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 7 

ABSTRACT 8 

Climate change, manifest via rising temperatures, extreme drought, and associated anthropogenic 9 

activities, has a negative impact on the health and development of tropical dryland forests. Southern 10 

Africa encompasses significant areas of dryland forests that are important to local communities but 11 

are facing rapid deforestation and are highly vulnerable to biome degradation from land uses and 12 

extreme climate events. Appropriate integration of remote sensing technologies helps to assess and 13 

monitor forest ecosystems and provide spatially explicit, operational, and long-term data to assist the 14 

sustainable use of tropical environment landscapes. The period from 2010 onwards has seen the rapid 15 

development of remote sensing research on tropical forests, which has led to a significant increase in 16 

the number of scientific publications. This review aims to analyse and synthesise the evidence 17 

published in peer review studies with a focus on optical and radar remote sensing of dryland forests in 18 

Southern Africa from 1997-2020. For this study, 137 citation indexed research publications have been 19 

analysed with respect to publication timing, study location, spatial and temporal scale of applied 20 

remote sensing data, satellite sensors or platforms employed, research topics considered, and overall 21 

outcomes of the studies. This enabled us to provide a comprehensive overview of past achievements, 22 

current efforts, major research topics studies, EO product gaps/challenges, and to propose ways in 23 

which challenges may be overcome. It is hoped that this review will motivate discussion and 24 

encourage uptake of new remote sensing tools (e.g., Google Earth Engine (GEE)), data (e.g., the 25 

Sentinel satellites), improved vegetation parameters (e.g., red-edge related indices, vegetation optical 26 
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depth (VOD)) and methodologies (e.g., data fusion or deep learning, etc.), where these have potential 27 

applications in monitoring dryland forests. 28 

Keywords: Remote sensing, Dryland forests, Southern Africa, Forest monitoring, SAR, Optical, 29 

Systematic review 30 

31 
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1. Introduction  32 

1.1 Tropical Dryland forest  33 

 34 

Approximately 40% of the Earth's tropical and subtropical land surface is covered by open or closed 35 

forests. Of this, tropical dryland forests (TDFs) account for the largest share at 42%; the remaining 36 

33% is moist forest, and only 25% is rain forest (Murphy et al., 1986; Janzen, 1988). The largest 37 

proportion of dryland forests ecosystems are found in Africa, accounting for 60 - 80% of the total 38 

biome area (three times the area covered by African rain forest) (Figure 1) (Bodart et al., 2013; 39 

Bullock et al., 1995). Dryland forests hold a significant amount of terrestrial organic carbon that may 40 

contribute more to climate mitigation and adaptation than previously appreciated (Valentini et al., 41 

2014). Dryland forests also provide diverse ecosystem services, including water regulation and 42 

erosion control, the provision of food, fuel, and tourism opportunities (Djoudi et al., 2015; Schröder et 43 

al., 2021). On the other hand, dryland forests are subject to prolonged dry seasons and their rate of 44 

conversion to secondary forests has historically been higher than other tropical forest types 45 

(Pennington et al., 2018). According to the Intergovernmental Panel on Climate Change (IPCC), these 46 

changes have impacts on carbon emissions to the atmosphere and forest biodiversity loss that reduce 47 

adaptive capacity and resilience to the impact of high temperatures and varying precipitation (IPCC, 48 

2014). 49 

The definition of “dryland forest” remains debatable and controversial, which contributes to the 50 

difficulty in accurately assessing and measuring its distribution patterns and status (Blackie et al., 51 

2014). The lack of a clear and comprehensive understanding of general terms including “drylands” 52 

and “forests” makes it a challenge to explicitly define dryland forests (Charles-D et al., 2015). Given 53 

the fact that dryland forests progressively grade into other vegetation types such as moist tropical 54 

forests, woodlands, and savannas, also makes clear definitions complex (Putz et al., 2010). Walter et 55 

al. (1971) noted that the accuracy of estimates of all tropical forest areas is constrained by uncertainty 56 

in the distribution of open woodlands in dryland areas, which are extensive in Africa, Australia, and 57 

Latin America.  58 
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In the scientific literature, many different names have been applied to tropical dryland forests, 59 

including savanna forests, Sudanian woodland and miombo woodland in Africa, monsoon forest in 60 

Asia, neotropical dry forests in South America (Chidumayo, 2013; Linares-Palomino et al., 2011; 61 

Suresh et al., 2011). The neotropical dry forests in South America have a plethora of names from 62 

“caatinga” in northeast Brazil, to “bosque tropical caducifolio” in Mexico, and “cuabal” in Cuba, 63 

which in part hinders comparisons (Mayes et al., 2017; Sánchez‐Azofeifa et al., 2005). For example, 64 

Dexter et al. (2015) identified dry deciduous forest in India (Suresh et al., 2011), miombo woodland 65 

in southern Africa (Chidumayo, 2013), and deciduous dipterocarp forest in continental Asia 66 

(Bunyavejchewin et al., 2011) as a form of savanna, and not TDFs, despite the formal classification as 67 

TDFs by these studies, and the FAO (FAO, 2001). The Caatinga and Chaco vegetation in Latin 68 

America is also considered by some authors as part of the dry forests (Gasparri and Grau, 2009; 69 

Pennington and Ratter, 2006), although Olson et al., (2001) classifies these regions as a shrubland 70 

ecosystem. 71 

There are several definitions currently available for TDFs, but there is still a lack of consensus in 72 

developing a common understanding. Mooney et al. (1995) defined TDFs as forests occurring in the 73 

tropical regions characterized by pronounced seasonality in rainfall, where there are several months of 74 

severe, or even absolute drought. Sánchez‐Azofeifa et al. (2005) broadly defined TDFs as a vegetation 75 

type typically dominated by deciduous trees (at least 50% of trees present are drought deciduous), 76 

where the mean annual temperature is ≥ 25 °C, total annual precipitation ranges between 700 and 77 

2000 mm, and there are three or more dry months every year (precipitation < 100 mm per month). A 78 

widely accepted definition is that of the FAO, which has identified TDFs as a Global Ecological Zone 79 

(GEZ), experiencing a tropical climate, with a dry period of 5 to 8 months and annual rainfall ranges 80 

from 500 to 1500 mm; GEZ includes the drier type mbo and Sudanian woodlands, savannah (Africa), 81 

caatinga and chaco (South America), and dry deciduous dipterocarp forest and woodlands (Asia) 82 

(FAO, 2001). For the scope of this present review, we followed the FAO. (2001) definition of TDFs 83 

because it recognises forests occurring in the dry tropical climate globally including areas with 84 

relatively open canopies such as woodlands, and woody stands, then those based entirely on climate 85 
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definitions. The growing body of evidence suggests that the current climate does not define the 86 

biogeography of TDFs or determine biome distributions (Staver et al., 2011; Sunderland et al., 2015), 87 

particularly in the context of future unprecedented climate change (IPCC, 2007). If climates become 88 

sufficiently warmer and drier in the tropics, dry forests may expand into areas that are currently 89 

dominated by moist tropical forests (Putz et al., 2010). 90 

 91 

Figure 1. The graphic illustration shows the relative distribution of tropical dry forests. 92 

Source: FAO, (1999). Reproduced with permission. 93 

 94 

 95 

 96 

 97 
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1.2 Recent research trends on tropical dry forests 98 

 99 

1.2.1 Geographical research trends on tropical dry forests 100 

 101 

Studies have pointed out that dryland forests generally receive a lower number of scientific 102 

publications and are under-represented in research in comparison with tropical moist forests (Miles et 103 

al., 2006; Quesada et al., 2009). Global reviews on dryland forests addressed the imbalance in the 104 

geographical coverage of dryland forest publications using remote sensing with certain tropical 105 

countries such as Latin America receiving the highest publications on dryland forests in comparison 106 

to most places in Africa (Blackie et al., 2014; Schröder et al., 2021). To investigate the geographical 107 

distribution of tropical dry forest studies, we initially searched for publications in ISI web of 108 

knowledge and Scopus on tropical dryland forests from Asia, Africa, America, and Australia. This 109 

search was conducted by using the keywords ‘Dry Forest’, ‘Dryland Forest’ ‘Savan* Woodland’, 110 

‘Savan* Tree’, ‘Dryland Vegetation’, ‘Dry Vegetation’ ‘Satellite’, ‘Remote Sensing’, ‘Optical’, 111 

‘Radar’, ‘Image’, ‘SAR’, ‘Earth Observation’, ‘country/continent e.g., Africa’. In the search period 112 

from 1997 to 2020, we identified 1662 papers for Africa, 1639 for Australia, 1338 for America, and 113 

1134 for Asia. In Africa, when we narrowed the search to individual countries, the results showed that 114 

about 743 publications are from the Republic of South Africa (RSA) while 355 publications were 115 

from the Sahel region of Nigeria. We also investigated scientific publications from other Southern 116 

African countries with dryland forest and 369 publications were identified, including from Botswana 117 

(87), Zimbabwe (69), Mozambique (60), Namibia (68), Zambia (49), Angola (24), Lesotho (6), 118 

Swaziland (5). When we combined the scientific publications from the above 8 Southern African 119 

countries, the results were 369 publications, indicating that publications on dryland forests for the 120 

Republic of South Africa were 2.01 times higher than all 8 Southern African countries combined. 121 

These results confirm that much less progress has been made in developing objective methods for 122 

assessing the rates of deforestation/conservation and threats to dryland forests ecosystems in most 123 

Southern African countries except for the Republic of South Africa.  124 
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The dryland forests in other parts of the world like Latin America are increasingly well studied at 125 

local, regional, national and continental scale, particularly with regards to carbon/biomass (Chazdon 126 

et al., 2016; Marín-Spiotta et al., 2008), fire (Campos-Vargas et al., 2021; White, 2019; Pereira et al., 127 

2014), climate change (Mendivelso et al., 2014; Castro et al., 2018; González‐M et al., 2021), floristic 128 

and diversity composition (Alvarez‐Añorve et al., 2012; Gillespie et al., 2000), ecosystem services 129 

(Castillo et al., 2005; Paruelo et al., 2016), Payment for Environmental Services (PES) (Alcañiz and 130 

Gutierrez, 2020; Corbera et al., 2009), novel conservation approaches (e.g., sustainable intensification 131 

for protected/conservation areas) (Méndez et al., 2007; Reynolds et al., 2016) and has the most 132 

comprehensive forest change/deforestation and biophysical aspects including species population 133 

changes, with extensive use of remote sensing (do Espírito-Santo et al., 2020; Gasparri and Grau, 134 

