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Abstract

Climate change, manifest via rising temperatures, extreme drought, and associated anthropogenic
activities, has a negative impact on the health and development of tropical dryland forests. Southern
Africa encompasses significant areas of dryland forests that are important to local communities but
are facing rapid deforestation and are highly vulnerable to biome degradation from land uses and
extreme climate events. Appropriate integration of remote sensing technologies helps to assess and
monitor forest ecosystems and provide spatially explicit, operational, and long-term data to assist the
sustainable use of tropical environment landscapes. The period from 2010 onwards has seen the rapid
development of remote sensing research on tropical forests, which has led to a significant increase in
the number of scientific publications. This review aims to analyse and synthesise the evidence
published in peer review studies with a focus on optical and radar remote sensing of dryland forests in
Southern Africa from 1997-2020. For this study, 137 citation indexed research publications have been
analysed with respect to publication timing, study location, spatial and temporal scale of applied
remote sensing data, satellite sensors or platforms employed, research topics considered, and overall
outcomes of the studies. This enabled us to provide a comprehensive overview of past achievements,
current efforts, major research topics studies, EO product gaps/challenges, and to propose ways in
which challenges may be overcome. It is hoped that this review will motivate discussion and encourage
uptake of new remote sensing tools (e.g., Google Earth Engine (GEE)), data (e.g., the Sentinel
satellites), improved vegetation parameters (e.g., red-edge related indices, vegetation optical depth
(VOD)) and methodologies (e.g., data fusion or deep learning, etc.), where these have potential
applications in monitoring dryland forests.

1. Introduction

1.1. Tropical dryland forest

Approximately 40% of the Earth’s tropical and subtropical land surface is covered by open or closed forests. Of
this, tropical dryland forests (TDFs) account for the largest share at 42%; the remaining 33% is moist forest, and
only 25% is rain forest (Murphy and Lugo 1986, Janzen 1988). The largest proportion of dryland forests
ecosystems are found in Africa, accounting for 60%—80% of the total biome area (three times the area

covered by African rain forest) (figure 1) (Bullock et al 1995, Bodart et al 2013). Dryland forests hold a
significant amount of terrestrial organic carbon that may contribute more to climate mitigation and adaptation
than previously appreciated (Valentini et al 2014). Dryland forests also provide diverse ecosystem services,
including water regulation and erosion control, the provision of food, fuel, and tourism opportunities

(Djoudi et al 2015, Schroder et al 2021). On the other hand, dryland forests are subject to prolonged dry seasons
and their rate of conversion to secondary forests has historically been higher than other tropical forest types
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Figure 1. The graphic illustration shows the relative distribution of tropical dry forests. Reproduced with permission from FAO
(1999).

(Pennington et al 2018). According to the Intergovernmental Panel on Climate Change (IPCC), these changes
have impacts on carbon emissions to the atmosphere and forest biodiversity loss that reduce adaptive capacity
and resilience to the impact of high temperatures and varying precipitation (IPCC 2014).

The definition of ‘dryland forest’ remains debatable and controversial, which contributes to the difficulty in
accurately assessing and measuring its distribution patterns and status (Blackie et al 2014). The lack of a clear and
comprehensive understanding of general terms including ‘drylands’ and ‘forests’ makes it a challenge to
explicitly define dryland forests (Charles et al 2015). Given the fact that dryland forests progressively grade into
other vegetation types such as moist tropical forests, woodlands, and savannas, also makes clear definitions
complex (Putz and Redford 2010). Walter and Burnett (1971) noted that the accuracy of estimates of all tropical
forest areas is constrained by uncertainty in the distribution of open woodlands in dryland areas, which are
extensive in Africa, Australia, and Latin America.

In the scientific literature, many different names have been applied to tropical dryland forests, including
savanna forests, Sudanian woodland and miombo woodland in Africa, monsoon forest in Asia, neotropical dry
forests in South America (Linares-Palomino et al 2011, Suresh et al 2011, Chidumayo 2013). The neotropical dry
forests in South America have a plethora of names from ‘caatinga’ in northeast Brazil, to ‘bosque tropical
caducifolio’ in Mexico, and ‘cuabal’ in Cuba, which in part hinders comparisons (Sdnchez-Azofeifa et al 2005,
Mayes et al 2017). For example, Dexter et al (2015) identified dry deciduous forest in India (Suresh et al 2011),
miombo woodland in southern Africa (Chidumayo 2013), and deciduous dipterocarp forest in continental Asia
(Bunyavejchewin et al 2011) as a form of savanna, and not TDFs, despite the formal classification as TDFs by
these studies, and the FAO (FAO 2001). The Caatinga and Chaco vegetation in Latin America is also considered
by some authors as part of the dry forests (Pennington and Ratter 2006, Gasparri and Grau 2009), although
Olson etal (2001) classifies these regions as a shrubland ecosystem.

There are several definitions currently available for TDFs, but there is still a lack of consensus in developing a
common understanding. Mooney et al (1995) defined TDFs as forests occurring in the tropical regions
characterized by pronounced seasonality in rainfall, where there are several months of severe, or even absolute
drought. Sdnchez-Azofeifa et al (2005) broadly defined TDFs as a vegetation type typically dominated by
deciduous trees (at least 50% of trees present are drought deciduous), where the mean annual temperature
is >25 °C, total annual precipitation ranges between 700 and 2000 mm, and there are three or more dry months
every year (precipitation <100 mm per month). A widely accepted definition is that of the FAO, which has
identified TDFs as a Global Ecological Zone (GEZ), experiencing a tropical climate, with a dry period of 5 to 8
months and annual rainfall ranges from 500 to 1500 mm; GEZ includes the drier type mbo and Sudanian
woodlands, savannah (Africa), caatinga and chaco (South America), and dry deciduous dipterocarp forest and
woodlands (Asia) (FAO 2001). For the scope of this present review, we followed the FAO (2001) definition of
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TDFs because it recognises forests occurring in the dry tropical climate globally including areas with relatively
open canopies such as woodlands, and woody stands, then those based entirely on climate definitions. The
growing body of evidence suggests that the current climate does not define the biogeography of TDFs or
determine biome distributions (Staver et al 2011, Sunderland et al 2015), particularly in the context of future
unprecedented climate change (IPCC 2007). If climates become sufficiently warmer and drier in the tropics, dry
forests may expand into areas that are currently dominated by moist tropical forests (Putz and Redford 2010).

1.2. Recent research trends on tropical dry forests

1.2.1. Geographical research trends on tropical dry forests

Studies have pointed out that dryland forests generally receive a lower number of scientific publications and are
under-represented in research in comparison with tropical moist forests (Miles et al 2006, Quesada et al 2009).
Global reviews on dryland forests addressed the imbalance in the geographical coverage of dryland forest
publications using remote sensing with certain tropical countries such as Latin America receiving the highest
publications on dryland forests in comparison to most places in Africa (Blackie et al 2014, Schroder et al 2021).
To investigate the geographical distribution of tropical dry forest studies, we initially searched for publications in
IST web of knowledge and Scopus on tropical dryland forests from Asia, Africa, America, and Australia. This
search was conducted by using the keywords ‘Dry Forest’, ‘Dryland Forest’ ‘Savan™ Woodland’, ‘Savan™ Tree’,
‘Dryland Vegetation’, ‘Dry Vegetation’ ‘Satellite’, ‘Remote Sensing’, ‘Optical’, ‘Radar’, ‘Image’, ‘SAR’, ‘Earth
Observation’, ‘country/continent e.g., Africa’. In the search period from 1997 to 2020, we identified 1662 papers
for Africa, 1639 for Australia, 1338 for America, and 1134 for Asia. In Africa, when we narrowed the search to
individual countries, the results showed that about 743 publications are from the Republic of South Africa (RSA)
while 355 publications were from the Sahel region of Nigeria. We also investigated scientific publications from
other Southern African countries with dryland forest and 369 publications were identified, including from
Botswana (87), Zimbabwe (69), Mozambique (60), Namibia (68), Zambia (49), Angola (24), Lesotho (6),
Swaziland (5). When we combined the scientific publications from the above 8 Southern African countries, the
results were 369 publications, indicating that publications on dryland forests for the Republic of South Africa
were 2.01 times higher than all 8 Southern African countries combined. These results confirm that much less
progress has been made in developing objective methods for assessing the rates of deforestation/conservation
and threats to dryland forests ecosystems in most Southern African countries except for the Republic of South
Africa.

The dryland forests in other parts of the world like Latin America are increasingly well studied atlocal,
regional, national and continental scale, particularly with regards to carbon/biomass (Marin-Spiotta et al 2008,
Chazdon et al 2016), fire (Pereira Jtnior et al 2014, White 2019, Campos-Vargas and Vargas-Sanabria 2021),
climate change (Mendivelso et al 2014, Castro et al 2018, Gonzélez et al 2021), floristic and diversity composition
(Gillespie et al 2000, Alvarez-Aforve et al 2012), ecosystem services (Castillo et al 2005, Paruelo et al 2016),
Payment for Environmental Services (PES) (Alcaniz and Gutierrez 2020, Corbera et al 2009), novel conservation
approaches (e.g., sustainable intensification for protected/conservation areas) (Méndez et al 2007, Reynolds et al
2016) and has the most comprehensive forest change/deforestation and biophysical aspects including species
population changes, with extensive use of remote sensing (Trejo and Dirzo 2000, Gasparriand Grau 2009,
Portillo-Quintero et al 2012, Stan and Sanchez-Azofeifa 2019, do Espirito-Santo et al 2020). In terms of
reviews, many remote sensing reviews are providing valuable information on TDF’s biophysical, ecological and
socioeconomic at a regional level of Latin America (Castro et al 2003, Sdnchez-Azofeifa et al 2003,
Sanchez-Azofeifa et al 2005, Metternicht et al 2010, Portillo 2010, Sanchez-Azofeifa et al 2013, Quijas et al 2019,
Stan and Sanchez-Azofeifa 2019), and Australia (Fensham and Fairfax 2002, Lawley et al 2016, Moore et al 2016).
Also, reviews of current progress on dryland forests in individual countries can be found in many neotropics
countries such as Mexico (Castillo et al 2005, Curry 2020), Venezuela (Fajardo et al 2005, Rodriguez et al 2008),
and Costa Rica (Frankie et al 2004, Stoner et al 2004) enabling the identification of knowledge gaps and aiding in
the development of a policy-relevant approach to conservation of these forests (Miles et al 2006).

Latin America is one of the best-represented areas for remote sensing research in dryland forests, for
example, Portillo-Quintero and Sanchez-Azofeifa (2010) utilised remote sensing data at continental America,
dryland forests ecoregion, and neotropics countries to show that 66% of tropical dry forest in the region has
already been converted and that in some countries the conversion rate is as high as 86% and 95%, respectively.
Aide et al (2012) using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data estimated that
200,000 km” of woody vegetation of Latin American and the Caribbean region were lost due to deforestation
between 2001 and 2010. Nanni et al (2019) utilised MODIS satellite data at 250 m spatial resolution to assess
reforestation at the regional level and reported that the reforestation hotspots cover 167,667.7 km? (7.6%) of
Latin America between 2001 and 2014. While there are continental studies in Africa utilising remote sensing on
biophysical parameters such as biomass/deforestation (Bodart et al 2013, Bouvet et al 2018), as compared to
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Latin America, these studies may not consider the empirical observations of dryland forests extent/change per
region or country level. In addition, most continental studies in Africa rather focus the attention on tropical
rainforest in Central Africa (e.g., core Congolese forest) which may under-represent dryland forest (e.g., Aleman
etal2018). Global applications often report general land use/cover change which results in inaccurate or poor
estimates of dryland forest (Aleman et al 2018, Smith et al 2019).

Several studies using optical and passive microwave instruments in the African Sahel (Olsson et al 2005,
Horion etal 2014, Brandt et al 2016, Tian et al 2017) has reported that the density/size of woody vegetation
stands have increased, with few areas in northern Nigeria reported to experience logging and agricultural
expansion into forest reserves. Deforestation in Southern Africa is a major concern, with ca. 1.4 million ha of net
forestloss annually, contributing to increased land degradation and the ensuant impacts on the balance of
ecosystem function (Lesolle 2012). A global study by Tian et al (2017) utilising the optical Normalized Difference
Vegetation (NDVI) index and passive microwave VOD across tropical drylands has reported a decreasing trend
in woody vegetation in Southern African countries such as Botswana and Zimbabwe. Mitchard and Flintrop.
(2013) conducted a coarse-scale analysis of changes in woody vegetation from 1982 to 2006 using NDVI time
series from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset and found that significant
woody encroachment is occurring in most west African countries, but, in contrast, in Southern Africa, a rapid
reduction in woody vegetation (deforestation) is occurring. Bodart et al (2013) used Landsat satellite imagery
between 1990 and 2000 to estimate forest cover and forest cover changes in the African continent and found that
84% of the total deforested area occurred in the dry ecosystems of the Southern African region, with large
spatially concentrated areas of forest loss found in Angola, Mozambique, Tanzania, Zambia and Zimbabwe,
and isolated hotspots found in Nigeria and the border of the humid forest in Ghana. While such global and
continental level studies are useful to highlight and reinforce the need to direct more attention and resources to
these threatened/poorly studied ecosystems, research efforts on forest change/deforestation and climate
change impacts of dryland forests at the regional level of Southern Africa are much harder to come by
(Blackie et al 2014).

1.2.2. Remote Sensing approaches research trends in tropical dry forests

In recent decades, satellite remote sensing or Earth observation (EO) has proved a valuable tool in forest ecology,
owing to its capability to perform systematic, frequent, and synoptic observation of the Earth, resulting in large
data volumes and multiple datasets at varying spatial and temporal scales (Donoghue 2002, Zhu 2017). There are
several sensors including multi-spectral scanners, laser scanners (LIDAR), hyper-spectral scanners as well as
satellite-borne Synthetic Aperture Radar (SAR), that provide information on the colour and structure of forest
environments (Donoghue 2002). EO has been applied to mapping the distribution, changes in cover, and
condition including deforestation, desertification, fire damage, and climate impact (Smith e al 2019, Dogru et al
2020). Additionally, these data have been used to estimate biophysical characteristics such as total above ground
biomass (AGB), leaf area index (LAI), woody area index, tree diameter, and canopy height which are key inputs
into a variety of ecological models, as well as calculations of carbon balance and primary production

(Donoghue 2000, Goksel et al 2018, Barbosa et al 2014). The continuous forest metrics obtained using EO data
can be extracted at leaf and crown level to evaluate spectral elements of leaf or species properties and at stand-
level and plot-level, or beyond to understand the variation between and among species, and through time
(Muraoka and Koizumi 2009). Monitoring of dryland forest cover and forest metrics using EO data also helps to
improve our understanding of the ecological drivers behind land cover change dynamics (Veldkamp and
Lambin 2001, Chambers et al 2007).

Biomass has extensively been estimated based on the spectral reflectance values from two or more
wavelengths, and the sensitivity of optical and near-infrared wavelengths to photosynthetic canopy cover has
long been used for vegetation analyses (Rouse 1974, Tucker 1979). Spectral vegetation indices (VIs), including
the NDVIindex, are commonly used as a proxy of vegetation cover and have been shown to relate closely to LAI,
biomass, and the fraction of photosynthetically active radiation absorbed by vegetation (fAPAR) (Curran 1980).
Several well-known limitations of NDVI for robust estimation of biomass in drylands exist. NDVT is sensitive to
green components and insensitive to woody components where the majority of carbon is stored (Tucker 1979).
Also, AGB production is not always uniformly linked to either greenness or plant structure (herbaceous and
woody compositions), as moisture content and vegetation species composition have been shown to impact the
biomass-NDVI relationship (Asner et al 2009, Wessels et al 2006). These observations may help explain
reportedly weak relationships between NDVI and tropical forest canopies, particularly for areas with complex
and high vegetation amounts as in TDFs (Foody et al 2001, Sader et al 1989). For example, Madonsela et al (2018)
investigated the interactions between seasonal NDVI and woody canopy cover in the savanna of the Kruger
National Park (NP) to model tree species diversity using a factorial model and found that the interaction
between NDVI and woody canopy cover was insignificant. These challenges have led to the development of
alternative formulations which include correction factors or constants introduced to account for or minimize,
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the varying background reflectance (Gitelson et al 1996, Huete et al 1999). The Enhanced Vegetation Index (EVI)
is a modification of NDVI that provides complementary information about the spatial and temporal variations
of vegetation while minimizing many of the contamination problems present in the NDVI, such as those
associated with canopy background and atmospheric influences (Huete et al 2002). Other closely related indices
include the Simple Ratio (SR), the Green Normalized Difference Vegetation Index (GNDVI), Soil-Adjusted
Vegetation Index (SAVI) amongst others. Xue and Su (2017) provide a detailed review of vegetation indices.

Although vegetation monitoring has been largely based on the multispectral ‘greenness’ indices, which have
proven invaluable for monitoring biophysical and biogeochemical parameters, it has been widely reported in the
literature that they suffer from several weaknesses in dryland ecosystems (Tian et al 2016, Shi et al 2008). Other
remote sensing systems such as the passive microwave-based satellite systems capture the biomass signal in the
parameter termed vegetation optical depth (VOD) which has been used to monitor changes in vegetation
dynamics (Andela et al 2013, Brandt et al 2018a, 2018b). Unlike the optical remote sensing-based vegetation
indices that are sensitive to chlorophyll abundance and photosynthetically active biomass of the leaves, the
vegetation information (e.g., VOD) deriving from passive microwave instruments is sensitive to the water
content in the total aboveground vegetation, including both the canopy (e.g. woody plant foliage) and non-green
woody (e.g. plant stems and branches) components due to greater penetration and sensitivity (Shi et al 2008, Liu
etal2011). The passive microwave observations VOD is relatively insensitive to signal degradation from solar
illumination and atmospheric effects and provide a valuable alternative tool for rapid monitoring of carbon
stocks and their changes (Jones et al 2011). One of the advantages of passive microwave-derived VOD is that it
continues to distinguish biomass variations at a relatively high biomass density, as compared to optical-based
vegetation indices which are likely to become saturated over dense canopies (Jones et al 2011, Liu et al 2015). The
main disadvantage of passive microwave observations is the relatively coarse spatial resolution (>10km), as
compared to satellite data in the visible and near-infrared parts of the spectrum; however, these data still have
highly useful applications at regional and global scales (Liu et al 2015, Rahmoune et al 2013, Owe et al 2001).
Some recent global and local studies from Latin America and Africa in the dryland ecosystems found VOD to be
more robust against the NDVI drawbacks of saturation effect and continues to distinguish structural differences
for vegetation with a near-closed canopy when used as a proxy for vegetation productivity (van Marle eral 2016,
Cuietal 2015, Liuetal 2011, Tian et al 2016). Apart from the VOD and NDVI, an intercomparison between
several vegetation indices including other passive microwave-based vegetation indices, such as the Microwave
Polarization Difference Index (MPDI) (Becker and Choudhury 1988), and the Microwave Vegetation Indices
(MVTIs) (Shi et al 2008) would be of benefit in monitoring dryland biomes.

