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1. Introduction

Rounding is the act of mapping a given number to one having a
certain number of digits in a given base. For illustration, consider
the task of rounding, in base 10, a 2-significant-digit number to 1
significant digit. If we round to the closest 1-digit number, for
example, then 1.4 rounds to 1 and 1.7 rounds to 2. We denote the
rounding operator by fl, thus we write fl(1.4)=1 and fI(1.7) =2.
This rounding rule, called round to nearest (RN), is deterministic:
the value of fl(x) depends only on x, and repeating the rounding
yields the same result.
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Suppose we want to compute 1 + 0.1 in 1-digit base-10 arithmetic. With RN we obtain fI(1 +0.1) =1. [ 2 |

Another option is to round to either of the two nearest 1-digit numbers with a probability that
depends on the distances to those numbers. If in our example we define fl(1 +0.1) as 1 with probability
0.9 and as 2 with probability 0.1, then the expected result is 0.9 x 1 + 0.1 x 2=1.1, which is the exact answer.
This probabilistic rounding is called stochastic rounding (SR), and this simple example demonstrates one way
in which it can be useful in practice: by occasionally rounding up the value of a sum, SR avoids the
phenomenon of stagnation, whereby a long sum of small quantities—0.1 in this example—is lost to rounding,.

SR was first proposed over 60 years ago, but until recently had proved useful only in rather
specialized contexts. In the last 5 years or so, however, this rounding mode has enjoyed a resurgence
of interest, mainly because of the increasing availability of low-precision floating-point arithmetic in
hardware and the recognition that, compared with RN, SR can produce errors that grow more slowly
with the problem size. By its very nature, SR ensures that rounding errors are random and so
encourages cancellation of errors, and while this effect benefits all precisions, it is particularly
important at low precisions, where numbers have perhaps only 3 or 4 significant decimal digits and
error growth can quickly destroy all accuracy. The worst-case error bounds for SR are a factor 2 larger
than those for RN, however, and so SR does not benefit all computations.

The aim of this work is to survey SR, describing

— its basic properties (§2),

— its history (§3),

— floating-point arithmetics to which it might be applied (§4),

— how SR compares with RN as regards its basic properties, including ways in which SR is less
satisfactory than RN (§5),

— its probabilistic rounding error analysis (§6),

— how it can be implemented (§7), and

— how and why it is being used in applications (§8).

2. What is stochastic rounding?

Let F denote a finite subset of R. We denote by fl any rounding operator that maps numbers in R to either
of the two nearest numbers in F. For x € R, define the two rounding candidates

|x] =max{y € F:y <x} and [x]=min{y € F:y > x},

so that |x] < x < [x], with equality throughout if x € F. Note that when x & F, the two numbers |x| and
[x] are adjacent in F.
For x € R\ F, SR is defined by

fi(x) = { [x], with probability g(x), 1)

|x], with probability 1 — g(x),

where g(x) € [0, 1]. The simplest choice is g(x) = 0.5, in which case we round up or down with equal
probability, independently of x. As is customary in the literature [1,2], we call this less commonly
used form of SR mode 2 SR. Another choice is to set in (2.1)

(%) = =17 (2.2)

which means that we round x to the next larger or smaller number y € F with probability 1 minus the
distance between x and y divided by [x] — |x]. See figure 1 for an illustration. The choice (2.2) yields
mode 1 SR, which is the most interesting SR mode from a numerical point of view. Unless otherwise
stated, here SR means mode 1 SR.

For the rest of this paper, we take F to be a floating-point number system, unless otherwise stated, as
this is the case of greatest interest, but much of what we say is applicable to fixed-point arithmetic.

3. Early history of stochastic rounding

To the best of our knowledge, the earliest proposal of SR was in a one-paragraph abstract of a
communication presented by Forsythe in 1949 at the 52nd meeting of the American Mathematical

*sosi/Jeunof/6106uiysgnd/aposjedos

LE9LLT 6 S uadp oS Y



Downloaded from https://royal societypublishing.org/ on 30 June 2022

o <— =
@ <— =

12 L)+ ix] 8 [w) )+ w1 [wl
2 2
Figure 1. Stochastic rounding rounds the real number x to the next smaller or the next larger value in £, which we denote by | x|
and [x], respectively. In the example on the left, x is one quarter of the way between |x | and [x], thus RN will round x to |x],
while mode 1 SR will round it to [x] with probability g(x) = 0.25 and to |x | with probability 1 — g(x) = 0.75. In the example on
the right, w is three-quarters of the way between |w| and [w], thus RN will round w to [w], while mode 1 SR will round it to
[w] with probability g(w) =0.75 and to |w | with probability 1 — g(w) = 0.25.

Society [3]. The abstract claims that SR can be used to reduce the accumulation of round-off errors
observed by Huskey [4] in solving a simple system of ordinary differential equations (ODEs). The
numerical integration that Forsythe and Huskey consider entails a sum of real values which is further
reduced to a sum of integers, most likely intended as fixed-point representations of reals. The
suggestion is to perform this rounding by random round-off, a suggestive name for mode 1 SR.
The abstract concludes by stating that numerical tests on some unspecified IBM equipment confirm
that SR can eliminate the “peculiarities’ noticed by Huskey on the ENIAC.!

The first hardware implementation of SR we are aware of was described by Barnes et al. [5] in 1951.
The authors describe a digital computer with 8-digit decimal arithmetic and explain that using SR rather
than RN in multipliers and dividers simplified the implementation. As their implementation rounds up
or down with equal probability, this constitutes an early example of mode 2 SR.

A note by Forsythe, originally written in 1950 and reprinted in 1959 [6] (see [6], footnote 1), provides
more details about the proposal to round stochastically when solving ODEs. The document suggests to
implement mode 1 SR for decimal arithmetic as follows:

On a decimal machine, instead of adding a 5 in the most significant position of the digits to be dropped (ordinary rounding

off), one adds a random decimal digit to each of the digital positions to be dropped. As with ordinary rounding off, the

addition carry-over determines whether the rounding off is ‘up” or ‘down’.
It is not clear whether this excerpt refers to a hardware implementation or to a modification that could be
done in software on the computers of the time. This technique has been used in recent hardware
implementations for rounding binary numbers [7,8].

In a 1966 paper, Hull & Swenson [9] test various probabilistic rounding error models by comparing the
results of stochastically rounded operations with the expected error predicted by the models. According to
the description provided at the beginning of the section ‘Simulation of the Models’ [9, p. 109], however, the
implementation of SR that Hull & Swenson consider differs from the one we examine. In order to round
stochastically the result of an arithmetic operation, they first perform the operation in double precision
arithmetic, then add a pseudo-random number between —1/2 and 1/2 of the unit in the last place of
the most significant half of the double precision result. Subsequent calculations use the modified double
precision value, which presumably includes the original quantity in its least significant half and the
added random quantity. Despite the different spirit, we mention this contribution here as it is one of the
earliest manuscripts we are aware of that considers non-deterministic rounding modes.

4. Floating-point arithmetics

Before describing the finer details of SR, we recall some necessary background on floating-point
arithmetic. We discuss the formats in the IEEE 754 standard for floating-point arithmetic and two
other formats of practical interest, bfloat16 and TensorFloat-32.

4.1. IEEE 754 standard floating-point arithmetics

The IEEE standard 754 for floating-point arithmetic was first released in 1985 [10] and then revised in
2008 [11] and 2019 [12]. The standard dictates the encoding rules for binary and decimal floating-

'Electronic numerical integrator and computer—the first programmable, general-purpose digital computer, made in 1945.
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Table 1. Parameters of various binary floating-point formats: number of digits of precision including the implicit bit (p),

smallest positive representable normal (f;,) and subnormal (s,,,) numbers, and largest positive number (f.,,,). The ‘binaryxy’
formats are from the |EEE 754 standard.

bfloat16 binary16 binary32 binary64
P 8 1 24 53
. f R 2—126 ............. 2._.14 ......... ‘2‘—12‘6 RS [T .2._1.022 S
min
fmax 2127(2 _ 2—7) 215(2 _ 2—10) 2127(2 _ 2—23) 21023(2 _ 2—52)

point data types, the precision and exponent range of some standard formats, and the accuracy
requirements of basic arithmetic operations. It also prescribes how to handle exceptional cases and
specifies a set of recommended mathematical functions that software and hardware floating-point
libraries should provide in order to ensure a consistent numerical behaviour. Table 1 reports the
parameters for four binary floating-point data types defined in the latest revision of the standard.
Most hardware implements the data types binary32 and binary64, commonly known as single and
double precision, respectively. Of the remaining formats, binary16 is defined only as a storage format,
but it has been implemented as an arithmetic in hardware by several manufacturers. One other IEEE
format is binary128, which is not listed in the table. While binary128 is mainly supported in software,
it is also available in hardware on the IBM Power9 [13] and z13 [14] processors.