2009; Stan and Sanchez-Azofeifa, 2019; Trejo and Dirzo, 2000; Portillo-Quintero et al., 2012). In 135 

terms of reviews, many remote sensing reviews are providing valuable information on TDF’s 136 

biophysical, ecological and socioeconomic at a regional level of Latin America (Castro et al., 2003; 137 

Metternicht et al., 2010; Portillo, 2010; Sanchez-Azofeifa et al.,2003; Sánchez‐Azofeifa et al., 2005; 138 

Sánchez‐Azofeifa et al., 2013; Stan and Sanchez-Azofeifa, 2019; Quijas et al. 2019), and Australia 139 

(Lawley et al., 2016; Moore et al., 2016; Fensham et al., 2002). Also, reviews of current progress on 140 

dryland forests in individual countries can be found in many neotropics countries such as Mexico 141 

(Castillo et al., 2005; Curry, 2020), Venezuela (Fajardo et al., 2005; Rodríguez et al., 2008), and 142 

Costa Rica (Frankie et al., 2004; Stoner et al., 2004) enabling the identification of knowledge gaps 143 

and aiding in the development of a policy-relevant approach to conservation of these forests (Miles et 144 

al., 2006).  145 

Latin America is one of the best-represented areas for remote sensing research in dryland forests, for 146 

example, Portillo-Quintero and Sánchez-Azofeifa. (2010) utilised remote sensing data at continental 147 

America, dryland forests ecoregion, and neotropics countries to show that 66% of tropical dry forest 148 

in the region has already been converted and that in some countries the conversion rate is as high as 149 

86% and 95%, respectively. Aide et al. (2012) using Moderate Resolution Imaging Spectroradiometer 150 

(MODIS) satellite data estimated that 200,000 km2 of woody vegetation of Latin American and the 151 
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Caribbean region were lost due to deforestation between 2001 and 2010. Nanni et al. (2019) utilised 152 

MODIS satellite data at 250 m spatial resolution to assess reforestation at the regional level and 153 

reported that the reforestation hotspots cover 167,667.7 km2 (7.6 %) of Latin America between 2001 154 

and 2014. While there are continental studies in Africa utilising remote sensing on biophysical 155 

parameters such as biomass/deforestation (Bouvet et al., 2018; Bodart et al., 2013), as compared to 156 

Latin America, these studies may not consider the empirical observations of dryland forests 157 

extent/change per region or country level. In addition, most continental studies in Africa rather focus 158 

the attention on tropical rainforest in Central Africa (e.g., core Congolese forest) which may under-159 

represent dryland forest (e.g., Aleman et al., 2018). Global applications often report general land 160 

use/cover change which results in inaccurate or poor estimates of dryland forest (Smith et al., 2019; 161 

Aleman et al., 2018).  162 

Several studies using optical and passive microwave instruments in the African Sahel (Horion et al., 163 

2014; Brandt et al., 2016; Olsson et al., 2005; Tian et al., 2017) has reported that the density/size of 164 

woody vegetation stands have increased, with few areas in northern Nigeria reported to experience 165 

logging and agricultural expansion into forest reserves. Deforestation in Southern Africa is a major 166 

concern, with ca. 1.4 million ha of net forest loss annually, contributing to increased land degradation 167 

and the ensuant impacts on the balance of ecosystem function (Lesolle, 2012).  A global study by Tian 168 

et al. (2017) utilising the optical Normalized Difference Vegetation (NDVI) index and passive 169 

microwave VOD across tropical drylands has reported a decreasing trend in woody vegetation in 170 

Southern African countries such as Botswana and Zimbabwe. Mitchard and Flintrop. (2013) 171 

conducted a coarse-scale analysis of changes in woody vegetation from 1982 to 2006 using NDVI 172 

time series from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset and found 173 

that significant woody encroachment is occurring in most west African countries, but, in contrast, in 174 

Southern Africa, a rapid reduction in woody vegetation (deforestation) is occurring. Bodart et al. 175 

(2013) used Landsat satellite imagery between 1990 and 2000 to estimate forest cover and forest 176 

cover changes in the African continent and found that 84% of the total deforested area occurred in the 177 

dry ecosystems of the Southern African region, with large spatially concentrated areas of forest loss 178 
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found in Angola, Mozambique, Tanzania, Zambia and Zimbabwe, and isolated hotspots found in 179 

Nigeria and the border of the humid forest in Ghana. While such global and continental level studies 180 

are useful to highlight and reinforce the need to direct more attention and resources to these 181 

threatened/poorly studied ecosystems, research efforts on forest change/deforestation and climate 182 

change impacts of dryland forests at the regional level of Southern Africa are much harder to come by 183 

(Blackie et al., 2014).  184 

1.2.2 Remote Sensing approaches research trends in tropical dry forests 185 

 186 

In recent decades, satellite remote sensing or Earth observation (EO) has proved a valuable tool in 187 

forest ecology, owing to its capability to perform systematic, frequent, and synoptic observation of the 188 

Earth, resulting in large data volumes and multiple datasets at varying spatial and temporal scales 189 

(Donoghue, 2002; Zhu, 2017). There are several sensors including multi-spectral scanners, las184, per 190 

scanners (LiDAR), hyper-spectral scanners as well as satellite-borne Synthetic Aperture Radar (SAR), 191 

that provide information on the colour and structure of forest environments (Donoghue, 2002). EO 192 

has been applied to mapping the distribution, changes in cover, and condition including deforestation, 193 

desertification, fire damage, and climate impact (Dogru et al., 2020; Smith et al., 2019). Additionally, 194 

these data have been used to estimate biophysical characteristics such as total above ground biomass 195 

(AGB), leaf area index (LAI), woody area index, tree diameter, and canopy height which are key 196 

inputs into a variety of ecological models, as well as calculations of carbon balance and primary 197 

production (Barbosa et al., 2014; Donoghue, 2000). The continuous forest metrics obtained using EO 198 

data can be extracted at leaf and crown level to evaluate spectral elements of leaf or species properties 199 

and at stand-level and plot-level, or beyond to understand the variation between and among species, 200 

and through time (Muraoka et al., 2009). Monitoring of dryland forest cover and forest metrics using 201 

EO data also helps to improve our understanding of the ecological drivers behind land cover change 202 

dynamics (Chambers et al., 2007; Veldkamp et al., 2001).   203 

Biomass has extensively been estimated based on the spectral reflectance values from two or more 204 

wavelengths, and the sensitivity of optical and near-infrared wavelengths to photosynthetic canopy 205 
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cover has long been used for vegetation analyses (Rouse, 1974; Tucker, 1979). Spectral vegetation 206 

indices (VIs), including the NDVI index, are commonly used as a proxy of vegetation cover and have 207 

been shown to relate closely to LAI, biomass, and the fraction of photosynthetically active radiation 208 

absorbed by vegetation (fAPAR) (Curran, 1980). Several well-known limitations of NDVI for robust 209 

estimation of biomass in drylands exist. NDVI is sensitive to green components and insensitive to 210 

woody components where the majority of carbon is stored (Tucker, 1979). Also, AGB production is 211 

not always uniformly linked to either greenness or plant structure (herbaceous and woody 212 

compositions), as moisture content and vegetation species composition have been shown to impact the 213 

biomass-NDVI relationship (Asner et al., 2009; Wessels et al., 2006). These observations may help 214 

explain reportedly weak relationships between NDVI and tropical forest canopies, particularly for 215 

areas with complex and high vegetation amounts as in TDFs (Foody et al., 2001; Sader et al., 1989). 216 

For example, Madonsela et al. (2018) investigated the interactions between seasonal NDVI and 217 

woody canopy cover in the savanna of the Kruger National Park (NP) to model tree species diversity 218 

using a factorial model and found that the interaction between NDVI and woody canopy cover was 219 

insignificant. These challenges have led to the development of alternative formulations which include 220 

correction factors or constants introduced to account for or minimize, the varying background 221 

reflectance (Gitelson et al., 1996; Huete et al., 1999). The Enhanced Vegetation Index (EVI) is a 222 

modification of NDVI that provides complementary information about the spatial and temporal 223 

variations of vegetation while minimizing many of the contamination problems present in the NDVI, 224 

such as those associated with canopy background and atmospheric influences (Huete et al., 2002). 225 

Other closely related indices include the Simple Ratio (SR), the Green Normalized Difference 226 

Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index (SAVI) amongst others. Xue et al. 227 

(2017) provide a detailed review of vegetation indices.  228 

Although vegetation monitoring has been largely based on the multispectral “greenness” indices, 229 

which have proven invaluable for monitoring biophysical and biogeochemical parameters, it has been 230 

widely reported in the literature that they suffer from several weaknesses in dryland ecosystems (Tian 231 

et al., 2016; Shi et al., 2008). Other remote sensing systems such as the passive microwave-based 232 
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satellite systems capture the biomass signal in the parameter termed vegetation optical depth (VOD) 233 

which has been used to monitor changes in vegetation dynamics (Andela et al., 2013; Brandt et al., 234 

2018a; Brandt et al., 2018b). Unlike the optical remote sensing-based vegetation indices that are 235 

sensitive to chlorophyll abundance and photosynthetically active biomass of the leaves, the vegetation 236 

information (e.g., VOD) deriving from passive microwave instruments is sensitive to the water 237 

content in the total aboveground vegetation, including both the canopy (e.g. woody plant foliage) and 238 

non-green woody (e.g. plant stems and branches) components due to greater penetration and 239 

sensitivity (Liu et al., 2011; Shi et al., 2008). The passive microwave observations VOD is relatively 240 

insensitive to signal degradation from solar illumination and atmospheric effects and provide a 241 

valuable alternative tool for rapid monitoring of carbon stocks and their changes (Jones et al., 2011). 242 

One of the advantages of passive microwave-derived VOD is that it continues to distinguish biomass 243 

variations at a relatively high biomass density, as compared to optical-based vegetation indices which 244 

are likely to become saturated over dense canopies (Jones et al., 2011; Liu et al., 2015). The main 245 

disadvantage of passive microwave observations is the relatively coarse spatial resolution (>10km), as 246 

compared to satellite data in the visible and near-infrared parts of the spectrum; however, these data 247 

still have highly useful applications at regional and global scales (Liu et al., 2015; Rahmoune et al., 248 