Due to the inherent trade-offs between spatial and temporal resolution in EO data, and geographic coverage,
vegetation patterns on both spatial and temporal domains have been revealed by various technological advances
resulted in the growing availability of remote sensing data and methods (Toth and J6Zkéw 2016, Zhou et al
2020). The application of non-parametric machine learning regression algorithms, such as decision trees,
random forests (RF), support vector machines (SVMs), and k-nearest neighbour have become more
predominant and demonstrate the ability to outperform widely used parametric approaches, such as polynomial
and multiple linear regression variables used with remotely sensed data in a forest environment (Breiman 2001,
Latifi et al 2010). More recently, deep learning, a branch of machine learning that stems from cognitive and
information theories (e.g., convolutional neural network (CNN) founded by Schmidhuber (2015) has been
highlighted as a feasible approach for handling complex data in remote sensing including large-scale image
recognition, semantic segmentation, classification, and object detection tasks (Kattenborn et al 2021, Shafaey
etal 2018). Non-parametric machine and deep learning models are sufficiently versatile to uncover complicated
nonlinear relationships and able to extract combinations of the input data that are difficult to describe explicitly
by humans, particularly, in areas with high structural variability such as dryland forests (Hastie et al 2009, Shao
etal2017). Deep learning has been used by many remote sensing studies to provide in-depth forest investigation
from the perspectives of hyperspectral image analysis, interpretation of SAR/ LIDAR images, interpretation of
high-resolution satellite images and classification, and multimodal data fusion (e.g., the fusion of Hyperspectral,
SAR, LiDAR and optical data (Guirado et al 2020, Kussul et al 2017, Shao et al 2017, Liao et al 2018, Trier et al
2018, Narine et al 2019). Improved techniques in remote sensing such as VOD, and machine and deep learning
have been utilised to estimate dryland forest attributes globally and other dryland ecosystems, however, very few
of these focused on the local and regional scale of Southern Africa (e.g., Symeonakis et al 2020). The uncertainties
reported in many dryland forests studies (Bastin et al 2017), could be decreased following further development,
application, and comparison of these improved approaches in future works at local, regional, continental studies
in Southern Africa and other dryland forest ecosystems. Critically, an increase in the spatial, spectral, and
radiometric resolution of satellite sensors, increased availability of EO data and computational resources
combined with the machine or deep learning techniques would enhance the potential dryland forest
information to be exploited (Ali et al 2015). For a detailed review of machine learning and deep learning for
remote sensing and Sustainable Development Goals, see Zhu et al (2017) and Holloway and Mengersen (2018).
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1.3. Review focus justification

The majority of the residents of Southern Africa are poor and about 75% of them live in rural areas with high
reliance on dryland forests (Bond et al 2010). Additionally, these dryland areas display a high susceptibility to
bush encroachment (O’Connor et al 2014) and economic reliance on tourism (Ferreira 2004) and forest
products (Kamwi ef al 2020), which means that both agriculture and tourism development encroach on the
dryland forests, resulting in loss of forest biodiversity and land degradation (Eva et al 2006, Petheram et al 2006).
Across Southern Africa, sustainable management of dryland ecosystems is hindered by complex land tenure due
to historical legacy, weak links between policy and woodland use and management, and cultural drivers
(Dewees 1994, Balint and Mashinya 2006). Also, the dryland ecosystems of Southern Africa are dominated by
private land ownership, a high concentration of wildlife and human populations, and agriculture where TDFs
occur (Child et al 2012). This review focuses on Southern Africa because there is a gap in knowledge on carbon
storage, biomass, and the long-term trend of forest distribution and degradation in dryland forests. Much of the
research on dryland forests in Southern African has concentrated on livelihoods, ecosystem services, energy
supply and demand, food security, livelihoods and community forest management, and conservation/
development trade-offs (e.g., Chidumayo and Marunda 2010, Chidumayo and Gumbo 2010, Chidumayo 2019,
Djoudietal 2015, Dewees 1994, Du Preez 2014, Ryan et al 2016), leaving forests highly vulnerable to
deforestation and degradation (Keenan 2015). The social and economic aspects are important given the large
numbers of African people that rely on dry forests for their livelihoods and a range of goods and services.
However, the gap in biophysical aspects, threats status, and adaptation to climate change identified for Southern
African TDFs at the regional and national level (Blackie et al 2014, Sunderland et al 2015), presents an urgent
need for an assessment of the effectiveness of the EO scientific foundation on current understanding of TDFs in
Southern Africa; this can aid in the development of policy-relevant approaches and long-term, regional
perspective for planning and conservation of the TDFs.

With the prospects of multiple free datasets from optical and SAR sensors being available; combining
information from optical sensors on photosynthetic activity (e.g., through various vegetation indices) with SAR-
derived information on forest structure and volume brings the benefits of higher spectral resolution, and
compensating for the shortcomings of using single data products alone. Based on this hypothesis, this review
focuses on examining the studies using optical and SAR sensors, both individually and the combination of the
two types of EO data in monitoring tropical forests. While forest distribution, carbon storage, and reducing
emissions from deforestation and forest degradation (REDD+) related research exists in African dryland forests,
the geographical focus has tended to be confined to several West/Central African countries, whereas Southern
Africais relatively poorly analysed (Lewis et al 2013, Sunderland et al 2015). Although numerous reviews have
been conducted discussing the application of optical and radar remote sensing, they are either concentrated on
mangroves forests (Kuenzer et al 2011, Wang et al 2019), rain forests (Dupuis et al 2020), or ecosystem services
(Barbosa et al 2015). To date, reviews on remote sensing and EO in Southern Africa have focused on research
conducted in the Republic of South Africa (Hoffman and Todd 2000, Mutanga et al 2009, Mutanga et al 2016).

As shown in figure 2, the climate threats coupled with a growing human population and future anticipated
changes in land use are predicted to lead to severe dry forest biome shifts and degradation across the whole of
Southern Africa, hence the need to expand the geographical scope of this review from previous work
(IPCC 2014, King 2014). This paper provides a systematic review of the scientific literatures related to the use of
Earth observation data including SAR and optical sensors used to study dryland forests, with a focus on Southern
Africa. To achieve this, we present examples from the literature that summarise past achievements, current
efforts, and knowledge gaps. The objectives of this review are to (i) to provide a detailed overview of the current
approaches and limitations for monitoring dryland forests using optical and radar remote sensing data. (ii) to
provide a critical evaluation and synthesis of the literature monitoring dryland forests using remote sensing data
and discuss how EO data can contribute to dryland forest monitoring and forest conservation in Southern
Africa. (iii) to identify knowledge gaps and make recommendations for research that will enhance monitoring of
dryland forests using remote sensing data.

2. Remote sensing applications in dryland forest

2.1. Optical data

In broad terms, the satellite platforms developed over the past 40 years (since 1972) have carried two broad types
of sensor systems; passive optical and active synthetic aperture radar (SAR). Successful change detection and
parameter estimation over tropical dryland forests require: (a) correct selection and application of sensor type;
(b) coupling with field observation data for calibration and validation, and (c) data integration and appropriate
techniques for modelling (figure 3). Optical sensors have been widely used for land cover and forest resource
mapping, providing access to long-term data dating back to the launch of Landsat ERTS (Earth Resources
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Projected worst-case biome changes

Reproduced with permission from IPCC 2014.
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Figure 2. (a) Projected biome change from the periods 1961-1990 to 2071-2100 using the MC1 Dynamic Vegetation Model. (b)
Vulnerability of ecosystems to biome shifts based on historical climate (1901-2002) and projected vegetation (2071-2100).
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Figure 3. Interaction mechanisms for dryland forest canopies and source of variability and challenges related to each stage of remote
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Technology Satellite) satellites in 1972. Landsat and several other coarse/medium spatial resolution optical
sensor missions (National Oceanic and Atmospheric Administration (NOAA) - Advanced Very High-
Resolution Radiometer (AVHRR); Indian Remote Sensing Satellites-1C/1D (ISRO-IRS-1C/D); the National
Aeronautics and Space Administration (NASA) -Aqua/Terra- MODIS; Sentinel-2) provide well-calibrated,
nadir-viewing, near-global systematic coverage which have built up a valuable archive of image data that can be
used to analyse ecosystem dynamics (Donoghue 2000, Congalton 2018). In 2014, ESA launched the
Multispectral Instrument (MSI) onboard Sentinel-2 as part of its Copernicus EO mission. Sentinel-2 MSI uses
two identical satellite sensors to measure the Earth’s reflected radiance with a revisit time of 5 d and a high spatial
resolution of 10-20 m pixel size. The length of the Sentinel-2 archive is short (from 2015), compared to the
Landsat mission from 1972-present, NOAA-AVHRR 1979-present, Satellite Pour 'Observation dela Terre
VEGETATION (SPOT/VGT) (1998-present), IRS-1C/1D (ISRO-IRS-1C/D) (1995-2010), ENVISAT -
Medium Resolution Imaging Spectrometer (MERIS) (2002—2010), the NASA - MODIS (2000-present) and the
French Space Agency (CNES-Centre national d’études spatiales) high-resolution SPOT satellite constellation (6
m-20 m pixel size) - SPOT-1 in 1986-1990, SPOT-2 in 1990-2009, SPOT-3 in 1993-2009; SPOT-4 in
1990-2013; SPOT-5 in 2002-present; SPOT-6 in 2012-present; SPOT-7 in 2014-present. The VEGETATION 1
(VGT 1) (1998-2012) and VEGETATION 2 (VGT 2) (2002—-2014) instrument on the SPOT 4 and SPOT 5
(SPOT/VGT) satellites provided global daily monitoring of vegetation cover, and it is successor the European
PROBA-V satellite (2013-present), with a pixel size of 1 km, 300 m and 100 m are supplied by the
VEGETATION image Processing Centre (CTIV) of VITO (Belgium), which can be accessed through the
internetsite http://free.vgt.vito.be. Although a large number of satellite sensors have been launched that are
capable of observing land dynamics, and their pixel size has increased from 80 m of the Landsat-1 to 0.41-1.65 m
of the GeoEye-1 satellites (Aguilar et al 2013), very few sensors provide well-calibrated multispectral, nadir-
viewing observations and even fewer systematically capture all global data and provide along-term archive of
data free of charge to the public. Except for AVHRR and Landsat, no other sensor or sensor line offers the chance
oflong-term monitoring of an area to be monitored back in time to the 1970s, covering about four decades.

There are several non-systematic commercial high-resolution satellites that allow the detection of individual
trees or populations. Maxar Technologies Inc. launched 4 very high resolution satellites - WorldView-1 in 2007,
WorldView-2 in 2009, WorldView-3 in 2010, and WorldView-4 in 2019 that acquire images with spatial
resolution 0f 0.5, 0.41, and 0.31 m, respectively. From 2009 onward, Planet labs launched a swarm of micro-
satellites including PlanetScope (PS), RapidEye (RE), and SkySat (SS) Earth-imaging constellations with
multispectral imaging capability with the aim of acquiring daily image capture for any part of the world ata
spatial resolution of 3.125 m to 6.5 m (Marta 2018). In 2011 and 2012, the Space Agency of France (CNES)
launched the Pléiades—high resolution optical imaging satellite constellation (Pléiades-1A and Pléiades-1B),
with a high spatial resolution of 0.7-2.8 m. Other very high resolution commercial space imaging satellites
include Earlybird (1997), EROS-A (1998), IKONOS (1999), QuickBird (2001), OrbView (2001), GeoEye (2008)
(Maglione 2016). In Africa, South Africa started satellite developments in the 1990s, with the successful launch
of SunSat-1 with a spatial resolution of 15 m in 1999 and SumbandilaSat low orbit satellite with a high spatial
resolution of 6.25 m in 2009 (Cho et al 2012, Mutanga et al 2016). While the first Nigerian satellite, a
microsatellite called NigeriaSat-1, was successfully launched into low earth orbit in 2003, followed by Nigeriasat-
2 with a higher spatial resolution of 2.5-5 m, built by Surrey Satellite Technology Limited (SSTL) of UK
(Agbaje 2010).

Nevertheless, the use of data acquired by higher spatial resolution optical sensors, particularly at regional and
global scales, can be limited by their relatively high cost, huge data volumes, and low frequency of data
acquisition compounded further in tropical regions where cloud cover is prevalent (Zhu and Woodcock 2012,
Lehmann et al 2015). The temporal resolution of sensors has also increased from, for example, 16 d for Landsat
to nearly 1 d for the NOAA-AVHRR, NASA-Aqua/Terra-MODIS, SPOT/VGT, and/or ENVISAT-MERIS data,
but with a coarse spatial resolution of 250 m to 1 km (Arino et al 2007, Herold et al 2008). Although lacking high
spatial detail, the daily temporal resolution of such sensors enables frequent estimation of deforestation,
detection of disturbances using dense time series data, and enables gaps due to cloud cover to be overcome
(Mbow et al 2015). It is important to mention that the acquisitions of some satellites such as IRS-1C/1D, and
MERIS ceased operations, however, the Sentinel, MODIS, NOAA-AVHRR, SPOT, SPOT-VGT (PROBA-V),
and Landsat series continue to operate, with ongoing continuity of data collection ensured with the recent
launch of Landsat-9 in September 2021.

2.2. Synthetic aperture radar (SAR)

SAR sensors for civilian applications first appeared in 1978 with NASA’s SeaSat but have grown in importance as
atool for forest studies. SAR sensors can operate at different frequencies and polarisations; these system
parameters provide information on the roughness and scattering properties of forest canopies and data can be
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captured day and night independent of weather conditions (Durden et al 1989). Since SAR can penetrate cloud,
rain, smoke, and haze, and it is a valuable source of data when atmospheric conditions hamper optical data
capture, particularly in the tropical dryland forest such as Southern Africa where the cloud and smoke from
forest fires are prominent features (Le Canut et al 1996). Radar signals are sensitive to moisture, variations,
surface roughness, and vegetation structure properties, whereas data from optical systems use characteristics
related to reflected solar illumination or surface temperature (for thermal infrared sensors) as a basis for
discrimination of the land cover (Kasischke et al 1997, Mitchard et al 2009). Cloud cover-free SAR images have
great potential in the dryland tropical areas but have been used less often for forest monitoring applications
compared to optical imagery, partly because of the scarcity of data (Castro et al 2003). Since the launch of the
Sentinel-1A and B, dense SAR time-series data are now available over tropical forest areas freely and openly, with
systematic acquisitions at a 10 m spatial resolution and a 6-12 d revisit time (dependent on the location) in all
weather conditions.

Over the last 30 years, several satellite-borne SAR has been launched, including the United State Spaceborne
Imaging Radar-Synthetic Aperture Radar (SIR-C/X-SAR), European Remote Sensing (ERS-1/-2), ESA’s
Envisat ASAR (Advanced Synthetic Aperture Radar), Advanced Synthetic Aperture Radar (ASAR), Japanese
Earth Resources Satellite JERS-1), Advanced Land Observation Satellite (ALOS/PALSAR-1/-2), German
TerraSAR-X, Italy’s Cosmo SkyMed, and the Canadian RADARSAT-1/-2 (Shimada 2018). Depending on the
sensor configuration, a single channel (wavelength /frequency) or multiple channels may be recorded in either
single or multiple polarizations. Generally, studies have reported that the longer the wavelength (e.g., P (30-100
cm)and L (15-30 cm)), the further is its penetration into the forest and the greater the importance of scattering
beyond the upper canopy (Huang et al 2015). Besides the greater sensitivity of longer radar wavelengths to forest
structure, different studies indicate that cross-polarized backscatter (HV-horizontally transmitted, and
vertically received, VH-vertically transmitted and horizontally received) often exhibits greater sensitivity to
forest biomass than like-polarized backscatter (co-polarized bands: HH-horizontally transmitted and
horizontally received, VV-vertically transmitted and vertically received) (Kasischke et al 1997).

2.3. Limitations of optical and radar, and benefits of combining sensors

Despite the different generations and types of satellite sensors, no one sensor currently meets fully the
requirements of a comprehensive forest resource assessment EO system. The selection of an appropriate source
of data requires first the identification of the ecological question being asked, identification of the limitations and
advantages of each sensor. The varying temporal, spatial, spectral, and radiometric resolutions unique to the
individual sensor system, result in different advantages and disadvantages to the monitoring of dryland
ecosystems (Lu 2006). Optical data are limited in the monitoring of this forest type. For example (1) cloud and
smoke severely limit the use of optical products (Le Canut et al 1996); (2) Dramatic seasonal changes in the
dryland forests conditions including droughts and leaf shedding make it unsuitable for systematic all-season
monitoring of this forest type (Boggs 2010). One of the reasons for this is associated with the seasonality of the
tropical vegetation: during the wet season, cloud-free satellite imagery is difficult to acquire, while during the dry
season when the imagery is more available, the leaf-off configuration of the forest causes misclassification with
savanna shrubland or grassland; (3 Optical data is sensitive at the early stages of growth but as forest canopies
close, reflected radiation is no longer sensitive to biomass as the reflectance signal saturates at higher biomass
values (Lu 2006); (4) Passive optical sensors only detect the surface top layer, meaning that forest canopy
obscures the understory, and similarly grasses/crops obscure soil; (5) Changes in the spectral properties of the
soil and atmosphere can also hinder the inference of forest cover properties (Wang et al 1998, Santos et al 2002).

Similarly, there are a number of challenges to analysing and interpreting radar images for tropical forest
applications, which include: (1) Difficulty in interpreting radar backscatter, including, for example, speckle,
which is unwanted random noise inherent in all SAR images, which may increase measurement uncertainty and
make interpretation difficult (Klogo et al 2013); (2) Topography is a major limitation in mountainous regions
due to geometric and radiometric effects such as radar shadowing caused by foreshortening and layover when
the satellite is not able to illuminate the whole ground surface (Mitchard et al 2009); (3) SAR observations often
lack along-term and dense time series because they demand a relatively high energy provision on satellite
platforms. Until recently, satellite-based SAR data for multi-temporal assessments over large areas were
constrained by low spatial and temporal coverage at medium resolution, although this now may be overcome
with acquisitions from the recently launched C-band Sentinel-1 and L-band ALOS-2 satellite missions
(Reiche et al 2016).

Rather than using EO data from a single satellite sensor, the synergy of remotely sensed data from multiple
sensors, particularly SAR systems with those acquired by optical sensors, has been shown to be beneficial for
forest resource assessment (Lehmann et al 2015). Because optical data is capable of measuring the reflectance of
the topmost layer of the forest canopy and SAR data deliver useful within-canopy biophysical parameters
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without being affected by cloud cover and weather conditions, one dataset may compensate for the
shortcomings of the other (Reiche et al 2016). Previous research indicated that integration of optical and radar
can improve land and forest cover characterisation (Symeonakis et al 2018a). For example, the fusion of optical
and radar sensor data has the potential to improve AGB estimation because it may compensate for the mixed
pixels and data saturation problems in a tropical forest area. In addition to the spectral synergy afforded, the
cloud penetrating capability of microwave radar sensors allows areas that have missing optical data to be
included in analyses, particularly if multi-temporal methods are being employed (Reiche et al 2016).

3. Methodology

This review focused on scientific papers studying tropical dryland forests and made use of remote sensing data to
monitor and estimate changes in dryland forests. Airborne remote sensing studies were excluded from this
review process, since the review’s major focus lies on satellite Earth observation of dryland forests and because
the acquisition of airborne sensors have low area coverage and high cost per unit area of ground coverage (e.g.,
the airborne hyperspectral images), making them spatially and temporally limited in most African countries.
The systematic search approach taken to querying the literature was carried out by making use of selective
keyword searches in the form of structured queries using field tags and Boolean operators through the Web of
Science (http://apps.webotknowledge.com) and Scopus (http://www.scopus.com) databases. At each query,
terms, and keywords such as ‘Dryland forests’, ‘Savan™, ‘Woodland’, ‘ Tree’, ‘Vegetation’, ‘Satellite’, ‘Remote
Sensing, ‘Optical’, ‘Radar’, ‘Image’, ‘SAR’, and ‘Earth Observation’ were used to produce an extensive list of
articles, where * is a wildcard search. The results were further refined with keywords such as ‘Forest change’,
‘Degradation’, ‘Deforestation’, ‘Trend’, ‘Biodiversity’, ‘Phenology’, ‘Biomass, ‘Structural parameter’, and also
keywords representing the countries in Southern Africa, such as ‘Botswana’, ‘Namibia’, ‘Mozambique’, ‘South
Africa’, to provide a comparison in terms of the numbers of studies undertaken across the region. Within the
context of this review, all research articles were categorized into eight categories, including: ‘Land-use/land-
cover’, ‘Forest cover/types’, ‘Biomass’, ‘Forest structure’, ‘Biodiversity/habitats’, ‘Phenology’, ‘Plant traits’, and
‘Disturbances’. Articles with a publication date between 1997 and 2020 were considered, capturing a period of
two decades within the review, based on a broad set of inclusion criteria:

1. The paper should address dryland forests and remote sensing as either main or secondary subjects.

2. The selection terms and keywords should exist as a whole in at least one of the fields: title, keywords, and
abstract.

