Examined object scale

Appliedmethodology

Information on validation and accuracy of results

Database used
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Scientific and Industrial Research (CSIR), SouthAfricanNational Space Agency (SANSA),Water Resource
Commission of SouthAfrica, SouthAfrica Agricultural ResearchCouncil, Range and Forage Institute,
BotswananHarryOppenheimerOkavango ResearchCentre, Desert Research Foundation ofNamibia, and
NamibiaMinistry of Environment andTourism. Considering the 137 studies conducted, about 120 (90%) of the
first authors are affiliatedwith either International andRSA institutions, but nofirst authors were fromZambia,
Lesotho, or Angola.

4.2. Spatial coverage, spatial extent, and investigated protected areas
Looking at the spatial scale of the study areas, we distinguished between studies done at a local community level
in a single country, termed local scale, and studies done atmore than one local community or province termed
regional scale.We also considered studies done at the national level and thewhole of SouthernAfrica. If a study
coveredmore than three countries, it was counted as an analysis of Southern Africa. The spatial extent of the
studies in the review is shown infigure 7. Themajority 88 (64%) of the investigated studies focused on a local
scale, despite the need for regional scale information on dryland forest distribution. Fromfigure 7, out of 137
investigated research papers, 20 (15%) and 13 (9%) research papers covered regional and national scales,
respectively. Only 10 (7%) out of 137 research papers dealt with transboundary protected areas, while 6 (4%) of
research papers were covering Southern African, considering the region as awhole, usingmainlymultispectral
data of large spatial resolution of 1km to 8km (MODIS, SPOT, andAVHRR) to generate information on
phenology, and vegetation condition (fire or drought), as shown infigure 7.

From figure 8, it is evident that considerable gaps in geographical focus of research on tropical dryland
forestsmapping still exist in Southern Africa.With respect to spatial coverage of the research,most studies, 50
(36%) of research papers were carried out in RSA, followed byNamibia andBotswana, with 22 (16%) and 18
(13%) of research papers, respectively. Swaziland, Angola, and Lesothowere the least frequently investigated,
eachwith<10 papers. Angolan dryland forests are even less well studiedwith 4 (6%) of research papers, despite
being found extensively in that country. Figure 8 also shows the location of themost frequently studied
protected areas. By far, themost studiedwas theKrugerNational Park (NP) in RSA, involving research by local
and foreign researchers from as far afield as theUSA, theUK, and beyond.With this interest in theKrugerNP,
there is, unfortunately, a lack of attention on other conservation areas and parks in Southern Africa. KrugerNP
was the only subject ofmore than one-third, 23 (37%) of the 61 of all reviewed papers on protected areas. The
secondmost frequently studied protected areas are the EtoshaNP inNamibia with 6 (8%) of papers, ChobeNP
with 4 (7%) of papers, andKwando, Kavango andZambezi transboundaryNPwith 8 (13%) of papers).Malipati
Safari Area, South LuangwaNP,GorongosaNP, andCentral Kalahari GameReserve were each studied 3 (5%)
and 2 (3%) times.

Figure 6.Number of papers by research institutions.
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To identify land surface changes and the drivers behind these, as well as short- and long-term trends, it is
essential that EO temporal coverage has sufficiently frequent revisit periods and resolutions. Nonetheless, this is
not an easy task since the availability of remote sensing data for long-termmonitoring is constrained by sensor

Figure 7. Spatial extent of investigated studies.