We now briefly recall some key aspects of IEEE floating-point number systems and the definitions
and main properties of normalization and subnormal numbers. We focus on binary formats, since most
commercially available hardware implements only binary arithmetic. A binary floating-point number
x has the form

(—=1)° x m x 27+,

where s is the sign bit, p is the precision, m € [0, 2 — 1] is the integer significand, and e € [emin, €max], With
€min = 1 — €max, is the integer exponent. In order for x #0 to have a unique representation, the number
system is normalized so that the most significant bit of m—the implicit bit in IEEE 754 parlance—is
always set to 1 if |x| > 2%mn. Therefore, all floating-point numbers with m>2""" are normalized.
Numbers that have absolute value below that of the smallest normalized number 2°» are said to be
subnormal: they have exponent e = eyin, integer significand m <27 ~1 and therefore precision lower than
that of normalized values (between 1 and p—1 bits). Subnormal numbers provide the means to
represent values in the subnormal range (—2°mn,2°min) and are necessary in order to ensure that a
floating-point number system satisfies Sterbenz’s lemma (described in §5) and has desirable properties
such as gradual underflow. Because of the variable precision, however, subnormal numbers require
special treatment in both software and hardware implementations of floating-point arithmetics. This is
likely to cause performance and chip area overhead, and as a result it is not uncommon for hardware
manufacturers not to support subnormal numbers. Two important numbers related to the precision p
are the machine epsilon

ey =217, (4.1)
which is the spacing of the floating-point numbers just to the right of 1, and the unit round-off

u=2"= 1sM, (4.2)
2
which is an upper bound on the relative error incurred when a real value is rounded to a precision-p
floating-point representation using RN. For further details, we refer the reader to [15, ch. 1] and
[16, ch. 2].

The latest revision of the IEEE 754 standard defines six rounding modes, which are listed in table 2.
Four rounding modes are required for a floating-point arithmetic to be compliant: round to nearest with
ties to even (RN), round towards positive (or towards +oo, or up, RU), round towards negative (or
towards —oo, or down, RD), and round towards zero (RZ). In the rest of the paper we refer to these
modes collectively as ‘standard rounding’.
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Table 2. Rounding modes defined in the 2019 revision of the IEEE 754 standard [12].

rounding mode description

to nearest with ties to round to a nearest floating-point value and if the two nearest floating-point values are
even (RN) equally close, round to the one with an even least significant digit. This is a default
rounding mode.
to nearest with ties to * round to a nearest ﬂoafihg-point value and if the two nearest ﬂoéting;point Values are
away equally close, round to the number with larger magnitude. Only required for decimal
floating-point data types.
to nearest with tiesto  round to a nearest floating-point value and if the two nearest floating-point values are
zero equally close, round to the number with smaller magnitude. Only required for

augmented operations [12, sec. 9.5].

towards positive (RU) round to a nearest floating-point value that is no less than the argument.

towards negative (RD) round to a nearest floating-point value that is no larger than the argument.
towards zero (RZ) round to a nearest floating-point value that is no larger in magnitude than the argument.

The IEEE 754-2019 standard recommends extended or extendable precisions [12, §3.7] to enhance the
basic formats listed in table 1. As an example, Intel provides an 80-bit extended precision format that
has a 15-bit exponent and a 64-bit significand—the bit to the left of the radix point being stored
explicitly in this case, as opposed to the IEEE 754 formats, which rely on the implicit bit convention
and use the value of the exponent field to determine the leading bit of the significand. Arithmetic
operations can be performed in higher precision and the results need not be rounded to binary64
until the final result of a computation leaves the higher-precision registers. Note that the use of 80-bit
arithmetic is susceptible to double rounding, whereby a value may be rounded incorrectly to the final
floating-point format when it is rounded to an intermediate format (extended precision, in this case)
first [17,18]. Boldo & Melquiond have shown, using the Coq proof assistant, that double-rounding
issues can be avoided if the extended precision format uses a deterministic rounding mode called
round to odd [19,20].

4.2. Non-IEEE arithmetics

Among the non-IEEE floating-point formats implemented in recent hardware, we are particularly
interested in those based on binary32: bfloatl6 and TensorFloat-32, which lower the precision p from
23 to 8 and 11 bits, respectively. The main idea behind these formats is to reduce the memory and
hardware arithmetic costs without narrowing the dynamic range; this contrasts with the aim behind
the binary16 format, which allocates to the exponent field fewer bits than binary32 and therefore has
a more limited dynamic range.

Bfloat16, which was originally proposed by Google and formalized by Intel [21], is available on the
Armv8 architecture [22], on the NVIDIA Ampere chips [23] and on some Intel microarchitectures [24].

TensorFloat-32 is a format used internally in the tensor cores (matrix multiply-accumulate units) of
the NVIDIA Ampere microarchitecture [23]. This 19-bit format is meant to be a low-precision
replacement for binary32, but is not used for data storage and is not available in any other arithmetic
unit on these GPUs.

5. Stochastic rounding versus round to nearest

In RN, which is the default rounding mode in most floating-point arithmetics, fl(x) is the number in F
nearest to x, with some tie-breaking strategy for handling the case where x is equidistant from the
next and previous floating-point numbers. While SR and RN share some properties, they also differ in
some important respects. We first describe three properties that SR and RN have in common. In fact,
the first two properties hold for any rounding mode.

— If x e F then fl(x) = x, that is, rounding a floating-point number leaves it unchanged.
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— If x and y are floating-point numbers with y/2 <x <2y then fl(x —y) =x —y (assuming subnormal [ 6 |

numbers are supported). This result, known as Sterbenz’s lemma [15, thm. 2.5], [25, thm. 1.8.2],
relies on the fact that x — y is exactly representable.
— In base-2 arithmetic, any floating-point numbers x and y such that x <y satisfy the inequalities

flix+y) <

<
x < 5 <y,

which do not hold for all bases [1, §3.1].

SR and RN differ in some key properties, however.

For example, if x € F then in general fI(|x|) # |fl(x)| and fl( — x) # —fl(x) for SR. Moreover, SR is not
monotonic: x <y does not imply that fl(x) < fl(y), as can be seen by considering any pair of reals x and y
lying between two adjacent floating-point numbers.

Several results that describe how simple identities for real numbers are (partially) preserved for
floating-point numbers under RN are well known. Generally similar, but weaker, results hold for SR.
For a binary format with RN, for example, we have that fl(v/x2) = |x| if x is a floating-point number
[15, Prob. 2.20], barring underflow and overflow. For SR, however, if x is a floating-point number in
the interval (1, 2) then fl(vVx2) € {|x| — em, |x|, |x| + em}, where ey is the machine epsilon defined
in (4.1). A consequence of this fact is that the inequality fl(x/\/x? + y?) < 1, which is always satisfied
by RN [15, Prob. 2.21], is not necessarily true when SR is used.

Kahan proved that if m and n are integers such that |m| < 2P~! (where p is the precision) and n = 2042
for some i and j then fl(n x fl(m/n)) = m with RN [26, thm. 7]. Thus for example, fI(5 x fl(mn/5)) = fl(17 x
fl(m/7)) = m. Under SR, however, we can say only that fl(n x fl(m/n)) is either m, the next smaller floating-
point number, or the next larger floating-point number.

Full details of the above results, as well as other properties that differ between SR and RN, are given
by Connolly et al. [1, §3]. Before replacing RN with SR it is vital to consider whether a certain
computation relies on properties of RN that go beyond the standard model of floating-point
arithmetic (6.2) below, and if so, whether these properties remain true for SR. The solution of the
quadratic equation ax*+bx+c=0 is a striking example of the subtle issues that may occur when
switching from RN to SR: if evaluated using SR, the discriminant b? — 4ac can be negative even when
b*>>4ac. This is a consequence of the non-monotonicity of SR, and it could lead one to incorrectly
conclude that a quadratic equation has no real solutions when in fact it has two (almost) identical
real roots.

The results in this section suggest that SR is less attractive than RN. It is the rounding error results
described in the next section that account for the interest in SR.

6. Rounding error analysis with SR

If x € R lies within the range of the floating-point number system F, it can be shown that for RN one has
flix) =x(1+9), 8 <u, (6.1)

where the unit round-off u is defined in (4.2). Rounding error analysis is usually based on the standard
model of floating-point arithmetic [15, eqn (2.4)], which assumes that the elementary arithmetic
operations are rounded to nearest (as is the case for IEEE standard arithmetic with the default
rounding mode), so that if no overflow or underflow occurs they satisfy

filxopy) =(xopy)(1+8), [8/<u, opE{+, —, x,/} (6.2)

Analogous models can be devised for unitary operations, such as the square root, or ternary operations,
such as the fused multiply-add.

The model (6.2) is customarily used in rounding error analysis, and is based on the premise that the
result of a floating-point elementary arithmetic operation should be as accurate as the correctly rounded
infinitely precise result. Error analysis based on (6.2) is referred to as worst-case analysis because it can
only use |6] < u and cannot exploit possible cancellation of rounding errors across multiple operations or
instances where 6= 0.

For RN, the bound in (6.1) can be tightened to |6] <u/(1+u) <u [16, thm. 2.3], [27, eqn (18)]. The
model (6.2) can be improved accordingly, but this has no impact on the analysis discussed here.
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When multiple floating-point operations are performed in a sequence, rounding errors accumulate.
For example, if s =x1y1 + XaY2 + X3Y3 is computed in floating-point arithmetic, the computed 5 satisfies

5= (1 (14 81) + x22(1 + &))(1 + 8) + x3y3(1 + 8)) (1 + 85)
:x1y1(1 + 81)(1 + 83)(1 + 85) + Xzyz(l + 52)(1 + 33)(1 + 55) + X3y3(l + 34)(] + 55),

for some &y, ..., 5 of magnitude at most u. It is clear from this example that rounding error analysis for
vector and matrix operations involves dealing with multiple terms of the form []i;(1+ §;). The
following lemma [15, Lem. 3.1] bounds the distance between 1 and the product of n terms of the form
(1+6)*" by means of the quantity
o onu
Yn = 1—u’

a ubiquitous constant in rounding error analysis.