3. The paper should be published in a peer-reviewed scientific journal.

4. The paper should be written in the English language.

During our data extraction process and literature search, we aimed to find studies meeting the criteria for
peer-reviewed publications, available through the chosen indexed bibliographic databases. For this reason, our
literature search did not include general non-scientific reports, books, grey literature, thesis documents or
dissertations, extended abstracts, or presentations. The initial steps of the search process returned 1,478
published articles. Additional publications were added to the total set of studies by identifying relevant literature
found in the reference lists of these selected papers that conform to the inclusion criteria. The review
methodology was guided by the Guidelines for Systematic Review and Evidence Synthesis in Environmental
Management (Collaboration for Environmental Evidence 2013). A systematic review and meta-analysis were
undertaken and framed based on the PICO (population, intervention, comparison, outcomes) model
(McKenzie et al 2019) and reported using PRISMA (Preferred Reporting Items for Systematic reviews and Meta-
Analyses) flow diagram (Moher et al 2009). The 1,478 articles were reduced to 870 articles as we selected for
inclusion in the review only the studies that had a full text available in English, papers published in peer-reviewed
journals, and removing all repetitions across databases. Initially, the titles and abstracts were screened to assess
eligibility by searching for predefined keywords and terms of the abstract or summary, identifying terms ‘dry or
dryland forests’ and the country or countries where the research took place. In this way, studies not conducted in
Southern Africa or dryland forests were filtered out, which reduced papers from 870 to 599 papers. The
screening was followed by a full-text assessment that reduced the papers to 270 by excluding studies that, for
example, mentioned the term ‘dryland forest’ once in the abstract but did not investigate dryland forests, as
outlined in the PRISMA flow diagram in figure 4. The search was subsequently refined by assigning the papers to
each of the study aims they addressed and to each category for the variables identified in the search protocol,
reviewing the methodologies of each publication, excluding them from further analysis if they did not meet the
inclusion criteria on review. These steps reduced the total number of entries to 137 scientific publications. The
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Figure 4. PRISMA follow diagram (Moher ef al 2009) showing the flow of information through the different phases of the systematic
review.

selected literature was reviewed systematically, searching for specific information regarding the publication
temporal development, study location, remote sensing sensor/platform used, spatial and temporal coverage,
remote sensing product (e.g., biophysical indices) used, and application areas of the study (e.g., land cover, forest
biomass). The parameters used to extract relevant information from the remaining 137 identified scientific
publications are in table 1. Figure 4 is a PRISMA schematic representation of the methodology used and the
derivation of the final number of articles selected.

4, Results

4.1. Temporal development of publications and author affiliations

After the literature search, we found that the cumulative number of published research papers integrating
remote sensing data in dryland forests of Southern Africa grew exponentially from 2 in 1997 to 155 in 2020. The
temporal development of the 137 investigated research articles is illustrated in figure 5. The graphic shows that
the number of studies has increased significantly over the last 23 years, with the majority of the studies published
from 2013. More than 105 (80%) of articles were published from 2009 to 2020 and only 4 (3%) of articles were
published before 2000. The growth in number is also related to the increased availability of remote sensing
platforms, sensors, data, for example, Landsat 8 in 2013 and Sentinel satellite in 2014, respectively.
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Figure 5. Number of papers included in the review integrating remote sensing and dryland forests in Southern Africa published
annually between 1997 and 2020.

Table 1. Parameters used to extract relevant information for this review.

General information

PaperId

Istauthor’s institution

Research institute city

Publication year

Publishing Journal

Journal category

No of Citation

Study type

Site specific information

Location of the study area

Study country

Forest management area
Predominant forest type
Information on remote sensing data
Sensor Type

Instrument name

Image resolution

Time period observed

Temporal resolution of EO data
Database used

Information on research

Research topic considered:

Forest cover/type, disturbance, phenology, biodiversity/habitats, plant traits, land cover/land use
Parameters examined in the study
Examined object scale

Applied methodology

Information on validation and accuracy of results
Database used

In the review, we have only considered studies within Southern Africa; however, the majority of first authors,
83 (61%) of 137 investigated papers, are mainly scientists from international research institutions outside of the
focus region, mainly the USA, UK, Portugal, Germany, and The Netherlands (figure 6). Conversely, the majority
of first author institutions from Africa, 37 (27%) of published papers, were from RSA research institutions. The
state funded research institutions in Southern Africa shown in figure 6 include South African Council for
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Figure 6. Number of papers by research institutions.

Scientific and Industrial Research (CSIR), South African National Space Agency (SANSA), Water Resource
Commission of South Africa, South Africa Agricultural Research Council, Range and Forage Institute,
Botswanan Harry Oppenheimer Okavango Research Centre, Desert Research Foundation of Namibia, and
Namibia Ministry of Environment and Tourism. Considering the 137 studies conducted, about 120 (90%) of the
first authors are affiliated with either International and RSA institutions, but no first authors were from Zambia,
Lesotho, or Angola.

4.2. Spatial coverage, spatial extent, and investigated protected areas

Looking at the spatial scale of the study areas, we distinguished between studies done at alocal community level
in a single country, termed local scale, and studies done at more than one local community or province termed
regional scale. We also considered studies done at the national level and the whole of Southern Africa. If a study
covered more than three countries, it was counted as an analysis of Southern Africa. The spatial extent of the
studies in the review is shown in figure 7. The majority 88 (64%) of the investigated studies focused on a local
scale, despite the need for regional scale information on dryland forest distribution. From figure 7, out of 137
investigated research papers, 20 (15%) and 13 (9%) research papers covered regional and national scales,
respectively. Only 10 (7%) out of 137 research papers dealt with transboundary protected areas, while 6 (4%) of
research papers were covering Southern African, considering the region as a whole, using mainly multispectral
data of large spatial resolution of 1km to 8km (MODIS, SPOT, and AVHRR) to generate information on
phenology, and vegetation condition (fire or drought), as shown in figure 7.

From figure 8, it is evident that considerable gaps in geographical focus of research on tropical dryland
forests mapping still exist in Southern Africa. With respect to spatial coverage of the research, most studies, 50
(36%) of research papers were carried out in RSA, followed by Namibia and Botswana, with 22 (16%) and 18
(13%) of research papers, respectively. Swaziland, Angola, and Lesotho were the least frequently investigated,
each with < 10 papers. Angolan dryland forests are even less well studied with 4 (6%) of research papers, despite
being found extensively in that country. Figure 8 also shows the location of the most frequently studied
protected areas. By far, the most studied was the Kruger National Park (NP) in RSA, involving research by local
and foreign researchers from as far afield as the USA, the UK, and beyond. With this interest in the Kruger NP,
there is, unfortunately, a lack of attention on other conservation areas and parks in Southern Africa. Kruger NP
was the only subject of more than one-third, 23 (37%) of the 61 of all reviewed papers on protected areas. The
second most frequently studied protected areas are the Etosha NP in Namibia with 6 (8%) of papers, Chobe NP
with 4 (7%) of papers, and Kwando, Kavango and Zambezi transboundary NP with 8 (13%) of papers). Malipati
Safari Area, South Luangwa NP, Gorongosa NP, and Central Kalahari Game Reserve were each studied 3 (5%)
and 2 (3%) times.
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Figure 8. Number of studies per country and National Park in Southern Africa. (Note: The data are not scaled to the proportion of
dryland forest area of countries, and National Parks with fewer or no publications are not shown. Source: FAO (1999). Reproduced

To identify land surface changes and the drivers behind these, as well as short- and long-term trends, it is
essential that EO temporal coverage has sufficiently frequent revisit periods and resolutions. Nonetheless, this is
not an easy task since the availability of remote sensing data for long-term monitoring is constrained by sensor
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Figure 9. Temporal duration of studies included in the review integrating remote sensing and dryland forests in Southern Africa
between 1997 and 2020.

characteristics (e.g., revisit time) and environmental factors (e.g., cloud cover). Looking at the temporal
resolution of the EO datasets used, we distinguished between data acquired at a single point in time on a monthly
basis, termed mono-temporal analyses, and on a single annual basis, termed mono-annual analyses. We also
considered multi-temporal and multi-annual to separate monthly and yearly analyses studies. From figure 9 it is
seen that the majority of published material has focused on a single temporal period. The majority of studies
involved mapping over two or more years (multi-temporal /multi-annual) comparing images at two or more
different times, with a bi-temporal approach based on discrete classification (e.g., Chiteculo et al 2018, Matavire
etal 2015, Coetzer-Hanack et al 2016). Although the bi-temporal approach is mathematically simple and does
not require large data storage, it is less useful compared to the time series approach that can provide a more
comprehensive understanding of the complexity of the Earth’s land surface dynamics. Very few studies feature
time series analysis, which is required to perform continuous long-term monitoring of changes in a tropical
forest ecosystem. The majority of articles on time series analysed multi-annual data, which masks within-year
variations, as compared to the detail provided at a monthly temporal scale (e.g., Wessels et al 2006, Verlinden
and Laamanen 2006a, Akinyemi and Kgomo 2019, Venter et al 2020). Only 22 (16%) out of the 137 studies
analysed more than 15 years and only 11 (8%) studies covered more than 20 years using monthly time series
(e.g., Bunting et al 2018, Schultz et al 2018).

4.3. Research topics

We have classified the large number of research topics into eight broad categories that cover the diversity of
research into dryland forests. The eight categories, and the number of studies belonging to each of them, are
shown in figure 10.

4.3.1. Land cover/land use

Land-cover change is one of the most researched areas using EO in Southern Africa, with 36 (23%) publications
making it the second most common topic. We considered land-use/cover describing land surface classification,
typically represented in thematic maps of different dryland vegetation. Land-use/cover changes with a specific
focus on other dryland vegetation such as rangelands, grassland, coastal vegetation, or plantation forests without
covering dryland forests were excluded. The majority of publications on land-use/land-cover used optical data.
For example, Landsat data have been used by more than 90% of publications, except Daskin et al (2016) and
Hiittich et al (2011) which used RapidEye and MODIS data. Only one publication used a combination of Radar
and optical data (Symeonakis et al 2018a). Sentinel data have not been utilised for land cover and land use study
in the reviewed papers, probably due to the relatively recent availability of these data. Looking at scale, the
majority of papers on land-cover change focused on the local scale in Southern Africa, but there is still a general
lack of synthesis of land-use/cover change assessment at the regional, national or subcontinental scale (figure 7).

4.3.2. Forest cover/type
The majority of publications, 46 (31%) of studies cover the topic ‘Forest cover/type’. The forest cover/type
comprises the generation of a forest/non-forest mask (Dlamini 2017, Heckel et al 2020), forest cover change
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estimation (Erkkild and Lofman 1999, Ringrose et al 2002), forest type discrimination between dryland forests
(McCarthy et al 2005), forest health assessment (Herrero et al 2020), woody cover (Boggs 2010, Ibrahim et al
2018), and tree species classification (Hiittich et al 2009, Adelabu et al 2013). The majority of forest type/cover
mapping was undertaken with optical multi-spectral data including Landsat, MODIS, and AVHRR and a few
studies used high-resolution data such as RapidEye, GeoEye, and WorldView. On the other hand, a few studies
on forest cover/type mapping used a combination of multispectral and spaceborne SAR data (X-band, C-band,
and L-band) such as Landsat and JERS-1 (Bucini et al 2009), Landsat and ALOS PALSAR (Higginbottom et al
2018, Naidoo etal 2016) and Sentinel-1 and -2 (Heckel et al 2020) (figure 11).

A few studies on forest cover/type mapping relied on field data (Bucini et al 2009, Ibrahim et al 2018, Schultz
etal2018) or forest inventory plots (Heckel ef al 2020). Most studies did not include detailed field measurements
(species composition, density, frequency, dominance, and basal area, percentage soil cover, total height) and had
very few field samples (Gessner et al 2013). Other studies relied on high resolution EO data (Dlamini 2017,
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Figure 12. Research topic by country. Note that the order of the mentioned topics has changed when compared to figure 10 as some
studies were conducted in several countries.

Higginbottom et al 2018), and published maps (Westinga et al 2020) as reference data to validate their results.
The majority of studies did not perform any form of accuracy assessment or validation of quantitative estimates
(e.g., Campo-Bescds et al 2013, Harris et al 2014). Forest cover and species mapping is essential for many
forestry-related tasks and play a key role in sustainable forest management; the importance of these topics can be
seen in the fact that they are addressed across all countries in Southern Africa, with the majority of studies
conducted in RSA, followed by Namibia and Botswana (figure 12).

4.3.3. Forest biomass and structures

Fifteen research papers (10%) studied forest biomass, and fourteen publications (10%) assessed ‘forest
structure’. Studies on biomass included the estimation of AGB (Mutanga and Rugege 2006, Dube et al 2018), and
changes in carbon stock (Gara et al 2017). Some of the publications used National Forest Inventory (NFI) data
(Verbesselt et al 2007, Halperin et al 2016), and field-based samples (Tsalyuk e al 2017, Mareya et al 2018) to
estimate biomass in Southern Africa.

Forest structure in the review includes research on stand structure (Mathieu et al 2013), canopy cover
(Erkkild and Lofman 1999, Huemmrich et al 2005), canopy gaps (Cho et al 2015), and stand density (Adjorlolo
and Mutanga 2013). The majority of studies on ‘forest structure’ in Southern Africa dealt with canopy cover
(e.g., Yang and Prince 2000, Adjorlolo et al 2014). Very few studies considered vertical forest structure including
tree height and tree crown diameter (e.g., Verlinden and Laamanen 2006b). Mareya et al (2018) utilised freely
available high resolution Google satellite imagery in combination with object-based image analysis (OBIA) to
estimate tree crown areas in miombo forests and found the overall accuracy to be low and unsuitable when high
accuracy is required. Some of the ‘forest structure’ publications are also assigned to the research topic ‘biomass’,
which discusses the relevance of forest structure for biomass (Meyer et al 2014). Forest structure is also a very
important parameter when it comes to habitat suitability, species diversity, biodiversity estimation, and
conversation studies and thus some publications cover both topics (e.g., Akinyemi and Kgomo 2019).

The methods applied in the biomass and forest structure publications are diverse. Most studies employed
some sort of regression analysis between in situ field data and EO data, with the most popular methods being
random forests, support vector machines, kriging, linear and generalised linear models (Mutanga and
Rugege 2006, Carreiras et al 2013, Halperin et al 2016, Wingate et al 2018, Berger et al 2019). Williams et al (2013)
utilised the simple ensemble model to analyse biomass dynamics and found that biomass distributions can
diagnose disturbance processes in miombo woodlands. Most studies utilised NDVI index in dryland forest
mapping to correlate with biomass (Wessels et al 2006, Gizachew et al 2016), but very few studies considered
other vegetation indices such as red-edge (RE)-computed indices (e.g., Gara et al 2016, Dube et al 2018). For the
most part, optical sensors were used to derive forest biomass and structures, only four papers utilised radar data,
and one paper used a combination of radar and optical data to estimate biomass (Wingate et al 2018). More
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research is needed to explore the improvement of forest AGB and forest structure estimation through multi-
sensor (optical and radar) data fusion.

4.3.4. Climate change and disturbances

Here we refer to dryland forests stress monitoring (e.g., damage due to fire, climate /weather-related hazards
including drought events, floods, extreme temperatures as part of climate change and disturbances. Twenty-one
papers (13%) investigated disturbances to forest cover. Among the different forms of disturbance, fire damage
was the most commonly studied (Mayr et al 2018, Pricope and Binford 2012, Roy et al 2019, Silva et al 2003). In
the context of threats of climate change, other disturbances included drought (Urban efal 2018, Lawal et al 2019,
Marumbwa et al 2021) and floods (Pricope et al 2015). A regional studies Lawal et al (2019) used gridded climate
data from the Climate Research Unit and GMMS NDVT to characterise the impact of drought to vegetation in
southern Africa from 1981 to 2005; They found that the responses of vegetation varied according to season and
biome, and showed that droughts had extensive impacts over the central parts of South Africa and Namibia, and
the southern border of Botswana and the western parts of Zambia. In this review, we only considered studies that
investigated climate change in terms of temperature/drought in dryland forests where satellite data are a
primary or secondary source of data. Although there are a number of studies on climate change modelling in
Southern Africa, the results show that there is a striking lack of studies investigating climate change into dryland
forest change and stress monitoring.

The sensors used to detect disturbances differs, with most studies using MODIS (Alleaume et al 2005,
Chongo et al 2007, Archibald et al 2009, Giglio et al 2009), two publications used SPOT-VGT (Silva et al 2003,
Verbesselt et al 2006), and one Landsat and Sentinel-2 (Roy et al 2019). Only two publications utilised SAR data.
Mathieu et al (2019) investigated SAR Sentinel-1A C-band images for detecting surface fires in the Kruger NP,
while Williams et al (2013) used ALOS PALSAR to analyse known disturbance agents in tropical woodlands in
Mozambique. The research by Urban et al (2018) used Sentinel-1 SAR time series NDVI from Sentinel-2 and
Landsat-8 to derive surface moisture for drought monitoring in the Kruger NP between 2015 and 2017. A
combination/fusion of SAR and Optical data for detecting disturbances is not tested by any study. Only one
study used field data as input data for validation (Alleaume et al 2005), while two studies used forest inventory
data (Verbesselt et al 2006, Verlinden and Laamanen 2006a).

4.3.5. Biodiversity, plant traits, and phenology

Twelve (8%) of the reviewed publications dealt with research questions in the context of forest biodiversity.
Almost half of the papers on forest biodiversity examined plant species diversity (Adjorlolo et al 2014, Mapfumo
etal 2016, Chapungu et al 2020). Others looked at animal species and habitat suitability (e.g., Caceres et al (2015)
for birds, Ducheyne et al (2009) for tsetse flies, impala (Van Bommel ef al 2006), and elephants (Marston et al
2020). Forest biodiversity is often related to structural canopy parameters. Most studies, nine (75%) of twelve
used Landsat to derive parameters such as plant canopy height, species occurrence, richness, and diversity. Three
(25%) of the studies used MODIS data (e.g., Fullman and Bunting (2014) used MODIS at 250 m pixel resolution
and a Moving Standard Deviation Index (MSDI) to detect elephant-modified vegetation along the Chobe
riverfront in Botswana; Akinyemi and Kgomo (2019) utilised 1 km spatial resolution of SPOT - VGT and
PROBA-V annual time series of 18 years to understand species diversity and richness assessment based on the
Vegetation Degradation Index in Palapye Botswana.; Adjorlolo et al (2014) investigated the utility of SPOT-5
multispectral data to assess tree equivalents and total leaf mass to model grazing and browsing capacity in
KwaZul-Natal province in RSA.

Five papers (3%) dealt with different plant characteristics, known as plant functional traits. These include
canopy chlorophyll content (Cho et al 2012), leaf nitrogen concentration (Cho et al 2013), and vegetation water
content (Verbesselt et al 2006), and LAI (Scholes et al 2004). Plant functional traits including vegetation
biophysical and biochemical properties (e.g., pigment levels, nitrogen content) are often related to patterns of
biodiversity. Huemmrich ef al (2005) explored monthly MODIS data at 1 km spatial resolution over two years to
estimate LAl and FAPAR and found that ground-measured LAI values correspond well with MODIS LAI, and
showed a discrepancy with FAPAR. Cho et al (2012) utilised variogram analysis and the red edge shift from
SumbandilaSat and SPOT 5 to estimate canopy chlorophyll content in Dukuduku forest in Southern Africa and
found that SumbandilaSat provides additional information for quantifying stress in vegetation as compared to
SPOT image data. All studies on plant traits were undertaken at the local scale.

Looking at research categories per country, biodiversity/habitat publications were mainly undertaken in
Botswana and RSA (figure 12). All studies in the context of forest biodiversity and plant traits covered only
mono-temporal and multi-annual classifications. Only two studies utilised multi-annual time series (Verbesselt
etal 2006, Akinyemi and Kgomo 2019), and one study used MODIS multi-temporal time series over two years
(Huemmirich et al 2005). All of these studies focused on a coarse resolution of 1 km.
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Phenology is also strongly linked to plant traits, but analysis puts more emphasis on the seasonal variations
including growing season (green-up date) (Archibald and Scholes 2007, Whitecross et al 2017), end of the
season, and length of the season (Davis et al 2017). To date, phenological research in Southern African dryland
forests is limited, and more than half of the published papers on phenology focused only on examples from RSA.
In the few studies that have analysed phenology, most studies dealt with estimating leaf flush and early-greening
dates (Chidumayo 2001, Higgins et al 2011). For example, Archibald and Scholes (2007) developed an intricate
algorithm that used MODIS NDVI products and field-based parameter estimates to predict green-up dates for
grass and tree components at a site in the Kruger NP in RSA. Jolly and Running (2004) compared a water balance
model to a 3-year NDVI time series and found the deviation between the onset of leaf flush predicted by the
model and empirical data was between 10 and 40 d.

5. Discussion

5.1. Temporal extent

In this article, we have synthesized the current research with EO on dryland forests, with a particular focus on
Southern Africa. Although the volume of scientific literature has demonstrated a sharp increase, the use of
remote sensing is still limited, and up until 2013, the number of publications on this topic was relatively small.
Substantial research on the dryland forests of Southern African is mainly based on single-date observations, and
comparing classified images at two or more different times. Maps that relate successive land cover change
between two dates typically lack information regarding underlying processes and do not enable insights on the
nature of the transformations present, such as the rate or persistence of change (Lambin et al 2003). Time series
analysis on dryland forests, which enables tracking changes is scarce, only 22 (16%) out of 137 studies feature
time series lengths that exceed 15 years and only 11 (8%) studies that cover more than 20 years. Longer time
series of remote sensing data afford the ability to assess the dynamics of forest structures, biodiversity,
degradation, disturbance from climatic extremes, and change in phenology, in which a gap still exists.