Figure 8.Number of studies per country andNational Park in SouthernAfrica. (Note: The data are not scaled to the proportion of
dryland forest area of countries, andNational Parkswith fewer or no publications are not shown. Source: FAO (1999). Reproduced
with permission fromFAO.
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characteristics (e.g., revisit time) and environmental factors (e.g., cloud cover). Looking at the temporal
resolution of the EOdatasets used, we distinguished between data acquired at a single point in time on amonthly
basis, termedmono-temporal analyses, and on a single annual basis, termedmono-annual analyses.We also
consideredmulti-temporal andmulti-annual to separatemonthly and yearly analyses studies. Fromfigure 9 it is
seen that themajority of publishedmaterial has focused on a single temporal period. Themajority of studies
involvedmapping over two ormore years (multi-temporal/multi-annual) comparing images at two ormore
different times, with a bi-temporal approach based on discrete classification (e.g., Chiteculo et al 2018,Matavire
et al 2015, Coetzer-Hanack et al 2016). Although the bi-temporal approach ismathematically simple and does
not require large data storage, it is less useful compared to the time series approach that can provide amore
comprehensive understanding of the complexity of the Earth’s land surface dynamics. Very few studies feature
time series analysis, which is required to perform continuous long-termmonitoring of changes in a tropical
forest ecosystem. Themajority of articles on time series analysedmulti-annual data, whichmaskswithin-year
variations, as compared to the detail provided at amonthly temporal scale (e.g.,Wessels et al 2006, Verlinden
and Laamanen 2006a, Akinyemi andKgomo 2019, Venter et al 2020). Only 22 (16%) out of the 137 studies
analysedmore than 15 years and only 11 (8%) studies coveredmore than 20 years usingmonthly time series
(e.g., Bunting et al 2018, Schultz et al 2018).

4.3. Research topics
Wehave classified the large number of research topics into eight broad categories that cover the diversity of
research into dryland forests. The eight categories, and the number of studies belonging to each of them, are
shown infigure 10.

4.3.1. Land cover/land use
Land-cover change is one of themost researched areas using EO in Southern Africa, with 36 (23%) publications
making it the secondmost common topic.We considered land-use/cover describing land surface classification,
typically represented in thematicmaps of different dryland vegetation. Land-use/cover changes with a specific
focus on other dryland vegetation such as rangelands, grassland, coastal vegetation, or plantation forests without
covering dryland forests were excluded. Themajority of publications on land-use/land-cover used optical data.
For example, Landsat data have been used bymore than 90%of publications, exceptDaskin et al (2016) and
Hüttich et al (2011)which used RapidEye andMODIS data. Only one publication used a combination of Radar
and optical data (Symeonakis et al 2018a). Sentinel data have not been utilised for land cover and land use study
in the reviewed papers, probably due to the relatively recent availability of these data. Looking at scale, the
majority of papers on land-cover change focused on the local scale in SouthernAfrica, but there is still a general
lack of synthesis of land-use/cover change assessment at the regional, national or subcontinental scale (figure 7).

4.3.2. Forest cover/type
Themajority of publications, 46 (31%) of studies cover the topic ‘Forest cover/type’. The forest cover/type
comprises the generation of a forest/non-forestmask (Dlamini 2017,Heckel et al 2020), forest cover change

Figure 9.Temporal duration of studies included in the review integrating remote sensing and dryland forests in SouthernAfrica
between 1997 and 2020.
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estimation (Erkkilä and Löfman 1999, Ringrose et al 2002), forest type discrimination between dryland forests
(McCarthy et al 2005), forest health assessment (Herrero et al 2020), woody cover (Boggs 2010, Ibrahim et al
2018), and tree species classification (Hüttich et al 2009, Adelabu et al 2013). Themajority of forest type/cover
mappingwas undertakenwith opticalmulti-spectral data including Landsat,MODIS, andAVHRR and a few
studies used high-resolution data such as RapidEye, GeoEye, andWorldView.On the other hand, a few studies
on forest cover/typemapping used a combination ofmultispectral and spaceborne SARdata (X-band, C-band,
and L-band) such as Landsat and JERS-1 (Bucini et al 2009), Landsat andALOSPALSAR (Higginbottom et al
2018,Naidoo et al 2016) and Sentinel-1 and -2 (Heckel et al 2020) (figure 11).