Lemma 6.1. If |6;| <u and p;==1 fori=1, ..., n, and nu <1, then

n

[[a+8)" =146, 16, <. (63)
i=1

Under SR, we define the elementary floating-point operations +, —, x, / to be the stochastically
rounded exact ones. Therefore, for SR, (6.2) holds with u replaced by 2u:

flixopy)=(xopy)(1+96), |8 <2u ope{+, —, x,/}. (6.4)

Standard rounding error analysis based on the model (6.2) clearly remains valid for (6.4), with u replaced
by 2u. This means that one will necessarily obtain larger worst-case error bounds for SR than for RN.
However, SR injects randomness into the rounding errors and so we can intuitively expect it to cause
the final error in a computation to be smaller than in the worst case, and hence possibly smaller than
for RN in some circumstances. In the next subsection, we explain why this intuition is correct.

6.1. Probabilistic error analysis

Modelling rounding errors as random variables to obtain probabilistic error bounds is an old idea going
back to von Neumann & Goldstine [28], Henrici [29-31] and Hull & Swenson [9], among others. This
line of thought has led to the following rule of thumb: a realistic bound on the rounding error of a linear
algebra algorithm can be obtained by replacing, in a worst-case error bound, all constants that depend
on the dimensions of matrices and vectors by their square roots. The key idea is to exploit the statistical
effects of these random variables in the propagation of rounding errors; see, for example, [32, p. 318].
Higham & Mary [33] provided the first rigorous proof of the validity of this criterion: they showed that
for random independent zero-mean rounding errors &, the constant y,, in (6.3), can be replaced by

N A/nu + nu?
Yu(A) = exp (ﬁ

) —1=A/nu+O0u?),

with a modest constant A > 0 with high probability. Subsequently, Higham & Mary [34] and Ipsen & Zhou
[35] obtained a probabilistic error bound for inner products that only requires mean independence of
rounding errors, an assumption weaker than independence. Connolly et al. [1] derived the following
probabilistic version of Lemma 6.1 under these assumptions [1, thm. 4.6]. Here, E[X] denotes the
expectation of the random variable X.

Theorem 6.2. Let 6y, 6y, ..., 6, be random variables of mean zero such that E(&; | 8i_1, ..., &) = E(8;) =0,
fori=2,..,n If |6 <uand p;=+1, for i=1, ..., n, then for any constant A >0,

n

[Ja+8)" =1+06, 16 <70 (65)
i=1

holds with probability at least 1 —2exp (=A%/2).

For RN, the assumptions in theorem 6.2 on the zero mean and mean independence of rounding errors
are often satisfied in practice, but it is easy to construct examples where either of the assumptions fails
and the backward error almost attains the worst-case bound (6.3) (and thus exceeds the probabilistic
bound (6.5) by a factor /n).
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Importantly, however, SR always satisfies the conditions of theorem 6.2, as shown by the following
result [1, lem. 5.2].

Theorem 6.3. Let the computation of interest generate rounding errors 61, 8, ..., in that order. If SR is used
then the &; are random variables of mean zero such that E(6; | 81, ..., &) = E(8;)(= 0).

It follows that the probabilistic bound (6.5) holds unconditionally for SR provided that is u replaced
by 2u in view of (6.4). Hence for SR, the rule of thumb that one can replace nu in a worst-case error bound
by /nu is a rule.

The probabilistic bound is most favourable when the worst-case bound is approximately attained.
One situation in which this happens is when many tiny increments are applied to a relatively
large quantity. If ¢ €F is updated by increments hy, hy, ..., which have magnitude smaller than
half of the spacing of the floating-point numbers around ¢, then using RN gives ¢ = fl(¢ + h;) = fI(fl(p +
hy) +hy) =+, and the information in the updates is lost. This phenomenon, known as stagnation,
commonly occurs in practical applications. It arises, for example, in neural networks, when
parameter updates become very small, or in numerical methods for ODEs and partial differential
equations (PDEs), when a very small time step is chosen. SR avoids stagnation, as some of the
updates produce rounding that changes the partial sum. This can be seen from the following result
[1, thm. 6.2].

Theorem 6.4 (inner products). Let y=a"b, where a, b € R", be evaluated in floating-point arithmetic.
Under SR, the computed i satisfies E(y) = y regardless of the order in which the sums of products are evaluated.

Taking b; =1 in the theorem, we see that the expected value of a sum is the true value under SR. As a
simple example, suppose we run the code

x=1;
fori=1:10 do

x=x+e&pm/4
end

in floating-point arithmetic. Since the spacing of the floating-point numbers between 1 and 2 is &y =
2u, with RN every addition rounds down and the computed result is ¥ = 1. With SR, however, each
addition has a probability 1/4 of rounding up, giving an increment of &. Hence the expected
result is 1+ 10 (1/4) - &1, which is the exact result, albeit not a floating-point number in the working
precision.

We emphasize that the benefits of SR are not restricted to curing stagnation. This rounding mode
ensures zero-mean rounding errors, so can produce smaller errors than RN in situations where RN
systematically produces rounding errors of one sign (see [33, §4.2.2] for an example).

7. Implementation

Here, we discuss how to implement SR.

7.1. SR expressed in terms of other rounding modes

We can express the SR operator in terms of other rounding operators by writing, for x & F,

fi(x) = { RA(x), with probability g(x),

7.1
RZ(x), with probability 1 — g(x), 1)

where RA denotes the operator that rounds away from zero and g(x) € [0, 1]. For mode 1 SR, we can
rewrite (2.2) as

x — RZ(x)
1) = RAw) - RZ@)” (72)
In order to implement (2.1) or (7.1) in practice, we need to define a discrete version of the SR operator.
Given a positive integer k, which controls the number of bits used to approximate the continuous
definition (2.1), let P be a random precision-k floating-point number drawn from the uniform
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Table 3. Summary of SR implementations. Here, p is the target precision of rounding; k is the precision of the random number [JEJ}

used for SR; the ‘type’ column has ‘I’ for integer or fixed-point arithmetic and ‘F" for floating-point arithmetic; the ‘op.” column
indicates the class of operations supported or ‘any’ if rounding of any operation is supported; the ‘H/S" column has H if SR is in
hardware and S if software; and in the ‘applications’ column ML and QC stand for machine learning and quantum computing,

respectively.

reference type p k op. H/S applications
Barnes et al. (1951) [5] I 8 1 X, / H general
Gupta et al. (2015) [7] I 18 30 dot prod. H ML
o (2018)[38] e 7—><+ W
Higham & Pranesh (2019) [2] F <64 64 any S general
Hopkms ol (2020)[39] L v
. M|ka|t|s(2020) ([840] I IF 332 o any B general .
Meurant(2020)[41] IF 56464 anyS general
Faéi &‘ Mikaiﬁs (2020) [42>]‘ F o H§64‘“ 64‘ o an‘y> ‘ S ‘gen‘eraI‘
i e (2020)[43] e 532 T +></ e generaI/PDEs
RSt QBN F o p p kxS S g
Paxton et al. (2021) [44] F <32 32-64 any S general
Kléwéf (2021) [45‘]> ‘ ‘ F 532 h 32‘—64‘ an‘y - S » ‘gen‘eraI‘ o
distribution over the interval [0, 1).> We have that, for x & F,
. x —RZ(x)
) - RA(x), ifP< RA(Y) - RZ(1)’ )
x — RZ(x)

RZ(x), if P> m,
where SR, RA, RZ round to some precision p. It is worth noting that the choice of the optimal k for
implementing SR is one of the main open questions surrounding mode 1 SR. A lower value of k
makes a hardware implementation cheaper but is expected to reduce the accuracy benefit that SR may
potentially bring: setting k=1, for example, gives mode 2 SR.

While (7.3) is an accessible definition of SR, most of the implementations discussed in this section do
not take the comparison-based approach that (7.3) would suggest. On the contrary, they add bits from a
random stream to the part of the number that will be truncated. The equivalence between this is the idea,
which we will discuss in much greater detail in §§7.3 and 7.4, and (7.3) is shown in [37, §4].

Table 3 compares the features of SR in a number of implementations available.

7.2. Proposed IEEE 754 style properties of SR

The definition in the previous section does not cover edge cases such as overflow, underflow and
rounding of infinities and NaNs (not-a-number). In the following, we propose our definition of SR for
these edge cases by giving some properties of SR analogous to those of the rounding modes defined
in the IEEE 754 standard [12].

— If the exact number is in the range of the target format, SR should be performed as though the
number was originally held in p+k bits and then rounded to p bits according to (2.1). Here,
the extra k bits refer to the precision of SR, as well as the number of random bits required.

— Opverflows: if the exact number lies between the maximum representable number =+f,,, and the
neighbouring value that is not representable in the target format and will be treated as *oo, SR is

?We remark that floating-point numbers are not uniformly distributed in [0, 1], but here we need the precision-k random floating-point
number to be sampled from that interval uniformly in the sense of real numbers. This is not a consideration required in the hardware
algorithms in §7.3 since there SR is performed at the bit level, using uniformly distributed integers. Usage of other random number
distributions in SR has been explored by Xia ef al. [36].
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performed as though the value is representable, to preserve the statistical information about the
round-off bits.