2013; Owe et al., 2001). Some recent global and local studies from Latin America and Africa in the 249 

dryland ecosystems found VOD to be more robust against the NDVI drawbacks of saturation effect 250 

and continues to distinguish structural differences for vegetation with a near-closed canopy when used 251 

as a proxy for vegetation productivity (van Marle et al., 2015; Cui et al., 2015; Liu et al., 2011; Tian 252 

et al., 2016). Apart from the VOD and NDVI, an intercomparison between several vegetation indices 253 

including other passive microwave-based vegetation indices, such as the Microwave Polarization 254 

Difference Index (MPDI) (Becker & Choudhury, 1988), and the Microwave Vegetation Indices 255 

(MVIs) (Shi et al., 2008) would be of benefit in monitoring dryland biomes.  256 

Due to the inherent trade-offs between spatial and temporal resolution in EO data, and geographic 257 

coverage, vegetation patterns on both spatial and temporal domains have been revealed by various 258 

technological advances resulted in the growing availability of remote sensing data and methods (Toth 259 
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and Jóźków, 2016; Zhou et al., 2020). The application of non-parametric machine learning regression 260 

algorithms, such as decision trees, random forests (RF), support vector machines (SVMs), and k-261 

nearest neighbour have become more predominant and demonstrate the ability to outperform widely 262 

used parametric approaches, such as polynomial and multiple linear regression variables used with 263 

remotely sensed data in a forest environment (Breiman, 2001; Latifi et al., 2010). More recently, deep 264 

learning, a branch of machine learning that stems from cognitive and information theories (e.g., 265 

convolutional neural network (CNN) founded by Schmidhuber. (2015) has been highlighted as a 266 

feasible approach for handling complex data in remote sensing including large-scale image 267 

recognition, semantic segmentation, classification, and object detection tasks (Kattenborn et al., 2021; 268 

Shafaey et al., 2018). Non-parametric machine and deep learning models are sufficiently versatile to 269 

uncover complicated nonlinear relationships and able to extract combinations of the input data that are 270 

difficult to describe explicitly by humans, particularly, in areas with high structural variability such as 271 

dryland forests (Hastie et al., 2009; Shao et al., 2017). Deep learning has been used by many remote 272 

sensing studies to provide in-depth forest investigation from the perspectives of hyperspectral image 273 

analysis, interpretation of SAR/ LiDAR images, interpretation of high-resolution satellite images and 274 

classification, and multimodal data fusion (e.g., the fusion of Hyperspectral, SAR, LiDAR and optical 275 

data (Guirado et al., 2020; Kussul et al., 2017; Liao et al., 2018; Narine et al., 2019; Shao et al., 2017; 276 

Trier et al., 2018). Improved techniques in remote sensing such as VOD, and machine and deep 277 

learning have been utilised to estimate dryland forest attributes globally and other dryland 278 

ecosystems, however, very few of these focused on the local and regional scale of Southern Africa 279 

(e.g., Symeonakis et al., 2020). The uncertainties reported in many dryland forests studies (Bastin et 280 

al. 2017), could be decreased following further development, application, and comparison of these 281 

improved approaches in future works at local, regional, continental studies in Southern Africa and 282 

other dryland forest ecosystems. Critically, an increase in the spatial, spectral, and radiometric 283 

resolution of satellite sensors, increased availability of EO data and computational resources 284 

combined with the machine or deep learning techniques would enhance the potential dryland forest 285 

information to be exploited (Ali et al., 2015). For a detailed review of machine learning and deep 286 
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learning for remote sensing and Sustainable Development Goals, see Zhu et al. (2017) and Holloway 287 

and Mengersen (2018). 288 

1.3 Review focus justification  289 

 290 

The majority of the residents of Southern Africa are poor and about 75% of them live in rural areas 291 

with high reliance on dryland forests (Bond 2010). Additionally, these dryland areas display a high 292 

susceptibility to bush encroachment (O'Connor et al., 2014) and economic reliance on tourism 293 

(Ferreira 2004) and forest products (Kamwi et al., 2020), which means that both agriculture and 294 

tourism development encroach on the dryland forests, resulting in loss of forest biodiversity and land 295 

degradation (Eva et al., 2006; Petheram et al., 2006). Across Southern Africa, sustainable 296 

management of dryland ecosystems is hindered by complex land tenure due to historical legacy, weak 297 

links between policy and woodland use and management, and cultural drivers (Balint and Mashinya, 298 

2006; Dewees, 1994). Also, the dryland ecosystems of Southern Africa are dominated by private land 299 

ownership, a high concentration of wildlife and human populations, and agriculture where TDFs 300 

occur (Child et al. 2012). This review focuses on Southern Africa because there is a gap in knowledge 301 

on carbon storage, biomass, and the long-term trend of forest distribution and degradation in dryland 302 

forests. Much of the research on dryland forests in Southern African has concentrated on livelihoods, 303 

ecosystem services, energy supply and demand, food security, livelihoods and community forest 304 

management, and conservation/development trade-offs (e.g., Chidumayo et al., 2010; Chidumayo and 305 

Gumbo 2010; Chidumayo 2019; Djoudi et al., 2015; Dewees 1994; Du Preez 2014; Ryan et al. 2016), 306 

leaving forests highly vulnerable to deforestation and degradation (Keenan et al., 2015). The social 307 

and economic aspects are important given the large numbers of African people that rely on dry forests 308 

for their livelihoods and a range of goods and services. However, the gap in biophysical aspects, 309 

threats status, and adaptation to climate change identified for Southern African TDFs at the regional 310 

and national level (Blackie et al., 2014; Sunderland et al., 2015), presents an urgent need for an 311 

assessment of the effectiveness of the EO scientific foundation on current understanding of TDFs in 312 
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Southern Africa; this can aid in the development of policy-relevant approaches and long-term, 313 

regional perspective for planning and conservation of the TDFs.  314 

With the prospects of multiple free datasets from optical and SAR sensors being available; combining 315 

information from optical sensors on photosynthetic activity (e.g., through various vegetation indices) 316 

with SAR-derived information on forest structure and volume brings the benefits of higher spectral 317 

resolution, and compensating for the shortcomings of using single data products alone. Based on this 318 

hypothesis, this review focuses on examining the studies using optical and SAR sensors, both 319 

individually and the combination of the two types of EO data in monitoring tropical forests. While 320 

forest distribution, carbon storage, and reducing emissions from deforestation and forest degradation 321 

(REDD+) related research exists in African dryland forests, the geographical focus has tended to be 322 

confined to several West/Central African countries, whereas Southern Africa is relatively poorly 323 

analysed (Lewis et al., 2013; Sunderland et al., 2015). Although numerous reviews have been 324 

conducted discussing the application of optical and radar remote sensing, they are either concentrated 325 

on mangroves forests (Kuenzer et al., 2011; Wang et al., 2019), rain forests (Dupuis et al., 2020), or 326 

ecosystem services (Barbosa et al., 2015). To date, reviews on remote sensing and EO in Southern 327 

Africa have focused on research conducted in the Republic of South Africa (Hoffman et al., 2000; 328 

Mutanga et al., 2016; Mutanga et al., 2009).  329 

As shown in Figure 2, the climate threats coupled with a growing human population and future 330 

anticipated changes in land use are predicted to lead to severe dry forest biome shifts and degradation 331 

across the whole of Southern Africa, hence the need to expand the geographical scope of this review 332 

from previous work (IPCC, 2014; King, 2014). This paper provides a systematic review of the 333 

scientific literatures related to the use of Earth observation data including SAR and optical sensors 334 

used to study dryland forests, with a focus on Southern Africa. To achieve this, we present examples 335 

from the literature that summarise past achievements, current efforts, and knowledge gaps. The 336 

objectives of this review are to (i) to provide a detailed overview of the current approaches and 337 

limitations for monitoring dryland forests using optical and radar remote sensing data. (ii) to provide a 338 

critical evaluation and synthesis of the literature monitoring dryland forests using remote sensing data 339 
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and discuss how EO data can contribute to dryland forest monitoring and forest conservation in 340 

Southern Africa. (iii) to identify knowledge gaps and make recommendations for research that will 341 

enhance monitoring of dryland forests using remote sensing data. 342 

 343 

Figure 2. (a) Projected biome change from the periods 1961–1990 to 2071–2100 using the MC1 344 

Dynamic Vegetation Model. (b) Vulnerability of ecosystems to biome shifts based on historical 345 

climate (1901–2002) and projected vegetation (2071–2100) (source: IPCC, 2014). 346 

2. Remote sensing applications in dryland forest 347 

2.1 Optical data 348 

In broad terms, the satellite platforms developed over the past 40 years (since 1972) have carried two 349 

broad types of sensor systems; passive optical and active synthetic aperture radar (SAR). Successful 350 

change detection and parameter estimation over tropical dryland forests require: (a) correct selection 351 

and application of sensor type; (b) coupling with field observation data for calibration and validation, 352 

and (c) data integration and appropriate techniques for modelling (Figure 3). Optical sensors have 353 

been widely used for land cover and forest resource mapping, providing access to long-term data 354 

dating back to the launch of Landsat ERTS (Earth Resources Technology Satellite) satellites in 1972. 355 
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Landsat and several other coarse/medium spatial resolution optical sensor missions (National Oceanic 356 

and Atmospheric Administration (NOAA) - Advanced Very High-Resolution Radiometer (AVHRR); 357 

Indian Remote Sensing Satellites-1C/1D (ISRO-IRS-1C/D); the National Aeronautics and Space 358 

Administration (NASA) -Aqua/Terra- MODIS; Sentinel-2) provide well-calibrated, nadir-viewing, 359 

near-global systematic coverage which have built up a valuable archive of image data that can be used 360 

to analyse ecosystem dynamics (Congalton, 2018; Donoghue, 2000). In 2014, ESA launched the 361 

Multispectral Instrument (MSI) onboard Sentinel-2 as part of its Copernicus EO mission. Sentinel-2 362 

MSI uses two identical satellite sensors to measure the Earth’s reflected radiance with a revisit time of 363 

5 days and a high spatial resolution of 10 - 20 m pixel size. The length of the Sentinel-2 archive is 364 

short (from 2015), compared to the Landsat mission from 1972-present, NOAA-AVHRR 1979-365 

present, Satellite Pour l'Observation de la Terre VEGETATION (SPOT/VGT) (1998-present), IRS-366 