A few studies on forest cover/typemapping relied onfield data (Bucini et al 2009, Ibrahim et al 2018, Schultz
et al 2018) or forest inventory plots (Heckel et al 2020).Most studies did not include detailedfieldmeasurements
(species composition, density, frequency, dominance, and basal area, percentage soil cover, total height) and had
very fewfield samples (Gessner et al 2013). Other studies relied on high resolution EOdata (Dlamini 2017,

Figure 10.Research topic categories of reviewed articles between 1997 and 2020.Note that some studies cover different topics, which
may result inmultiple entries.

Figure 11.Number of studies based upon platform and sensor type. Note that studies investigating forest changewithmultiple
platformswere countedmultiple times.
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Higginbottom et al 2018), and publishedmaps (Westinga et al 2020) as reference data to validate their results.
Themajority of studies did not perform any formof accuracy assessment or validation of quantitative estimates
(e.g., Campo-Bescós et al 2013,Harris et al 2014). Forest cover and speciesmapping is essential formany
forestry-related tasks and play a key role in sustainable forestmanagement; the importance of these topics can be
seen in the fact that they are addressed across all countries in Southern Africa, with themajority of studies
conducted in RSA, followed byNamibia andBotswana (figure 12).

4.3.3. Forest biomass and structures
Fifteen research papers (10%) studied forest biomass, and fourteen publications (10%) assessed ‘forest
structure’. Studies on biomass included the estimation of AGB (Mutanga andRugege 2006,Dube et al 2018), and
changes in carbon stock (Gara et al 2017). Some of the publications usedNational Forest Inventory (NFI) data
(Verbesselt et al 2007,Halperin et al 2016), andfield-based samples (Tsalyuk et al 2017,Mareya et al 2018) to
estimate biomass in SouthernAfrica.

Forest structure in the review includes research on stand structure (Mathieu et al 2013), canopy cover
(Erkkilä and Löfman 1999,Huemmrich et al 2005), canopy gaps (Cho et al 2015), and stand density (Adjorlolo
andMutanga 2013). Themajority of studies on ‘forest structure’ in SouthernAfrica dealt with canopy cover
(e.g., Yang and Prince 2000, Adjorlolo et al 2014). Very few studies considered vertical forest structure including
tree height and tree crown diameter (e.g., Verlinden and Laamanen 2006b).Mareya et al (2018) utilised freely
available high resolutionGoogle satellite imagery in combinationwith object-based image analysis (OBIA) to
estimate tree crown areas inmiombo forests and found the overall accuracy to be low and unsuitable when high
accuracy is required. Some of the ‘forest structure’ publications are also assigned to the research topic ‘biomass’,
which discusses the relevance of forest structure for biomass (Meyer et al 2014). Forest structure is also a very
important parameter when it comes to habitat suitability, species diversity, biodiversity estimation, and
conversation studies and thus some publications cover both topics (e.g., Akinyemi andKgomo 2019).

Themethods applied in the biomass and forest structure publications are diverse.Most studies employed
some sort of regression analysis between in situ field data and EOdata, with themost popularmethods being
random forests, support vectormachines, kriging, linear and generalised linearmodels (Mutanga and
Rugege 2006, Carreiras et al 2013,Halperin et al 2016,Wingate et al 2018, Berger et al 2019).Williams et al (2013)
utilised the simple ensemblemodel to analyse biomass dynamics and found that biomass distributions can
diagnose disturbance processes inmiombowoodlands.Most studies utilisedNDVI index in dryland forest
mapping to correlate with biomass (Wessels et al 2006, Gizachew et al 2016), but very few studies considered
other vegetation indices such as red-edge (RE)-computed indices (e.g., Gara et al 2016,Dube et al 2018). For the
most part, optical sensors were used to derive forest biomass and structures, only four papers utilised radar data,
and one paper used a combination of radar and optical data to estimate biomass (Wingate et al 2018).More

Figure 12.Research topic by country. Note that the order of thementioned topics has changedwhen compared to figure 10 as some
studies were conducted in several countries.
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research is needed to explore the improvement of forest AGB and forest structure estimation throughmulti-
sensor (optical and radar) data fusion.