— When the exact number is smaller than the smallest value representable in the target format, SR
should round stochastically to one of the two neighbouring floating-point values in the target
format, either zero or the smallest representable value, maintaining the sign.

— When subnormals are disabled or not supported in the target format and the exact value is in the
range of underflow, SR should round either to zero or to the smallest normalized value, again
without changing the sign.

— +o0 and +0 should not be rounded (changed) by the SR operation. NaNs with payloads that cannot
be represented in the target format should not be stochastically rounded: a NaN with an
implementation-defined payload may be returned, as per IEEE 754 [12, §6.2.3] (relevant in a
mixed-precision setting, for example converting binary64 to binary32).

— As in the standard rounding operations [12, §4.3], inexact, underflow and overflow exceptions should
be signalled by the SR operation.

7.3. Modifying basic floating-point algorithms to include SR

Now we discuss how to modify classical algorithms for addition and multiplication of floating-point
numbers [16, ch. 7], [27, §4.2.1], [47, ch. 8] in order to obtain algorithms that support SR and can
readily be implemented in software or hardware. Algorithms for other operations to include SR such
as fused multiply-add (FMA) or division can be similarly derived by modifying the original
algorithms for the IEEE 754 arithmetic operations [16,47]. To the best of our knowledge, these
algorithms are new in that no general methods to round to precision p taking normalization into
account had so far been proposed in the literature.

Addition. The sum r=o(x+y), where o €{RN, RZ, RD, RU} and x and y are binary floating-
point numbers, can be computed as we now explain. Let x=(—1)" xm, x 2%7P*1 and
y=(-1)¥ x m, x 2% 7! be two normalized precision-p floating-point numbers. We assume that s, =
sy, =0, which implies that x and y are positive, in order to avoid considering sign interactions which may
transform the addition into a subtraction. This restriction does not affect our main observations
pertaining to the implementation of SR. The role that the sign of the operands plays in this algorithm is
discussed, for instance, in [16, §7.3]. We make additional observations about subtraction when necessary.

The sum r = o(x +y) = (=1)" x m, x 247P*! is computed as follows:

(i) If e, > ey, swap x and y to ensure that e, > ¢,.

(i) Alignment of the significands: compute m, x 2~(~%) by shifting m, to the right by e, —e, places.
Set e, = e,. It is not necessary to keep all the bits that are shifted out: maintaining only two bits plus
a third sticky bit suffices—see below.

(iii) Sum of the significands: compute m; = m, + m, x 2-(e=¢) At this step, m; is an exact sum of the
significands.

(iv) Normalization of the result: since 0 < m; < 2P*!, we may need to normalize the result by shifting m,
to the right by one place (if #; > 2F) and increasing e, by 1 (note that a shift left may be needed with
subtraction—see below).

(v) Rounding: the significand of the rounded sum, m,, is computed by rounding the normalized exact
sum m; to p significant bits according to o, and renormalizing if required. At this point, r is the
correctly rounded sum of x and y.

In order to perform the rounding at step (v) of the algorithm, it may seem necessary to preserve all the
bits that, being after the bit in the pth position, are dropped off during steps (ii) and (iv). It can be shown,
however, that for o € {RN, RZ, RD, RU} it suffices to keep only the first two discarded bits after the one in
position p plus an extra specially computed bit. These are the guard bit G, in position p + 1, the round bit R,
in position p + 2, and the sticky bit T, in position p + 3, which is a logical OR of all the bits after the (p +
2)nd. Together, these three bits are called in short the GRT bits [47, §8.4.3]. In the algorithm above, they
are formed in step (ii) and updated in step (iv) if normalization is required.

We now explain how the algorithm should be modified in order to include SR as an option in step (v).
Figure 2 demonstrates stochatic rounding of m; pictorially. We use the same notation as in §7.1, and use k
to denote the number of bits used for rounding, or equivalently the number of bits in the random number
used to perform the rounding. In step (ii), instead of computing the GRT bits from the shifted-out bits of
m,, we keep the k trailing bits beyond that in position p. Depending on the implementation, it might be
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Figure 2. Alignment of bits in algorithms for stochastic rounding based on sums. The random bits are added to the significand m,
followed by the truncation of it. How the bits are generated and added depends on the implementation—we may only add the &
bits to the top k bits of the bottom part of the significand and then use a carry-out bit to control the rounding of m, after the
truncation, or we may pack the k random bits in a word as long as m, and add it to m, using integer arithmetic: the propagating
carry will cause rounding in the top p bits.

necessary to manipulate appropriately those extra bits when subtraction is considered. An alignment of
more than p +k — 1 bits is unnecessary, as in that case SR with k bits would not have any effect and the
largest summand x would be returned unchanged. If a shift is required in step (iv), the whole p + k-bit
significand has to be shifted in order to keep the trailing k bits correct after the normalization. In order
to perform step (v), it is necessary to generate k bits from a stream of uniformly distributed random
bits. This operation is expensive, but can be performed asynchronously at any point before reaching the
last step, as it does not require any information about x or y. Finally, the k bits from the random stream
are added to the k bits immediately following the first p bits of the normalized m,; if this operation
leads to a carry-out, we increment the top p bits of m; by 1 and truncate the bits after the first p bits to
form the rounded significand m,. Implementing SR by adding random bits to the fraction is almost
universally used in the software and hardware implementations discussed in §7.4 and §7.5 below.

We need to consider normalization and whether the k bits required for rounding could be altered by
shifting. Shifting is necessary in three cases. First, when the addition of the significands causes a carry-
out, m; is normalized by means of a one-place shift to the right, which does not violate the bottom k bits.
Secondly, when the difference of exponents e, —e, is larger than 1, the smaller operand is aligned so that
there are multiple zeros at the front and consequently only a left shift by one position may be required
on effective subtraction. For this reason, one extra bit is needed to make sure that a 1 that drops off the
p+k bits is shifted in correctly by the left shift. Thirdly, when the exponent difference is 1 cancellation
may occur on effective subtraction and multiple left shifts may be required to normalize the result. Since
the alignment was performed by shifting right by only one place; however, there is no risk of any bits
being shifted beyond the (p +k)th position, and therefore no incorrect bits will be shifted in during the
normalization. Therefore, only one extra bit is necessary, and the width of m; should be p +k+1 bits.

If the sum of two floating-point numbers is subnormal, then it is exact and no rounding is required [16,
thm. 4.2]. If one of the inputs is subnormal, then the significand alignment step requires minor modifications
as per [16, §7.3.3], while the rest of the algorithm for the floating-point addition with SR remains the same.

Addition of floating-point numbers can result in the following exceptions: overflow, underflow,
inexact and NaN [47, p. 425]. With SR these may be handled as discussed in §7.2.

Multiplication. Given two normalized positive floating-point numbers x and y as in the previous
section, the product r=o (x x y) can be computed as follows:

() Product of the significands: compute the 2p-bit integer m; = m, x m,. The fact that 2" <m,, m, <2”
implies that 2272 < m, <2%.
(ii) Sum of the exponents: compute e, = e, + ¢,. At this point, we have the exact product m; x 20r=2p+2,
(iii) Normalization of the result: if m;>2%""! we need to normalize the result by shifting the
significand by one place to the right and increasing e, by 1.
(iv) Rounding: the normalized exact product m;, is rounded to p significant bits according to o, giving
m,. At this point, m, is the rounded product of x and y.

As with addition, the G and T bits are required to perform the rounding in step (iv) (the R bit is not
required since left shifts cannot occur here). After the normalization in step (iii), the unrounded result
will be in the top p bits, whereas the bottom p bits will be used for rounding. In order to implement
SR with k random bits (in this case k <p, as m; has at most 2p bits and there is no need to consider
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larger values of k) we need to add a k-bit random number to the top k of the bottom p bits of the internal [ 12 |

significand m;: a carry will increment the pth bit of the top segment of m,, causing the number to round
up. The significand of the stochastically rounded result will consist of the top p bits of m;.

For subnormal values, a few modifications have to be incorporated in the multiplication algorithm.
First of all, if both inputs are subnormal, then the product will be in the underflow range and SR can
be handled as in §7.2. If the inputs are normalized but yield a subnormal result, it is necessary to
shift m; right by more than one place in step (iii), depending on how much the product’s exponent
differs from that of subnormals in the target format. If only one of the inputs is subnormal, then
the product can be either normal or subnormal. Two approaches are taken in this case: either the
subnormal input is normalized before the multiplication, or the product’s significand is normalized by
a left shift. We do not go into details, as this does not change the SR algorithm (SR is performed in
step (iv) after the product has been normalized or denormalized as required), and refer the reader to
[16, §7.4.2].

Multiplication of floating-point numbers can result in the following exceptions: overflow, underflow,
inexact and NaN [47, p. 438]. With SR these may be handled as discussed in §7.2.

7.4. Simulation of SR in software

SR can be simulated in software in a straightforward fashion by relying on high-precision floating-point
arithmetic. The computation is performed in higher precision and the high-precision result is rounded
using (7.1), where q(x) in (7.2) is based on the (higher-precision) approximation to x rather than on its
exact value. This approach is easy to implement as long as higher-than-working-precision arithmetic is
available, be it in hardware, for instance when emulating binary32 rounding using binary64 arithmetic, or
in software, through arbitrary precision libraries such as the GNU Multiprecision Library (GNU MPFR) [48].