1C/1D (ISRO-IRS-1C/D) (1995-2010), ENVISAT - Medium Resolution Imaging Spectrometer 367 

(MERIS) (2002-2010), the NASA - MODIS (2000-present) and the French Space Agency (CNES-368 

Centre national d’études spatiales) high-resolution SPOT satellite constellation (6 m - 20 m pixel size) 369 

- SPOT-1 in 1986-1990, SPOT-2 in 1990-2009, SPOT-3 in 1993-2009; SPOT-4 in 1990-2013; SPOT-370 

5 in 2002-present; SPOT-6 in 2012-present; SPOT-7 in 2014-present. The VEGETATION 1 (VGT 1) 371 

(1998-2012) and VEGETATION 2 (VGT 2) (2002-2014) instrument on the SPOT 4 and SPOT 5 372 

(SPOT/VGT) satellites provided global daily monitoring of vegetation cover, and it is successor the 373 

European PROBA-V satellite (2013-present), with a pixel size of 1 km, 300 m and 100 m are supplied 374 

by the VEGETATION image Processing Centre (CTIV) of VITO (Belgium), which can be accessed 375 

through the internet site http://free.vgt.vito.be. Although a large number of satellite sensors have been 376 

launched that are capable of observing land dynamics, and their pixel size has increased from 80 m of 377 

the Landsat-1 to 0.41-1.65 m of the GeoEye-1 satellites (Aguilar et al., 2013), very few sensors 378 

provide well-calibrated multispectral, nadir-viewing observations and even fewer systematically 379 

capture all global data and provide a long-term archive of data free of charge to the public. Except for 380 

AVHRR and Landsat, no other sensor or sensor line offers the chance of long-term monitoring of an 381 

area to be monitored back in time to the 1970s, covering about four decades. 382 
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There are several non-systematic commercial high-resolution satellites that allow the detection of 383 

individual trees or populations. Maxar Technologies Inc. launched 4 very high resolution satellites - 384 

WorldView-1 in 2007, WorldView-2 in 2009, WorldView-3 in 2010, and WorldView-4 in 2019 that 385 

acquire images with spatial resolution of 0.5, 0.41, and 0.31 m, respectively. From 2009 onward, 386 

Planet labs launched a swarm of micro-satellites including PlanetScope (PS), RapidEye (RE), and 387 

SkySat (SS) Earth-imaging constellations with multispectral imaging capability with the aim of 388 

acquiring daily image capture for any part of the world at a spatial resolution of 3.125 m to 6.5 m 389 

(Marta, 2018). In 2011 and 2012, the Space Agency of France (CNES) launched the Pléiades – high 390 

resolution optical imaging satellite constellation (Pléiades-1A and Pléiades-1B), with a high spatial 391 

resolution of 0.7 – 2.8 m. Other very high resolution commercial space imaging satellites include 392 

Earlybird (1997), EROS-A (1998), IKONOS (1999), QuickBird (2001), OrbView (2001), GeoEye 393 

(2008) (Maglione, 2016). In Africa, South Africa started satellite developments in the 1990s, with the 394 

successful launch of SunSat-1 with a spatial resolution of 15 m in 1999 and SumbandilaSat low orbit 395 

satellite with a high spatial resolution of 6.25 m in 2009 (Cho et al., 2012; Mutanga et al., 2016). 396 

While the first Nigerian satellite, a microsatellite called NigeriaSat-1, was successfully launched into 397 

low earth orbit in 2003, followed by Nigeriasat-2 with a higher spatial resolution of 2.5 – 5 m, built by 398 

Surrey Satellite Technology Limited (SSTL) of UK (Agbaje, 2010).  399 

Nevertheless, the use of data acquired by higher spatial resolution optical sensors, particularly at 400 

regional and global scales, can be limited by their relatively high cost, huge data volumes, and low 401 

frequency of data acquisition compounded further in tropical regions where cloud cover is prevalent 402 

(Lehmann et al., 2015; Zhu and Woodcock, 2012). The temporal resolution of sensors has also 403 

increased from, for example, 16 days for Landsat to nearly 1 day for the NOAA-AVHRR, NASA-404 

Aqua/Terra-MODIS, SPOT/VGT, and/or ENVISAT-MERIS data, but with a coarse spatial resolution 405 

of 250 m to 1 km (Arino et al., 2007; Herold et al., 2008). Although lacking high spatial detail, the 406 

daily temporal resolution of such sensors enables frequent estimation of deforestation, detection of 407 

disturbances using dense time series data, and enables gaps due to cloud cover to be overcome (Mbow 408 

et al., 2015). It is important to mention that the acquisitions of some satellites such as IRS-1C/1D, and 409 
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MERIS ceased operations, however, the Sentinel, MODIS, NOAA-AVHRR, SPOT, SPOT-VGT 410 

(PROBA-V), and Landsat series continue to operate, with ongoing continuity of data collection 411 

ensured with the recent launch of Landsat-9 in September 2021. 412 

 413 
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Figure 3. Interaction mechanisms for dryland forest canopies and source of variability and challenges 414 

related to each stage of remote sensing monitoring tropical dryland forest extents. Adapted from 415 

Barbosa et al., 2014. 416 

2.2 Synthetic Aperture Radar (SAR)  417 

SAR sensors for civilian applications first appeared in 1978 with NASA’s SeaSat but have grown in 418 

importance as a tool for forest studies. SAR sensors can operate at different frequencies and 419 

polarisations; these system parameters provide information on the roughness and scattering properties 420 

of forest canopies and data can be captured day and night independent of weather conditions (Durden 421 

et al., 1989). Since SAR can penetrate cloud, rain, smoke, and haze, and it is a valuable source of data 422 

when atmospheric conditions hamper optical data capture, particularly in the tropical dryland forest 423 
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such as Southern Africa where the cloud and smoke from forest fires are prominent features (Le 424 

Canut et al., 1996). Radar signals are sensitive to moisture, variations, surface roughness, and 425 

vegetation structure properties, whereas data from optical systems use characteristics related to 426 

reflected solar illumination or surface temperature (for thermal infrared sensors) as a basis for 427 

discrimination of the land cover (Kasischke et al., 1997; Mitchard et al., 2009). Cloud cover-free SAR 428 

images have great potential in the dryland tropical areas but have been used less often for forest 429 

monitoring applications compared to optical imagery, partly because of the scarcity of data (Castro et 430 

al., 2003). Since the launch of the Sentinel-1A and B, dense SAR time-series data are now available 431 

over tropical forest areas freely and openly, with systematic acquisitions at a 10 m spatial resolution 432 

and a 6 - 12 day revisit time (dependent on the location) in all weather conditions. 433 

Over the last 30 years, several satellite-borne SAR has been launched, including the United State 434 

Spaceborne Imaging Radar-Synthetic Aperture Radar (SIR-C/X-SAR), European Remote Sensing 435 

(ERS-1/-2), ESA’s Envisat ASAR (Advanced Synthetic Aperture Radar), Advanced Synthetic 436 

Aperture Radar (ASAR), Japanese Earth Resources Satellite (JERS-1), Advanced Land Observation 437 

Satellite (ALOS/PALSAR-1/-2), German TerraSAR-X, Italy’s Cosmo SkyMed, and the Canadian 438 

RADARSAT-1/-2 (Shimada, 2018). Depending on the sensor configuration, a single channel 439 

(wavelength/frequency) or multiple channels may be recorded in either single or multiple 440 

polarizations. Generally, studies have reported that the longer the wavelength (e.g., P (30–100 cm) 441 

and L (15–30 cm)), the further is its penetration into the forest and the greater the importance of 442 

scattering beyond the upper canopy (Huang et al., 2015). Besides the greater sensitivity of longer 443 

radar wavelengths to forest structure, different studies indicate that cross-polarized backscatter (HV-444 

horizontally transmitted, and vertically received, VH-vertically transmitted and horizontally received) 445 

often exhibits greater sensitivity to forest biomass than like-polarized backscatter (co-polarized bands: 446 

HH-horizontally transmitted and horizontally received, VV-vertically transmitted and vertically 447 

received) (Kasischke et al., 1997).  448 
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2.3 Limitations of optical and radar, and benefits of combining sensors  449 

Despite the different generations and types of satellite sensors, no one sensor currently meets fully the 450 

requirements of a comprehensive forest resource assessment EO system. The selection of an 451 

appropriate source of data requires first the identification of the ecological question being asked, 452 

identification of the limitations and advantages of each sensor. The varying temporal, spatial, spectral, 453 

and radiometric resolutions unique to the individual sensor system, result in different advantages and 454 

disadvantages to the monitoring of dryland ecosystems (Lu, 2006). Optical data are limited in the 455 

monitoring of this forest type. For example (1) cloud and smoke severely limit the use of optical 456 

products (Le Canut et al., 1996); (2) Dramatic seasonal changes in the dryland forests conditions 457 

including droughts and leaf shedding make it unsuitable for systematic all-season monitoring of this 458 

forest type (Boggs, 2010). One of the reasons for this is associated with the seasonality of the tropical 459 

vegetation: during the wet season, cloud-free satellite imagery is difficult to acquire, while during the 460 

dry season when the imagery is more available, the leaf-off configuration of the forest causes 461 

misclassification with savanna shrubland or grassland; (3 Optical data is sensitive at the early stages 462 

of growth but as forest canopies close, reflected radiation is no longer sensitive to biomass as the 463 

reflectance signal saturates at higher biomass values (Lu, 2006); (4) Passive optical sensors only 464 

detect the surface top layer, meaning that forest canopy obscures the understory, and similarly 465 

grasses/crops obscure soil; (5) Changes in the spectral properties of the soil and atmosphere can also 466 

hinder the inference of forest cover properties (Santos et al., 2002; Wang et al., 1998). 467 

Similarly, there are a number of challenges to analysing and interpreting radar images for tropical 468 

forest applications, which include: (1) Difficulty in interpreting radar backscatter, including, for 469 

example, speckle, which is unwanted random noise inherent in all SAR images, which may increase 470 

measurement uncertainty and make interpretation difficult (Klogo et al., 2013); (2) Topography is a 471 

major limitation in mountainous regions due to geometric and radiometric effects such as radar 472 

shadowing caused by foreshortening and layover when the satellite is not able to illuminate the whole 473 

ground surface (Mitchard et al., 2009); (3) SAR observations often lack a long-term and dense time 474 

series because they demand a relatively high energy provision on satellite platforms. Until recently, 475 
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satellite-based SAR data for multi-temporal assessments over large areas were constrained by low 476 

spatial and temporal coverage at medium resolution, although this now may be overcome with 477 

acquisitions from the recently launched C-band Sentinel-1 and L-band ALOS-2 satellite missions 478 