4.3.4. Climate change and disturbances
Herewe refer to dryland forests stressmonitoring (e.g., damage due tofire, climate/weather-related hazards
including drought events, floods, extreme temperatures as part of climate change and disturbances. Twenty-one
papers (13%) investigated disturbances to forest cover. Among the different forms of disturbance, fire damage
was themost commonly studied (Mayr et al 2018, Pricope andBinford 2012, Roy et al 2019, Silva et al 2003). In
the context of threats of climate change, other disturbances included drought (Urban et al 2018, Lawal et al 2019,
Marumbwa et al 2021) andfloods (Pricope et al 2015). A regional studies Lawal et al (2019) used gridded climate
data from theClimate ResearchUnit andGMMSNDVI to characterise the impact of drought to vegetation in
southernAfrica from1981 to 2005; They found that the responses of vegetation varied according to season and
biome, and showed that droughts had extensive impacts over the central parts of SouthAfrica andNamibia, and
the southern border of Botswana and thewestern parts of Zambia. In this review, we only considered studies that
investigated climate change in terms of temperature/drought in dryland forests where satellite data are a
primary or secondary source of data. Although there are a number of studies on climate changemodelling in
SouthernAfrica, the results show that there is a striking lack of studies investigating climate change into dryland
forest change and stressmonitoring.

The sensors used to detect disturbances differs, withmost studies usingMODIS (Alleaume et al 2005,
Chongo et al 2007, Archibald et al 2009, Giglio et al 2009), two publications used SPOT-VGT (Silva et al 2003,
Verbesselt et al 2006), and one Landsat and Sentinel-2 (Roy et al 2019). Only two publications utilised SARdata.
Mathieu et al (2019) investigated SAR Sentinel-1AC-band images for detecting surface fires in theKrugerNP,
whileWilliams et al (2013) usedALOSPALSAR to analyse knowndisturbance agents in tropical woodlands in
Mozambique. The research byUrban et al (2018) used Sentinel-1 SAR time seriesNDVI fromSentinel-2 and
Landsat-8 to derive surfacemoisture for droughtmonitoring in theKrugerNPbetween 2015 and 2017. A
combination/fusion of SAR andOptical data for detecting disturbances is not tested by any study. Only one
study usedfield data as input data for validation (Alleaume et al 2005), while two studies used forest inventory
data (Verbesselt et al 2006, Verlinden and Laamanen 2006a).

4.3.5. Biodiversity, plant traits, and phenology
Twelve (8%) of the reviewed publications dealt with research questions in the context of forest biodiversity.
Almost half of the papers on forest biodiversity examined plant species diversity (Adjorlolo et al 2014,Mapfumo
et al 2016, Chapungu et al 2020). Others looked at animal species and habitat suitability (e.g., Cáceres et al (2015)
for birds, Ducheyne et al (2009) for tsetseflies, impala (VanBommel et al 2006), and elephants (Marston et al
2020). Forest biodiversity is often related to structural canopy parameters.Most studies, nine (75%) of twelve
used Landsat to derive parameters such as plant canopy height, species occurrence, richness, and diversity. Three
(25%) of the studies usedMODIS data (e.g., Fullman andBunting (2014) usedMODIS at 250mpixel resolution
and aMoving StandardDeviation Index (MSDI) to detect elephant-modified vegetation along theChobe
riverfront in Botswana; Akinyemi andKgomo (2019) utilised 1 km spatial resolution of SPOT -VGT and
PROBA-V annual time series of 18 years to understand species diversity and richness assessment based on the
VegetationDegradation Index in Palapye Botswana.; Adjorlolo et al (2014) investigated the utility of SPOT-5
multispectral data to assess tree equivalents and total leafmass tomodel grazing and browsing capacity in
KwaZul-Natal province in RSA.