In practice, once the high-precision solution has been computed, the rounding step can be performed
in several ways. The Matlab function chop® [2] and the FLOATP Toolbox* for Matlab [41] leverage the
Matlab random number generator to draw a random number 7 from the uniform distribution over the
open interval (0, 1) and choose the rounding direction depending on whether r is larger or smaller
than g(x). These software packages directly implement SR through floating-point comparison
operations as in (7.3).

Most software favours the use of integer random numbers, integer arithmetic and bit manipulation.

The implementation of SR in the QPyTorch5 package [49], for example, rounds stochastically a
binary32 number y to a floating-point format with precision p <23 as follows. First, it generates a 32-
bit integer q by zeroing out the leading (p—1)+9 bits of a 32-bit random integer. These zeros are
introduced in positions that correspond to the sign of y (1 bit), its exponent (the next 8 bits), and the p
most significant bits of its significand (the following p —1 bits, in view of the implicit bit conversion).
Next, the algorithm computes 1 = + g, where ¥ is the binary representation of y seen as an integer,
uses a bitmask to zero out the 24 —p trailing digits of n, as 24 is the number of precision bits in a
binary32 number, and finally returns the value thus obtained as a 32-bit floating-point number. An
example illustrating this rounding technique is provided in figure 3. The implementations in the
CPFloat® C library [42] use an analogous technique when rounding binary32 as well as binary64
floating-point numbers to lower precision. The same approach is followed by Verificarlo” [50], an
instrumentation tool which uses the GNU Compiler Collection (GCC) quad format as extended
precision for binary64, and binary64 as extended precision for binary32.

The approach of simulating SR through extended precision is also used in the mcaquad back-end of
the Valgrind tool Verrou® [51,52]. Verrou offers a second back-end, called verrou, which performs SR
without using higher precision. The algorithms in the verrou back-end use double-double arithmetic,
and emulate high-precision computations implicitly by representing numbers with at least 106 bits of
precision as the unevaluated sum of two binary64 values. These techniques are based on reduction
operations [12, §9.4], also known as error-free transformations, and are used to approximate the

3See https://github.com/higham/chop.

“See https:// gerard-meurant.pagesperso-orange.fr/ floatp.zip.
5See https://github.com/Tiiiger /QPyTorch.

“See https://github.com/mfasi/cpfloat.

“See https://github.com/verificarlo/ verificarlo.

8Gee https://github.com/edf-hpc/verrou.
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s e+ 127 m (without implicit bit)
y 0 10001100 0101001001 1111110011000 0x46293F98 10831.8984375
g 0 00000000 0000000000 1101001010011 0x00001A53 -
n 0 10001100 0101001010 1100111101011 0x462959EB 10838.4794921875
fly) 0 10001100 0101001010 0000000000000 0x46294000 10832

Figure 3. Example: rounding a binary32 number y to a format with p = 11 significant digits (including the implicit bit) using the
SR algorithm implemented in QPyTorch. The number n is the integer sum of the two bit strings representing y and m; fl(y) is
obtained by zeroing out the trailing 24 — p =13 trailing bits of n. For floating-point numbers, the three binary strings
represent the sign (s), the unbiased exponent (e) and the integer significand without the implicit bit (m); the last group is
further divided into a group of p—1 bits to keep and 24 —p bits to zero out. We also report the hexadecimal string
representing the numbers, and for floating-point numbers the corresponding exact decimal representations.

distance between the exact result of a computation and the two rounding candidates in binary64
arithmetic. These are then used to approximate the rounding probabilities.

Fasi & Mikaitis [37] propose a similar but more general approach for implementing in software
stochastically rounded elementary arithmetic operations: addition/subtraction, multiplication, division
and extraction of the square root. For each operation, they propose two algorithms, one that uses only
RN, and one that combines it with RZ, RU and RD. These algorithms compute first the result of the
elementary arithmetic operation and then the error induced by the rounding. The rounding direction
is chosen by adding a pre-generated random number to the computed error, and then adding this
quantity to the result of the operation—Fasi & Mikaitis [37] show that this procedure is equivalent to
the direct implementation of SR via (7.3), which relies on a comparison-based approach. In numerical
experiments, both types of algorithms are faster than a C implementation that relies on the GNU
MPER library, and the RN-only versions are faster on x86 architectures, where switching the rounding
mode incurs a high performance penalty [16, §12.3.2].

Klower’s Julia software package StochasticRounding.jl° defines three new Julia floating-point types
that automatically include SR. These correspond to bfloat16, binary16 and binary32 (table 1), and use
the Xoroshiro128Plus fast pseudo-random number generator (PRNG)."® Composability and type
flexibility in Julia enable SR computations in single and half precision in a large number of numerical
software and mathematical libraries. Automatic application of SR operations is extremely
advantageous from a user standpoint, as it allows significant code simplification. To implement (7.3),
the implementation is also based on the approach of adding random bits to the part of the floating-
point number that will be truncated.

In terms of fixed-point arithmetic with SR, Hopkins et al. [39] and Mikaitis [40] have recently
implemented a set of rounding and multiplication operations'' and used them on low-power ARM
integer processors. Multiplication routines for various fixed-point formats in the ISO 18037 embedded
C standard [53] were developed by exploiting the fact that ARM processors return the full-precision
result of integer multiplication using two registers: multiplying two 32-bit fixed-point values, for
example, returns the exact 64-bit result with all the information of integer and fraction bits of products
preserved. The bottom bits of the fraction can then be used to round the results to one of the standard
fixed-point formats stochastically. In this implementation, the comparisons between the random
numbers and the round-off bits are implemented directly as in (7.3), except using integer arithmetic.

7.5. Overview of available devices and patents

Now we review hardware designs discussed in the literature, some of which are already available in
commercial hardware.

The Graphcore Intelligence Processing Unit (IPU) is a highly parallel machine learning accelerator
that supports SR for binary32 and binary16 arithmetic [54, §2.1], [55, ch. 10], [56] (table 1). The patent
filed by Graphcore [57] reveals some technical details that are not specified in the documentation but
may reflect the hardware implementation of the IPU. The document explains how binary32 values are
stochastically rounded to binaryl6 precision in hardware by using a PRNG, also implemented in
hardware—this kind of conversion might be performed in the IPU, although this is not reported. The

“See https://github.com/milankl/StochasticRoundingjl.
1%See https://juliarandom.github.io/RandomNumbers.jl/stable/man/xorshifts/.
"See https://github.com/SpiNNakerManchester/spinn_common/blob/master/include/round.h.
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algorithm begins by generating a 24-bit random number, that is, one random bit for each bit in the [ 14 |

significand of a binary32 value. It then uses 13 or more of those bits to round a number to binary16.
The number of random bits that are actually used depends on whether rounding will result in a
normal or subnormal number. The actual rounding is performed by adding these random bits to the
part of the significand that will be discarded. This operation may generate a carry bit to be added to
the least significant bit of the significand of the input truncated to 11 significant bits. A non-zero carry
bit will cause the absolute value of the number to round up. This type of implementation is used in
most of the references mentioned below.

Two patents filed by IBM disclose methods for implementing floating-point adders [58] and multipliers
[59] that use SR. The authors demonstrate the techniques on an 8-bit data type, but mention binary32 and
binary64 as examples of other formats to which the approach can be applied. The procedures require a fixed
number of random bits be loaded into a register, but the patents do not explicitly mention how these bits
should be generated. SR is performed by using the bits that drop off when fitting the result of the adder
or multiplier into the 8-bit format, and as in the case of the Graphcore IPU, the rounding step is
implemented by adding the random bit stream to the round-off bits, in both the adder [58] and the
multiplier [59]. It is not mentioned, however, whether the sum is normalized before being rounded, and
if so whether the bits that are to be shifted out during the normalization are also taken into account
when rounding—in the algorithms outlined in §7.3 we propose that the rounding step should be
performed after the normalization for a correct implementation.

A patent from AMD describes methods and circuits to use SR in conjunction with integer adders or
accumulators [60]. The document shows the design of (i) a mixed-precision adder that computes the sum
of a 32-bit and a 16-bit number by using a 16-bit random number supplied through a third input lane,
and (ii) a 32-bit accumulator which takes as inputs both the next 16-bit value to accumulate and a 16-bit
random number, and returns a 16-bit stochastically rounded sum—once again, SR is implemented by
adding random bits to the round-off digits, as was the case for the Graphcore IPU. The pseudo-
random numbers in the proposed SR unit are generated with a linear-feedback shift register (LFSR), but
no specific algorithm is mentioned.

A patent from NVIDIA demonstrates a method to round stochastically floating-point values to lower
precision, using a fixed, programmable, or computable rounding bit position [61]. The authors explain
how to round binary64 values to binary32, and binary32 values to binaryl6 and bfloatl6. A
distinctive feature of this design is that it performs SR by using the bottom bits of the significand of
the number to be rounded without relying on a random number generator [61, fig. 2B]. For example,
the 23-bit fraction of a binary32 number can be rounded to the 10-bit fraction of a binary16 value by
setting k=8, taking the bottom 8 bits of the fraction in place of a random bit stream, aligning and
adding them to the significand as in figure 2, and finally setting the 13 least significant bits to zero.
The authors note that this method for performing SR has an advantage over using real random
numbers, since it is deterministic and cheaper to implement. They do not mention, however, whether
replacing the random number with part of the input causes SR to lose any of its desirable properties.