(Reiche et al., 2016). 479 

Rather than using EO data from a single satellite sensor, the synergy of remotely sensed data from 480 

multiple sensors, particularly SAR systems with those acquired by optical sensors, has been shown to 481 

be beneficial for forest resource assessment (Lehmann et al., 2015). Because optical data is capable of 482 

measuring the reflectance of the topmost layer of the forest canopy and SAR data deliver useful 483 

within-canopy biophysical parameters without being affected by cloud cover and weather conditions, 484 

one dataset may compensate for the shortcomings of the other (Reiche et al., 2016). Previous research 485 

indicated that integration of optical and radar can improve land and forest cover characterisation 486 

(Symeonakis et al., 2018). For example, the fusion of optical and radar sensor data has the potential to 487 

improve AGB estimation because it may compensate for the mixed pixels and data saturation 488 

problems in a tropical forest area. In addition to the spectral synergy afforded, the cloud penetrating 489 

capability of microwave radar sensors allows areas that have missing optical data to be included in 490 

analyses, particularly if multi-temporal methods are being employed (Reiche et al., 2016).  491 

3. Methodology 492 

This review focused on scientific papers studying tropical dryland forests and made use of remote 493 

sensing data to monitor and estimate changes in dryland forests. Airborne remote sensing studies were 494 

excluded from this review process, since the review’s major focus lies on satellite Earth observation 495 

of dryland forests and because the acquisition of airborne sensors have low area coverage and high 496 

cost per unit area of ground coverage (e.g., the airborne hyperspectral images), making them spatially 497 

and temporally limited in most African countries. The systematic search approach taken to querying 498 

the literature was carried out by making use of selective keyword searches in the form of structured 499 

queries using field tags and Boolean operators through the Web of Science 500 

(http://apps.webofknowledge.com) and Scopus (http://www.scopus.com) databases. At each query, 501 
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terms, and keywords such as ‘Dryland forests’, ‘Savan*’, ‘Woodland’, ‘Tree’, ‘Vegetation’, 502 

‘Satellite’, ‘Remote Sensing’, ‘Optical’, ‘Radar’, ‘Image’, ‘SAR’, and ‘Earth Observation’ were used 503 

to produce an extensive list of articles, where * is a wildcard search. The results were further refined 504 

with keywords such as ‘Forest change’, ‘Degradation’, ‘Deforestation’, ‘Trend’, ‘Biodiversity’, 505 

‘Phenology’, ‘Biomass’, ‘Structural parameter’, and also keywords representing the countries in 506 

Southern Africa, such as ‘Botswana’, ‘Namibia’, ‘Mozambique’, ‘South Africa’, to provide a 507 

comparison in terms of the numbers of studies undertaken across the region. Within the context of this 508 

review, all research articles were categorized into eight categories, including: ‘Land-use/land-cover’, 509 

‘Forest cover/types’, ‘Biomass’, ‘Forest structure’, ‘Biodiversity/habitats’, ‘Phenology’, ‘Plant traits’, 510 

and ‘Disturbances’. Articles with a publication date between 1997 and 2020 were considered, 511 

capturing a period of two decades within the review, based on a broad set of inclusion criteria: 512 

1. The paper should address dryland forests and remote sensing as either main or secondary 513 

subjects. 514 

2. The selection terms and keywords should exist as a whole in at least one of the fields: title, 515 

keywords, and abstract. 516 

3. The paper should be published in a peer-reviewed scientific journal. 517 

4. The paper should be written in the English language. 518 

During our data extraction process and literature search, we aimed to find studies meeting the criteria 519 

for peer-reviewed publications, available through the chosen indexed bibliographic databases. For this 520 

reason, our literature search did not include general non-scientific reports, books, grey literature, 521 

thesis documents or dissertations, extended abstracts, or presentations. The initial steps of the search 522 

process returned 1,478 published articles. Additional publications were added to the total set of 523 

studies by identifying relevant literature found in the reference lists of these selected papers that 524 

conform to the inclusion criteria. The review methodology was guided by the Guidelines for 525 

Systematic Review and Evidence Synthesis in Environmental Management (Collaboration for 526 

Environmental Evidence, 2013). A systematic review and meta-analysis were undertaken and framed 527 

based on the PICO (population, intervention, comparison, outcomes) model (McKenzie et al., 2019) 528 
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and reported using PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 529 

flow diagram (Moher et al., 2009). The 1,478 articles were reduced to 870 articles as we selected for 530 

inclusion in the review only the studies that had a full text available in English, papers published in 531 

peer-reviewed journals, and removing all repetitions across databases. Initially, the titles and abstracts 532 

were screened to assess eligibility by searching for predefined keywords and terms of the abstract or 533 

summary, identifying terms ‘dry or dryland forests’ and the country or countries where the research 534 

took place. In this way, studies not conducted in Southern Africa or dryland forests were filtered out, 535 

which reduced papers from 870 to 599 papers. The screening was followed by a full-text assessment 536 

that reduced the papers to 270 by excluding studies that, for example, mentioned the term ‘dryland 537 

forest’ once in the abstract but did not investigate dryland forests, as outlined in the PRISMA flow 538 

diagram in Figure 4. The search was subsequently refined by assigning the papers to each of the study 539 

aims they addressed and to each category for the variables identified in the search protocol, reviewing 540 

the methodologies of each publication, excluding them from further analysis if they did not meet the 541 

inclusion criteria on review. These steps reduced the total number of entries to 137 scientific 542 

publications. The selected literature was reviewed systematically, searching for specific information 543 

regarding the publication temporal development, study location, remote sensing sensor/platform used, 544 

spatial and temporal coverage, remote sensing product (e.g., biophysical indices) used, and 545 

application areas of the study (e.g., land cover, forest biomass). The parameters used to extract 546 

relevant information from the remaining 137 identified scientific publications are in Table 1. Figure 4 547 

is a PRISMA schematic representation of the methodology used and the derivation of the final 548 

number of articles selected. 549 
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 550 

Figure 4. PRISMA follow diagram (Moher et al., 2009) showing the flow of information through the 551 

different phases of the systematic review. 552 

 553 

Table 1. Parameters used to extract relevant information for this review  554 

General information 
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Paper Id 

1st author’s institution 

Research institute city 

Publication year 

Publishing Journal 

Journal category 

No of Citation  

Study type 

Site specific information 

Location of the study area 

Study country 

Forest management area 

Predominant forest type 

Information on remote sensing data 

Sensor Type 

Instrument name 

Image resolution 

Time period observed 

Temporal resolution of EO data 

Database used 

Information on research 

Research topic considered: 

Forest cover/type, disturbance, phenology, biodiversity/habitats, plant traits, land cover/land use 

Parameters examined in the study 

Examined object scale 

Applied methodology 

Information on validation and accuracy of results 

Database used 
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4. Results 555 

4.1 Temporal development of publications and author affiliations  556 

After the literature search, we found that the cumulative number of published research papers 557 

integrating remote sensing data in dryland forests of Southern Africa grew exponentially from 2 in 558 

1997 to 155 in 2020. The temporal development of the 137 investigated research articles is illustrated 559 

in Figure 5. The graphic shows that the number of studies has increased significantly over the last 23 560 

years, with the majority of the studies published from 2013. More than 105 (80%) of articles were 561 

published from 2009 to 2020 and only 4 (3%) of articles were published before 2000. The growth in 562 

number is also related to the increased availability of remote sensing platforms, sensors, data, for 563 

example, Landsat 8 in 2013 and Sentinel satellite in 2014, respectively.  564 

 565 

Figure 5. Number of papers included in the review integrating remote sensing and dryland forests in 566 

Southern Africa published annually between 1997 and 2020.  567 
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In the review, we have only considered studies within Southern Africa; however, the majority of first 568 

authors, 83 (61%) of 137 investigated papers, are mainly scientists from international research 569 

institutions outside of the focus region, mainly the USA, UK, Portugal, Germany, and The 570 

Netherlands (Figure 6). Conversely, the majority of first author institutions from Africa, 37 (27%) of 571 

published papers, were from RSA research institutions. The state funded research institutions in 572 

Southern Africa shown in Figure 6 include South African Council for Scientific and Industrial 573 

Research (CSIR), South African National Space Agency (SANSA), Water Resource Commission of 574 

South Africa, South Africa Agricultural Research Council, Range and Forage Institute, Botswanan 575 

Harry Oppenheimer Okavango Research Centre, Desert Research Foundation of Namibia, and 576 

Namibia Ministry of Environment and Tourism. Considering the 137 studies conducted, about 120 577 

(90%) of the first authors are affiliated with either International and RSA institutions, but no first 578 

authors were from Zambia, Lesotho, or Angola.  579 

 580 
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Figure 6. Number of papers by research institutions.  581 

4.2 Spatial coverage, spatial extent, and investigated protected areas 582 

Looking at the spatial scale of the study areas, we distinguished between studies done at a local 583 

community level in a single country, termed local scale, and studies done at more than one local 584 

community or province termed regional scale. We also considered studies done at the national level 585 

and the whole of Southern Africa. If a study covered more than three countries, it was counted as an 586 

analysis of Southern Africa. The spatial extent of the studies in the review is shown in Figure 7. The 587 

majority 88 (64%) of the investigated studies focused on a local scale, despite the need for regional 588 

scale information on dryland forest distribution. From Figure 7, out of 137 investigated research 589 

papers, 20 (15%) and 13 (9%) research papers covered regional and national scales, respectively. 590 

Only 10 (7%) out of 137 research papers dealt with transboundary protected areas, while 6 (4%) of 591 

research papers were covering Southern African, considering the region as a whole, using mainly 592 

multispectral data of large spatial resolution of 1km to 8km (MODIS, SPOT, and AVHRR) to 593 

generate information on phenology, and vegetation condition (fire or drought), as shown in Figure 7.  594 
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 595 

Figure 7. Spatial extent of investigated studies. 596 

From Figure 8, it is evident that considerable gaps in geographical focus of research on tropical 597 

dryland forests mapping still exist in Southern Africa. With respect to spatial coverage of the research, 598 

most studies, 50 (36%) of research papers were carried out in RSA, followed by Namibia and 599 