Five papers (3%) dealt with different plant characteristics, known as plant functional traits. These include
canopy chlorophyll content (Cho et al 2012), leaf nitrogen concentration (Cho et al 2013), and vegetationwater
content (Verbesselt et al 2006), and LAI (Scholes et al 2004). Plant functional traits including vegetation
biophysical and biochemical properties (e.g., pigment levels, nitrogen content) are often related to patterns of
biodiversity. Huemmrich et al (2005) exploredmonthlyMODIS data at 1 km spatial resolution over two years to
estimate LAI and FAPAR and found that ground‐measured LAI values correspondwell withMODIS LAI, and
showed a discrepancywith FAPAR. Cho et al (2012)utilised variogram analysis and the red edge shift from
SumbandilaSat and SPOT5 to estimate canopy chlorophyll content inDukuduku forest in Southern Africa and
found that SumbandilaSat provides additional information for quantifying stress in vegetation as compared to
SPOT image data. All studies on plant traits were undertaken at the local scale.

Looking at research categories per country, biodiversity/habitat publications weremainly undertaken in
Botswana andRSA (figure 12). All studies in the context of forest biodiversity and plant traits covered only
mono-temporal andmulti-annual classifications. Only two studies utilisedmulti-annual time series (Verbesselt
et al 2006, Akinyemi andKgomo 2019), and one study usedMODISmulti-temporal time series over two years
(Huemmrich et al 2005). All of these studies focused on a coarse resolution of 1 km.
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Phenology is also strongly linked to plant traits, but analysis putsmore emphasis on the seasonal variations
including growing season (green-up date) (Archibald and Scholes 2007,Whitecross et al 2017), end of the
season, and length of the season (Davis et al 2017). To date, phenological research in Southern African dryland
forests is limited, andmore than half of the published papers on phenology focused only on examples fromRSA.
In the few studies that have analysed phenology,most studies dealt with estimating leafflush and early-greening
dates (Chidumayo 2001,Higgins et al 2011). For example, Archibald and Scholes (2007) developed an intricate
algorithm that usedMODISNDVI products and field-based parameter estimates to predict green-up dates for
grass and tree components at a site in theKrugerNP inRSA. Jolly andRunning (2004) compared awater balance
model to a 3-yearNDVI time series and found the deviation between the onset of leaf flush predicted by the
model and empirical data was between 10 and 40 d.

5.Discussion

5.1. Temporal extent
In this article, we have synthesized the current researchwith EOon dryland forests, with a particular focus on
SouthernAfrica. Although the volume of scientific literature has demonstrated a sharp increase, the use of
remote sensing is still limited, and up until 2013, the number of publications on this topic was relatively small.
Substantial research on the dryland forests of Southern African ismainly based on single-date observations, and
comparing classified images at two ormore different times.Maps that relate successive land cover change
between two dates typically lack information regarding underlying processes and do not enable insights on the
nature of the transformations present, such as the rate or persistence of change (Lambin et al 2003). Time series
analysis on dryland forests, which enables tracking changes is scarce, only 22 (16%) out of 137 studies feature
time series lengths that exceed 15 years and only 11 (8%) studies that covermore than 20 years. Longer time
series of remote sensing data afford the ability to assess the dynamics of forest structures, biodiversity,
degradation, disturbance from climatic extremes, and change in phenology, inwhich a gap still exists.

5.2. Spatial scale
Anotherfinding that stands out fromour analyses is that there are very few studies at the national and regional
levels. Despite new sensor and EOdata availability, it is clear that a systematic and consistent regional
monitoring of dryland forests is not yet fully exploited and is still in its infancy in Southern Africa. In fact, the
majority of publications 88 (64%) concentrated their research efforts on local scale investigations (figure 7).
Desanker and Justice (2001) andGeist (2002) also emphasised that Southern Africa is limited to local-scale
studies, thereby lacking a simultaneous analysis of the impacts of these changes at a larger scale. To fully assess
regional and long-term implications for tropical dryland forest change studies, analyses on large(r) scales are
needed, ideally with higher spatial resolutions and longer temporal duration.