5.2. Spatial scale

Another finding that stands out from our analyses is that there are very few studies at the national and regional
levels. Despite new sensor and EO data availability, it is clear that a systematic and consistent regional
monitoring of dryland forests is not yet fully exploited and is still in its infancy in Southern Africa. In fact, the
majority of publications 88 (64%) concentrated their research efforts on local scale investigations (figure 7).
Desanker and Justice (2001) and Geist (2002) also emphasised that Southern Africa is limited to local-scale
studies, thereby lacking a simultaneous analysis of the impacts of these changes at a larger scale. To fully assess
regional and long-term implications for tropical dryland forest change studies, analyses on large(r) scales are
needed, ideally with higher spatial resolutions and longer temporal duration.

5.3. Accuracy assessment

Through evaluation of the literature, we identified that the assessment of accuracy for thematic/classified maps
and statistical data to be another important issue, with only 54 (39%) of the studies appearing to have performed
some form of accuracy assessment. Our results show there is limited information on sources of error and
uncertainty levels of the estimates provided by most studies. We found that most forest and vegetation-related
scientific outputs in Southern Africa are not yet strongly linked to field measurements and forest inventory data.
Among the reviewed studies, very few studies utilized field test sites/ ground-based independent datasets for
accuracy assessment, while other studies estimated uncertainties using other procedures e.g., using a sample of
finer spatial resolution remote sensing data, or did not report the map uncertainty. Some studies employed root-
mean-square error to assess model accuracy (RMSE) (e.g., Adjorlolo and Mutanga 2013, Higginbottom et al
2018), while many studies used an error matrix to assess map uncertainties, which was employed for instance
(e.g., Hiittich et al 2011, Adelabu et al 2013). However, some studies used sample points below the desirable
target number of validation points per class (e.g., Cabral et al 2011), while studies briefly mentioned that a
confusion matrix was calculated but did not report how many sample points were used for validation (e.g.,
Chagumaira et al 2016). Congalton. (1988) suggests planning to collect a minimum of 50 samples for each map
class for maps of less than 1 million acres in size with less than 12 classes. It has been empirically confirmed thata
good balance between statistical validity and practicality for larger area maps or more complex maps can be
achieved with about 75 to 100 sample sites per class (Congalton and Green 2009).

Globally, owing to TDFs low commercial importance in comparison to other tropical forests such as moist
forest, they are often not assessed by field surveys, or surveyed regularly by governments (Keenan 2015).
Independent validation data for dryland forest estimations are rarely available because acquiring appropriate
field survey data is a time-consuming and expensive task. In Southern Africa, these areas are often remote and
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dangerous to visit in the field, due to the hazard posed by wildlife and if present, unexploded landmines, almost
impracticable to obtain independent validation data for large(r) area studies, especially for many protected areas.
Despite challenges to obtain ground-based observation, effective integration of these data and remote sensing
methods will be key to accurately mapping and monitoring dryland forest across a range of spatial scales and in
reporting the accuracy of models. However, the applicability of remotely measured geospatial data is reliant on
quality, and translating remote sensing data into accurate and meaningful information is often a challenge prone
to errors (Congalton 2009, Donoghue 2002). In this context, it is critical to ensure the validity of these data and
their suitability for each particular application, particularly where coarse spatial maps can be misleading. In
addition, characterising dryland forest for large areas of Africa cannot entirely rely on global and pantropical
monitoring studies for dry forest estimation because global forest monitoring generally underestimates, and in
some instances overestimates, dryland biomes (Bastin et al 2017).

5.4. Research topics and geographical focus

The classification of studies into eight broad subject categories revealed forest cover/types 41 (26%) and land
cover/land use 36 (23%) to be the most commonly researched topics. Topics receiving less attention included
phenology, plant traits, biodiversity/habitats, and disturbances with regards to climate change (figure 10). With
regards to disturbances, fire damage was the most commonly studied but there is a missing body of literature on
the climate change impact on the composition, biodiversity, and ecological health of dry forest ecosystems in
most countries of Southern Africa. We also found an interesting, non-uniform spatial distribution of dryland
vegetation and forest studies using spaceborne remote sensing, particularly when considering disparities among
countries and across protected areas. The distribution of research categories by country reveals that RSA is, by far
the most studied nation across all categories in Southern Africa (figure 8). It should be noted that care should be
taken here not to assume that the number of studies equates to research quality, which remains difficult to
articulate from a review of this nature. However, the dryland forests of Mozambique, Lesotho, Swaziland, and
Zambia are noticeably very poorly studied. Studies on the dryland forests of Angola are even less frequent,
receiving relatively little global attention, and the few studies conducted on its forests were mostly conducted by
researchers from Portuguese Universities (Leite et al 2018, Catarino et al 2020). The focus of publications tended
to be biased towards conservation and national parks, particularly as a large proportion of studies were
undertaken in the Kruger NP, leaving many other private and international protected areas relatively
understudied. Transboundary conservation areas, such as Kavango-Zambezi (KAZA), have received relatively
little attention but merit further research in terms of the vast dryland forests extent, biodiversity, species
abundance and diversity, and the potential for this area to form important corridor areas for wildlife animals.
There is a further concern as a result of such gaps because some of the dryland forests, and species to which they
are home, notably in countries like Angola and Zambia, are listed on the IUCN red list and would almost
certainly merit Alliance for Zero Extinction (ACE) ranking (Cumming 2008). Furthermore, future efforts to
estimate important variables such as forest cover and biomass need not be restricted by country boundaries.
Future studies, based on medium-fine resolution EO and validated with field data, will provide information to
improve our understanding of African dryland vegetation and its management.

5.5. Vegetation indices, optical, SAR, and fusion of optical and SAR sensors

The most commonly used vegetation index was the NDVI, with more than half of the studies, 84 (54%) of papers
utilising this index, but only 13 (8%) of papers used EVIindex and SAVI index. Other vegetation indices such as
the GNDVI index and Sentinel red-edge related indices and passive microwave observations such as Vegetation
Optical Depth were not utilised in studies considered in this review. One major problem commonly
encountered in the less studied ecosystems, such as dryland forests, is that of generalizing or transferring
knowledge and methods derived from remotely sensed imagery over both space and time (Foody et al 2003). For
example, commonly used vegetation indices and classification schemes are in general mainly been calibrated on
other, better-studied ecosystems, such as temperate or rain forests, and this has led to poor accuracy results when
extrapolated, to for example, tropical dryland forests. This phenomenon justifies the importance of utilizing a
range of vegetation indices when studying dryland forests using EO data. Imagery from optical sensors is most
commonly used, out of all sensor types, providing the data used in 90% of papers reviewed, followed by SAR data
with 6%. The fusion of optical and radar data was rarely used, with only 4% of publications exploring this. The
most frequently used platforms are Landsat, followed by MODIS and AVHRR. Imagery taken by the Sentinel-1/
2 satellites only makes up a small portion of the remote sensing data on dryland forests. For example, Sentinel-2
was only used by 2% of investigated studies, but this may reflect the relatively short period (since 2015) when
these data have been available.

20



10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

5.6. Remote sensing platforms and cloud-based computing

Most of the EO data used in the publications reviewed were downloaded, and are available at no cost from a
number of online portals, including the Oak Ridge National Laboratory (ORNL), the United States Geological
Survey (USGS) Distributed Active Archive System (DAAC) and Earth Explorer (EE) tool. The lack of remote
sensing research centers in most Southern African research institutions may contribute to limit the number of
African Scientists engaged in monitoring forests resources. For example, most studies in RSA made use of
remote sensing data through the University of the Witwatersrand, Satellite Application Centre (SAC), the South
African National Space Agency (SANSA), and the Council of Science and Industrial Research (CSIR). The
development of remote sensing capacity at local universities has inevitably contributed to RSA universities and
research institutions conducting the majority of studies in Southern Africa (figure 6). To improve EO data
access, and the skills to handle and interpret this across Southern Africa, there is a need to increase the number of
local institutions that distribute the remote sensing data, and who have the capacity to access and use innovative
web-based platforms such as the Google Earth Engine (GEE) and Amazon Web Services to overcome some of
the logistical and financial constraints of this type of research.

Southern African countries face considerable technical challenges with remote sensing, particularly in
respect to REDD--related research on dryland forests monitoring. Freely available tools, for example, the
cloud-based geospatial analysis platform Google Earth Engine (GEE), make it easier to access powerful
computing resources for processing and analysing pre-processed large-scale datasets (Shelestov et al 2017).
However, only nine papers (6%) out of 137 used GEE to access or analyse remote sensing data. The ‘near real-
time’ remote sensing data offered by GEE is of particular interest for monitoring changes and automating the
analysis of time-series, when detecting and tracking trends in surface reflectance properties. With increasing
spatio-temporal coverage of satellite data and computational platforms that reduce the need for costly local
infrastructure (e.g., GEE), there is an opportunity to overcome the limitations previously enforced by large
volumes of data and the scale of analysis, whereby our knowledge of dryland forest dynamics can be improved in
the upcoming years.

6. Conclusion

This review summarizes research progress towards the use and integration of remote sensing data within the
context of monitoring dryland forests in Southern Africa, using a systematic review methodology that focused
on 137 most relevant research articles. We have reviewed the temporal and spatial coverage of these studies, their
application area, and the remote sensing platforms and sensors used. Based on the results, the following
conclusions can be drawn. There are a broad range of topics covered by research on dryland forests, from which
land-use/land-cover and forest cover and disturbances from the fire were the most frequently studied. However,
there is still a relative lack of studies assessing dryland forest structure, phenology, biodiversity/habitats, plant
traits, and disturbance from climatic extremes, suggesting additional research is required. The majority of
studies relied on single-date or annual data and bi-temporal discrete classification; only a very few studies
employed time series analysis.

We consider some of the limitations of the research reviewed, which indicates a need for more frequent use
of field and inventory data, a greater use of validation/accuracy assessments, and testing other vegetation indices
beyond NDVIand EVIsuch as the Vegetation Optical Depth and Sentinel-2 red-edge related indices. In
addition, further improvements should focus on for extensive combination and fusion of SAR and optical data
in order to have a temporally and spatially consistent data set necessary for several applications in dryland
forests. Given the state of decline of woody vegetation condition in Southern Africa, long-term monitoring of
monthly time series of EO data at regional and transboundary scale clearly hold potential to capture dryland
forests dynamics and to understand their current status and future trends. A significant move from EO
predictions that are extremely site-dependent to large(r) ecoregional level monitoring approach that integrates a
range of remotely-sensed data of sufficiently high spatial and temporal resolution with field measurements and
using machine/deep learning models could provide a sound basis for assessing dryland forest-related changes
and dynamics. Information inferred from these kinds of models would be extremely useful for the current
knowledge, management and conservation of the dryland forests as well as for understanding their responses to
disturbance (natural or anthropogenic) and climatic change at regional to sub-continental level. Finally, there is
significant geographical heterogeneity in study coverage; whilst there is substantial research on the forests in the
Kruger NP and across RSA, the same cannot be said for other areas of Southern Africa. The EO interventions not
only assess deforestation rate, but also support other forest related REDD + activities such as sustainable forest
management which reduce forest degradation and enhance forest carbon stocks at a range of scales,
transcending both provincial and national boundaries e.g., Kavango-Zambezi Transfrontier Conservation Area
(KAZA TFCA). Nevertheless, REDD+-related research on dryland forests in most Southern African countries
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and protected areas has been limited, with clear gaps across Angola, Mozambique, Zambia, and Zimbabwe.
Finally, Africa has the potential to emulate other continents, such as Latin America, that have made notable
progress in employing freely available remote sensing data to monitor tropical dryland forest area change and
biomass on a large scale.

Acknowledgments

Many thanks to Mark Reed for his comments on an earlier draft. We are grateful to the anonymous reviewers
whose insightful comments improved the manuscript substantially.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Conflicts of interest

The authors declare no conflict of interest.

Funding

This work was supported Commonwealth Scholarship Commission Ph.D grant number: NACS-2017-409 from
2017-2020, Geography doctoral program at Durham University. The authors would like to acknowledge the
support provided through the Rapid Evidence Synthesis Training (REST) programme. REST was organised and
delivered through a collaboration between the University of Leeds, The University of Newcastle, and the N8
AgriFood Programme and supported by Research England QR-SPF funds from The University of Leeds and
University of York.

ORCIDiDs

Ruusa M David @ https://orcid.org/0000-0002-7892-9878
NickJ Rosser @ https://orcid.org/0000-0002-1435-2512
Daniel N M Donoghue @ https://orcid.org/0000-0002-9931-9083

References

Adelabu S, Mutanga O, Adam E and Cho M A 2013 Exploiting machine learning algorithms for tree species classification in a semiarid
woodland using RapidEye image J. Appl. Remote Sens. 7 073480

Adjorlolo C, Botha ] O, Mhangara P, Mutanga O and Odindi ] 2014 Integrating remote sensing and conventional grazing/browsing models
for modelling carrying capacity in southern African rangelands Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI9239

Adjorlolo Cand Mutanga O 2013 Integrating remote sensing and geostatistics to estimate woody vegetation in an African savanna Journal of
Spatial Science 58 30522

Agbaje G12010 Nigeria in Space—an Impetus For Rapid Mapping of the Country for Sustainable Development Planning. A Report Prepared for
FIG Congress 2010 Facing the Challenges Building the Capacity Sydney (Australia) (https://fig.net/resources/proceedings/fig_
proceedings/fig2010/papers/ts03h /ts03h_agbaje_4621.pdf) (accessed 20 January 2021)

Aguilar M, Saldafia M and Aguilar F 2013 GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban
environments Int. J. Remote Sens. 34 2583-606

Aide TM, Clark M L, Grau HR, Lépez-Carr D, Levy M A, Redo D, Bonilla-Moheno M, Riner G, Andrade-Nufiez M ] and Muiiz M 2012
Deforestation and reforestation of Latin America and the Caribbean (2001-2010) Biotropica 45 26271

Akinyemi F O and Kgomo M O 2019 Vegetation dynamics in African drylands: an assessment based on the vegetation degradation index in
an agro-pastoral region of Botswana Regional Environmental Change 19 2027-39

AlcaiizI and Gutierrez R A 2020 Between the global commodity boom and subnational state capacities: payment for environmental services
to fight deforestation in Argentina Global Environmental Politics 20 38—59

AlemanJ C, Jarzyna M A and Staver A C 2018 Forest extent and deforestation in tropical Africa since 1900 Nature Ecology ¢ Evolution 2
26-33

AliT, Greifeneder F, Stamenkovic J, Neumann M and Notarnicola C 2015 Review of machine learning approaches for biomass and soil
moisture retrievals from remote sensing data Remote Sensing 7 16398—421

Alleaume S, Hély C, Le Roux J, Korontzi S, Swap R J, Shugart H H and Justice C O 2005 Using MODIS to evaluate heterogeneity of biomass
burning in southern African savannahs: a case study in Etosha Int. J. Remote Sens. 26 4219-37

Alvarez-Anorve MY, Quesada M, Sanchez-Azofeifa G A, Avila-Cabadilla L D and Gamon J A 2012 Functional regeneration and spectral
reflectance of trees during succession in a highly diverse tropical dry forest ecosystem American Journal of Botany 99 816-26

22


https://orcid.org/0000-0002-7892-9878
https://orcid.org/0000-0002-7892-9878
https://orcid.org/0000-0002-7892-9878
https://orcid.org/0000-0002-7892-9878
https://orcid.org/0000-0002-1435-2512
https://orcid.org/0000-0002-1435-2512
https://orcid.org/0000-0002-1435-2512
https://orcid.org/0000-0002-1435-2512
https://orcid.org/0000-0002-9931-9083
https://orcid.org/0000-0002-9931-9083
https://orcid.org/0000-0002-9931-9083
https://orcid.org/0000-0002-9931-9083
https://doi.org/10.1117/1.JRS.7.073480
https://doi.org/10.1080/14498596.2013.815577
https://doi.org/10.1080/14498596.2013.815577
https://doi.org/10.1080/14498596.2013.815577
https://fig.net/resources/proceedings/fig_proceedings/fig2010/papers/ts03h/ts03h_agbaje_4621.pdf
https://fig.net/resources/proceedings/fig_proceedings/fig2010/papers/ts03h/ts03h_agbaje_4621.pdf
https://doi.org/10.1080/01431161.2012.747018
https://doi.org/10.1080/01431161.2012.747018
https://doi.org/10.1080/01431161.2012.747018
https://doi.org/10.1111/j.1744-7429.2012.00908.x
https://doi.org/10.1111/j.1744-7429.2012.00908.x
https://doi.org/10.1111/j.1744-7429.2012.00908.x
https://doi.org/10.1007/s10113-019-01541-4
https://doi.org/10.1007/s10113-019-01541-4
https://doi.org/10.1007/s10113-019-01541-4
https://doi.org/10.1162/glep_a_00535
https://doi.org/10.1162/glep_a_00535
https://doi.org/10.1162/glep_a_00535
https://doi.org/10.1038/s41559-017-0406-1
https://doi.org/10.1038/s41559-017-0406-1
https://doi.org/10.1038/s41559-017-0406-1
https://doi.org/10.1038/s41559-017-0406-1
https://doi.org/10.3390/rs71215841
https://doi.org/10.3390/rs71215841
https://doi.org/10.3390/rs71215841
https://doi.org/10.1080/01431160500113492
https://doi.org/10.1080/01431160500113492
https://doi.org/10.1080/01431160500113492
https://doi.org/10.3732/ajb.1100200
https://doi.org/10.3732/ajb.1100200
https://doi.org/10.3732/ajb.1100200

10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

AndelaN, Liu Y'Y, Van Dijk A1J M, De Jeu R A M and McVicar T R 2013 Global changes in dryland vegetation dynamics (1988-2008)
assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data
Biogeosciences 10 6657-76

Archibald S, Roy D P, van Wilgen B W and Scholes R ] 2009 What limits fire? An examination of drivers of burnt area in Southern Africa
Global Change Biol. 15 613-30

Archibald S and Scholes RJ 2007 Leaf green-up in a semi-arid African savanna - separating tree and grass responses to environmental cues
Journal of Vegetation Science 18 583-94

Arino O et al 2007 Globcover-a global land cover service with MERIS In Proc. of the ENVISAT Symp. 237

Balint P ] and Mashinya ] 2006 The decline of a model community-based conservation project: governance, capacity, and devolution in
Mahenye, Zimbabwe Geoforum 37 80515

Barbosa J, Broadbent E and Bitencourt M 2014 Remote sensing of aboveground biomass in tropical secondary forests: a review International
Journal of Forestry Research 2014

Bastin J F et al 2017 The extent of forest in dryland biomes Science 356 635-8

Becker F and Choudhury B ] 1988 Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization
difference index (MPDI) for vegetation and desertification monitoring Remote Sens. Environ. 24 297-311

Berger C, Werner S, Wigley-Coetsee C, Smit I and Schmullius C 2019 Multi-temporal sentinel-1 data for wall-to-wall herbaceous biomass
mapping in Kruger National Park, South Africa—first results IGARSS 2019-2019 IEEE Int. Geoscience and Remote Sensing Symp.. IEEE
7358-60

Blackie R eral 2014 Tropical dry forests The State of Global Knowledge and Recommendations for Future Research (Discussion Paper) (Bogor
Indonesia: Cifor)

Bodart C, Brink A B, Donnay F, Lupi A, Mayaux P and Achard F 2013 Continental estimates of forest cover and forest cover changes in the
dry ecosystems of Africa between 1990 and 2000 Journal of Biogeography 40 1036—47

Boggs G S 2010 Assessment of SPOT 5 and QuickBird remotely sensed imagery for mapping tree cover in savannas Int. J. Appl. Earth Obs.
Geoinf. 12217-24

Bond Ivan, Chambwerwa M, Jones B, Chundama M and Nhantumbo I 2010 REDD+ in dryland forests: issues and prospects for pro-poor
REDD in the miombo woodlands of southern Africa (21) (London: IIED)