Gupta et al. [7] discuss the hardware prototype of a fixed-point matrix multiplier based on a two-
dimensional (2D) systolic array architecture and demonstrate experimental results from a field-programmable
gate array (FPGA) implementation. Each node of the systolic array is a multiply-and-accumulate digital signal
processing (MACC DSP) unit that multiplies two integers and accumulates the result into an internal
register. Each element of the matrix product is produced by a single MACC DSP unit. The hardware is
generalized, but the authors report results for an implementation in which each MACC DSP unit accepts
inputs of at most 18 bits and accumulates the partial results in an internal 48-bit register. When the matrix
product is computed, each 48-bit element is passed through an SR unit (there is one for each column of the
2D array of MACC DSP units) to produce the 18-bit rounded and saturated results. The pseudo-random
numbers needed to implement SR are generated using an LFSR. The 30 random bits are added to the 30
least significant bits of the 48-bit internal register. This may cause a carry to propagate to the 18 most
significant bits of the result. Finally, the trailing 30 bits are set to zero, thereby producing the rounded number.

The Intel Loihi [38] and the SpiNNaker2 [8,40,62] digital neuromorphic processors include SR. The
Intel Loihi processor has multiply-accumulate hardware that computes a 7-bit approximation to x[¢] =
a-x[t—1]+6-s[t] (with s[t]€1{0, 1}, o a decay factor, and § an impulse amount added at each step).
It is not specified where SR is applied in this computation, what precision and type of random
numbers are used, and how SR is implemented. The SpiNNaker2 SR accelerator rounds and saturates
64-, 32- or 16-bit to 32- or 16-bit fixed-point numbers with SR. As a special case, it also includes rounding
from IEEE 754 binary32 to bfloat16. The random bits needed for rounding are produced using the 32-bit
hardware pseudo-random number generator available on SpiNNaker2 [62]. The number of bits to be used
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for rounding is programmable for fixed-point formats (it can be anything between 1 and 32 bottom bits of the [ 15 |

input) and is fixed to 16 for binary32-to-bfloat16 rounding. As in the implementations mentioned above, SR is
performed by adding the random bits to the round-off bits (figure 2).

8. Applications

In applications, SR can replace existing rounding modes (usually RN) either globally or in certain parts of
an algorithm, and either true random numbers or pseudo-random numbers can be used. The latter are
often preferred as they ensure reproducibility of the result. In this section, we review applications where
SR has been applied, and in some cases provide Matlab experiments for demonstration, which are made
available on GitHub.'?

8.1. Numerical linear algebra

For most numerical linear algebra algorithms, rounding error analysis builds on Lemma 6.1, or some
variation of it, thus these algorithms can benefit from the smaller bound guaranteed for SR by the
probabilistic error analysis of Theorem 6.2. For inner products, in particular, we have the following
result [1, thm. 4.8].

Theorem 8.1 (inner products). Let y = a’h, where a, b € R", be evaluated in floating-point arithmetic with
SR. Then for any constant 2> 0 the computed y satisfies

J=(a+A8a)'b=a"(b+Ab), [Ad] <F,(Val, [Ab] <7, (M| (8.1)
with probability at least 1 —2nexp (—A>/2) regardless of the order of evaluation.

The worst-case error bound corresponding to (8.1) has the same form but with the constant %, (A)
replaced by y,, which is roughly a factor /n larger [15, §3.11].
As a special case, we can take b;=1 and deduce that

n n n
Zui—ﬂ<2ui) S?nz‘aﬂ.
i=1 i=1

i=1
Figure 4 plots the relative errors for the sum > , fl(1/i) computed in binary16 (table 1) with RN and SR
for a range of n. Note that the summands are already converted to binary16 (with RN), so the only errors
are in the summation. This example models a very slowly growing sum of decaying summands. We see
that SR has much smaller errors than RN for larger n and that the errors for SR are mostly well within the
probabilistic bound with 4 =1.

Matrix products are considered in the following result [1, thm. 4.9], in which we denote by g, the jth
column of a matrix A.

Theorem 8.2 (matrix-matrix products). Let C=AB with A € R™" and B € R be evaluated in
floating-point arithmetic with SR. For any A >0, the jth column of the computed C satisfies

G =(A+AA)b, A4 <F WAl j=1,...,n, (8.2)
with probability at least 1 —2mnexp (—A*/2), and hence
C~Cl <% (V)IAlIB| (83)
with probability at least 1 —2mnpexp (—1%/2).

The worst-case error bounds corresponding to (8.2) and (8.3) have the same form but with y(A)
replaced by v, [15, §3.5].

This result is illustrated in figure 5, which plots the backward error for computing a matrix-vector
product y = Ax where A € R'™*" has entries drawn from the uniform distribution over [0, 107°] and
x € R" has entries sampled from the uniform distribution over and [0, 1]. We see that RN attains its
worst-case rate of error growth and hits a relative error of 1, whereas SR has slower error growth and
maintains some accuracy for all n. In fact, stagnation (see §6.1) occurs in this example when n = 103

12See https://github.com/mmikaitis/stochastic-rounding-survey-experiments.
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Figure 4. Relative errors for computing 7, 1/i with RN and SR. The densely dashed and dash-dotted lines are the worst-case
error bound for RN and the probabilistic error bound for SR (with A = 1), respectively. Stochastic rounding experiments are repeated
10 times; the solid line represents the average error, the edges of the shaded area the minimum and maximum error. (a) binary16
arithmetic, (b) bfloat16 arithmetic.
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Figure 5. Backward error for computing y = Ax with RN and SR, where A € R'®*" has entries drawn from the uniform
distribution over [0, 1073 and x € R" has entries sampled from the uniform distribution over [0, 1]. The densely dashed
and dash-dotted lines are the worst-case error bound for RN and the probabilistic error bound for SR (with A =1),
respectively. Stochastic rounding experiments are repeated 10 times; the solid line represents the average error, and the edges
of the shaded area the minimum and maximum error. (a) binary16 arithmetic, (b) bfloat16 arithmetic.

for binary16 and when 1 = 10? for bfloat16, as shown by the increased rate of error growth from these
points onwards for RN.

As this rounding error analysis and the examples illustrate, SR is especially useful for large-scale
and/or low-precision computations.

8.2. Machine learning

The use of SR in neural networks is not a new idea. Hohfeld & Fahlman [63,64] proposed it in 1992,
calling it probabilistic rounding. Today, SR is being used in machine learning in conjunction with half
precision arithmetic, not least because of its ability to avoid the problem of stagnation that affects RN.
Gupta ef al. [7] show that SR can be used for training deep neural networks in 16-bit fixed-point
arithmetic with little or no degradation in the classification accuracy. Su et al. [65] successfully train
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neural networks in 8-bit fixed-point arithmetic using SR and offer some suggestions as to why SR is

beneficial in this context. Muller & Indiveri [66] use SR (called randomized rounding or online stochastic)
to map continuous neural network weights to a discrete low-precision fixed-point representation. It is
shown that with SR the networks can perform well with lower precision weights than required with
the standard rounding.

Essam et al. [67] combine SR with dynamic precision fixed-point arithmetic formats (variable integer
scaling factors) in training neural networks. Na ef al. [68] implement SR with dynamic fixed-point
arithmetic in hardware for neural network applications. Used to train neural networks with 24-bit
fixed-point numbers, SR provides performance similar to that of binary32, but with lower hardware
area and energy costs. The authors also show that without SR even 64-bit arithmetic is not enough to
train the kinds of neural networks they used.

Joardar et al. [69] implement a 32- to 16-bit fixed-point arithmetic SR unit in an in-memory
computing device for neural network training, based on resistive random access memory (ReRAM),
which uses an LFSR 16-bit pseudo-random number generator. They report that SR added negligible
ReRAM cell area overhead with each SR circuit adding less than 1%. SR was implemented by adding
a 16-bit pseudo-random number to the bottom 16 bits of a 32-bit addition result and then truncating
the result to 16 bits—the same technique as used in most of the hardware designs mentioned in §7.

SR has also been applied in machine learning with floating-point arithmetic. Wang et al. [70] train
neural networks in 8-bit floating-point arithmetic with SR, obtaining factor 2—4 speed-ups over 32-bit
training. Zamirai et al. [71] find that either of SR and compensated summation [15, §4.3] enables
training in bfloatl6 to match 32-bit training. Xia et al. [72] use mode 2 SR and show faster
convergence in training using 16-bit fixed-point numbers. They modify mode 2 SR, in that instead of
rounding only the values that are not representable, all values are rounded, including those that are
exactly representable in the current floating-point format. Mellempudi et al. [73] show that training
neural networks using SR with 8-bit floating-point numbers yields performance comparable to that of
binary32. Ortiz et al. [74] compare 12-bit fixed- and floating-point formats with and without SR with
binary32 arithmetic in the training of neural networks. They find that SR can be very useful in
improving the accuracy: in their experiments with a 12-bit fixed-point format, using RN produced a
training accuracy of just 10%, while switching to SR produced a training accuracy on par with that of
binary32 arithmetic [74, table 2].