5.3. Accuracy assessment
Through evaluation of the literature, we identified that the assessment of accuracy for thematic/classifiedmaps
and statistical data to be another important issue, with only 54 (39%) of the studies appearing to have performed
some formof accuracy assessment. Our results show there is limited information on sources of error and
uncertainty levels of the estimates provided bymost studies.We found thatmost forest and vegetation-related
scientific outputs in Southern Africa are not yet strongly linked tofieldmeasurements and forest inventory data.
Among the reviewed studies, very few studies utilized field test sites/ ground-based independent datasets for
accuracy assessment, while other studies estimated uncertainties using other procedures e.g., using a sample of
finer spatial resolution remote sensing data, or did not report themap uncertainty. Some studies employed root-
mean-square error to assessmodel accuracy (RMSE) (e.g., Adjorlolo andMutanga 2013,Higginbottom et al
2018), whilemany studies used an errormatrix to assessmap uncertainties, whichwas employed for instance
(e.g., Hüttich et al 2011, Adelabu et al 2013). However, some studies used sample points below the desirable
target number of validation points per class (e.g., Cabral et al 2011), while studies brieflymentioned that a
confusionmatrix was calculated but did not report howmany sample points were used for validation (e.g.,
Chagumaira et al 2016). Congalton. (1988) suggests planning to collect aminimumof 50 samples for eachmap
class formaps of less than 1million acres in size with less than 12 classes. It has been empirically confirmed that a
good balance between statistical validity and practicality for larger areamaps ormore complexmaps can be
achievedwith about 75 to 100 sample sites per class (Congalton andGreen 2009).

Globally, owing to TDFs low commercial importance in comparison to other tropical forests such asmoist
forest, they are often not assessed by field surveys, or surveyed regularly by governments (Keenan 2015).
Independent validation data for dryland forest estimations are rarely available because acquiring appropriate
field survey data is a time-consuming and expensive task. In Southern Africa, these areas are often remote and
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dangerous to visit in thefield, due to the hazard posed bywildlife and if present, unexploded landmines, almost
impracticable to obtain independent validation data for large(r) area studies, especially formany protected areas.
Despite challenges to obtain ground-based observation, effective integration of these data and remote sensing
methodswill be key to accuratelymapping andmonitoring dryland forest across a range of spatial scales and in
reporting the accuracy ofmodels. However, the applicability of remotelymeasured geospatial data is reliant on
quality, and translating remote sensing data into accurate andmeaningful information is often a challenge prone
to errors (Congalton 2009,Donoghue 2002). In this context, it is critical to ensure the validity of these data and
their suitability for each particular application, particularly where coarse spatialmaps can bemisleading. In
addition, characterising dryland forest for large areas of Africa cannot entirely rely on global and pantropical
monitoring studies for dry forest estimation because global forestmonitoring generally underestimates, and in
some instances overestimates, dryland biomes (Bastin et al 2017).