Bouvet A, Mermoz S, Le Toan T, Villard L, Mathieu R, Naidoo L and Asner G P 2018 An above-ground biomass map of African savannahs
and woodlands at 25 m resolution derived from ALOS PALSAR Remote Sens. Environ. 206 156—73

Brandt M et al 2018a Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands Nat. Geosci. 11 328-33

Brandt M et al 2018b Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands Nature ecology ¢ evolution
2827-35

Brandt M, Hiernaux P, Rasmussen K, Mbow C, Kergoat L, Tagesson T, Ibrahim Y Z, Wélé A, Tucker CJ and Fensholt R 2016 Assessing
woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics Remote Sens. Environ. 183 215-25

Breiman L2001 Random forests Mach. Learn. 45 5-32

Bucini G, Saatchi S, Hanan N, Boone R B and Smit 12009 Woody cover and heterogeneity in the savannas of the Kruger National Park, South
Africa 2009 IEEE International Geoscience and Remote Sensing Symposium. IEEE 4 1V-334

Bullock S H, Mooney H A and Medina E 1995 Seasonally Dry Tropical Forests (Great Britain: Cambridge University Press)

Bunting EL, Southworth J, Herrero H, Ryan S J and Waylen P 2018 Understanding long-term savanna vegetation persistence across three
drainage basins in Southern Africa Remote Sensing 10 1013

Bunyavejchewin S, Baker P J and Davies SJ 2011 Seasonally dry tropical forests in continental Southeast Asia: structure, compositon and
dynamics The Ecology and Conservation of Seasonally Dry Forests in Asia. (United State: Smithsonian Institution Scholarly Press) 9-35

Cabral AIR, Vasconcelos M J, Oom D and Sardinha R 2011 Spatial dynamics and quantification of deforestation in the central-plateau
woodlands of Angola (1990-2009) Appl. Geogr. 31 1185-93

Céceres A, Melo M, Barlow J, Cardoso P, Maiato F and Mills M SL 2015 Threatened birds of the angolan central escarpment: distribution
and response to habitat change at Kumbira Forest Oryx 49 727-34

Campo-Bescés M A, Muiioz-Carpena R, Southworth J, Zhu L, Waylen P R and Bunting E 2013 Combined spatial and temporal effects of
environmental controls on long-term monthly NDVI in the Southern Africa Savanna Remote Sensing 5 6513-38

Campos-Vargas C and Vargas-Sanabria D 2021 Assessing the probability of wildfire occurrences in a neotropical dry forest Ecoscience 28
159-69

Carreiras J, Melo ] B and Vasconcelos M ] 2013 Estimating the above-ground biomass in miombo savanna woodlands (Mozambique, East
Africa) using L-band synthetic aperture radar data Remote Sensing 5 1524—48

Castillo A, Magafa A, Pujadas A, Martinez L and Godinez C 2005 Understanding the interaction of rural people with ecosystems: a case
study in a tropical dry forest of Mexico Ecosystems 8 630—43

Castro K, Sanchez-Azofeifa G A and Rivard B 2003 Monitoring secondary tropical forests using space-borne data: implications for Central
America Int. J. Remote Sens. 24 1853-94

Castro SM, Sanchez-Azofeifa G A and Sato H 2018 Effect of drought on productivity in a Costa Rican tropical dry forest Environ. Res. Lett. 13
045001

Catarino S, Romeiras M M, Figueira R, Aubard V, Silva ] and Pereira ] 2020 Spatial and temporal trends of burnt area in Angola: implications
for natural vegetation and protected area management Diversity 12 307

Chagumaira C, Rurinda J, Nezomba H, Mtambanengwe F and Mapfumo P 2016 Use patterns of natural resources supporting livelihoods of
smallholder communities and implications for climate change adaptation in Zimbabwe Environment, development and sustainability
18237-55

Chambers J Q, Asner G P, Morton D C, Anderson L O, Saatchi S S, Espirito-Santo F D, Palace M and Souza C Jr 2007 Regional ecosystem
structure and function: ecological insights from remote sensing of tropical forests Trends Ecol. Evol. 22 414-23

Chapungu L, Nhamo L, Gatti R C and Chitakira M 2020 Quantifying changes in plant species diversity in a savanna ecosystem through
observed and remotely sensed data Sustainability 12 2345

Charles-Dominique T, Staver A C, Midgley G Fand Bond W ] 2015 Functional differentiation of biomes in an African savanna/forest
mosaic S. Afr. J. Bot. 101 2-90

Chazdon R L et al 2016 Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics Sci. Adv. 2
e1501639

Chidumayo E 2001 Climate and phenology of savanna vegetation in southern Africa Journal of Vegetation Science 12 347-54

Chidumayo E. and Marunda C 2010 Dry forests and woodlands in sub-Saharan Africa: Context and challenges. In The Dry Forests and
Woodlands of Africa (New York: Routledge)

23


https://doi.org/10.5194/bg-10-6657-2013
https://doi.org/10.5194/bg-10-6657-2013
https://doi.org/10.5194/bg-10-6657-2013
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.1111/j.1654-1103.2007.tb02572.x
https://doi.org/10.1111/j.1654-1103.2007.tb02572.x
https://doi.org/10.1111/j.1654-1103.2007.tb02572.x
https://doi.org/10.1016/j.geoforum.2005.01.011
https://doi.org/10.1016/j.geoforum.2005.01.011
https://doi.org/10.1016/j.geoforum.2005.01.011
https://doi.org/10.1155/2014/715796
https://doi.org/10.1126/science.aam6527
https://doi.org/10.1126/science.aam6527
https://doi.org/10.1126/science.aam6527
https://doi.org/10.1016/0034-4257(88)90031-4
https://doi.org/10.1016/0034-4257(88)90031-4
https://doi.org/10.1016/0034-4257(88)90031-4
https://doi.org/10.1109/IGARSS.2019.8898045
https://doi.org/10.1109/IGARSS.2019.8898045
https://doi.org/10.1109/IGARSS.2019.8898045
https://doi.org/10.1111/jbi.12084
https://doi.org/10.1111/jbi.12084
https://doi.org/10.1111/jbi.12084
https://doi.org/10.1016/j.jag.2009.11.001
https://doi.org/10.1016/j.jag.2009.11.001
https://doi.org/10.1016/j.jag.2009.11.001
https://doi.org/10.1016/j.rse.2017.12.030
https://doi.org/10.1016/j.rse.2017.12.030
https://doi.org/10.1016/j.rse.2017.12.030
https://doi.org/10.1038/s41561-018-0092-x
https://doi.org/10.1038/s41561-018-0092-x
https://doi.org/10.1038/s41561-018-0092-x
https://doi.org/10.1038/s41559-018-0530-6
https://doi.org/10.1038/s41559-018-0530-6
https://doi.org/10.1038/s41559-018-0530-6
https://doi.org/10.1016/j.rse.2016.05.027
https://doi.org/10.1016/j.rse.2016.05.027
https://doi.org/10.1016/j.rse.2016.05.027
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/IGARSS.2009.5417381s
https://doi.org/10.3390/rs10071013
https://doi.org/10.1016/j.apgeog.2010.09.003
https://doi.org/10.1016/j.apgeog.2010.09.003
https://doi.org/10.1016/j.apgeog.2010.09.003
https://doi.org/10.1017/S0030605313001415
https://doi.org/10.1017/S0030605313001415
https://doi.org/10.1017/S0030605313001415
https://doi.org/10.3390/rs5126513
https://doi.org/10.3390/rs5126513
https://doi.org/10.3390/rs5126513
https://doi.org/10.1080/11956860.2021.1916213
https://doi.org/10.1080/11956860.2021.1916213
https://doi.org/10.1080/11956860.2021.1916213
https://doi.org/10.1080/11956860.2021.1916213
https://doi.org/10.3390/rs5041524
https://doi.org/10.3390/rs5041524
https://doi.org/10.3390/rs5041524
https://doi.org/10.1007/s10021-005-0127-1
https://doi.org/10.1007/s10021-005-0127-1
https://doi.org/10.1007/s10021-005-0127-1
https://doi.org/10.1080/01431160210154056
https://doi.org/10.1080/01431160210154056
https://doi.org/10.1080/01431160210154056
https://doi.org/10.1088/1748-9326/aaacbc
https://doi.org/10.1088/1748-9326/aaacbc
https://doi.org/10.3390/d12080307
https://doi.org/10.1007/s10668-015-9637-y
https://doi.org/10.1007/s10668-015-9637-y
https://doi.org/10.1007/s10668-015-9637-y
https://doi.org/10.1016/j.tree.2007.05.001
https://doi.org/10.1016/j.tree.2007.05.001
https://doi.org/10.1016/j.tree.2007.05.001
https://doi.org/10.3390/su12062345
https://doi.org/10.1016/j.sajb.2015.05.005
https://doi.org/10.1016/j.sajb.2015.05.005
https://doi.org/10.1016/j.sajb.2015.05.005
https://doi.org/10.1126/sciadv.1501639
https://doi.org/10.1126/sciadv.1501639
https://doi.org/10.2307/3236848
https://doi.org/10.2307/3236848
https://doi.org/10.2307/3236848

10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

Chidumayo E N 2013 Forest degradation and recovery in a miombo woodland landscape in Zambia: 22 years of observations on permanent
sample plots Forest Ecology and Management 291 154—61

Chidumayo E N and Gumbo D J 2010 The Dry Forests and Woodlands of Africa: Managing for Products and Services (New York: Earthscan)

Chidumayo E N 2019 Management implications of tree growth patterns in miombo woodlands of Zambia Forest Ecology and Management
436 105-16

Child B A, Musengezi ], Parent G D and Child G F 2012 The economics and institutional economics of wildlife on private land in Africa
Pastoralism: Research, Policy and Practice 2 1-32

Chiteculo V, Abdollahnejad A, Panagiotidis D, Surovy P and Sharma R P 2018 Defining deforestation patterns using satellite images from
2000 and 2017: assessment of forest management in miombo forests—a case study of Huambo Province in Angola Sustainability
1198

ChoM A, Debbab P, Mutanga O, Dudeni-Tlhoneb N, Magadla T and Khuluseb S A 2012 Potential utility of the spectral red-edge region of
SumbandilaSat imagery for assessing indigenous forest structure and health Int. J. Appl. Earth Obs. Geoinf. 16 85-93

ChoM A, Malahlela O and Ramoelo A 2015 Assessing the utility WorldView-2 imagery for tree species mapping in South African
subtropical humid forest and the cosssnservation implications: Dukuduku forest patch as case study Int. J. Appl. Earth Obs. Geoinf. 38
349-57

ChoM A, Ramoelo A, Debba P, Mutanga O, Mathieu R, van Deventer H and Ndlovu N 2013 Assessing the effects of subtropical forest
fragmentation on leaf nitrogen distribution using remote sensing data Landscape Ecology 28 1479-91

Chongo D, Nagasawa R, Ould Cherif Ahmed A and Perveen M F 2007 Fire monitoring in savanna ecosystems using MODIS data: a case
study of Kruger National Park, South Africa Landscape and Ecological Engineering 3 79-88

Coetzer-Hanack K L, Witkowski E T F and Erasmus B F 2016 Thresholds of change in a multi-use conservation landscape of South Africa:
historical land-cover, future transformation and consequences for environmental decision-making Environ. Conserv. 43 253-62

Collaboration for Environmental Evidence 2013 Guidelines for systematic review and evidence synthesis in environmental management
Environmental Evidence 4.2 1-82 (https:/ /www.environmentalevidence.org/wp-content/uploads/2018 /02 /Review-guidelines-
version-4.2-final-update-1.pdf)

Congalton R G 2009 Accuracy and error analysis of global and local maps: Lessons learned and future considerations. Remote Sensing of
Global Croplands for Food Securit ed Prasad. Thenkabail, G. John and Hugh Lyon (Florida, USA: CRC Press) pp 441-58

Congalton R G 1988 A comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from
remotely sensed data Photogramm. Eng. Remote Sens. 54 593-600

Congalton R G 2018 Landsat’s enduring legacy: pioneering global land observations from space Photogrammetric Engineering ¢ Remote
Sensing 84 9-10

Congalton R G and Green K 2009 Assessing the Accuracy of Remotely Sensed Data: Principles and Practices 3rd (Florida, USA: CRC press)
(https://doi.org/10.1201,/9780429052729)

Corbera E, Soberanis C G and Brown K 2009 Institutional dimensions of Payments for Ecosystem Services: An analysis of Mexico’s carbon
forestry programme Ecological Economics 68 743—61

Cui Q, ShiJ, DuJ, Zhao T and Xiong C 2015 An approach for monitoring global vegetation based on multiangular observations from SMOS
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 604—16

Cumming D HM 2008 Large scale conservation planning and priorities for the Kavango-Zambezi transfrontier conservation area A report
prepared for Conservation International. (http://wcs-ahead.org/kaza/kaza_tfca_large_scale_planning_final_7nov08_logo.pdf/)
(accessed 23 August 2019)

Curran P 1980 Multispectral remote sensing of vegetation amount Prog. Phys. Geog. 4 31541

Curry T R 2020 Mexico’s tropical dry forests Reference Module in Earth Systems and Environmental Science. ed A L Shobert and R O Maguire
(Amsterdam, Netherlands: Elsevier) (https://doi.org/10.1016/B978-0-12-821139-7.00007-6)

Daskin J H, Stalmans M and Pringle R M 2016 Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale
large-mammal declines Journal of Ecology 104 79—89

Davis CL, Hoffman M T and Roberts W 2017 Long-term trends in vegetation phenology and productivity over Namaqualand using the
GIMMS AVHRR NDVI3g data from 1982 to 2011 S. Afr. J. Bot. 111 76-85

de Araujo Barbosa C C, Atkinson P M and Dearing J A 2015 Remote sensing of ecosystem services: a systematic review Ecol. Indic. 52 430—43

Desanker PV and Justice C O 2001 Africa and global climate change: critical issues and suggestions for further research and integrated
assessment modeling Climate Research 17 93—103

Dewees P A 1994 Social and economic aspects of miombo woodland management in southern Africa: options and opportunities for research
CIFOR Occasional Paper2 1-28

Dexter K G et al 2015 Floristics and biogeography of vegetation in seasonally dry tropical regions International Forestry Review 17 10-32

Djoudi H, Vergles E, Blackie R, Koame C K and Gautier D 2015 Dry forests, livelihoods and poverty alleviation: understanding current
trends International Forestry Review 17 54—69

Dlamini W M 2017 Mapping forest and woodland loss in Swaziland: 1990-2015 Remote Sensing Applications: Society and Environment 5
45-53

do Espirito-Santo M M, Rocha A M, Leite M E, Silva ] O, da Silva L P and Sanchez-Azofeifa G A 2020 Biophysical and socioeconomic factors
associated to deforestation and forest recovery in Brazilian tropical dry forests Frontiers in Forests and Global Change 3 141

Dogru A O, Goksel C, David R M, Tolunay D, Sézen S and Orhon D 2020 Detrimental environmental impact of large scale land use through
deforestation and deterioration of carbon balance in Istanbul Northern Forest Area Environmental Earth Sciences 79 1-13

Donoghue D N 2000 Remote sensing: sensors and applications Prog. Phys. Geog. 24 407—14

Donoghue D N 2002 Remote sensing: environmental change Prog. Phys. Geog. 26 144-51

Dube T, Gara T W, Mutanga O, Sibanda M, Shoko C, Murwira A, Masocha M, Ndaimani H and Hatendi C M 2018 Estimating forest
standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor Geocarto
Int. 33 178-88

Ducheyne E, Mweempwa C, De Pus C, Vernieuwe H, De Deken R, Hendrickx G and Van den Bossche P 2009 The impact of habitat
fragmentation on tsetse abundance on the plateau of eastern Zambia Preventive Veterinary Medicine 91 11-8

Du Preez Mari-Lise 2014 Southern Africa’s Dryland Forests, Climate Change and the Water-Energy-Food Security Nexus (https:/ /www.
africaportal.org/publications/southern-africas-dryland-forests-climate-change-and-the-water-energy-food-security-nexus /)

Dupuis C, Lejeune P, Michez A and Fayolle A 2020 How can remote sensing help monitor tropical moist forest degradation?—a systematic
review Remote Sensing 12 1087

Durden SL, Van Zyl ] ] and Zebker H A 1989 Modeling and observation of the radar polarization signature of forested areas IEEE Trans.
Geosci. Remote Sens. 27 290-301

24


https://doi.org/10.1016/j.foreco.2012.11.031
https://doi.org/10.1016/j.foreco.2012.11.031
https://doi.org/10.1016/j.foreco.2012.11.031
https://doi.org/10.1016/j.foreco.2019.01.018
https://doi.org/10.1016/j.foreco.2019.01.018
https://doi.org/10.1016/j.foreco.2019.01.018
https://doi.org/10.1186/2041-7136-2-18
https://doi.org/10.1186/2041-7136-2-18
https://doi.org/10.1186/2041-7136-2-18
https://doi.org/10.3390/su11010098
https://doi.org/10.1016/j.jag.2011.12.005
https://doi.org/10.1016/j.jag.2011.12.005
https://doi.org/10.1016/j.jag.2011.12.005
https://doi.org/10.1016/j.jag.2015.01.015
https://doi.org/10.1016/j.jag.2015.01.015
https://doi.org/10.1016/j.jag.2015.01.015
https://doi.org/10.1016/j.jag.2015.01.015
https://doi.org/10.1007/s10980-013-9908-7
https://doi.org/10.1007/s10980-013-9908-7
https://doi.org/10.1007/s10980-013-9908-7
https://doi.org/10.1007/s11355-007-0020-5
https://doi.org/10.1007/s11355-007-0020-5
https://doi.org/10.1007/s11355-007-0020-5
https://doi.org/10.1017/S0376892916000084
https://doi.org/10.1017/S0376892916000084
https://doi.org/10.1017/S0376892916000084
https://www.environmentalevidence.org/wp-content/uploads/2018/02/Review-guidelines-version-4.2-final-update-1.pdf
https://www.environmentalevidence.org/wp-content/uploads/2018/02/Review-guidelines-version-4.2-final-update-1.pdf
https://doi.org/10.1201/9781420090109.sec7
https://doi.org/10.1201/9781420090109.sec7
https://doi.org/10.1201/9781420090109.sec7
https://doi.org/10.14358/PERS.84.1.9
https://doi.org/10.14358/PERS.84.1.9
https://doi.org/10.14358/PERS.84.1.9
https://doi.org/10.1201/9780429052729
https://doi.org/10.1016/j.ecolecon.2008.06.008
https://doi.org/10.1016/j.ecolecon.2008.06.008
https://doi.org/10.1016/j.ecolecon.2008.06.008
https://doi.org/10.1109/JSTARS.2015.2388698
https://doi.org/10.1109/JSTARS.2015.2388698
https://doi.org/10.1109/JSTARS.2015.2388698
http://wcs-ahead.org/kaza/kaza_tfca_large_scale_planning_final_7nov08_logo.pdf/
https://doi.org/10.1177/030913338000400301
https://doi.org/10.1177/030913338000400301
https://doi.org/10.1177/030913338000400301
https://doi.org/10.1016/B978-0-12-821139-7.00007-6
https://doi.org/10.1111/1365-2745.12483
https://doi.org/10.1111/1365-2745.12483
https://doi.org/10.1111/1365-2745.12483
https://doi.org/10.1016/j.sajb.2017.03.007
https://doi.org/10.1016/j.sajb.2017.03.007
https://doi.org/10.1016/j.sajb.2017.03.007
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.3354/cr017093
https://doi.org/10.3354/cr017093
https://doi.org/10.3354/cr017093
https://doi.org/10.2139/ssrn.1296254
https://doi.org/10.1505/146554815815834859
https://doi.org/10.1505/146554815815834859
https://doi.org/10.1505/146554815815834859
https://doi.org/10.1505/146554815815834868
https://doi.org/10.1505/146554815815834868
https://doi.org/10.1505/146554815815834868
https://doi.org/10.1016/j.rsase.2017.01.004
https://doi.org/10.1016/j.rsase.2017.01.004
https://doi.org/10.1016/j.rsase.2017.01.004
https://doi.org/10.1016/j.rsase.2017.01.004
https://doi.org/10.3389/ffgc.2020.569184
https://doi.org/10.1007/s12665-020-08996-3
https://doi.org/10.1007/s12665-020-08996-3
https://doi.org/10.1007/s12665-020-08996-3
https://doi.org/10.1177/030913330002400306
https://doi.org/10.1177/030913330002400306
https://doi.org/10.1177/030913330002400306
https://doi.org/10.1191/0309133302pp329pr
https://doi.org/10.1191/0309133302pp329pr
https://doi.org/10.1191/0309133302pp329pr
https://doi.org/10.1080/10106049.2016.1240717
https://doi.org/10.1080/10106049.2016.1240717
https://doi.org/10.1080/10106049.2016.1240717
https://doi.org/10.1016/j.prevetmed.2009.05.009
https://doi.org/10.1016/j.prevetmed.2009.05.009
https://doi.org/10.1016/j.prevetmed.2009.05.009
https://www.africaportal.org/publications/southern-africas-dryland-forests-climate-change-and-the-water-energy-food-security-nexus/
https://www.africaportal.org/publications/southern-africas-dryland-forests-climate-change-and-the-water-energy-food-security-nexus/
https://doi.org/10.3390/rs12071087
https://doi.org/10.1109/36.17670
https://doi.org/10.1109/36.17670
https://doi.org/10.1109/36.17670