Botswana, with 22 (16%) and 18 (13%) of research papers, respectively. Swaziland, Angola, and 600 

Lesotho were the least frequently investigated, each with < 10 papers. Angolan dryland forests are 601 

even less well studied with 4 (6%) of research papers, despite being found extensively in that country. 602 

Figure 8 also shows the location of the most frequently studied protected areas. By far, the most 603 

studied was the Kruger National Park (NP) in RSA, involving research by local and foreign 604 

researchers from as far afield as the USA, the UK, and beyond. With this interest in the Kruger NP, 605 

there is, unfortunately, a lack of attention on other conservation areas and parks in Southern Africa. 606 

Kruger NP was the only subject of more than one-third, 23 (37%) of the 61 of all reviewed papers on 607 

protected areas. The second most frequently studied protected areas are the Etosha NP in Namibia 608 
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with 6 (8%) of papers, Chobe NP with 4 (7%) of papers, and Kwando, Kavango and Zambezi 609 

transboundary NP with 8 (13%) of papers). Malipati Safari Area, South Luangwa NP, Gorongosa NP, 610 

and Central Kalahari Game Reserve were each studied 3 (5%) and 2 (3%) times.  611 

612 
Figure 8. Number of studies per country and National Park in Southern Africa. (Note: The data are not 613 

scaled to the proportion of dryland forest area of countries, and National Parks with fewer or no 614 

publications are not shown. Source: FAO, (1999). Reproduced with permission).  615 

To identify land surface changes and the drivers behind these, as well as short- and long-term trends, 616 

it is essential that EO temporal coverage has sufficiently frequent revisit periods and resolutions. 617 

Nonetheless, this is not an easy task since the availability of remote sensing data for long-term 618 

monitoring is constrained by sensor characteristics (e.g., revisit time) and environmental factors (e.g., 619 

cloud cover). Looking at the temporal resolution of the EO datasets used, we distinguished between 620 
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data acquired at a single point in time on a monthly basis, termed mono-temporal analyses, and on a 621 

single annual basis, termed mono-annual analyses. We also considered multi-temporal and multi-622 

annual to separate monthly and yearly analyses studies. From Figure 9 it is seen that the majority of 623 

published material has focused on a single temporal period. The majority of studies involved mapping 624 

over two or more years (multi-temporal/multi-annual) comparing images at two or more different 625 

times, with a bi-temporal approach based on discrete classification (e.g., Chiteculo et al., 2018; 626 

Coetzer-Hanack et al., 2016; Matavire et al., 2015). Although the bi-temporal approach is 627 

mathematically simple and does not require large data storage, it is less useful compared to the time 628 

series approach that can provide a more comprehensive understanding of the complexity of the 629 

Earth’s land surface dynamics. Very few studies feature time series analysis, which is required to 630 

perform continuous long-term monitoring of changes in a tropical forest ecosystem. The majority of 631 

articles on time series analysed multi-annual data, which masks within-year variations, as compared to 632 

the detail provided at a monthly temporal scale (e.g., Akinyemi et al., 2019; Venter et al., 2020; 633 

Verlinden et al., 2006a; Wessels et al., 2006). Only 22 (16%) out of the 137 studies analysed more 634 

than 15 years and only 11 (8%) studies covered more than 20 years using monthly time series (e.g., 635 

Bunting et al., 2018; Schultz et al., 2018).  636 

 637 
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Figure 9. Temporal duration of studies included in the review integrating remote sensing and dryland 638 

forests in Southern Africa between 1997 and 2020.  639 

4.3 Research Topics 640 

We have classified the large number of research topics into eight broad categories that cover the 641 

diversity of research into dryland forests. The eight categories, and the number of studies belonging to 642 

each of them, are shown in Figure 10.  643 

 644 

Figure 10. Research topic categories of reviewed articles between 1997 and 2020. Note that some 645 

studies cover different topics, which may result in multiple entries.  646 

4.3.1 Land cover/land use 647 

Land-cover change is one of the most researched areas using EO in Southern Africa, with 36 (23%) 648 

publications making it the second most common topic. We considered land-use/cover describing land 649 

surface classification, typically represented in thematic maps of different dryland vegetation. Land-650 

use/cover changes with a specific focus on other dryland vegetation such as rangelands, grassland, 651 

coastal vegetation, or plantation forests without covering dryland forests were excluded. The majority 652 

of publications on land-use/land-cover used optical data. For example, Landsat data have been used 653 
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by more than 90% of publications, except Daskin et al. (2016) and Hüttich et al. (2011) which used 654 

RapidEye and MODIS data. Only one publication used a combination of Radar and optical data 655 

(Symeonakis et al., 2018). Sentinel data have not been utilised for land cover and land use study in the 656 

reviewed papers, probably due to the relatively recent availability of these data. Looking at scale, the 657 

majority of papers on land-cover change focused on the local scale in Southern Africa, but there is 658 

still a general lack of synthesis of land-use /cover change assessment at the regional, national or 659 

subcontinental scale (Figure 7).  660 

4.3.2 Forest cover/type 661 

The majority of publications, 46 (31%) of studies cover the topic “Forest cover/type”. The forest 662 

cover/type comprises the generation of a forest/non-forest mask (Dlamini, 2017; Heckel et al., 2020), 663 

forest cover change estimation (Erkkilä et al., 1999; Ringrose et al., 2002), forest type discrimination 664 

between dryland forests (McCarthy et al., 2005), forest health assessment (Herrero et al., 2020), 665 

woody cover (Boggs, 2010; Ibrahim et al., 2018), and tree species classification (Adelabu et al., 2013; 666 

Hüttich et al., 2009). The majority of forest type/cover mapping was undertaken with optical multi-667 

spectral data including Landsat, MODIS, and AVHRR and a few studies used high-resolution data 668 

such as RapidEye, GeoEye, and WorldView. On the other hand, a few studies on forest cover/type 669 

mapping used a combination of multispectral and spaceborne SAR data (X-band, C-band, and L-670 

band) such as Landsat and JERS-1 (Bucini et al., 2009), Landsat and ALOS PALSAR (Higginbottom 671 

et al., 2018; Naidoo et al., 2016) and Sentinel-1 and -2 (Heckel et al., 2020) (Figure 11).  672 

A few studies on forest cover/type mapping relied on field data (Bucini et al., 2009; Ibrahim et al., 673 

2018; Schultz et al., 2018) or forest inventory plots (Heckel et al., 2020). Most studies did not include 674 

detailed field measurements (species composition, density, frequency, dominance, and basal area, 675 

percentage soil cover, total height) and had very few field samples (Gessner et al., 2013). Other 676 

studies relied on high resolution EO data (Dlamini, 2017; Higginbottom et al., 2018), and published 677 

maps (Westinga et al., 2020) as reference data to validate their results. The majority of studies did not 678 

perform any form of accuracy assessment or validation of quantitative estimates (e.g., Campo-Bescós 679 

et al., 2013; Harris et al., 2014). Forest cover and species mapping is essential for many forestry-680 
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related tasks and play a key role in sustainable forest management; the importance of these topics can 681 

be seen in the fact that they are addressed across all countries in Southern Africa, with the majority of 682 

studies conducted in RSA, followed by Namibia and Botswana (Figure 12).  683 

 684 

Figure 11. Number of studies based upon platform and sensor type. Note that studies investigating 685 

forest change with multiple platforms were counted multiple times.  686 

4.3.3 Forest biomass and structures  687 

Fifteen research papers (10%) studied forest biomass, and fourteen publications (10%) assessed 688 

“forest structure”. Studies on biomass included the estimation of AGB (Dube et al., 2018; Mutanga et 689 

al., 2006), and changes in carbon stock (Gara et al., 2017). Some of the publications used National 690 

Forest Inventory (NFI) data (Halperin et al., 2016; Verbesselt et al., 2007), and field-based samples 691 

(Mareya et al., 2018; Tsalyuk et al., 2017) to estimate biomass in Southern Africa. 692 
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Forest structure in the review includes research on stand structure (Mathieu et al., 2013), canopy 693 

cover (Erkkilä et al., 1999; Huemmrich et al., 2005), canopy gaps (Cho et al., 2015), and stand density 694 

(Adjorlolo et al., 2013). The majority of studies on “forest structure” in Southern Africa dealt with 695 

canopy cover (e.g., Adjorlolo et al., 2014; Yang et al., 2000). Very few studies considered vertical 696 

forest structure including tree height and tree crown diameter (e.g., Verlinden et al., 2006b). Mareya 697 

et al. (2018) utilised freely available high resolution Google satellite imagery in combination with 698 

object-based image analysis (OBIA) to estimate tree crown areas in miombo forests and found the 699 

overall accuracy to be low and unsuitable when high accuracy is required. Some of the “forest 700 

structure” publications are also assigned to the research topic “biomass”, which discusses the 701 

relevance of forest structure for biomass (Meyer et al., 2014). Forest structure is also a very important 702 

parameter when it comes to habitat suitability, species diversity, biodiversity estimation, and 703 

conversation studies and thus some publications cover both topics (e.g., Akinyemi et al., 2019).  704 

The methods applied in the biomass and forest structure publications are diverse. Most studies 705 

employed some sort of regression analysis between in-situ field data and EO data, with the most 706 

popular methods being random forests, support vector machines, kriging, linear and generalised linear 707 

models (Berger et al., 2019; Carreiras et al., 2013; Halperin et al., 2016; Mutanga et al., 2006; 708 

Wingate et al., 2018). Williams et al. (2013) utilised the simple ensemble model to analyse biomass 709 

dynamics and found that biomass distributions can diagnose disturbance processes in miombo 710 

woodlands. Most studies utilised NDVI index in dryland forest mapping to correlate with biomass 711 

(Gizachew et al., 2016; Wessels et al., 2006), but very few studies considered other vegetation indices 712 

such as red-edge (RE)-computed indices (e.g., Dube et al., 2018; Gara et al., 2016). For the most part, 713 

optical sensors were used to derive forest biomass and structures, only four papers utilised radar data, 714 

and one paper used a combination of radar and optical data to estimate biomass (Wingate et al., 2018). 715 

More research is needed to explore the improvement of forest AGB and forest structure estimation 716 

through multi-sensor (optical and radar) data fusion. 717 
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4.3.4 Climate change and disturbances  718 