5.4. Research topics and geographical focus
The classification of studies into eight broad subject categories revealed forest cover/types 41 (26%) and land
cover/land use 36 (23%) to be themost commonly researched topics. Topics receiving less attention included
phenology, plant traits, biodiversity/habitats, and disturbances with regards to climate change (figure 10).With
regards to disturbances,fire damagewas themost commonly studied but there is amissing body of literature on
the climate change impact on the composition, biodiversity, and ecological health of dry forest ecosystems in
most countries of Southern Africa.We also found an interesting, non-uniform spatial distribution of dryland
vegetation and forest studies using spaceborne remote sensing, particularly when considering disparities among
countries and across protected areas. The distribution of research categories by country reveals that RSA is, by far
themost studied nation across all categories in Southern Africa (figure 8). It should be noted that care should be
taken here not to assume that the number of studies equates to research quality, which remains difficult to
articulate from a review of this nature.However, the dryland forests ofMozambique, Lesotho, Swaziland, and
Zambia are noticeably very poorly studied. Studies on the dryland forests of Angola are even less frequent,
receiving relatively little global attention, and the few studies conducted on its forests weremostly conducted by
researchers fromPortugueseUniversities (Leite et al 2018, Catarino et al 2020). The focus of publications tended
to be biased towards conservation and national parks, particularly as a large proportion of studies were
undertaken in theKrugerNP, leavingmany other private and international protected areas relatively
understudied. Transboundary conservation areas, such asKavango-Zambezi (KAZA), have received relatively
little attention butmerit further research in terms of the vast dryland forests extent, biodiversity, species
abundance and diversity, and the potential for this area to form important corridor areas for wildlife animals.
There is a further concern as a result of such gaps because some of the dryland forests, and species towhich they
are home, notably in countries like Angola andZambia, are listed on the IUCN red list andwould almost
certainlymerit Alliance for Zero Extinction (ACE) ranking (Cumming 2008). Furthermore, future efforts to
estimate important variables such as forest cover and biomass need not be restricted by country boundaries.
Future studies, based onmedium-fine resolution EO and validatedwith field data, will provide information to
improve our understanding of African dryland vegetation and itsmanagement.

5.5. Vegetation indices, optical, SAR, and fusion of optical and SAR sensors
Themost commonly used vegetation indexwas theNDVI, withmore than half of the studies, 84 (54%) of papers
utilising this index, but only 13 (8%) of papers used EVI index and SAVI index. Other vegetation indices such as
theGNDVI index and Sentinel red-edge related indices and passivemicrowave observations such asVegetation
Optical Depthwere not utilised in studies considered in this review.Onemajor problem commonly
encountered in the less studied ecosystems, such as dryland forests, is that of generalizing or transferring
knowledge andmethods derived from remotely sensed imagery over both space and time (Foody et al 2003). For
example, commonly used vegetation indices and classification schemes are in generalmainly been calibrated on
other, better-studied ecosystems, such as temperate or rain forests, and this has led to poor accuracy results when
extrapolated, to for example, tropical dryland forests. This phenomenon justifies the importance of utilizing a
range of vegetation indices when studying dryland forests using EOdata. Imagery fromoptical sensors ismost
commonly used, out of all sensor types, providing the data used in 90%of papers reviewed, followed by SARdata
with 6%. The fusion of optical and radar data was rarely used, with only 4%of publications exploring this. The
most frequently used platforms are Landsat, followed byMODIS andAVHRR. Imagery taken by the Sentinel-1/
2 satellites onlymakes up a small portion of the remote sensing data on dryland forests. For example, Sentinel-2
was only used by 2%of investigated studies, but thismay reflect the relatively short period (since 2015)when
these data have been available.
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5.6. Remote sensing platforms and cloud-based computing
Most of the EOdata used in the publications reviewedwere downloaded, and are available at no cost from a
number of online portals, including theOakRidgeNational Laboratory (ORNL), theUnited States Geological
Survey (USGS)DistributedActive Archive System (DAAC) and Earth Explorer (EE) tool. The lack of remote
sensing research centers inmost Southern African research institutionsmay contribute to limit the number of
African Scientists engaged inmonitoring forests resources. For example,most studies in RSAmade use of
remote sensing data through theUniversity of theWitwatersrand, Satellite ApplicationCentre (SAC), the South
AfricanNational Space Agency (SANSA), and theCouncil of Science and Industrial Research (CSIR). The
development of remote sensing capacity at local universities has inevitably contributed toRSA universities and
research institutions conducting themajority of studies in SouthernAfrica (figure 6). To improve EOdata
access, and the skills to handle and interpret this across SouthernAfrica, there is a need to increase the number of
local institutions that distribute the remote sensing data, andwho have the capacity to access and use innovative
web-based platforms such as theGoogle Earth Engine (GEE) andAmazonWeb Services to overcome some of
the logistical and financial constraints of this type of research.