Zhang et al. [75] use SR with the block floating-point (BFP) [76, p. 26] number representation
technique in a training system for deep neural networks. Their system exploits BFP of variable
precision over the whole training process, based on the number of training iterations and neural
network layers used. In this work, SR is applied in conversion of floating-point values to a lower
precision BFP representation [75, SIII]. There is some indication [75, fig. 4] that SR is implemented,
similarly to most implementations reviewed here, by adding random bit streams to parts of numbers
later truncated (as shown in figure 2). A hardware implementation of the proposed training method is
also presented, with a matrix multiplier in BFP with SR [75, §V]. To perform SR in hardware, the
authors use 8-bit random binary streams from an LFSR which they sum with the significands of BFP
numbers [75, §V-C], followed by truncation of the bottom bits. The authors report a 2-6x speed-up
over prior approaches when using variable precision BFP for this application. At the same time, they
report having similar accuracy to previous approaches, which is attributed to the combination of
variable precision BFP and SR.

We note that the survey by Wang et al. [77] of custom hardware for deep learning includes a review of
work that uses SR. Another survey by Lee et al. [78] reviews arithmetic- and implementation-level
techniques in deep learning and includes various works that use SR.

There are many more examples of SR being of use in low-precision machine learning applications. For
more details, see the references cited in the papers discussed above.

8.3. Numerical verification software

Numerical verification software uses SR to explore the propagation of rounding errors in applications: a
particular computation is repeated multiple times and the distribution of errors from these runs is used to
draw conclusions about the sensitivity of a code to rounding errors. Mode 2 SR, known as stochastic
arithmetic [79], is used for example in the CADNA library [80].

An approach that includes as options both mode 1 and mode 2 SR is Monte Carlo arithmetic [81,82], a
method used by tools such as Verificarlo [50] and Verrou [51,52]. Monte Carlo arithmetic is more general
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than SR, not least because as well as randomly rounding the result of a floating-point operation it can also [ 18 |

randomly perturb its inputs and output.

8.4. Ordinary differential equations

The analysis of rounding errors in ODEs typically follows the classical convergence theory of time-
stepping methods [29,83], in which the global error introduced by the ODE integration procedure is
expressed in terms of the local errors introduced at each time step, and the global error is bounded in
terms of the step size h, which we will assume is fixed. These local errors comprise both (local)
truncation errors and (local) rounding errors. It is clear that unless the contribution to the global error
from rounding errors decays to zero at the same rate as the contribution from truncation error, the
overall convergence of the method can be impacted. Unfortunately, the analysis by Henrici [29,83]
shows that the global error of an order-p ODE solver under RN is O(uh™" + ). The O(uh™") term is
often overlooked in the literature, and indeed in binary64 arithmetic the unit round-off u is usually
small enough to make it negligible for the step sizes h of interest, but the O(uh™") term cannot be
neglected when computations are performed in reduced precision arithmetic.

While not explicitly mentioning SR, early work by Henrici in the 1960s [29,83] and by Araté in the
1980s [84] considers rounding errors arising in ODE solvers as independent (rather than mean-
independent) random variables of zero mean. Henrici indicates that, whenever rounding errors have
this random structure, the term O(uAt™') can be replaced with a term characterized by a milder
growth in Af. The analysis by Arat6 in [84] rewrites the problem of estimating the global rounding
error as the solution of a stochastic differential equation. It is curious that stochastic differential
equations have not yet appeared in the actual analysis of SR errors for ODEs and PDEs.

It has been shown experimentally that SR can alleviate the accumulation of rounding errors in ODE
solvers. Hopkins et al. [39] and Mikaitis [40] use, on an ODE that models neurons in two configurations,
four different solvers including RK2 Midpoint and RK3 Heun. They compare the results obtained in
fixed-point arithmetic with those obtained using the same solvers run in binary32 and binary64
arithmetics. For the fixed-point solvers, they consider three rounding variants in the multiplication
operation: bit truncation, RN and mode 1 SR. In the experiments, 32-bit fixed-point arithmetic with
SR in multipliers shows accuracy similar to that of binary64 arithmetic in all cases, while fixed-point
arithmetic with RN and bit truncation, as well as binary32 arithmetic, accumulate significant errors in
the progression of the ODE system, ending up with a very different neuron behaviour.

Floating-point arithmetics (binary16, bfloat16, binary32) with SR in adds and multiplies have been
considered by Fasi & Mikaitis [37]. ODEs exhibiting exponential decay were solved with Euler,
midpoint and Heun solvers. For very small time steps, where rounding errors dominate the overall
error of the solution, using SR produced a final solution error lower than that of RN. Figure 6 shows
this for the solution errors with the forward Euler method solved in various arithmetics.

The ODE system

‘)=o), u0)=1,
{v?(t) = j)u(t), L;(O) =0, (8.4)

whose solution is the unit circle in the (i, v) plane, was solved using binary16 and bfloat16 arithmetics
for increasingly smaller integration steps [37, §8.3.2]. The results in figure 7 for the forward Euler method
with h=27/n demonstrate that with RN the computed solutions are not meaningful for very small
integration steps, while with SR the computed solution reproduces the unit circle quite well.

8.5. Partial differential equations

Little is known about the interplay between SR and the typical algorithmic components of PDE solvers,
namely sparse iterative solvers, preconditioning, optimization and time-stepping methods.

Croci & Giles [43] analyse the effects of RN and SR in the solution of the heat equation with Runge—
Kutta methods and finite differences, and explain how the numerical scheme should be implemented in
order to reduce rounding errors. The analysis for RN yields the same O(uAt™") rate in all dimensions as in
Henrici’s work on ODEs [29,83], and in related work on the heat equation by Jézéquel [85]. On the other
hand, using SR yields considerably smaller error bounds. In fact, Croci & Giles prove that the leading-
order component of the rounding errors introduced by SR are zero-mean random variables that are
independent in space and mean-independent in time. Thanks to this lack of correlation, much milder
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Figure 6. Absolute errors in the forward Euler method for an ODE with exponentially decaying solutions with different floating-point
arithmetics and rounding modes. Stochastic rounding experiments are repeated 10 times; the solid line represents the average error,
the edges of the shaded area the minimum and maximum error. The step size is the interval length divided by n. The experiment is
adapted from [37]. () y' = —y, y(0)=2"%, over [0, 1], (b) y' = —y/20, y(0) = 1 over [0, 279].

blow-up rates are obtained for the global rounding errors. These rates are essentially O(uAt~'/#) in one
dimension (1D), O(u|10g(At)|1/ %) in two dimensions (2D), and O@) in three dimensions 3D).
Interestingly, rounding errors become asymptotically smaller as the dimension increases: the larger the
dimension, the more error cancellation occurs because of the spatial independence of the SR errors.

The lack of error correlation and the zero-mean property are not solely responsible for the success of
SR for this problem. Croci & Giles also show that the RN solution is prone to stagnation, and in fact the
phenomenon may occur from the very first step if At is small enough to cause the RN solution to never
move away from the initial condition. On the other hand, SR is resilient to stagnation, which did not
affect the SR solution in numerical experiments.

In unpublished work, these results have been extended to linear parabolic PDEs and the finite-element
method and, together with numerical experimentation in binary16 and bfloat16 precision, show that while
RN can fail to compute meaningful solutions, SR computations always exhibit near-machine-precision
accuracy for sufficiently small time steps and mesh sizes. We expect similar results as in the parabolic
case to hold for hyperbolic PDEs, with the exception perhaps of the stagnation behaviour.

Here, we consider a diffusion equation with Dirichlet boundary conditions,

{ut(t,x) =V (Dx)Vu(tx) +f(x), x€D=(01), te[0,1], (85)
u(0,x) = up(x), u(ts)=1, s € 9D, te[01], '
where
L(sin(mx)* + 1), in 1D,
D(x) = 1 sin(mx)? +1 sin(mx ) cos(mx;) in 2D
? sin(my;) cos(my)  cos(mr)* +1 | ’

and f(x) is chosen so that the exact solution to (8.5) at steady state is

(o0, 2) = 16(x(1 — x))*+1, in 1D,
’ (16x1%2(1 — x1)(1 — x2))*+1,  in 2D.

By using bfloat16 arithmetic with RN and SR, in figure 8 we show the effect of stagnation on the
numerical steady-state solution of this problem in 1D as we vary the initial condition. We solve (8.5)
using the finite-element method with piecewise linear basis functions and the forward and backward
Euler schemes. We note that the RN solution always stagnates close to the initial condition, while SR
successfully captures the correct steady-state solution.
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Figure 7. Computed solutions from the forward Euler method with SR and RN for the ODE system (8.4). The exact solution is the
unit circle. The x- and y-axis represent u and v, respectively. Note that in (d) and (h) only a small part of the solution computed
with round-to-nearest is visible (marked with an arrow) since the ODE solver failed because of stagnation. The experiment is adapted
from [37]. Stochastic rounding experiments are repeated 10 times; the solid line represents the average trajectory, the edges of
the shaded area the points that are farthest from the exact solution in the Euclidean distance. (a) n=2 () n=2, (0
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In figure 9, we plot the relative (i.e. normalized by the unit round-off) global rounding errors for both
RN and SR against the theoretical bounds of Croci & Giles [43]. While the RN error indeed grows linearly
with At~! until stagnation, the SR error increases very mildly in 1D and almost unnoticeably in 2D. For a
similar 3D problem (not shown), the errors are just bounded by a multiple of the unit round-off. It
therefore seems that SR is able to control the growth of rounding errors without requiring more
accurate summation techniques such as that in [86].