10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

Erkkild A and Lofman S 1999 Forest cover change in the ohangwena region, northern namibia: a case study based on multitemporal landsat
images and aerial photography Southern African Forestry Journal 184 25-32

EvaH D, Brink A and Simonetti D 2006 Monitoring land cover dynamics in sub-Saharan Africa. Institute for Environmental and
Sustainability Office for Official Publication of the European Communities EUR 22498 EN Luxembourg

Fajardo L, Gonzalez V, Nassar ] M, Lacabana P, Portillo Q, C A, Carrasquel F and Rodriguez J P 2005 Tropical dry forests of venezuela:
characterization and current conservation status 1 Biotropica: The Journal of Biology and Conservation 37 531-46

FAO 1999 Tropical forest management techniques: a review of the sustainability of forest management practices in tropical countries from
(https://fao.org/documents/card/en/c/10c5{896-03f8-536d-b253-aebb36dd2cef/), accessed 24 March 2021)

FAO 2001 FRA 2000: Global Ecological Zoning for the Global Forest Resources Assessment 2000, Final Report (Rome: Food and Agriculture
Organization of the United Nations. Forestry Department) (http://fao.org/3/ad652e/ad652¢00.htm /) (accessed 19 March 2021)

Fensham R J and Fairfax R J 2002 Aerial photography for assessing vegetation change: a review of applications and the relevance of findings
for Australian vegetation history Australian Journal of Botany 50 415-29

Ferreira Sanette 2004 Problems associated with tourism development in Southern Africa: The case of Transfrontier Conservation Areas
GeoJournal 60 301-10

Foody G M, Cutler M E, McMorrow J, Pelz D, Tangki H, Boyd D S and Douglas 2001 Mapping the biomass of Bornean tropical rain forest
from remotely sensed data Global Ecology and Biogeography 10 379-87

Foody G M, Boyd D S and Cutler M E 2003 Predictive relations of tropical forest biomass from Landsat TM data and their transferability
between regions Remote Sens. Environ. 85 463—74

Frankie G W, Mata A and Vinson S B (ed) 2004 Biodiversity Conservation In Costa Rica: Learning The Lessons In A Seasonal Dry Forest.
(Berkeley and Los Angeles, California: Univ of California Press)

Fullman T J and Bunting E L 2014 Analyzing vegetation change in an elephant-impacted landscape using the moving standard deviation
index Land 3 74-104

GaraT W, Murwira A, Dube T, Sibanda M, Rwasoka D T, Ndaimani H, Chivhenge E and Hatendi C M 2017 Estimating forest carbon stocks
in tropical dry forests of Zimbabwe: exploring the performance of high and medium spatial-resolution multispectral sensors Southern
Forests: a Journal of Forest Science 79 3140

Gara T W, Murwira A and Ndaimani H 2016 Predicting forest carbon stocks from high resolution satellite data in dry forests of Zimbabwe:
exploring the effect of the red-edge band in forest carbon stocks estimation Geocarto Int. 31 176-92

Gasparri N Tand Grau H R 2009 Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972—2007) Forest Ecology and
Management 258 913-21

Geist HJ 2002 Causes and pathways of land change in Southern Africa during the past 300 years. Moving from simplifications to generality
and complexity Erdkunde 56 144-56

Gessner U, Machwitz M, Conrad C and Dech S 2013 Estimating the fractional cover of growth forms and bare surface in savannas. A multi-
resolution approach based on regression tree ensembles Remote Sens. Environ. 129 90-102

Giglio L, Loboda T, Roy D P, Quayle B and Justice C O 2009 An active-fire based burned area mapping algorithm for the MODIS sensor
Remote Sens. Environ. 113 408-20

Gillespie T W, Grijalva A and Farris C N 2000 Diversity, composition, and structure of tropical dry forests in Central America Plant ecology
147 37-47

Gitelson A A, Kaufman Y J and Merzlyak M N 1996 Use of a green channel in remote sensing of global vegetation from EOS-MODIS Remote
Sens. Environ. 58 289-98

Gizachew B, Solberg S, Nasset E, Gobakken T, Bollandsas O M, Breidenbach J, Zahabu E and Mauya E W 2016 Mapping and estimating the
total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data Carbon Balance Manage. 11 1-14

Goksel C, David R M and Dogru A O 2018 Environmental monitoring of spatio-temporal changes in northern Istanbul using remote sensing
and GIS International Journal of Environment and Geoinformatics 5 94—103

Gonzélez M, Ret al 2021 Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests Ecology Letters 24
451-63

Guirado Emilio, Blanco-Sacristdn Javier, Rodriguez-Caballero Emilio, Tabik Siham, Alcaraz-Segura Domingo,
Martinez-Valderrama Jaime and Cabello Javier 2020 Mask R-CNN and OBIA Fusion Improves the Segmentation of Scattered
Vegetation in Very High-Resolution Optical Sensors Sensors 21 320

Halperin J, LeMay V, Chidumayo E, Verchot L and Marshall P 2016 Model-based estimation of above-ground biomass in the miombo
ecoregion of Zambia Forest Ecosystems 3 1-17

Harris A, Carr A S and Dash ] 2014 Remote sensing of vegetation cover dynamics and resilience across southern Africa Int. J. Appl. Earth Obs.
Geoinf. 28 131-9

Hastie T, Tibshirani R and Friedman ] 2009 (2008) The Elements of Statistical Learning; Data Mining, Inference and Prediction. (New York:
Springer)

Heckel K, Urban M, Schratz P, Mahecha M D and Schmullius C 2020 Predicting forest cover in distinct ecosystems: the potential of multi-
source Sentinel-1 and-2 data fusion Remote Sensing 12 302

Herold M, Mayaux P, Woodcock C E, Baccini A and Schmullius C 2008 Some challenges in global land cover mapping: an assessment of
agreement and accuracy in existing 1 km datasets Remote Sens. Environ. 112 2538-56

Herrero H, Southworth J, Muir C, Khatami R, Bunting E and Child B 2020 An evaluation of vegetation health in and around Southern
African National Parks during the 21st Century (2000-2016) Applied Sciences 10 2366

Higginbottom T P, Symeonakis E, Meyer H and van der Linden S 2018 Mapping fractional woody cover in semi-arid savannahs using multi-
seasonal composites from Landsat data ISPRS J. Photogramm. Remote Sens. 139 88—102

Higgins SI, Delgado-Cartay M D, February E C and Combrink HJ 2011 Is there a temporal niche separation in the leaf phenology of savanna
trees and grasses? Journal of Biogeography 38 2165-75

Hoffman M T and Todd S 2000 A national review of land degradation in South Africa: the influence of biophysical and socio-economic
factors Journal of Southern African Studies 26 74358

Holloway J and Mengersen K 2018 Statistical machine learning methods and remote sensing for sustainable development goals: a review
Remote Sensing 10 1365

Horion S, Fensholt R, Tagesson T and Ehammer A 2014 Using earth observation-based dry season NDVI trends for assessment of changes in
tree cover in the Sahel Int. J. Remote Sens. 35 2493515

Huang W, Sun G, Ni W, Zhang Z and Dubayah R 2015 Sensitivity of multi-source SAR backscatter to changes in forest aboveground biomass
Remote Sensing 7 9587-609

25


https://doi.org/10.1080/10295925.1999.9631209
https://doi.org/10.1080/10295925.1999.9631209
https://doi.org/10.1080/10295925.1999.9631209
https://doi.org/10.1111/j.1744-7429.2005.00071.x
https://doi.org/10.1111/j.1744-7429.2005.00071.x
https://doi.org/10.1111/j.1744-7429.2005.00071.x
https://fao.org/documents/card/en/c/10c5f896-03f8-536d-b253-aebb36dd2cef/
http://fao.org/3/ad652e/ad652e00.htm/
https://doi.org/10.1071/BT01032
https://doi.org/10.1071/BT01032
https://doi.org/10.1071/BT01032
https://doi.org/10.1023/b:gejo.0000034736.23918.05
https://doi.org/10.1023/b:gejo.0000034736.23918.05
https://doi.org/10.1023/b:gejo.0000034736.23918.05
https://doi.org/10.1046/j.1466-822X.2001.00248.x
https://doi.org/10.1046/j.1466-822X.2001.00248.x
https://doi.org/10.1046/j.1466-822X.2001.00248.x
https://doi.org/10.1016/S0034-4257(03)00039-7
https://doi.org/10.1016/S0034-4257(03)00039-7
https://doi.org/10.1016/S0034-4257(03)00039-7
https://doi.org/10.3390/land3010074
https://doi.org/10.3390/land3010074
https://doi.org/10.3390/land3010074
https://doi.org/10.2989/20702620.2016.1233751
https://doi.org/10.2989/20702620.2016.1233751
https://doi.org/10.2989/20702620.2016.1233751
https://doi.org/10.1080/10106049.2015.1041563
https://doi.org/10.1080/10106049.2015.1041563
https://doi.org/10.1080/10106049.2015.1041563
https://doi.org/10.1016/j.foreco.2009.02.024
https://doi.org/10.1016/j.foreco.2009.02.024
https://doi.org/10.1016/j.foreco.2009.02.024
https://doi.org/10.3112/erdkunde.2002.02.03
https://doi.org/10.3112/erdkunde.2002.02.03
https://doi.org/10.3112/erdkunde.2002.02.03
https://doi.org/10.1016/j.rse.2012.10.026
https://doi.org/10.1016/j.rse.2012.10.026
https://doi.org/10.1016/j.rse.2012.10.026
https://doi.org/10.1016/j.rse.2008.10.006
https://doi.org/10.1016/j.rse.2008.10.006
https://doi.org/10.1016/j.rse.2008.10.006
https://doi.org/10.1023/A:1009848525399
https://doi.org/10.1023/A:1009848525399
https://doi.org/10.1023/A:1009848525399
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1186/s13021-016-0055-8
https://doi.org/10.1186/s13021-016-0055-8
https://doi.org/10.1186/s13021-016-0055-8
https://doi.org/10.30897/ijegeo.410943
https://doi.org/10.30897/ijegeo.410943
https://doi.org/10.30897/ijegeo.410943
https://doi.org/10.1111/ele.13659
https://doi.org/10.1111/ele.13659
https://doi.org/10.1111/ele.13659
https://doi.org/10.1111/ele.13659
https://doi.org/10.3390/s21010320
https://doi.org/10.1186/s40663-016-0077-4
https://doi.org/10.1186/s40663-016-0077-4
https://doi.org/10.1186/s40663-016-0077-4
https://doi.org/10.1016/j.jag.2013.11.014
https://doi.org/10.1016/j.jag.2013.11.014
https://doi.org/10.1016/j.jag.2013.11.014
https://doi.org/10.3390/rs12020302
https://doi.org/10.1016/j.rse.2007.11.013
https://doi.org/10.1016/j.rse.2007.11.013
https://doi.org/10.1016/j.rse.2007.11.013
https://doi.org/10.3390/app10072366
https://doi.org/10.1016/j.isprsjprs.2018.02.010
https://doi.org/10.1016/j.isprsjprs.2018.02.010
https://doi.org/10.1016/j.isprsjprs.2018.02.010
https://doi.org/10.1111/j.1365-2699.2011.02549.x
https://doi.org/10.1111/j.1365-2699.2011.02549.x
https://doi.org/10.1111/j.1365-2699.2011.02549.x
https://doi.org/10.1080/713683611
https://doi.org/10.1080/713683611
https://doi.org/10.1080/713683611
https://doi.org/10.3390/rs10091365
https://doi.org/10.1080/01431161.2014.883104
https://doi.org/10.1080/01431161.2014.883104
https://doi.org/10.1080/01431161.2014.883104
https://doi.org/10.3390/rs70809587
https://doi.org/10.3390/rs70809587
https://doi.org/10.3390/rs70809587

10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

Huemmrich KF, Privette ] L, Mukelabai M, Myneni R B and Knyazikhin Y 2005 Time-series validation of MODIS land biophysical products
in a Kalahari woodland, Africa Int. ]. Remote Sens. 26 438198

Huete A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G 2002 Overview of the radiometric and biophysical performance of the
MODIS vegetation indices Remote Sens. Environ. 83 195-213

Huete A, Justice Cand Van Leeuwen W 1999 MODIS vegetation index (MOD13) Algorithm Theoretical Basis Document 3 295-309

Hiittich C, Gessner U, Herold M, Strohbach B J, Schmidt M, Keil M and Dech S 2009 On the suitability of MODIS time series metrics to map
vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia Remote Sensing 1 620-43

Hiittich C, Herold M, Strohbach B J and Dech S 2011 Integrating in situ, Landsat, and MODIS data for mapping in Southern African
savannas: experiences of LCCS-based land-cover mapping in the Kalahari in Namibia Environ. Monit. Assess. 176 53147

Ibrahim S, Balzter H, Tansey K, Tsutsumida N and Mathieu R 2018 Estimating fractional cover of plant functional types in African savannah
from harmonic analysis of MODIS time-series data Int. J. Remote Sens. 39 2718-45

IPCC 2007 Climate Change 2007 : An Assessment of the Intergovernmental Panel on Climate Change’. (Cambridge: Cambridge University
Press)

IPCC 2014 Climate change 2014—Impacts, adaptation and vulnerability: regional aspects. Niang, I., O.C. Ruppel, M.A. Abdrabo, A. Essel, C.
Lennard, J. Padgham, and P. Urquhart, 2014: Africa Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional
Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed V R Barros
etal (Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press) 1199-265

Janzen D H 1988 Tropical dry forests Biodiversity 15 130-7

Jolly WM and Running S W 2004 Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari Global
Change Biol. 10 303—8

Jones M O, Jones L A, Kimball ] S and McDonald K C 2011 Satellite passive microwave remote sensing for monitoring global land surface
phenology Remote Sens. Environ. 115 1102—14

Kamwi Jonathan Mutau, Endjala Junias and Siyambango Nguza 2020 Dependency of rural communities on non-timber forest products in
the drylands of southern Africa: A case of Mukwe Constituency, Kavango East Region, Namibia Trees, Forests and People 2 100022

Kasischke E S, Melack J M and Dobson M C 1997 The use of imaging radars for ecological applications—A review Rermote Sens. Environ. 59
141-56

Kattenborn T, Leitloff ], Schiefer F and Hinz S 2021 Review on Convolutional Neural Networks (CNN) in vegetation remote sensing ISPRS J.
Photogramm. Remote Sens. 173 24—49

Keenan Rodney ] 2015 Climate change impacts and adaptation in forest management: a review Annals of Forest Science 72 145-67

King E 2014 Southern Africa’s dryland forests and climate change adaptation. a policy briefing prepared for governance of Africa’s resources
programme (https://media.africaportal.org/documents/saia_spb__91_king _20140702.pdf/) (accessed 23 August 2020)

Klogo G S, Gasonoo A and Ampomah I K 2013 On the performance of filters for reduction of speckle noise in SAR images off the coast of the
Gulf of Guinea arXiv:1312.2383

Kuenzer C, Bluemel A, Gebhardt S, Quoc TV and Dech S 2011 Remote sensing of mangrove ecosystems: a review Remote Sensing 3 878-928

Kussul N, Lavreniuk M, Skakun S and Shelestov A 2017 Deep learning classification of land cover and crop types using remote sensing data
IEEE Geosci. Remote Sens. Lett. 14 778-82

Lambin EF, Geist HJ and Lepers E 2003 Dynamics of land-use and land-cover change in tropical regions Annual Review of Environment and
Resources 28 205—41

Latifi H, Nothdurft A and Koch B 2010 Non-parametric prediction and mapping of standing timber volume and biomass in a temperate
forest: application of multiple optical /LIDAR-derived predictors Forestry 83 395-407

Lawal S, Lennard C, Jack C, Wolski P, Hewitson B and Abiodun B 2019 The observed and model-simulated response of southern African
vegetation to drought Agric. For. Meteorol. 279 107698

Lawley V, Lewis M, Clarke K and Ostendorf B 2016 Site-based and remote sensing methods for monitoring indicators of vegetation
condition: an Australian review Ecol. Indic. 60 1273-83

Le Canut P, Andreae M O, Harris G W, Wienhold F G and Zenker T 1996 Airborne studies of emissions from savanna fires in southern
Africa: 1. Aerosol emissions measured with a laser optical particle counter Journal of Geophysical Research: Atmospheres 101 23615-30

Lehmann E A, Caccetta P, Lowell K, Mitchell A, Zhou Z S, Held A, Milne T and Tapley 12015 SAR and optical remote sensing: assessment of
complementarity and interoperability in the context of a large-scale operational forest monitoring system Rermote Sens. Environ. 156
33548

Leite A, Céceres A, Melo M, Mills M S L and Monteiro A T 2018 Reducing emissions from deforestation and forest degradation in Angola:
insights from the scarp forest conservation ‘hotspot’ Land Degrad. Dev. 29 4291-300

Lesolle D 2012 SADC policy paper on climate change: assessing the policy options for SADC member states SADC Secretariat, Policy,
Planning, Resource Mobilisation Directorate. Gaborone, Botswana 56 (http://www.sadc.int/files /9113 /6724/7724/SADC_Policy_
Paper_Climate_Change_EN_1.pdf)

Lewis S L e al 2013 Above-ground biomass and structure of 260 African tropical forests Philosophical Transactions of the Royal Society B:
Biological Sciences 368 20120295

Liao W, V, Coillie F, Gao L, Li L, Zhang B and Chanussot ] 2018 Deep learning for fusion of APEX hyperspectral and full-waveform LIDAR
remote sensing data for tree species mapping IEEE Access 6 6871629

Linares-Palomino R, Oliveira-Filho A T and Pennington R T 2011 Neotropical seasonally dry forests: diversity, endemism, and
biogeography of woody plants In Seasonally Dry Tropical Forests. (Washington, DC: Island Press ) 3-21

LiuYY, Van Dijk AT, De Jeu R A, Canadell ] G, McCabe M F, Evans ] P and Wang G 2015 Recent reversal in loss of global terrestrial biomass
Nat. Clim. Change 5 470—4

LiuYY, DeJeu RA, McCabe M F, Evans J P and Van Dijk A12011 Global long-term passive microwave satellite-based retrievals of
vegetation optical depth Geophys. Res. Lett. 38 L18402

Lu D 2006 The potential and challenge of remote sensing-based biomass estimation Int. J. Remote Sens. 27 1297-328

Madonsela S, Cho M A, Ramoelo A, Mutanga O and Naidoo L 2018 Estimating tree species diversity in the savannah using NDVI and woody
canopy cover Int. J. Appl. Earth Obs. Geoinf. 66 106—15

Maglione P 2016 Very high resolution optical satellites: an overview of the most commonly used American Journal of Applied Sciences 13 91

Mapfumo R B, Murwira A, Masocha M and Andriani R 2016 The relationship between satellite-derived indices and species diversity across
African savanna ecosystems Int. J. Appl. Earth Obs. Geoinf. 52 306—17

Mareya H T, Tagwireyi P, Ndaimani H, Gara T W and Gwenzi D 2018 Estimating tree crown area and aboveground biomass in miombo
woodlands from high-resolution RGB-only imagery IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
11 868-75