Southern African countries face considerable technical challenges with remote sensing, particularly in
respect to REDD+-related research on dryland forestsmonitoring. Freely available tools, for example, the
cloud-based geospatial analysis platformGoogle Earth Engine (GEE), make it easier to access powerful
computing resources for processing and analysing pre-processed large-scale datasets (Shelestov et al 2017).
However, only nine papers (6%) out of 137 usedGEE to access or analyse remote sensing data. The ‘near real-
time’ remote sensing data offered byGEE is of particular interest formonitoring changes and automating the
analysis of time-series, when detecting and tracking trends in surface reflectance properties.With increasing
spatio-temporal coverage of satellite data and computational platforms that reduce the need for costly local
infrastructure (e.g., GEE), there is an opportunity to overcome the limitations previously enforced by large
volumes of data and the scale of analysis, whereby our knowledge of dryland forest dynamics can be improved in
the upcoming years.

6. Conclusion

This review summarizes research progress towards the use and integration of remote sensing datawithin the
context ofmonitoring dryland forests in SouthernAfrica, using a systematic reviewmethodology that focused
on 137most relevant research articles.We have reviewed the temporal and spatial coverage of these studies, their
application area, and the remote sensing platforms and sensors used. Based on the results, the following
conclusions can be drawn. There are a broad range of topics covered by research on dryland forests, fromwhich
land-use/land-cover and forest cover and disturbances from the firewere themost frequently studied.However,
there is still a relative lack of studies assessing dryland forest structure, phenology, biodiversity/habitats, plant
traits, and disturbance from climatic extremes, suggesting additional research is required. Themajority of
studies relied on single-date or annual data and bi-temporal discrete classification; only a very few studies
employed time series analysis.

We consider some of the limitations of the research reviewed, which indicates a need formore frequent use
offield and inventory data, a greater use of validation/accuracy assessments, and testing other vegetation indices
beyondNDVI and EVI such as theVegetationOptical Depth and Sentinel-2 red-edge related indices. In
addition, further improvements should focus on for extensive combination and fusion of SAR and optical data
in order to have a temporally and spatially consistent data set necessary for several applications in dryland
forests. Given the state of decline of woody vegetation condition in Southern Africa, long-termmonitoring of
monthly time series of EOdata at regional and transboundary scale clearly hold potential to capture dryland
forests dynamics and to understand their current status and future trends. A significantmove fromEO
predictions that are extremely site-dependent to large(r) ecoregional levelmonitoring approach that integrates a
range of remotely-sensed data of sufficiently high spatial and temporal resolutionwithfieldmeasurements and
usingmachine/deep learningmodels could provide a sound basis for assessing dryland forest-related changes
and dynamics. Information inferred from these kinds ofmodels would be extremely useful for the current
knowledge,management and conservation of the dryland forests as well as for understanding their responses to
disturbance (natural or anthropogenic) and climatic change at regional to sub-continental level. Finally, there is
significant geographical heterogeneity in study coverage; whilst there is substantial research on the forests in the
KrugerNP and across RSA, the same cannot be said for other areas of Southern Africa. The EO interventions not
only assess deforestation rate, but also support other forest related REDD+activities such as sustainable forest
management which reduce forest degradation and enhance forest carbon stocks at a range of scales,
transcending both provincial and national boundaries e.g., Kavango-Zambezi Transfrontier ConservationArea
(KAZATFCA). Nevertheless, REDD+-related research on dryland forests inmost SouthernAfrican countries
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and protected areas has been limited, with clear gaps across Angola,Mozambique, Zambia, andZimbabwe.
Finally, Africa has the potential to emulate other continents, such as LatinAmerica, that havemade notable
progress in employing freely available remote sensing data tomonitor tropical dryland forest area change and
biomass on a large scale.
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