Paxton et al. [44] investigate experimentally the effects of RN and SR in chaotic ODE and PDE
systems related to climate modelling: the Lorenz system, heat diffusion, a nonlinear shallow-water
model for turbulent flow over a ridge, and a coarse resolution global atmospheric model with
simplified parametrizations. They simulate these models in various precisions using from 62- to 10-bit
floating-point formats and compare their results via the Wasserstein distance, a metric used to
measure the discrepancy between probability distributions. They find that SR can effectively mitigate
the growth of rounding errors in both simple heat diffusion and turbulent models. Furthermore, they
report the occurrence of stagnation when RN is used to solve the heat equation, confirming the results
in [43].

Overall, the findings by Paxton et al. show that reduced precision with SR is a valid alternative to
standard binary64 precision computations. The authors also suggest that SR might become relevant in
next-generation climate models.

8.6. Quantum mechanics

In quantum mechanics, an integer variant of SR has been used by several authors in order to estimate
the dominant eigenvalues of Hamiltonian matrices using Monte Carlo versions of the power iteration.
The goal is to compute the ground state eigenvector ¢, of a Hamiltonian matrix H as a linear
combination of a set of basis states 10), ..., |n). The coefficients of the linear combination, or basis-state
amplitudes, are the inner products c;= (il ¢p). At each step of the power method, the coefficient c; is
approximated by an integer ngk), and for all i the approximations at step k+1 are computed
from those at step k. Once the iteration has converged numerically, the basis-state amplitude for the
state |i) is estimated as the average value of n}k) over k.

Le9l1z 6 s uadp 205y sosyjeumol/biobunsiqndfaanosieor [



Downloaded from https://royal societypublishing.org/ on 30 June 2022

numerical steady-state solution

binary64 (same as exact) =~ --c--- RN, uy=3/2 = |x - 1/2]
SR, all initial conditions --- RN, u,=1+noise
-------- RN, u,=1 ===-RN, uy=1+sin(4mx)

Figure 8. Comparison between the numerical steady-state solutions obtained with RN and SR with forward Euler and the bfloat16
format for different initial conditions. All SR solutions essentially converge to the same steady state. On the other hand, when RN is
used different initial conditions lead to different steady-state solutions. The noise term in the initial condition has been obtained by
sampling independent standard Gaussian random variables at each mesh node.
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Figure 9. Plot of the relative global rounding error in the L norm for the solution of (8.5) in 1D (left) and 2D (right) with forward and
backward Euler (FE and BE, respectively) and the bfloat16 format. We circled the RN data points for which the solution stagnates at the
initial condition. The error behaviour matches the theoretical predictions from [43]. The SR errors are average errors computed within 2
digits of accuracy as in [43]. The worst-case SR errors were only a small constant factor larger than the average and are thus omitted.

Nightingale & Blote [87] are the first to suggest the use of SR for the solution of this problem. They
use a random-walk model, and in their work the integers n,(k) count the number of random walkers that
are in state |i) at iteration k. The integer SR function used in this work is

fl(x) = { [x]+1, with probability x — [x],

[x], with probability 1 — (x — [x]), (8.6)
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where [x] denotes the integer part of x € R, defined by

M:{m, x>0,

[x], x<0.

Allton et al. [88] improve on this idea by suggesting a new scheme, called stochastic truncation, further
developed by Hamer et al. [89] and Hamer & Court [90]. All these variants of the stochastic truncation
method use essentially the same rounding function (8.6).

Price et al. [91] propose a variation of (8.6) which essentially applies integer SR only to a specific
interval

x, x>1,
flx)=<¢1, 1>x>P,
0, P>x>0,

where P is a random number from the interval [0, 1]. This rounding operator keeps the ‘exact’ value of x
for large x but allows some of the values below 1 to be stochastically replaced by 0.

8.7. Quantum computing

Krishnakumar & Zeng [46] show how to implement mode 1 and 2 SR for quantum computing
applications and demonstrate that mode 1 provides accuracy or circuit complexity improvements.
Mode 1 SR in this work is called quantum rounding. It is shown that quantum rounding can be
implemented by using the fact that quantum computing has a probabilistic component—measuring a
state of a quantum register can return different results with certain probabilities. The authors show
that a quantum rounding circuit can be made to round with proportional probabilities according
to the mode 1 stochastic rounding in (2.1). Once such a circuit is used multiple times to measure the
value of a quantum register (as is commonly done in quantum computing in order to improve
confidence in the results), the average value will be more accurate because of the properties of mode 1
SR. The authors show that implementing fixed-point multiplication in a fault-tolerant quantum setting
requires two to three times less resources for the same accuracy targets, compared with when RN is used.

8.8. Other applications

Various other applications use SR in one way or another. We give overviews of a few such applications.

In digital signal processing, SR goes under the name random rounding and has been considered for
fixed-point arithmetic. Callahan [92] demonstrates a simple 16-bit filter that is more accurate with SR
than with the standard rounding. Two hardware implementations of SR are also demonstrated, and
one of them interestingly does not require random number generation but uses a value that is
perturbed on each rounding operation.

Bargh ef al. [93] and Tran ef al. [94] address the problem of preserving privacy when publicly releasing
datasets. Their goal is to find the best ways to minimize the disclosure of personal information and share
only data that does not infringe peoples’ privacy. One of the aspects considered is how to transform
sensitive information in specific cells of tabulated data. In [93, §4.2.2], rounding is discussed as an
alternative to suppression, which is the simple removal of values that are at risk of disclosing private
information, a process which may potentially delete useful data. In this research SR, under the name
of random rounding [95, §5.4.3], is used to round numerical data to one of the two nearest integer
multiples of a given base. In base 10, for example, the number 26 would be rounded to 20 or to 30
with probabilities 40% and 60%, respectively. SR is useful here as it does not always increase large
values and decrease small ones as RN would [93]. Being unbiased, moreover, SR can hide the
information about the original data [95], and may even provide protection against differencing, where
sensitive information can be extracted from the differences in multiple tables [95].

Rounding to integer in a stochastic fashion is also considered by Gosgens et al. [96] in the study of
models for the spread of infections, by Matter & Potgieter [97], to solve a problem of resource
allocation, and by Horl & Balac [98], for exploring travel demand in cities using transport simulations.

Wu [99] explores SR and a modification of it called dither rounding in the context of stochastic computing.
Dither rounding is more complex than SR, as it requires keeping track of the number of rounding operations
performed. However, Wu shows that dither rounding can achieve similar accuracy, but with lower variance,
in matrix multiplication and in machine learning algorithms for digit classification.
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There is some connection between SR and the technique of dither that is a common component in [ 23 |

audio analogue-to-digital and digital-to-analogue conversion [100-102]. In analogue-to-digital
conversion, dither relates to the randomization the analogue signal undergoes before being converted
to a low-precision quantized digital representation [101]. The same term is used by the authors to
refer to the randomization at the other end, when converting a digital signal back to analogue. For
example, the following excerpt from [101] discusses a method of dither of the digital signal that is
similar to an implementation of SR mode 1 where a set of random bits are added to the part of
fraction to be truncated.

If a digital manipulation (such as a gain reduction) is performed, there may be a tendency to take the intermediate higher
precision numbers generated by the multiplication and simply truncate or round them to the bit width of the system. This
will in many cases leave the signal improperly dithered. [--] The fractional truncated bits have some influence on the
dither, in keeping with their relative position. If cost or processing time were no object, then any digital manipulation
should be carried out with full accuracy, and the dither carry bit (0 or 1) can be determined by an appropriate digital
random number added to the bits to be truncated. In practice such schemes would probably work well by considering
only the first 3 or 4 bits to be truncated.

See also [101, fig. 9] for a diagram that sketches an implementation of SR mode 1 in an integer
multiplier.

9. Conclusion

Hardware units supporting SR are not yet widely available but have started to appear: as we discussed in
§7.5, Graphcore and Intel are producing processors with SR built in. Patents from AMD, NVIDIA, IBM
and other computing companies describing implementations of SR in fixed- or floating-point arithmetic
units show that this rounding mode could become more widely available in the future.

When hardware is not available, simulation in software of arithmetics with SR can be used to explore
its behaviour. Multiple simulators have been developed, as discussed in §7.4. These are available in
various forms for Matlab, C, Julia and Python.

Rounding error analysis with SR, discussed in §6, shows that compared with the standard rounding
modes, SR guarantees probabilistic error bounds significantly smaller than the worst-case bounds and it
also avoids the problem of stagnation (§6.1), where small values are lost to rounding when they are
added to an increasingly large accumulator. This explains the success of SR in the applications
described in §8.

We covered work using SR in various forms, in numerical linear algebra, machine learning, ODE and
PDE solvers, quantum computing and other areas. The wide array of applications in which SR has been
tried and led to improved accuracy demonstrates that it is a useful technique to consider when
arithmetics with standard rounding modes are insufficiently accurate. SR provides a useful alternative
to extended-precision registers, arbitrary-precision libraries, multi-word representations and
arithmetics, compensated algorithms and other means for improving accuracy.
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