Here we refer to dryland forests stress monitoring (e.g., damage due to fire, climate/weather-related 719 

hazards including drought events, floods, extreme temperatures as part of climate change and 720 

disturbances. Twenty-one papers (13%) investigated disturbances to forest cover. Among the different 721 

forms of disturbance, fire damage was the most commonly studied (Mayr et al., 2018; Pricope et al., 722 

2012; Roy et al., 2019; Silva et al., 2003). In the context of threats of climate change, other 723 

disturbances included drought (Lawal et al., 2019; Marumbwa et al., 2021; Urban et al., 2018) and 724 

floods (Pricope et al., 2015). A regional studies Lawal et al. (2019) used gridded climate data from the 725 

Climate Research Unit and GMMS NDVI to characterise the impact of drought to vegetation in 726 

southern Africa from 1981 to 2005; They found that the responses of vegetation varied according to 727 

season and biome, and showed that droughts had extensive impacts over the central parts of South 728 

Africa and Namibia, and the southern border of Botswana and the western parts of Zambia. In this 729 

review, we only considered studies that investigated climate change in terms of temperature/drought 730 

in dryland forests where satellite data are a primary or secondary source of data. Although there are a 731 

number of studies on climate change modelling in Southern Africa, the results show that there is a 732 

striking lack of studies investigating climate change into dryland forest change and stress monitoring.  733 

The sensors used to detect disturbances differs, with most studies using MODIS (Alleaume et al., 734 

2005; Archibald et al., 2009; Chongo et al., 2007; Giglio et al., 2009), two publications used SPOT-735 

VGT (Silva et al., 2003; Verbesselt et al., 2006), and one Landsat and Sentinel-2 (Roy et al., 2019). 736 

Only two publications utilised SAR data. Mathieu et al. (2019) investigated SAR Sentinel-1A C-band 737 

images for detecting surface fires in the Kruger NP, while Williams et al. (2013) used ALOS 738 

PALSAR to analyse known disturbance agents in tropical woodlands in Mozambique. The research 739 

by Urban et al. (2018) used Sentinel-1 SAR time series NDVI from Sentinel-2 and Landsat-8 to 740 

derive surface moisture for drought monitoring in the Kruger NP between 2015 and 2017. A 741 

combination/fusion of SAR and Optical data for detecting disturbances is not tested by any study. 742 

Only one study used field data as input data for validation (Alleaume et al., 2005), while two studies 743 

used forest inventory data (Verbesselt et al., 2006; Verlinden et al., 2006a). 744 

745 
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4.3.5 Biodiversity, plant traits, and phenology 746 

747 
Figure 12. Research topic by country. Note that the order of the mentioned topics has changed when 748 

compared to Figure 10 as some studies were conducted in several countries.  749 

Twelve (8%) of the reviewed publications dealt with research questions in the context of forest 750 

biodiversity. Almost half of the papers on forest biodiversity examined plant species diversity 751 

(Adjorlolo et al., 2014; Chapungu et al., 2020; Mapfumo et al., 2016). Others looked at animal species 752 

and habitat suitability (e.g., Cáceres et al. (2015) for birds, Ducheyne et al. (2009) for tsetse flies, 753 

impala (Van Bommel et al., 2006), and elephants (Marston et al., 2020). Forest biodiversity is often 754 

related to structural canopy parameters. Most studies, nine (75%) of twelve used Landsat to derive 755 

parameters such as plant canopy height, species occurrence, richness, and diversity. Three (25%) of 756 

the studies used MODIS data (e.g., Fullman et al. (2014) used MODIS at 250 m pixel resolution and a 757 

Moving Standard Deviation Index (MSDI) to detect elephant-modified vegetation along the Chobe 758 

riverfront in Botswana; Akinyemi et al. (2019) utilised 1 km spatial resolution of SPOT - VGT and 759 
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PROBA-V annual time series of 18 years to understand species diversity and richness assessment 760 

based on the Vegetation Degradation Index in Palapye Botswana.; Adjorlolo et al. (2014) investigated 761 

the utility of SPOT-5 multispectral data to assess tree equivalents and total leaf mass to model grazing 762 

and browsing capacity in KwaZul-Natal province in RSA. 763 

Five papers (3%) dealt with different plant characteristics, known as plant functional traits. These 764 

include canopy chlorophyll content (Cho et al., 2012), leaf nitrogen concentration (Cho et al., 2013), 765 

and vegetation water content (Verbesselt et al., 2006), and LAI (Scholes et al., 2004). Plant functional 766 

traits including vegetation biophysical and biochemical properties (e.g., pigment levels, nitrogen 767 

content) are often related to patterns of biodiversity. Huemmrich et al. (2005) explored monthly 768 

MODIS data at 1 km spatial resolution over two years to estimate LAI and FAPAR and found that 769 

ground‐measured LAI values correspond well with MODIS LAI, and showed a discrepancy with 770 

FAPAR. Cho et al. (2012) utilised variogram analysis and the red edge shift from SumbandilaSat and 771 

SPOT 5 to estimate canopy chlorophyll content in Dukuduku forest in Southern Africa and found that 772 

SumbandilaSat provides additional information for quantifying stress in vegetation as compared to 773 

SPOT image data. All studies on plant traits were undertaken at the local scale.  774 

Looking at research categories per country, biodiversity/habitat publications were mainly undertaken 775 

in Botswana and RSA (Figure 12). All studies in the context of forest biodiversity and plant traits 776 

covered only mono-temporal and multi-annual classifications. Only two studies utilised multi-annual 777 

time series (Akinyemi et al., 2019; Verbesselt et al., 2006), and one study used MODIS multi-778 

temporal time series over two years (Huemmrich et al., 2005). All of these studies focused on a coarse 779 

resolution of 1 km. 780 

Phenology is also strongly linked to plant traits, but analysis puts more emphasis on the seasonal 781 

variations including growing season (green-up date) (Archibald et al., 2007; Whitecross et al., 2017), 782 

end of the season, and length of the season (Davis et al., 2017). To date, phenological research in 783 

Southern African dryland forests is limited, and more than half of the published papers on phenology 784 

focused only on examples from RSA. In the few studies that have analysed phenology, most studies 785 

dealt with estimating leaf flush and early-greening dates (Chidumayo, 2001; Higgins et al., 2011). For 786 
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example, Archibald et al. (2007) developed an intricate algorithm that used MODIS NDVI products 787 

and field-based parameter estimates to predict green-up dates for grass and tree components at a site 788 

in the Kruger NP in RSA. Jolly et al. (2004) compared a water balance model to a 3-year NDVI time 789 

series and found the deviation between the onset of leaf flush predicted by the model and empirical 790 

data was between 10 and 40 days. 791 

 792 

 793 
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 805 

5. Discussion 806 

5.1 Temporal extent 807 

 808 

In this article, we have synthesized the current research with EO on dryland forests, with a particular 809 

focus on Southern Africa. Although the volume of scientific literature has demonstrated a sharp 810 

increase, the use of remote sensing is still limited, and up until 2013, the number of publications on 811 

this topic was relatively small. Substantial research on the dryland forests of Southern African is 812 

mainly based on single-date observations, and comparing classified images at two or more different 813 

times. Maps that relate successive land cover change between two dates typically lack information 814 

regarding underlying processes and do not enable insights on the nature of the transformations 815 

present, such as the rate or persistence of change (Lambin et al., 2003). Time series analysis on 816 

dryland forests, which enables tracking changes is scarce, only 22 (16%) out of 137 studies feature 817 

time series lengths that exceed 15 years and only 11 (8%) studies that cover more than 20 years. 818 

Longer time series of remote sensing data afford the ability to assess the dynamics of forest structures, 819 

biodiversity, degradation, disturbance from climatic extremes, and change in phenology, in which a 820 

gap still exists. 821 

5.2 Spatial scale 822 

 823 

Another finding that stands out from our analyses is that there are very few studies at the national and 824 

regional levels. Despite new sensor and EO data availability, it is clear that a systematic and 825 

consistent regional monitoring of dryland forests is not yet fully exploited and is still in its infancy 826 

in Southern Africa. In fact, the majority of publications 88 (64%) concentrated their research efforts 827 

on local scale investigations (Figure 7). Desanker et al. (2001) and Geist (2002) also emphasised that 828 

Southern Africa is limited to local-scale studies, thereby lacking a simultaneous analysis of the 829 

impacts of these changes at a larger scale. To fully assess regional and long-term implications for 830 
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tropical dryland forest change studies, analyses on large(r) scales are needed, ideally with higher 831 

spatial resolutions and longer temporal duration. 832 

5.3 Accuracy assessment  833 

 834 

Through evaluation of the literature, we identified that the assessment of accuracy for 835 

thematic/classified maps and statistical data to be another important issue, with only 54 (39%) of the 836 

studies appearing to have performed some form of accuracy assessment. Our results show there is 837 

limited information on sources of error and uncertainty levels of the estimates provided by most 838 

studies. We found that most forest and vegetation-related scientific outputs in Southern Africa are not 839 

yet strongly linked to field measurements and forest inventory data. Among the reviewed studies, very 840 

few studies utilized field test sites/ ground-based independent datasets for accuracy assessment, while 841 

other studies estimated uncertainties using other procedures e.g., using a sample of finer spatial 842 

resolution remote sensing data, or did not report the map uncertainty. Some studies employed root-843 

mean-square error to assess model accuracy (RMSE) (e.g., Adjorlolo and Mutanga, 2013; 844 

Higginbottom et al., 2018), while many studies used an error matrix to assess map uncertainties, 845 

which was employed for instance (e.g., Adelabu et al., 2013; Hüttich et al., 2011). However, some 846 

studies used sample points below the desirable target number of validation points per class (e.g., 847 

Cabral et al., 2011), while studies briefly mentioned that a confusion matrix was calculated but did not 848 

report how many sample points were used for validation (e.g., Chagumaira et al., 2016). Congalton. 849 

(1988) suggests planning to collect a minimum of 50 samples for each map class for maps of less than 850 

1 million acres in size with less than 12 classes. It has been empirically confirmed that a good balance 851 

between statistical validity and practicality for larger area maps or more complex maps can be 852 

achieved with about 75 to 100 sample sites per class (Congalton & Green, 2009). 853 

Globally, owing to TDFs low commercial importance in comparison to other tropical forests such as 854 

moist forest, they are often not assessed by field surveys, or surveyed regularly by governments 855 