26


https://doi.org/10.1080/01431160500113393
https://doi.org/10.1080/01431160500113393
https://doi.org/10.1080/01431160500113393
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.3390/rs1040620
https://doi.org/10.3390/rs1040620
https://doi.org/10.3390/rs1040620
https://doi.org/10.1007/s10661-010-1602-5
https://doi.org/10.1007/s10661-010-1602-5
https://doi.org/10.1007/s10661-010-1602-5
https://doi.org/10.1080/01431161.2018.1430914
https://doi.org/10.1080/01431161.2018.1430914
https://doi.org/10.1080/01431161.2018.1430914
https://doi.org/10.1046/j.1365-2486.2003.00701.x
https://doi.org/10.1046/j.1365-2486.2003.00701.x
https://doi.org/10.1046/j.1365-2486.2003.00701.x
https://doi.org/10.1016/j.rse.2010.12.015
https://doi.org/10.1016/j.rse.2010.12.015
https://doi.org/10.1016/j.rse.2010.12.015
https://doi.org/10.1016/j.tfp.2020.100022
https://doi.org/10.1016/S0034-4257(96)00148-4
https://doi.org/10.1016/S0034-4257(96)00148-4
https://doi.org/10.1016/S0034-4257(96)00148-4
https://doi.org/10.1016/S0034-4257(96)00148-4
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1007/s13595-014-0446-5
https://doi.org/10.1007/s13595-014-0446-5
https://doi.org/10.1007/s13595-014-0446-5
https://media.africaportal.org/documents/saia_spb__91_king_20140702.pdf/
https://arxiv.org/abs/1312.2383
https://doi.org/10.3390/rs3050878
https://doi.org/10.3390/rs3050878
https://doi.org/10.3390/rs3050878
https://doi.org/10.1109/LGRS.2017.2681128
https://doi.org/10.1109/LGRS.2017.2681128
https://doi.org/10.1109/LGRS.2017.2681128
https://doi.org/10.1146/annurev.energy.28.050302.105459
https://doi.org/10.1146/annurev.energy.28.050302.105459
https://doi.org/10.1146/annurev.energy.28.050302.105459
https://doi.org/10.1093/forestry/cpq022
https://doi.org/10.1093/forestry/cpq022
https://doi.org/10.1093/forestry/cpq022
https://doi.org/10.1016/j.agrformet.2019.107698
https://doi.org/10.1016/j.ecolind.2015.03.021
https://doi.org/10.1016/j.ecolind.2015.03.021
https://doi.org/10.1016/j.ecolind.2015.03.021
https://doi.org/10.1029/95JD02610
https://doi.org/10.1029/95JD02610
https://doi.org/10.1029/95JD02610
https://doi.org/10.1016/j.rse.2014.09.034
https://doi.org/10.1016/j.rse.2014.09.034
https://doi.org/10.1016/j.rse.2014.09.034
https://doi.org/10.1016/j.rse.2014.09.034
https://doi.org/10.1002/ldr.3178
https://doi.org/10.1002/ldr.3178
https://doi.org/10.1002/ldr.3178
https://www.sadc.int/files/9113/6724/7724/SADC_Policy_Paper_Climate_Change_EN_1.pdf
https://www.sadc.int/files/9113/6724/7724/SADC_Policy_Paper_Climate_Change_EN_1.pdf
https://doi.org/10.1098/rstb.2012.0295
https://doi.org/10.1109/ACCESS.2018.2880083
https://doi.org/10.1109/ACCESS.2018.2880083
https://doi.org/10.1109/ACCESS.2018.2880083
https://doi.org/10.5822/978-1-61091-021-7_1
https://doi.org/10.5822/978-1-61091-021-7_1
https://doi.org/10.5822/978-1-61091-021-7_1
https://doi.org/10.1038/nclimate2581
https://doi.org/10.1038/nclimate2581
https://doi.org/10.1038/nclimate2581
https://doi.org/10.1029/2011GL048684
https://doi.org/10.1080/01431160500486732
https://doi.org/10.1080/01431160500486732
https://doi.org/10.1080/01431160500486732
https://doi.org/10.1016/j.jag.2017.11.005
https://doi.org/10.1016/j.jag.2017.11.005
https://doi.org/10.1016/j.jag.2017.11.005
https://doi.org/10.3844/ajassp.2016.91.99
https://doi.org/10.1016/j.jag.2016.06.025
https://doi.org/10.1016/j.jag.2016.06.025
https://doi.org/10.1016/j.jag.2016.06.025
https://doi.org/10.1109/JSTARS.2018.2799386
https://doi.org/10.1109/JSTARS.2018.2799386
https://doi.org/10.1109/JSTARS.2018.2799386

10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

Marin-Spiotta E, Cusack D F, Ostertag R and Silver W L 2008 Trends in above and belowground carbon with forest regrowth after
agricultural abandonment in the neotropics In Post-Agricultural Succession in the Neotropics. (New York, NY: Springer) pp 22—72

Marston C G, Wilkinson D M, Sponheimer M, Codron D, Codron J and O’Regan H ] 2020 ‘Remote’behavioural ecology: do megaherbivores
consume vegetation in proportion to its presence in the landscape? Peer] 8 8622

Marta S 2018 Planet Imagery Product Specifications. (San Francisco, CA, USA: Planet Labs) 91

Marumbwa F M, Cho M A and Chirwa P W 2021 Geospatial analysis of meteorological drought impact on Southern Africa biomes Int. J.
Remote Sens. 42 2155-73

Matavire M M, Sibanda M and Dube T 2015 Assessing the aftermath of the fast track land reform programme in Zimbabwe on land-use and
land-cover changes Transactions of the Royal Society of South Africa 70 181-6

Mathieu R et al 2013 Toward structural assessment of semi-arid African savannahs and woodlands: the potential of multitemporal
polarimetric RADARSAT-2 fine beam images Remote Sens. Environ. 138 215-31

Mathieu R, Main R, Roy D P, Naidoo L and Yang H 2019 The effect of surface fire in savannah systems in the kruger national park (KNP),
South Africa, on the backscatter of c-band sentinel-1 images Fire 2 1-24

Mayes M, Mustard J, Melillo J, Neill C and Nyadzi G 2017 Going beyond the green: senesced vegetation material predicts basal area and
biomass in remote sensing of tree cover conditions in an African tropical dry forest (miombo woodland) landscape Environ. Res. Lett.
12085004

Mayr M J, Vanselow K A and Samimi C 2018 Fire regimes at the arid fringe: a 16-year remote sensing perspective (2000-2016) on the controls
of fire activity in Namibia from spatial predictive models Ecol. Indic. 91 324-37

Mbow C, Brandt M, Ouedraogo I, de Leeuw ] and Marshall M 2015 What four decades of earth observation tell us about land degradation in
the Sahel? Remote Sensing7 4048—67

McCarthy J, Gumbricht T and McCarthy T S 2005 Ecoregion classification in the Okavango Delta, Botswana from multitemporal remote
sensing Int. J. Remote Sens. 26 4339-57

McKenzie ] E, Brennan S E, Ryan R E, Thomson H J, Johnston R V and Thomas ] 2019 Defining the criteria for including studies and how
they will be grouped for the synthesis Cochrane Handbook for Systematic Reviews of Interventions 23 33—65

Méndez V E, Gliessman S R and Gilbert G S 2007 Tree biodiversity in farmer cooperatives of a shade coffee landscape in western El Salvador.
Agriculture Ecosystems & Environment 119 145-59

Mendivelso H A, Camarero ] J, Gutiérrez E and Zuidema P A 2014 Time-dependent effects of climate and drought on tree growth ina
Neotropical dry forest: short-term tolerance versus long-term sensitivity Agric. For. Meteorol. 188 13-23

Metternicht G, Zinck J A, Blanco P D and del Valle H F 2010 Remote sensing of land degradation: experiences from Latin America and the
Caribbean J. Environ. Qual. 39 4261

Meyer T, D’Odorico P, Okin G S, Shugart H H, Caylor KK, O’Donnell F C, Bhattachan A and Dintwe K 2014 An analysis of structure:
biomass structure relationships for characteristic species of the western K alahari, B otswana African Journal of Ecology 52 20-9

Miles L, Newton A C, DeFries R S, Ravilious C, May I, Blyth S, Kapos V and Gordon J E 2006 A global overview of the conservation status of
tropical dry forests Journal of Biogeography 33 491-505

Mitchard E T and Flintrop C M 2013 Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas
19822006 Philosophical Transactions of the Royal Society B: Biological Sciences 368 20120406

Mitchard E T, Saatchi S S, Woodhouse I H, Nangendo G, Ribeiro N S, Williams M, Ryan C M, Lewis S L, Feldpausch T R and Meir P 2009
Using satellite radar backscatter to predict above-ground woody biomass: a consistent relationship across four different African
landscapes Geophys. Res. Lett. 36 1.23401

Moher D, Liberati A, Tetzlaff ], Altman D G and Prisma Group 2009 Preferred reporting items for systematic reviews and meta-analyses: the
PRISMA statement PLoS Med. 6 e1000097

Mooney H A, Bullock S Hand Medina E 1995 Introduction ed S H Bullock, H A Mooney and E Medina Seasonally Dry Tropical Forests.
(Cambridge: Cambridge University Press)

Moore CE etal 2016 Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat
photography Biogeosciences 13 5085—102

Muraoka H and Koizumi H 2009 Satellite Ecology (SATECO)—linking ecology, remote sensing and micrometeorology, from plot to
regional scale, for the study of ecosystem structure and function Journal of Plant Research 122 3-20

Murphy P G and Lugo A E 1986 Ecology of tropical dry forest Annual Review of Ecology and Systematics 17 6788

Mutanga O, Van Aardt ] and Kumar L 2009 Imaging spectroscopy (Hyperspectral remote sensing) in Southern Africa: an overview S. Afr. J.
Sci. 105 193-8

Mutanga O, Dube T and Ahmed F 2016 Progress in remote sensing: vegetation monitoring in South Africa South African Geographical
Journal 98 461-71

Mutanga O and Rugege D 2006 Integrating remote sensing and spatial statistics to model herbaceous biomass distribution in a tropical
savanna Int. . Remote Sens. 27 3499-514

Naidoo Laven, Mathieu Renaud, Main Russell, Wessels Konrad and Asner Gregory P 2016 L-band Synthetic Aperture Radar imagery
performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs International Journal of Applied
Earth Observation and Geoinformation 52 54—64

NanniA S, Sloan S, Aide T M, Graesser J, Edwards D and Grau H R 2019 The neotropical reforestation hotspots: a biophysical and
socioeconomic typology of contemporary forest expansion Global Environ. Change 54 148-59

Narine L L, Popescu S C and Malambo L 2019 Synergy of ICESat-2 and Landsat for mapping forest aboveground biomass with deep learning
Remote Sensing 11 1503

O’Connor Tim G, Puttick James R and Hoffman M Timm 2014 Bush encroachment in southern Africa: changes and causes African Journal
of Range & Forage Science 31 67-88

Olson D M et al 2001 Terrestrial ecoregions of the world: a new map of life on eartha new global map of terrestrial ecoregions provides an
innovative tool for conserving biodiversity BioScience 51 933—8

Olsson L, Eklundh L and Ard6 J 2005 A recent greening of the Sahel—trends, patterns and potential causes J. Arid. Environ. 63 556—66

Owe M., de Jeu R. and Walker J. 2001 A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave
polarization difference index IEEE Transactions on Geoscience and Remote Sensing 39 164354

Paruelo ] M, Texeira M, Staiano L, Mastrdngelo M, Amdan L and Gallego F 2016 An integrative index of Ecosystem Services provision based
on remotely sensed data Ecol. Indic. 71 145-54

Pennington R T, Lehmann C E and Rowland L M 2018 Tropical savannas and dry forests Current Biology 28 R541-5

Pennington R T and Ratter ] A (ed) 2006 Neotropical Savannas And Seasonally Dry Forests: Plant Diversity, Biogeography, And Conservation.
(Boca Raton, Florida, USA: CRC press)

27


https://doi.org/10.7717/peerj.8622
https://doi.org/10.1080/01431161.2020.1851799
https://doi.org/10.1080/01431161.2020.1851799
https://doi.org/10.1080/01431161.2020.1851799
https://doi.org/10.1080/0035919X.2015.1017865
https://doi.org/10.1080/0035919X.2015.1017865
https://doi.org/10.1080/0035919X.2015.1017865
https://doi.org/10.1016/j.rse.2013.07.011
https://doi.org/10.1016/j.rse.2013.07.011
https://doi.org/10.1016/j.rse.2013.07.011
https://doi.org/10.3390/fire2030037
https://doi.org/10.3390/fire2030037
https://doi.org/10.3390/fire2030037
https://doi.org/10.1088/1748-9326/aa7242
https://doi.org/10.1016/j.ecolind.2018.04.022
https://doi.org/10.1016/j.ecolind.2018.04.022
https://doi.org/10.1016/j.ecolind.2018.04.022
https://doi.org/10.3390/rs70404048
https://doi.org/10.3390/rs70404048
https://doi.org/10.3390/rs70404048
https://doi.org/10.1080/01431160500113583
https://doi.org/10.1080/01431160500113583
https://doi.org/10.1080/01431160500113583
https://doi.org/10.1002/9781119536604.ch3
https://doi.org/10.1002/9781119536604.ch3
https://doi.org/10.1002/9781119536604.ch3
https://doi.org/10.1016/j.agee.2006.07.004
https://doi.org/10.1016/j.agee.2006.07.004
https://doi.org/10.1016/j.agee.2006.07.004
https://doi.org/10.1016/j.agrformet.2013.12.010
https://doi.org/10.1016/j.agrformet.2013.12.010
https://doi.org/10.1016/j.agrformet.2013.12.010
https://doi.org/10.2134/jeq2009.0127
https://doi.org/10.2134/jeq2009.0127
https://doi.org/10.2134/jeq2009.0127
https://doi.org/10.1111/aje.12086
https://doi.org/10.1111/aje.12086
https://doi.org/10.1111/aje.12086
https://doi.org/10.1111/j.1365-2699.2005.01424.x
https://doi.org/10.1111/j.1365-2699.2005.01424.x
https://doi.org/10.1111/j.1365-2699.2005.01424.x
https://doi.org/10.1098/rstb.2012.0406
https://doi.org/10.1029/2009GL040692
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.5194/bg-13-5085-2016
https://doi.org/10.5194/bg-13-5085-2016
https://doi.org/10.5194/bg-13-5085-2016
https://doi.org/10.1007/s10265-008-0188-2
https://doi.org/10.1007/s10265-008-0188-2
https://doi.org/10.1007/s10265-008-0188-2
https://doi.org/10.1146/annurev.es.17.110186.000435
https://doi.org/10.1146/annurev.es.17.110186.000435
https://doi.org/10.1146/annurev.es.17.110186.000435
https://doi.org/10.4102/sajs.v105i5/6.88
https://doi.org/10.4102/sajs.v105i5/6.88
https://doi.org/10.4102/sajs.v105i5/6.88
https://doi.org/10.1080/03736245.2016.1208586
https://doi.org/10.1080/03736245.2016.1208586
https://doi.org/10.1080/03736245.2016.1208586
https://doi.org/10.1080/01431160600639735
https://doi.org/10.1080/01431160600639735
https://doi.org/10.1080/01431160600639735
https://doi.org/10.1016/j.jag.2016.05.006
https://doi.org/10.1016/j.jag.2016.05.006
https://doi.org/10.1016/j.jag.2016.05.006
https://doi.org/10.1016/j.gloenvcha.2018.12.001
https://doi.org/10.1016/j.gloenvcha.2018.12.001
https://doi.org/10.1016/j.gloenvcha.2018.12.001
https://doi.org/10.3390/rs11121503
https://doi.org/10.2989/10220119.2014.939996
https://doi.org/10.2989/10220119.2014.939996
https://doi.org/10.2989/10220119.2014.939996
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1016/j.jaridenv.2005.03.008
https://doi.org/10.1016/j.jaridenv.2005.03.008
https://doi.org/10.1016/j.jaridenv.2005.03.008
https://doi.org/10.1109/36.942542
https://doi.org/10.1109/36.942542
https://doi.org/10.1109/36.942542
https://doi.org/10.1016/j.ecolind.2016.06.054
https://doi.org/10.1016/j.ecolind.2016.06.054
https://doi.org/10.1016/j.ecolind.2016.06.054
https://doi.org/10.1016/j.cub.2018.03.014
https://doi.org/10.1016/j.cub.2018.03.014
https://doi.org/10.1016/j.cub.2018.03.014

10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

Pereira Junior A C, Oliveira S L, Pereira ] M and Turkman M A A 2014 Modelling fire frequency in a Cerrado savanna protected area PLoS
One9 102380

Petheram L, Campbell BM, Marunda C T, Tiveau D and Shackleton S 2006 The wealth of the dry forests: can sound forest management
contribute to the millennium development goals in Sub-Saharan Africa?CIFOR Livelihood Brief No.5. Bogor, Indonesia, Center for
International Forestry Research (CIFOR) (https://cgspace.cgiar.org/handle /10568 /19577)

Portillo C 2010 Assessing the Conservation status of Neotropical Dry forests using Geographic Information Systems and Optical Remote
Sensing (https://doi.org/10.7939/R36F06)

Portillo-Quintero C A, Sanchez A M, Valbuena C A, Gonzalez Y Y and Larreal ] T 2012 Forest cover and deforestation patterns in the
Northern Andes (Lake Maracaibo Basin): a synoptic assessment using MODIS and Landsat imagery Appl. Geogr. 35 152—63

Portillo-Quintero C A and Sdnchez-Azofeifa G A 2010 Extent and conservation of tropical dry forests in the Americas Biological Conservation
143 144-55

Pricope N G and Binford M W 2012 A spatio-temporal analysis of fire recurrence and extent for semi-arid savanna ecosystems in southern
Africa using moderate-resolution satellite imagery J. Environ. Manage. 100 7285

Pricope N G, Gaughan A E, All] D, Binford M W and Rutina L P 2015 Spatio-temporal analysis of vegetation dynamics in relation to shifting
inundation and fire regimes: disentangling environmental variability from land management decisions in a southern african
transboundary watershed Land 4 627-55

Putz F E and Redford K H 2010 The importance of defining ‘forest’: tropical forest degradation, deforestation, long-term phase shifts, and
further transitions Biotropica 42 10-20

Quesada M, Sanchez-Azofeifa G. A, Alvarez-Anorve M, Stoner K. E, Avila-Cabadilla L, Calvo-Alvarado J, Castillo A, Espirito-Santo M. M,
Fagundes M, Fernandes G. W and Gamon ] 2009 Succession and management of tropical dry forests in the Americas: Review and new
perspectives Forest Ecology and Management 258 101424

Quijas S, Romero-Duque L P, Trilleras ] M, Conti G, Kolb M, Brignone E and Dellafiore C 2019 Linking biodiversity, ecosystem services, and
beneficiaries of tropical dry forests of Latin America: review and new perspectives Ecosystem Services 36 100909

Rahmoune R, Ferrazzoli P, Kerr Y H and Richaume P 2013 SMOS level 2 retrieval algorithm over forests: description and generation of
global maps IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 14309

Reiche J et al 2016 Combining satellite data for better tropical forest monitoring Nat. Clim. Change 6 120-2

Reynolds J, Wesson K, Desbiez A L, Ochoa-Quintero ] M and Leimgruber P 2016 Using remote sensing and random forest to assess the
conservation status of critical Cerrado habitats in Mato Grosso do Sul, Brazil Land 5 12

Ringrose S, Chipanshi A C, Matheson W, Chanda R, Motoma L, Magole I and Jellema A 2002 Climate- and human-induced woody
vegetation changes in Botswana and their implications for human adaptation Environmental Management 30 98—109

Rodriguez J P, Nassar ] M, Rodriguez-Clark K M, Zager I, Portillo-Quintero C A, Carrasquel F and Zambrano S 2008 Tropical dry forests in
Venezuela: assessing status, threats and future prospects Environ. Conserv. 35 311-8

Rouse ] W 1974 Monitoring the vernal advancement of retrogradation of natural vegetation. NASA /GSFC, type I11, final report (1974
Greenbelt, MD College Station, Texas 77843 371

Roy David P, Huang Haiyan, Boschetti Luigi, Giglio Louis, Yan Lin, Zhang Hankui H. and Li Zhongbin 2019 Landsat-8 and Sentinel-2
burned area mapping - A combined sensor multi-temporal change detection approach Remote Sensing of Environment 231 111254

Ryan Casey M., Pritchard Rose, McNicol Iain, Owen Matthew, Fisher Janet A. and Lehmann Caroline 2016 Ecosystem services from
southern African woodlands and their future under global change Philosophical Transactions of the Royal Society B: Biological Sciences
37120150312

Sader S A, Waide R B, Lawrence W T and Joyce A T 1989 Tropical forest biomass and successional age class relationships to a vegetation
index derived from Landsat TM data Remote Sens. Environ. 28 143-98

Schmidhuber Jiirgen 2015 Deep learning in neural networks: An overview Neural Networks 61 85-117

Sanchez-Azofeifa A, Portillo-Quintero C, Wilson-Fernandes G, Stoner K and Shimizu T 2013 The policy process for land use/cover change
and forest degradation in the semi-arid Latin American/Caribbean region: perspectives and opportunities. A literature review
prepared for the Inter-American Development Bank A Literature Review Prepared for the Inter-American Development Bank

Sénchez-Azofeifa G A et al 2005 Research priorities for Neotropical dry forests 1 Biotropica: The Journal of Biology and Conservation 37
477-85 (https:/ /www.jstor.org/stable/30043216)

Sénchez-Azofeifa G A, Castro KL, Rivard B, Kalascka M R and Harriss R C 2003 Remote sensing research priorities in tropical dry forest
environments Biotropica 35 134—42

Santos ] R, LacruzM S P, Araujo L S and Keil M 2002 Savanna and tropical rainforest biomass estimation and spatialization using JERS-1
data Int. J. Remote Sens. 23 1217-29

Scholes RJ, Frost P G H and Tian Y 2004 Canopy structure in savannas along a moisture gradient on Kalahari sands Global Change Biol. 10
292-302

Schroder Jobst Michael, Avila Rodriguez Lina Paola and Giinter Sven 2021 Research trends: Tropical dry forests: The neglected research
agenda? Forest Policy and Economics 122 102333

Schultz M, Shapiro A, Clevers ] G, Beech C and Herold M 2018 Forest cover and vegetation degradation detection in the Kavango Zambezi
transfrontier conservation area using BEAST monitor Remote Sensing 10 1850

Shafaey M A., Salem M A.-M, Ebied H M, Al-Berry M N and Tolba M F 2018 Deep Learning for Satellite Image Classification Deep Learning
for Satellite Image Classification (AISI 2018: Springer, Cham.) pp 383-91

Shao Z, Zhang L and Wang L 2017 Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR
data to map forest above-ground biomass IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 5569—82

Shao Z, Zhang I and Wang L 2017 Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR
data to map forest above-ground biomass IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 5569—82

Shelestov A, Lavreniuk M, Kussul N, Novikov A and Skakun S 2017 Exploring google earth engine platform for big data processing:
classification of multi-temporal satellite imagery for crop mapping Frontiers in Earth Science 5 17

ShiJ, Jackson T, Tao J, DuJ, Bindlish R, Lu L and Chen K S 2008 Microwave vegetation indices for short vegetation covers from satellite
passive microwave sensor AMSR-E Remote Sens. Environ. 112 4285-300

Shimada M 2018 Imaging from Spaceborne and Airborne SARs, Calibration, and Applications (Boca Raton, Florida, USA: CRC Press)

SilvaJ M N, Pereira] M C, Cabral AT, Sa A CL, Vasconcelos M ] P, Mota B and Gregoire ] M 2003 An estimate of the area burned in southern
Africa during the 2000 dry season using SPOT-VEGETATION satellite data Journal of Geophysical Research-Atmospheres 108 NO.
D13, 8498

Smith W K et al 2019 Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities Remote Sens.
Environ. 233 111401

28


https://doi.org/10.1371/journal.pone.0102380
https://cgspace.cgiar.org/handle/10568/19577
https://doi.org/10.7939/R36F06
https://doi.org/10.1016/j.apgeog.2012.06.015
https://doi.org/10.1016/j.apgeog.2012.06.015
https://doi.org/10.1016/j.apgeog.2012.06.015
https://doi.org/10.1016/j.biocon.2009.09.020
https://doi.org/10.1016/j.biocon.2009.09.020
https://doi.org/10.1016/j.biocon.2009.09.020
https://doi.org/10.1016/j.jenvman.2012.01.024
https://doi.org/10.1016/j.jenvman.2012.01.024
https://doi.org/10.1016/j.jenvman.2012.01.024
https://doi.org/10.3390/land4030627
https://doi.org/10.3390/land4030627
https://doi.org/10.3390/land4030627
https://doi.org/10.1111/j.1744-7429.2009.00567.x
https://doi.org/10.1111/j.1744-7429.2009.00567.x
https://doi.org/10.1111/j.1744-7429.2009.00567.x
https://doi.org/10.1016/j.foreco.2009.06.023
https://doi.org/10.1016/j.foreco.2009.06.023
https://doi.org/10.1016/j.foreco.2009.06.023
https://doi.org/10.1016/j.ecoser.2019.100909
https://doi.org/10.1109/JSTARS.2013.2256339
https://doi.org/10.1109/JSTARS.2013.2256339
https://doi.org/10.1109/JSTARS.2013.2256339
https://doi.org/10.1038/nclimate2919
https://doi.org/10.1038/nclimate2919
https://doi.org/10.1038/nclimate2919
https://doi.org/10.3390/land5020012
https://doi.org/10.1007/s00267-002-2486-0
https://doi.org/10.1007/s00267-002-2486-0
https://doi.org/10.1007/s00267-002-2486-0
https://doi.org/10.1017/S0376892908005237
https://doi.org/10.1017/S0376892908005237
https://doi.org/10.1017/S0376892908005237
https://doi.org/10.1016/j.rse.2019.111254
https://doi.org/10.1098/rstb.2015.0312
https://doi.org/10.1016/0034-4257(89)90112-0
https://doi.org/10.1016/0034-4257(89)90112-0
https://doi.org/10.1016/0034-4257(89)90112-0
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.jstor.org/stable/30043216
https://doi.org/10.1111/j.1744-7429.2003.tb00273.x
https://doi.org/10.1111/j.1744-7429.2003.tb00273.x
https://doi.org/10.1111/j.1744-7429.2003.tb00273.x
https://doi.org/10.1080/01431160110092867
https://doi.org/10.1080/01431160110092867
https://doi.org/10.1080/01431160110092867
https://doi.org/10.1046/j.1365-2486.2003.00703.x
https://doi.org/10.1046/j.1365-2486.2003.00703.x
https://doi.org/10.1046/j.1365-2486.2003.00703.x
https://doi.org/10.1046/j.1365-2486.2003.00703.x
https://doi.org/10.1016/j.forpol.2020.102333
https://doi.org/10.3390/rs10111850
https://doi.org/10.1007/978-3-319-99010-1_35
https://doi.org/10.1007/978-3-319-99010-1_35
https://doi.org/10.1007/978-3-319-99010-1_35
https://doi.org/10.1109/JSTARS.2017.2748341
https://doi.org/10.1109/JSTARS.2017.2748341
https://doi.org/10.1109/JSTARS.2017.2748341
https://doi.org/10.1109/JSTARS.2017.2748341
https://doi.org/10.1109/JSTARS.2017.2748341
https://doi.org/10.1109/JSTARS.2017.2748341
https://doi.org/10.3389/feart.2017.00017
https://doi.org/10.1016/j.rse.2008.07.015
https://doi.org/10.1016/j.rse.2008.07.015
https://doi.org/10.1016/j.rse.2008.07.015
https://doi.org/10.1029/2002JD002320
https://doi.org/10.1029/2002JD002320
https://doi.org/10.1016/j.rse.2019.111401

10P Publishing

Environ. Res. Commun. 4 (2022) 042001 RM David et al

Stan K and Sanchez-Azofeifa A 2019 Deforestation and secondary growth in Costa Rica along the path of development Regional
Environmental Change 19 587-97

Stan K and Sanchez-Azofeifa A 2019 Tropical dry forest diversity, climatic response, and resilience in a changing climate Forests 10 443

Staver A C, Archibald S and Levin S A 2011 The global extent and determinants of savanna and forest as alternative biome states Science 334
230-2

Stoner K E, Timm R M, Frankie G W, Mata A and Vinson S B 2004 Tropical dry-Forest Mammals of Palo Verde. Biodiversity Conservation in
Costa Rica. Learning the Lessons in a Seasonal Dry Forest. (Berkeley, Los Angeles: University of California Press) 48—66

Sunderland T et al 2015 Global dry forests: a prologue International Forestry Review 17 1-9

Suresh H S, Dattaraja H S, Mondal N and Sukumar R 2011 Seasonally dry tropical forests in Southern India. An analysis of floristic
composition, structure, and dynamics in Mudumalai Wildlife Sanctuary The Ecology and Conservation of seaSonally Dry Forests in Asia
37-58

Symeonakis E, Higginbottom T P, Petroulaki K and Rabe A 2018a Optimisation of savannah land cover characterisation with optical and
SAR data Remote Sensing 10 499

Symeonakis E, Korkofigkas A, Vamvoukakis G, Stamou G and Arnau-Rosalen E 2020 Deep learning monitoring of woody vegetation density
in a South African Savannah region International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-
ISPRS Archives 43 1645-9

Tian F, Brandt M, Liu YiY, Verger A, Tagesson T, Diouf A A, Rasmussen K, Mbow C, Wang Y and Fensholt R 2016 Remote sensing of
vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVT and in situ green biomass data over
West African Sahel Remote Sensing of Environment 177 265-76

Tian F, Brandt M, Liu Y Y, Rasmussen K and Fensholt R 2017 Mapping gains and losses in woody vegetation across global tropical drylands
Global Change Biol. 23 1748-60

Toth Cand J6zkéw G 2016 Remote sensing platforms and sensors: a survey ISPRS J. Photogramm. Remote Sens. 115 22-36

Trejo I and Dirzo R 2000 Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico Biological Conservation 94
13342

Trier @ D, Salberg A B, Kermit M, Rudjord @, Gobakken T, Nzesset E and Aarsten D 2018 Tree species classification in Norway from
airborne hyperspectral and airborne laser scanning data European Journal of Remote Sensing 51 336-51

Tsalyuk M, Kelly M and Getz W M 2017 Improving the prediction of African savanna vegetation variables using time series of MODIS
products ISPRS J. Photogramm. Remote Sens. 131 77-91

Tucker CJ 1979 Red and photographic infrared linear combinations for monitoring vegetation Remote Sens. Environ. 8 127-50

Urban M, Berger C, Mudau T E, Heckel K, Truckenbrodt J, Onyango Odipo V, Smit I P and Schmullius C 2018 Surface moisture and
vegetation cover analysis for drought monitoring in the Southern Kruger National Park using sentinel-1, sentinel-2, and landsat-8
Remote Sensing 10 1482

Valentini R et al 2014 A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities Biogeosciences 11 381-407

Van Bommel F PJ, Heitkonig I M A, Epema G F, Ringrose S, Bonyongo C and Veenendaal E M 2006 Remotely sensed habitat indicators for
predicting distribution of impala (Aepyceros melampus) in the Okavango Delta, Botswana Journal of Tropical Ecology 22 101-10

Van Marle MJ E, Van Der Werf GR, De Jeu RA M and Liu Y Y 2016 Annual South American forest loss estimates based on passive
microwave remote sensing (1990-2010) Biogeosciences 13 60924

Veldkamp A and Lambin E F 2001 Predicting land-use change Agriculture, Ecosystems & Environment 85 6

Venter Z S, Scott S L, Desmet P G and Hoffman M T 2020 Application of Landsat-derived vegetation trends over South Africa: potential for
monitoring land degradation and restoration Ecol. Indic. 113 106206

Verbesselt J, Somers B, van Aardt J, Jonckheere I and Coppin P 2006 Monitoning herbaceous biomass and water content with SPOT
VEGETATION time-series to improve fire risk assessment in savanna ecosystems Rermote Sens. Environ. 101 399-414

Verbesselt ], Somers B, Lhermitte S, Jonckheere I, van Aardt ] and Coppin P 2007 Monitoring herbaceous fuel moisture content with SPOT
VEGETATION time-series for fire risk prediction in savanna ecosystems Remote Sens. Environ. 108 357-68

Verlinden A and Laamanen R 2006a Long term fire scar monitoring with remote sensing in northern Namibia: relations between fire
frequency, rainfall, land cover, fire management and trees Environ. Monit. Assess. 112 231-53

Verlinden A and Laamanen R 2006b Modeling woody vegetation resources using Landsat TM imagery in northern Namibia Southern
African Forestry Journal 207 27-39

Walter Hand Burnett ] H 1971 Ecology of Tropical and Subtropical Vegetation. 539 (Edinburgh: Oliver and Boyd) xviii + 539

WangL, JiaM, Yin D and Tian ] 2019 A review of remote sensing for mangrove forests: 19562018 Remote Sens. Environ. 231 111223

WangY, Day] L and Davis F W 1998 Sensitivity of modeled C- and L-band radar backscatter to ground surface parameters in loblolly pine
forest Remote Sens. Environ. 66 331-42

Wessels KJ, Prince S D, Zambatis N, Macfadyen S, Frost P E and Van Zyl D 2006 Relationship between herbaceous biomass and 1-km(2)
Advanced Very High Resolution Radiometer (AVHRR) NDVIin Kruger National Park, South Africa Int. J. Remote Sens. 27 951-73

Westinga E, Beltran A P R, De Bie C A and van Gils H A 2020 A novel approach to optimize hierarchical vegetation mapping from hyper-
temporal NDVI imagery, demonstrated at national level for Namibia Int. J. Appl. Earth Obs. Geoinf. 91 102152

White BL A 2019 Satellite detection of wildland fires in South America Floresta 49 851-8

Whitecross M A, Witkowski E T F and Archibald S 2017 Assessing the frequency and drivers of early-greening in broad-leaved woodlands
alongalatitudinal gradient in southern Africa Austral Ecology 42 341-53

Williams M, Hill T C and Ryan C M 2013 Using biomass distributions to determine probability and intensity of tropical forest disturbance
Plant Ecology & Diversity 6 87-99

Wingate V R, Phinn SR, Kuhn N and Scarth P 2018 Estimating aboveground woody biomass change in Kalahari woodland: combining field,
radar, and optical data sets Int. J. Remote Sens. 39 577-606

Xue J and Su B 2017 Significant remote sensing vegetation indices: a review of developments and applications Journal of Sensors 2017

Yang J and Prince S 2000 Remote sensing of savanna vegetation changes in Eastern Zambia 1972-1989 Int. J. Remote Sens. 21 301-22

Zhou B, Okin G S and Zhang ] 2020 Leveraging Google Earth Engine (GEE) and machine learning algorithms to incorporate in situ
measurement from different times for rangelands monitoring Remote Sens. Environ. 236 111521

ZhuXX, TuiaD, MouL,Xia G S, Zhang L, Xu F and Fraundorfer F 2017 Deep learning in remote sensing: a comprehensive review and list of
resources IEEE Geoscience and Remote Sensing Magazine 5 8—36

Zhu 72017 Change detection using landsat time series: a review of frequencies, preprocessing, algorithms, and applications ISPRS J.
Photogramm. Remote Sens. 130 37084

Zhu Z and Woodcock C E 2012 Object-based cloud and cloud shadow detection in Landsat imagery Remote Sens. Environ. 118 83-94

29


https://doi.org/10.1007/s10113-018-1432-5
https://doi.org/10.1007/s10113-018-1432-5
https://doi.org/10.1007/s10113-018-1432-5
https://doi.org/10.3390/f10050443
https://doi.org/10.1126/science.1210465
https://doi.org/10.1126/science.1210465
https://doi.org/10.1126/science.1210465
https://doi.org/10.1126/science.1210465
https://doi.org/10.1505/146554815815834813
https://doi.org/10.1505/146554815815834813
https://doi.org/10.1505/146554815815834813
https://doi.org/10.3390/rs10040499
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1645-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1645-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1645-2020
https://doi.org/10.1016/j.rse.2016.02.056
https://doi.org/10.1016/j.rse.2016.02.056
https://doi.org/10.1016/j.rse.2016.02.056
https://doi.org/10.1111/gcb.13464
https://doi.org/10.1111/gcb.13464
https://doi.org/10.1111/gcb.13464
https://doi.org/10.1016/j.isprsjprs.2015.10.004
https://doi.org/10.1016/j.isprsjprs.2015.10.004
https://doi.org/10.1016/j.isprsjprs.2015.10.004
https://doi.org/10.1016/S0006-3207(99)00188-3
https://doi.org/10.1016/S0006-3207(99)00188-3
https://doi.org/10.1016/S0006-3207(99)00188-3
https://doi.org/10.1016/S0006-3207(99)00188-3
https://doi.org/10.1080/22797254.2018.1434424
https://doi.org/10.1080/22797254.2018.1434424
https://doi.org/10.1080/22797254.2018.1434424
https://doi.org/10.1016/j.isprsjprs.2017.07.012
https://doi.org/10.1016/j.isprsjprs.2017.07.012
https://doi.org/10.1016/j.isprsjprs.2017.07.012
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.3390/rs10091482
https://doi.org/10.5194/bg-11-381-2014
https://doi.org/10.5194/bg-11-381-2014
https://doi.org/10.5194/bg-11-381-2014
https://doi.org/10.1017/S0266467405002932
https://doi.org/10.1017/S0266467405002932
https://doi.org/10.1017/S0266467405002932
https://doi.org/10.5194/bg-13-609-2016
https://doi.org/10.5194/bg-13-609-2016
https://doi.org/10.5194/bg-13-609-2016
https://doi.org/10.1016/S0167-8809(01)00199-2
https://doi.org/10.1016/j.ecolind.2020.106206
https://doi.org/10.1016/j.rse.2006.01.005
https://doi.org/10.1016/j.rse.2006.01.005
https://doi.org/10.1016/j.rse.2006.01.005
https://doi.org/10.1016/j.rse.2006.11.019
https://doi.org/10.1016/j.rse.2006.11.019
https://doi.org/10.1016/j.rse.2006.11.019
https://doi.org/10.1007/s10661-006-1705-1
https://doi.org/10.1007/s10661-006-1705-1
https://doi.org/10.1007/s10661-006-1705-1
https://doi.org/10.2989/10295920609505250
https://doi.org/10.2989/10295920609505250
https://doi.org/10.2989/10295920609505250
https://doi.org/10.1016/j.rse.2019.111223
https://doi.org/10.1016/S0034-4257(98)00074-1
https://doi.org/10.1016/S0034-4257(98)00074-1
https://doi.org/10.1016/S0034-4257(98)00074-1
https://doi.org/10.1080/01431160500169098
https://doi.org/10.1080/01431160500169098
https://doi.org/10.1080/01431160500169098
https://doi.org/10.1016/j.jag.2020.102152
https://doi.org/10.5380/rf.v49i4.60117
https://doi.org/10.5380/rf.v49i4.60117
https://doi.org/10.5380/rf.v49i4.60117
https://doi.org/10.1111/aec.12448
https://doi.org/10.1111/aec.12448
https://doi.org/10.1111/aec.12448
https://doi.org/10.1080/17550874.2012.692404
https://doi.org/10.1080/17550874.2012.692404
https://doi.org/10.1080/17550874.2012.692404
https://doi.org/10.1080/01431161.2017.1390271
https://doi.org/10.1080/01431161.2017.1390271
https://doi.org/10.1080/01431161.2017.1390271
https://doi.org/10.1155/2017/1353691
https://doi.org/10.1080/014311600210849
https://doi.org/10.1080/014311600210849
https://doi.org/10.1080/014311600210849
https://doi.org/10.1016/j.rse.2019.111521
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1016/j.isprsjprs.2017.06.013
https://doi.org/10.1016/j.isprsjprs.2017.06.013
https://doi.org/10.1016/j.isprsjprs.2017.06.013
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2011.10.028

	1. Introduction
	1.1. Tropical dryland forest
	1.2. Recent research trends on tropical dry forests
	1.2.1. Geographical research trends on tropical dry forests
	1.2.2. Remote Sensing approaches research trends in tropical dry forests

	1.3. Review focus justification

	2. Remote sensing applications in dryland forest
	2.1. Optical data
	2.2. Synthetic aperture radar (SAR)
	2.3. Limitations of optical and radar, and benefits of combining sensors

	3. Methodology
	4. Results
	4.1. Temporal development of publications and author affiliations
	4.2. Spatial coverage, spatial extent, and investigated protected areas
	4.3. Research topics
	4.3.1. Land cover/land use
	4.3.2. Forest cover/type
	4.3.3. Forest biomass and structures
	4.3.4. Climate change and disturbances
	4.3.5. Biodiversity, plant traits, and phenology


	5. Discussion
	5.1. Temporal extent
	5.2. Spatial scale
	5.3. Accuracy assessment
	5.4. Research topics and geographical focus
	5.5. Vegetation indices, optical, SAR, and fusion of optical and SAR sensors
	5.6. Remote sensing platforms and cloud-based computing

	6. Conclusion
	Acknowledgments
	Data availability statement
	Conflicts of interest
	Funding
	References