(Keenan et al., 2015). Independent validation data for dryland forest estimations are rarely available 856 

because acquiring appropriate field survey data is a time-consuming and expensive task. In Southern 857 
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Africa, these areas are often remote and dangerous to visit in the field, due to the hazard posed by 858 

wildlife and if present, unexploded landmines, almost impracticable to obtain independent validation 859 

data for large(r) area studies, especially for many protected areas. Despite challenges to obtain 860 

ground-based observation, effective integration of these data and remote sensing methods will be key 861 

to accurately mapping and monitoring dryland forest across a range of spatial scales and in reporting 862 

the accuracy of models. However, the applicability of remotely measured geospatial data is reliant on 863 

quality, and translating remote sensing data into accurate and meaningful information is often a 864 

challenge prone to errors (Congalton et al., 2009; Donoghue, 2002). In this context, it is critical to 865 

ensure the validity of these data and their suitability for each particular application, particularly where 866 

coarse spatial maps can be misleading. In addition, characterising dryland forest for large areas of 867 

Africa cannot entirely rely on global and pantropical monitoring studies for dry forest estimation 868 

because global forest monitoring generally underestimates, and in some instances overestimates, 869 

dryland biomes (Bastin et al., 2017).  870 

5.4 Research topics and geographical focus 871 

 872 

The classification of studies into eight broad subject categories revealed forest cover/types 41 (26%) 873 

and land cover/land use 36 (23%) to be the most commonly researched topics. Topics receiving less 874 

attention included phenology, plant traits, biodiversity/habitats, and disturbances with regards to 875 

climate change (Figure 10). With regards to disturbances, fire damage was the most commonly 876 

studied but there is a missing body of literature on the climate change impact on the composition, 877 

biodiversity, and ecological health of dry forest ecosystems in most countries of Southern Africa. We 878 

also found an interesting, non-uniform spatial distribution of dryland vegetation and forest studies 879 

using spaceborne remote sensing, particularly when considering disparities among countries and 880 

across protected areas. The distribution of research categories by country reveals that RSA is, by far 881 

the most studied nation across all categories in Southern Africa (Figure 8). It should be noted that care 882 

should be taken here not to assume that the number of studies equates to research quality, which 883 

remains difficult to articulate from a review of this nature. However, the dryland forests of 884 

Mozambique, Lesotho, Swaziland, and Zambia are noticeably very poorly studied. Studies on the 885 
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dryland forests of Angola are even less frequent, receiving relatively little global attention, and the 886 

few studies conducted on its forests were mostly conducted by researchers from Portuguese 887 

Universities (Catarino et al., 2020; Leite et al., 2018). The focus of publications tended to be biased 888 

towards conservation and national parks, particularly as a large proportion of studies were undertaken 889 

in the Kruger NP, leaving many other private and international protected areas relatively 890 

understudied. Transboundary conservation areas, such as Kavango-Zambezi (KAZA), have received 891 

relatively little attention but merit further research in terms of the vast dryland forests extent, 892 

biodiversity, species abundance and diversity, and the potential for this area to form important 893 

corridor areas for wildlife animals. There is a further concern as a result of such gaps because some of 894 

the dryland forests, and species to which they are home, notably in countries like Angola and Zambia, 895 

are listed on the IUCN red list and would almost certainly merit Alliance for Zero Extinction 896 

(ACE) ranking (Cumming, 2008). Furthermore, future efforts to estimate important variables such as 897 

forest cover and biomass need not be restricted by country boundaries. Future studies, based on 898 

medium-fine resolution EO and validated with field data, will provide information to improve our 899 

understanding of African dryland vegetation and its management. 900 

5.5 Vegetation indices, optical, SAR, and fusion of optical and SAR sensors 901 

 902 

The most commonly used vegetation index was the NDVI, with more than half of the studies, 84 903 

(54%) of papers utilising this index, but only 13 (8%) of papers used EVI index and SAVI index. 904 

Other vegetation indices such as the GNDVI index and Sentinel red-edge related indices and passive 905 

microwave observations such as Vegetation Optical Depth were not utilised in studies considered in 906 

this review. One major problem commonly encountered in the less studied ecosystems, such as 907 

dryland forests, is that of generalizing or transferring knowledge and methods derived from remotely 908 

sensed imagery over both space and time (Foody et al., 2003). For example, commonly used 909 

vegetation indices and classification schemes are in general mainly been calibrated on other, better-910 

studied ecosystems, such as temperate or rain forests, and this has led to poor accuracy results when 911 

extrapolated, to for example, tropical dryland forests. This phenomenon justifies the importance of 912 

utilizing a range of vegetation indices when studying dryland forests using EO data. Imagery from 913 
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optical sensors is most commonly used, out of all sensor types, providing the data used in 90% of 914 

papers reviewed, followed by SAR data with 6%. The fusion of optical and radar data was rarely 915 

used, with only 4% of publications exploring this. The most frequently used platforms are Landsat, 916 

followed by MODIS and AVHRR. Imagery taken by the Sentinel-1/2 satellites only makes up a small 917 

portion of the remote sensing data on dryland forests. For example, Sentinel-2 was only used by 2% 918 

of investigated studies, but this may reflect the relatively short period (since 2015) when these data 919 

have been available.  920 

5.6 Remote sensing platforms and cloud-based computing 921 

 922 

Most of the EO data used in the publications reviewed were downloaded, and are available at no cost 923 

from a number of online portals, including the Oak Ridge National Laboratory (ORNL), the United 924 

States Geological Survey (USGS) Distributed Active Archive System (DAAC) and Earth Explorer 925 

(EE) tool. The lack of remote sensing research centers in most Southern African research institutions 926 

may contribute to limit the number of African Scientists engaged in monitoring forests resources. For 927 

example, most studies in RSA made use of remote sensing data through the University of the 928 

Witwatersrand, Satellite Application Centre (SAC), the South African National Space Agency 929 

(SANSA), and the Council of Science and Industrial Research (CSIR). The development of remote 930 

sensing capacity at local universities has inevitably contributed to RSA universities and research 931 

institutions conducting the majority of studies in Southern Africa (Figure 6). To improve EO data 932 

access, and the skills to handle and interpret this across Southern Africa, there is a need to increase the 933 

number of local institutions that distribute the remote sensing data, and who have the capacity to 934 

access and use innovative web-based platforms such as the Google Earth Engine (GEE) and Amazon 935 

Web Services to overcome some of the logistical and financial constraints of this type of research. 936 

Southern African countries face considerable technical challenges with remote sensing, particularly in 937 

respect to REDD+-related research on dryland forests monitoring. Freely available tools, for example, 938 

the cloud-based geospatial analysis platform Google Earth Engine (GEE), make it easier to access 939 

powerful computing resources for processing and analysing pre-processed large-scale datasets 940 
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(Shelestov et al., 2017). However, only nine papers (6%) out of 137 used GEE to access or analyse 941 

remote sensing data. The “near real-time” remote sensing data offered by GEE is of particular interest 942 

for monitoring changes and automating the analysis of time-series, when detecting and tracking trends 943 

in surface reflectance properties. With increasing spatio-temporal coverage of satellite data and 944 

computational platforms that reduce the need for costly local infrastructure (e.g., GEE), there is an 945 

opportunity to overcome the limitations previously enforced by large volumes of data and the scale of 946 

analysis, whereby our knowledge of dryland forest dynamics can be improved in the upcoming years.  947 

6. Conclusion 948 

This review summarizes research progress towards the use and integration of remote sensing data 949 

within the context of monitoring dryland forests in Southern Africa, using a systematic review 950 

methodology that focused on 137 most relevant research articles. We have reviewed the temporal and 951 

spatial coverage of these studies, their application area, and the remote sensing platforms and sensors 952 

used. Based on the results, the following conclusions can be drawn. There are a broad range of topics 953 

covered by research on dryland forests, from which land-use/land-cover and forest cover and 954 

disturbances from the fire were the most frequently studied. However, there is still a relative lack of 955 

studies assessing dryland forest structure, phenology, biodiversity/habitats, plant traits, and 956 

disturbance from climatic extremes, suggesting additional research is required. The majority of 957 

studies relied on single-date or annual data and bi-temporal discrete classification; only a very few 958 

studies employed time series analysis.  959 

We consider some of the limitations of the research reviewed, which indicates a need for more 960 

frequent use of field and inventory data, a greater use of validation/accuracy assessments, and testing 961 

other vegetation indices beyond NDVI and EVI such as the Vegetation Optical Depth and Sentinel-2 962 

red-edge related indices. In addition, further improvements should focus on for extensive combination 963 

and fusion of SAR and optical data in order to have a temporally and spatially consistent data set 964 

necessary for several applications in dryland forests. Given the state of decline of woody vegetation 965 

condition in Southern Africa, long-term monitoring of monthly time series of EO data at regional and 966 
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transboundary scale clearly hold potential to capture dryland forests dynamics and to understand their 967 

current status and future trends. A significant move from EO predictions that are extremely site-968 

dependent to large(r) ecoregional level monitoring approach that integrates a range of remotely-969 

sensed data of sufficiently high spatial and temporal resolution with field measurements and using 970 

machine/deep learning models could provide a sound basis for assessing dryland forest-related 971 

changes and dynamics. Information inferred from these kinds of models would be extremely useful 972 

for the current knowledge, management and conservation of the dryland forests as well as for 973 

understanding their responses to disturbance (natural or anthropogenic) and climatic change at 974 

regional to sub-continental level. Finally, there is significant geographical heterogeneity in study 975 

coverage; whilst there is substantial research on the forests in the Kruger NP and across RSA, the 976 

same cannot be said for other areas of Southern Africa. The EO interventions not only assess 977 

deforestation rate, but also support other forest related REDD+ activities such as sustainable forest 978 

management which reduce forest degradation and enhance forest carbon stocks at a range of scales, 979 

transcending both provincial and national boundaries e.g., Kavango-Zambezi Transfrontier 980 

Conservation Area (KAZA TFCA). Nevertheless, REDD+-related research on dryland forests in most 981 

Southern African countries and protected areas has been limited, with clear gaps across Angola, 982 

Mozambique, Zambia, and Zimbabwe. Finally, Africa has the potential to emulate other continents, 983 

such as Latin America, that have made notable progress in employing freely available remote sensing 984 

data to monitor tropical dryland forest area change and biomass on a large scale.  985 
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